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Abstract
The calcium signalling system is important for many cellular processes within the
human body. Signals are transmitted within the cell by releasing calcium (Ca2+) from
the endoplasmic reticulum (ER) into the cytosol via clusters of Ca2+ channels. Math-
ematical models of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3R) are
used to compute Ca2+ transients in regions that are difficult to measure directly. In
particular, accounting for the data on Ca2+ puffs as stochastic Ca2+ release events
in models remains challenging. Parameterising Markov models for representing the
IP3R with steady-state single channel data obtained at fixed combinations of the lig-
ands Ca2+ and inositol-trisphosphate (IP3) has previously been demonstrated to be
insufficient. However, by extending an IP3R model based on steady-state data with an
integral term that incorporates the delayed response of the channel to varying Ca2+
concentrations we succeed in generating realistic Ca2+ puffs. By interpreting the inte-
gral term as a weighted average of Ca2+ concentrations that extend over a time interval
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of length τ into the pastwe conclude that the IP3R requires a certain amount ofmemory
of past ligand concentrations.

Keywords Stochastic calcium dynamics · Integrodifferential equations · Time
delayed Markov models · Piecewise deterministic Markov processes

Mathematics Subject Classification 60J27 · 34A38 · 45J05 · 92C37

1 Introduction

The calcium (Ca2+) signalling system is vital for cellular function, playing an important
role in both excitable and non-excitable cells. This includes contracting and relax-
ing cardiomyocytes, controlling many psychological processes and regulating several
major ion flux mechanisms (Fearnley et al. 2011; Calì et al. 2014; Wagner and Yule
2012; Garcia and Boehning 2017; Han et al. 2017; Glaser et al. 2019). However, the
Ca2+ signalling system is not infallible and has been linked to numerous human dis-
ease states, such as hypertrophy, congestive heart failure, neurological diseases and
the inhibition of salivary secretion (Berridge 1997; Tveito and Lines 2016; Han et al.
2017; Glaser et al. 2019). Therefore, it is important to understand Ca2+ dynamics
further, and this can be achieved through mathematical modelling.

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are located in the membrane of the
endoplasmic reticulum (ER) and sarcoplasmic reticulum and regulate the release of
Ca2+ ions by opening and closing stochastically (Berridge 1997; Bootman 2012).
IP3R are distributed across the cell in clusters (Shuai et al. 2006; Dickinson et al.
2012; Dobramysl et al. 2016; Prole and Taylor 2019). The concentration of Ca2+

released from a cluster of IP3Rs can be described in a hierarchical manner (Yao et al.
1995; Berridge 1997; Bootman et al. 1997; Marchant and Parker 2001; Rüdiger et al.
2007; Smith et al. 2009; Rückl et al. 2015). The binding of inositol 1,4,5-trisphosphate
(IP3) to an activating site of an IP3R opens the IP3R, releasing Ca2+ ions into the
cytoplasm (Berridge et al. 2000; Bootman 2012). This increase in the cytoplasmic
Ca2+ concentration is known as a Ca2+ blip. Single IP3R channels are activated by
Ca2+. Consequently, an elevation inCa2+ + concentration triggers the IP3R, increasing
the open probability and leading to additional Ca2+ release (Siekmann et al. 2019).
This process is known as calcium-induced calcium release (CICR). Within a cluster
of IP3R channels, the release of Ca2+ ions from a Ca2+ blip stimulates neighbouring
IP3-liganded IP3Rs, increasing their open probability and releasing further Ca2+ ions
into the cytoplasm (Foskett et al. 2007; Skupin and Falcke 2010; Rüdiger and Shuai
2019; Siekmann et al. 2019). Ca2+ released from a cluster of IP3Rs is called a Ca2+

puff. The occurrence of many Ca2+ puffs can trigger a wave of Ca2+ across the entire
cell (llya Bezprozvanny et al. 1991; Berridge 1997; Marchant and Parker 2001). A
high concentration of Ca2+ decreases the open probability of the IP3R and inhibits
the channel (llya Bezprozvanny et al. 1991; Mak et al. 2007; Siekmann et al. 2019)
which eventually terminates the Ca2+ release. Intracellular oscillations and waves are
important cellular signals; and Ca2+ puffs are believed to play a vital role in generating
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the Ca2+ waves that travel across the cell (Bootman et al. 1997; Marchant and Parker
2001; Rückl et al. 2015).

In order to understand Ca2+ dynamics, mathematical models of the IP3R have
been developed (Keizer and Young 1994; Li and Rinzel 1994; Swillens et al. 1994;
Sneyd et al. 2004; Siekmann et al. 2012; Ullah et al. 2012; Cao et al. 2013; Rüdiger
2013; Cao et al. 2014; Dupont et al. 2016; Dupont and Sneyd 2017; Han et al. 2017;
Siekmann et al. 2019). An early example of continuous-timeMarkov chains being used
to analyse ion channel behaviour can be found in Colquhoun andHawkes (1977). Over
the past decade, it has become evident that parameterising continuous-time Markov
models using experimental data,whilst challenging, leads tomore accurate simulations
(Siekmann et al. 2019). The model by Siekmann et al. (2012) incorporates the large
single-channel data set byWagner and Yule (2012) and accurately accounts for modal
gating of the IP3R i.e. the spontaneous switching between a high and a low level of
activity. Cao et al. (2013) observed that in its original form, the Siekmann et al. model
(Siekmann et al. 2012) could not be used for accurately simulating Ca2+ puffs. They
hypothesised that this was because the model has been parametrised by steady-state
data (Wagner and Yule 2012) that had been obtained from experiments where Ca2+
concentrations were held constant. Indeed, data by Mak et al. (2007) show that the
IP3R responds with a delay to rapid changes of the concentrations of Ca2+ and other
ligands. Cao et al. (2013) integrated this behaviour into the Siekmann et al. (2012)
model by adding Hodgkin–Huxley type gating variables (Hodgkin and Huxley 1952).
The parameters of the Siekmann et al. (2012)model for a given Ca2+ concentration are
described by the steady states of the gating variables. When the Ca2+ concentration
changes, the steady states move to different values and the time it takes for the IP3R
to approach these new steady states is represented by the time constants of the gating
variables. Thus, using the Mak et al. (2007) data, Cao et al. (2013) developed an
extension of the Siekmann et al. (2012)model that accounts for the delayed response of
the IP3R to changes in Ca2+ concentration. Unlike the original Siekmann et al. (2012)
model, the extension by Cao et al. (2013) could be used successfully for simulating
realistic puff distributions. Further developments of the Cao et al. (2013) model have
since been made, such as creating a two-state model by using a quasi-steady-state
approximation that removes states with short dwell times that account for very brief
openings and closings, simulating the dynamics in HSY cells and understanding the
dependencies of certain parameters on the interpuff interval (IPI), the waiting time
between subsequent puffs (Cao et al. 2014, 2017; Han et al. 2017).

The goal of the study presented here is to develop a general model structure for the
IP3R or other ion channels that accurately accounts for the delayed response to changes
in ligand concentrations. We assume that to detect changes in the Ca2+ concentration
c(t) over a period of time, rather than just “sensing” c(t) at the current time t the IP3R
must “observe” the Ca2+ concentrations over a time interval I(t) = [t − τ, t] that
reaches a certain length of time τ in the past. We introduce an integral over the Ca2+
concentration c(t) over the time interval I(t):

c̄(t) =
∫ t

t−τ

f (c(s))ds (1)
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with f : R
+ → R

+ and τ > 0. For τ = 0 we set c̄(t) = c(t). When choosing
f = 1

τ
· id i.e. c̄(t) = 1

τ
· ∫ t

τ−t c(s)ds, Eq. (1) is the usual temporal average of c(t)
over the interval I(t). For general positive f , Eq. (1) can be interpreted as a weighted
temporal average of c(t) over the interval I(t). In this study, we relate the model by
Cao et al. (2013) to our new model structure by calculating the Green’s functions of
the gating variables as demonstrated for the Hodgkin–Huxley model Hodgkin and
Huxley (1952) by Brady (1970, 1972). Rather than calculating the gating variables
via differential equations, these can then be rewritten using terms of the form:

c̄(t) =
∫ t

0
f (c(s))ds (2)

Unlike (1) whose domain of integration has the finite length τ , the domain of
integration of the integral term (2), the interval [0, t] grows over time. Thus, in our new
model, the differential equations used by Cao et al. (2013) are absorbed by integrals
terms (2) without changing the model mathematically. Integrodifferential equations
that contain terms of the form (1) or (2) are also known as systems with distributed
delay. Distributed delay terms can be regarded as a model of “memory”.

We will discuss interpretations of “memory” in the context of ligand-gated ion
channels in the Discussion but already at this point we would like to emphasise that
we regard τ as a parameter of our model that describes how far the “memory” of the
ion channel reaches in the past. We believe that, realistically, the average c̄(t) should
be taken over a finite time interval as in (1) rather than (2) where the “memory” extends
over the finite but arbitrarily large time interval [0, t]—the dynamics of an ion channel
is unlikely to be influenced by Ca2+ concentrations very far in the past.

Introducing the average Ca2+ concentration c̄(t) enables us to build models of
the IP3R that integrate data collected at constant Ca2+ concentrations with data that
describe the response to changes in Ca2+ concentrations following a transparent two-
step process. In a first step, we represent the Ca2+ dependency using a data set such
as Wagner and Yule (2012) in a model such as Siekmann et al. (2012) which can be
represented using a Ca2+-dependent infinitesimal generator Q(c). In a second step
we then use data such as Mak et al. (2007) for determining the parameters of a model
for the averaged Ca2+ concentration c̄(t). This process allows us to build a model
following a modular approach because different data sets are represented in differ-
ent components of the model. A model of IP3R dynamics under time-varying Ca2+
concentrations c(t) is then obtained by evaluating the infinitesimal generator Q(c)
on the averaged Ca2+ concentration c = c̄(t). Because we obtain the current Ca2+
concentration c(t) from (1) when choosing τ = 0 (this amounts to using the original
Siekmann et al. (2012) model without delay), the model based on the averaged Ca2+
concentration is a natural extension of the model without “memory”.

Based on our representation of a single IP3R we develop a model for Ca2+ puffs
by coupling the stochastic release of Ca2+ through a certain number of open IP3R
channels with deterministic fluxes such as the Ca2+ uptake into the ER by the SERCA
pump. Whereas each individual channel in a cluster of IP3Rs is represented by a copy
of the Markov model developed above, the deterministic Ca2+ fluxes are described
by a differential equation (ODE) for the Ca2+ concentration c(t) averaged over the
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cluster which is coupled to the release through the IP3R channels by assuming that
each channel that is open at a time t generates a certain Ca2+ flux.

The model obtained by coupling a system of differential equations with a Markov
process is an example of a piecewise deterministic Markov process (PDMP) (Davis
1984). Probability densities for open and closed states depending on time t and the
variables of the ODE system can be calculated and utilised to gain more systematic
insight into the model behaviour than could be obtained by having solely to rely on
computational considerably demanding simulations of the model. However, probabil-
ity densities ρO(t, x where x ∈ R

n stands for the state vector of the ODE system will
only be useful if the number of variables n is not too large. Considering that a model
based on gating variables such as Cao et al. (2013) requires one additional differential
equations for each IP3R channel in the cluster, this leads us to another advantage of
formulating our model using integrodifferential equations instead. The original Cao
et al. (2013) model, for example, requires two differential equations—one for Ca2+
and one for fluorescent dye used for experimentally detecting Ca2+—but 40(!) addi-
tional equations (four gating variables for each of the 10 channels in the cluster) for
representing the delayed response of the IP3Rs to changes in Ca2+! Thus, our new
model of the IP3R which represents the delayed response of the IP3R to changes of
the Ca2+ concentration by distributed delay terms rather than gating variables requires
only asmany differential equations as needed for themodelling the deterministic Ca2+
fluxes. For this reason it is much more amenable for the analysis of puff dynamics
using the theory of PDMPs.

In Sect. 2 we first introduce the Siekmann et al. (2012) (Sect. 2.1) and the Cao
et al. (2013) model (Sect. 2.2). We then explain (Sect. 2.3) how the Green’s functions
of the gating variables are calculated so that the infinitesimal generator of the new
model becomes a function Q(c̄(t)) of average Ca2+, c̄(t). When the integrals defining
the Green’s functions are calculated over the interval [0, t], the resulting model is
equivalent to the Cao et al. (2013) model where the gating variables are represented
by differential equations. Instead of intervals [0, t] that grow arbitrarily large over
time t , we alternatively consider truncated domains of integration [t−τ, t] for most of
our study. Using quasi-steady state approximations, we carry out two different model
reductions—we reduce the state space of the model from six to two and we decrease
the number of gating variables from four to one (Sect. 2.4). The differential equations
describing the deterministic Ca2+ fluxes and binding to the fluorescent buffer dye are
presented in Sect. 2.5. The full model consisting of Markov models accounting for the
stochastic Ca2+ release by the IP3R channels and the ODEs for deterministic Ca2+
fluxes is solved numerically using a Gillespie algorithmwith adaptive time stepping as
described in Sect. 2.6. The resulting puff dynamics is characterised by three statistics,
the puff duration, the puff amplitude and the interpuff interval (IPI)which are described
in Sect. 2.7 where we introduce the time-dependent distribution by Thurley and Falcke
(2011) for modelling the IPI durations.

In the Results section (Sect. 3) we first demonstrate that before reducing the state
space or the number of gating variables, the model developed in this study pro-
duces puffs that are statistically indistinguishable from the Cao et al. (2013) model as
expected (Sect. 3.1). In Sect. 3.2 we then investigate the effect of the model reductions
on the statistical characteristics of the Ca2+ puffs. Finally, in Sect. 3.3, we study the
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influence of the length of the time interval [t − τ, t] on the puff dynamics. We find
that in order to produce realistic puffs, the time interval over which the average Ca2+
concentration c̄(t) is computed must not be too small. We interpret this observation
such that a minimum amount of “memory” is required to produce realistic puffs. We
discuss our results in Sect. 4.

2 Methods

2.1 The Siekmannmodel

The Siekmann model is a six-state Markov model, with four closed states and two
open states (Siekmann et al. 2012). The model, shown on the left in Fig. 1, has two
modes. The first mode consists of four states and the second mode of two states. These
modes describe the open probability of the ion channel. When the channel is in the
four-state mode, known as the active mode, it has an open probability of around 0.7,
whereas when the channel is in the two-state mode, known as the inactive mode, it has
an open probability of around 0. All the transition rates between the states are constant
with the exception of q24 and q42 which are both Ca2+ and IP3 dependent.

The differential equations describing the transitions between states can be repre-
sented in matrix form, with a matrix of the transition rates and a vector of the states,
known as the Q matrix. The Q matrix for the six-state Siekmann model is presented
in Eq. (3) and parameters can be found in Table 1.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

dC1
dt
dC2
dt
dC3
dt
dC4
dt
dO5
dt
dO6
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−q12 q12 0 0 0 0
q12 −(q21 + q23 + q24 + q26) q23 q24 0 q26
0 q32 −q32 0 0 0
0 q42 0 −(q42 + q45) q45 0
0 0 0 q54 −q54 0
0 q62 0 0 0 −q62

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

C1
C2
C3
C4
O5
O6

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

The rates q24 and q42 are calculated using two Ca2+-dependent variables each,m24,
h24, m42, h42 as shown in Eqs. (4) and (5). The parameters a24, a42, V24 and V42 are
constant.

q24 = a24 + V24(1 − m24h24) (4)

q42 = a42 + V42m42h42 (5)
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Fig. 1 The structure of the six-state and two-state Siekmann Model. The six-state model (Siekmann et al.
2012; Cao et al. 2013): the active mode consists of states C1, C2, C3 and O6; the inactive mode consists
of states C4 and O5. The two-state model (Cao et al. 2014): The active mode consists of the joint states C2
and O6; the inactive mode consists of the closed state C4

If we replace m24, h24, m42, h42 with the Ca2+-dependent m24∞, h24∞, m42∞,
h42∞ defined as follows:

m24∞ = cn24

cn24 + kn2424

, (6)

h24∞ = kn−24
−24

cn−24 + kn−24
−24

, (7)

m42∞ = cn42

cn42 + kn4242

, (8)

h42∞ = kn−42
−42

cn−42 + kn−42
−42

, (9)

the resulting rates q24 and q42 fit the Ca2+ dependency of these rates inferred by
Siekmann et al. (2012) from the data by Wagner and Yule (2012).

2.2 The Cao et al. model

Cao et al. (2013) observed that the model Q(c) (3) with the Ca2+-dependent rates q24
and q42, (4) and (5), parametrised by (6)–(9) failed to produce realistic puffs. They
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decided to introduce a delayed response to changes in the Ca2+ concentration c(t) by
representingm24,m42, h24 and h42 asHodgkin–Huxley-like gating variables (Hodgkin
and Huxley 1952)

dG

dt
= λG(G∞ − G) (10)

where G = m24,m42, h24, h42 and G∞ = m24∞, h24∞,m42∞, h42∞. In the original
Siekmann model, in response to a change in the Ca2+ concentration, the variables G
are immediately set to G∞. In contrast, when modelling G as gating variables (10),
rather than instantaneously attaining G∞, a variable G instead approaches G∞ from
its current value at the rate λG .

The rates at which m24, h24 and m42 reach their equilibrium are constant (Cao
et al. 2013). However, h42 has a more complex dynamic and its rate was modelled
heuristically by Cao et al. (2013) as

λh42 = ah42 + Vh42c
7

c7 + 207
(11)

where ah42 and Vh42 are constants. When the Ca2+ concentration is low, the rate λh42
will be low. Similarly, when the Ca2+ concentration is high, λh42 will be high. The
parameters of the gating variable equations were chosen so that the resulting model
showed a delayed response consistent with the Mak et al. (2007) data.

To model the significant increase in Ca2+ concentration that occurs when an IP3R
opens, Cao et al. (2013) applied two different Ca2+ concentrations, a method pre-
viously demonstrated by Rüdiger et al. (2012). When the IP3R is closed the Ca2+
concentration around the channel is represented as c(t). However, this concentration
increases by ch when the channel opens. Therefore, the Ca2+ concentration around
an open IP3R is c(t) + ch . We follow the same approach as Cao et al. (2013), Rüdiger
et al. (2012) in our model.

2.3 CalculatingQ(c̄(t)) from the Cao et al. model

As explained in the Introduction, our aim is to find a suitable weighted average c̄(t)
so that the resulting model Q(c̄(t)) exhibits a delay in response to change in the Ca2+
concentration as observed byMak et al. (2007) which is essential in producing realistic
puffs. We will see that it is possible to find an expression for the averaged Ca2+ con-
centration c̄(t) proposed in (1) by integrating the differential equations for the gating
variables (10), i.e. calculating the Green’s functions of (10), as previously demon-
strated by Brady (1972) for the Hodgkin–Huxley equations (Hodgkin and Huxley
1952).

For each gating variable G we obtain the integral expression
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�G(t, c) = G(0) exp

[
−

∫ t

0
(λG ◦ c)(x)dx

]

− exp

[
−

∫ t

0
(λG ◦ c)(x)dx

] ∫ t

0
(−αG ◦ c)(s)

· exp
[∫ s

0
(λG ◦ c)(x)dx

]
ds

= exp(−J (∞t))

[
G(0) +

∫ t

0
(αG ◦ c)(s) · exp(J∞(s))ds

]
(12)

where ‘◦‘ stands for composition of functions, G represents the gating variable and c
the Ca2+ concentration. We also define

J∞(t) =
∫ t

0
(λG ◦ c)(x)dx . (13)

The initial values are: c(0) = 0.1µM, G(0) = αG (0)
λG (0) .

αG is calculated as follows, using rates presented in Table 2:

αG = λGG∞ (14)

We will now verify if the �G(t, c) calculated in Eq. (12) are indeed functions of
an appropriately defined weighted average c̄(t) as introduced in Eq. (1). The term∫ t
0 (αG ◦ c)(s) · exp(J (s))ds can be interpreted as a weighted temporal average c̄(t) of
Ca2+—the function exp(J (s))ds · (αG ◦ c)(s) is a positive function applied to c(t).
This shows that �G is a function of two different weighted averages c̄(t).

In principle, this transformation of the gating variables to integrodifferential equa-
tions introduces an arbitrarily long delay i.e. the integrals replacing the gating variables
extend over the time interval [0, t] which grows to an arbitrary length t . This not only
makes the numerical solution of the model equations computationally infeasible but
also implies that the IP3R has an arbitrarily long memory which appears unrealistic.
For this reason, we consider integrals with finite delays τ , which are obtained by trun-
cating the domain of integration [0, t] to finite length [t − τ, t]. The time τ can be
interpreted as how far into the past the ion channel’s memory spans. Thus, the general
version of the finite time integral term can be written as:

�G(t, c) = exp(−Jτ (t))

[
G(0) +

∫ t

t−τ

(αG ◦ c)(s) · exp(Jτ (s))ds
]

(15)

with

Jτ (t) =
∫ t

t−τ

(λG ◦ c)(x)dx . (16)
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Table 1 Parameter values for the
Ca2+-independent rates of the
Siekmann et al. (2012) model,
see Fig. 1

q45 [ms−1] q54 [ms−1]

Inactive mode 11.1 × 10−3 3.33

q12 [ms−1] q21 [ms−1]

q23 [ms−1] q32 [ms−1]

q26 [ms−1] q62 [ms−1]

Active mode 1.24 0.0879

3.32 × 10−3 0.0694

10.5 4.01

The Ca2+-dependent rates q24 and q42 are calculated using (4), (5)

In summary, our new model is obtained by replacing the ODEs for the gating
variables in the Cao et al. (2013) model (Eq. (10)) with the integrodifferential equation
described in Eqs. (12), (13) or (15), (16).

2.4 Model reduction

In the following sections, we describe two sets of model reduction based on quasi-
steady state approximations and ignoring states with low dwell times. Firstly, we
reduce the six-state model with four gating variables to a six-state model with one
gating variable—we refer to this model as the “reduced six-state model”. Next, we
reduce this model further to a two-state model—we call this model the “reduced two-
state model”. In Table 3 we describe the model reductions and the equations used.

2.4.1 Reducing the number of gating variables

Quasi-steady-state approximation replaces the ODEs for fast variables with their
steady state. This reduces the number of equations in the system, leaving only a
system for slow variables (Vejchodský et al. 2014). Cao et al. (2014), Dupont et al.
(2016) state the rate at which the gating variables m24, h24 and m42 reach their steady
state is so quick, they can be set equal to their steady state:

m24 = m24∞, h24 = h24∞, m42 = m42∞ (17)

We obtain the “reduced six-state model”, see Table 3, by this reduction to just one
gating variable, h42. Whilst, the reduced model still consists of six integrodifferential
equations, computationally it is simpler because it only uses one gating variable.

2.4.2 Reducing the number of states of the IP3R model from six to two states

Cao et al. (2014) showed that the six-state IP3R model can be reduced to a two-
state IP3R model without qualitatively changing the Ca2+ puff dynamics. The right
schematic presented in Fig. 1 describes the two-state model by Cao et al. (2014). In
this model, only the inter-modal transitions have an effect on IP3R behaviour and the

123



A Ca2+ puff model based on integrodifferential equations Page 11 of 26    43 

Ta
bl
e
2

M
od
el
pa
ra
m
et
er
s

Sy
m
bo
l

D
es
cr
ip
tio

n
V
al
ue

U
ni
ts

G
at
in
g
ki
ne
ti
cs

a 2
4

B
as
al
le
ve
lo

f
q 2

4
29

.8
5
p=

0
1
µ
M

s−
1

V
24

G
at
in
g-
de
pe
nd

en
tp

ar
to

f
q 2

4
31

2.
85

p=
0
1
µ
M

s−
1

a 4
2

B
as
al
le
ve
lo

f
q 4

2
0.
05

p=
0
1
µ
M

s−
1

V
42

G
at
in
g-
de
pe
nd

en
tp

ar
to

f
q 4

2
10

0
s−

1

λ
h
24

R
at
e
of

ap
pr
oa
ch

to
st
ea
dy

st
at
e
of

h
24

40
s−

1

n −
24

H
ill

co
ef
fic
ie
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
h
24

∞
0.
04

p=
0
1
µ
M

k −
24

H
al
f-
sa
tu
ra
tio

n
co
ns
ta
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
h
24

∞
97

.0
0
p=

0
1
µ
M

h
24

∞
St
ea
dy

st
at
e
of

h
24

kn
−2

4
−2

4

cn
−2

4
+

kn
−2

4
−2

4

a h
42

B
as
al
le
ve
lo

f
λ
h
42

(t
un
in
g
pa
ra
m
et
er
)

0.
5

s−
1

V
h
42

C
a2

+ -
de
pe
nd

en
tp

ar
to

f
λ
h
42

10
0

s−
1

K
h
42

H
al
f-
sa
tu
ra
tio

n
co
ns
ta
nt

fo
r
C
a2

+ -
de
pe
nd

en
cy

of
λ
h
42

20
µ
M

λ
h
42

R
at
e
of

ap
pr
oa
ch

to
st
ea
dy

st
at
e
of

h
42

a h
42

+
V
h
42
c7

c7
+

K
7 h
42

s−
1

n −
42

H
ill

co
ef
fic
ie
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
h
42

∞
3.
23

p=
0
1
µ
M

k −
42

H
al
f-
sa
tu
ra
tio

n
co
ns
ta
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
h
42

∞
0.
17

p=
0
1
µ
M

h
42

∞
St
ea
dy

st
at
e
of

h
42

kn
−4

2
−4

2

cn
−4

2
+

kn
−4

2
−4

2

λ
m
24

R
at
e
of

ap
pr
oa
ch

to
st
ea
dy

st
at
e
of

m
24

10
0

s−
1

n 2
4

H
ill

co
ef
fic
ie
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
m
24

∞
6.
31

p=
0
1
µ
M

123



   43 Page 12 of 26 M. Hawker et al.

Ta
bl
e
2

co
nt
in
ue
d

Sy
m
bo
l

D
es
cr
ip
tio

n
V
al
ue

U
ni
ts

k 2
4

H
al
f-
sa
tu
ra
tio

n
co
ns
ta
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
m
24

∞
0.
54

9
p=

0
1
µ
M

m
24

∞
St
ea
dy

st
at
e
of

m
24

cn
24

cn
24

+
kn

24
24

λ
m
42

R
at
e
of

ap
pr
oa
ch

to
st
ea
dy

st
at
e
of

m
42

10
0

s−
1

n 4
2

H
ill

co
ef
fic
ie
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
m
42

∞
11

.1
6
p=

0
1
µ
M

k 4
2

H
al
f-
sa
tu
ra
tio

n
co
ns
ta
nt

fo
r
C
a2

+
de
pe
nd

en
cy

of
m
42

∞
0.
40

p=
0
1
µ
M

m
42

∞
St
ea
dy

st
at
e
of

m
42

cn
42

cn
42

+
kn

42
42

C
a2

+
ba

la
nc
e

c h
E
le
va
te
d
C
a2

+
in

vi
ci
ni
ty

of
op

en
IP

3
R
ch
an
ne
l

12
0

µ
M

B
To

ta
lb

uf
fe
r
co
nc
en
tr
at
io
n

20
µ
M

k o
n

B
in
di
ng

of
flu

o4
bu
ff
er

to
C
a2

+
15

0
µ
M
s−

1

k o
ff

U
nb

in
di
ng

of
flu

o4
bu
ff
er

fr
om

C
a2

+
30

0
s−

1

J r
Fl
ux

of
C
a2

+
th
ro
ug

h
si
ng

le
ch
an
ne
l

20
0

µ
M
s−

1

J l
ea
k

C
a2

+
in
flu

x
fr
om

cl
us
te
r
en
vi
ro
nm

en
t

33
µ
M
s−

1

V
d

R
at
e
of

cy
to
pl
as
m
ic
C
a2

+
re
m
ov
al
fr
om

th
e
cl
us
te
r

40
00

µ
M
s−

1

K
d

H
al
f-
sa
tu
ra
tio

n
co
ns
ta
nt

fo
r
cy
to
pl
as
m
ic
C
a2

+
re
m
ov
al

12
µ
M

IP
3
-d
ep
en
de
nt

pa
ra
m
et
er
s
ar
e
ev
al
ua
te
d
at
a
co
nc
en
tr
at
io
n
of

0.
1
µ
M

as
in
di
ca
te
d
by

su
bs
cr
ip
ts
.F

ul
lm

od
el
de
ta
ils

ar
e
gi
ve
n
in

C
ao

et
al
.(
20

13
)

123



A Ca2+ puff model based on integrodifferential equations Page 13 of 26    43 

Ta
bl
e
3

Su
m
m
ar
y
of

m
od

el
s
an
d
th
ei
r
co
rr
es
po

nd
in
g
eq
ua
tio

ns

M
od
el

D
es
cr
ip
tio

n
E
qu
at
io
ns

us
ed

Si
x-
st
at
e
m
od
el

A
hy
br
id

st
oc
ha
st
ic
sy
st
em

co
ns
tr
uc
te
d
by

co
up

lin
g
th
e

si
x-
st
at
e
Si
ek
m
an
n
m
od
el
w
ith

O
D
E
s
m
od
el
lin

g
C
a2

+
flu

xe
s.

G
at
in
g
va
ri
ab
le
s,
m
24
,h

24
,m

42
,

h
42
,a
re

m
od

el
le
d
us
in
g
th
e

in
te
gr
od

if
fe
re
nt
ia
le
qu

at
io
n
by

B
ra
dy

(1
97

2)

E
qu

at
io
ns

(3
),
(1
5)
,(
18

),
(1
9)

R
ed
uc
ed

si
x-
st
at
e
m
od
el

A
si
m
pl
ifi
ed

ve
rs
io
n
of

th
e
si
x-
st
at
e

m
od
el
th
at
ap
pl
ie
s
qu
as
i-
st
ea
dy

st
at
e
ap
pr
ox
im

at
io
n.
G
at
in
g

va
ri
ab
le
s
m
24
,h

24
an
d
m
42

ar
e

as
su
m
ed

to
ha
ve

re
ac
he
d
th
ei
r

st
ea
dy

st
at
e

E
qu

at
io
ns

(3
),
(1
5)
,1
7,

(1
8)
,(
19

)

R
ed
uc
ed

tw
o-
st
at
e
m
od
el

A
re
du
ct
io
n
of

th
e
re
du
ce
d
si
x-
st
at
e

m
od
el
th
at
us
es

qu
as
i-
st
ea
dy
-s
ta
te

ap
pr
ox

im
at
io
n
an
d
ig
no

re
s
st
at
es

w
ith

lo
w
dw

el
lt
im

es
to

si
m
pl
if
y

th
e
si
x-
st
at
e
M
ar
ko
v
m
od
el
to

a
tw
o-
st
at
e
M
ar
ko
v
m
od
el

E
qu

at
io
ns

(3
),
(1
5)
,1
7,

(1
8)
,(
19

).
Se
e
C
ao

et
al
.(
20

14
)
fo
r
fu
rt
he
r

de
ta
ils

123



   43 Page 14 of 26 M. Hawker et al.

structure of the active and inactive modes seen within the six-state model are ignored
(Cao et al. 2014). Constant parameters for rates q24 and q42 remain the same as those
in Eqs. (4) and (5). Due to the reduction in the model, q24 is scaled by q26

q62+q26
, see

Cao et al. (2013) for details. We refer to this model as the “reduced two-state model”,
see Table 3.

2.5 Deterministic calcium dynamics

Using the same system of ODEs as in Cao et al. (2013), we develop a model that
accounts for various fluxes that influence the Ca2+ concentration, c, in the cytosol as
well as the Ca2+ dye, bfluo4.

dc

dt
= JincreaseNo + Jleak − Jdecrease − kon(Bfluo4 − bfluo4)c + koffbfluo4 (18)

dbfluo4
dt

= kon(Bfluo4 − bfluo4)c − koffbfluo4 (19)

Here, the flux JincreaseNo represents the stochastic Ca2+ flux through an open IP3R;
Jincrease is the flux through a single IP3R channel whereas No is the number of open
channels at a given point in time. The flux Jdecrease refers to the Ca2+ uptake into
the endoplasmic reticulum (ER) by the SERCA pump (Cao et al. 2013; Siekmann
et al. 2019). The leakage of Ca2+ from the endoplasmic reticulum is described by
Jleak. The remaining terms in the equations represent the binding of Ca2+ to the
fluorescent dye. The changes in the Ca2+ signalling can be visualised through the
changes in the fluorescence light correlating with changes in Ca2+ signalling (Pratt
et al. 2020). This process is described in Eqs. (18), (19) using parameters Bfluo4 and
bfluo4, which represent the total dye buffer concentration and the Ca2+-bound dye
buffer concentration, respectively (Siekmann et al. 2019). For the two-state model,
all parameters remain the same as those for the six-state model with the exception of
Jincrease which is replaced with Jincrease · q26

(q62+q26)
(Cao et al. 2014). Parameter values

are detailed in Table 2.

2.6 Numerical methods

We solve Equations (18), (19) using the fourth-order Runge–Kutta method. The
dynamics of the Markov models representing the IP3R channels is simulated with
a Gillespie algorithm. Due to the rates q24 and q42 being Ca2+ dependent, they are
time-dependent. For this reason, the originalGillespie algorithmcannot be used.Adap-
tive timing, as detailed in Alfonsi et al. (2005), Cao et al. (2013), Rüdiger (2013), is
used to make the algorithm more run-time-efficient. A maximum time step size of
10-4 s is used for the six and two-state models. Integrals in Eq. (15) are calculated
using the Riemann sum, using a larger time step (10-2 s). As evidenced in S3 Fig (see
Supplementary Material), the increased time-step strongly increases computational
efficiency whilst not significantly decreasing the approximation accuracy of the inte-
gral. IP3 is set to 0.1µM for all simulations. We assume Ca2+ concentrations prior
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to time t0 are constant and low at 0.1µM. All results were gathered using Matlab
(MathWorks, Natick, MA).

2.7 Calcium puff statistics

Ca2+ puffs are often characterised by taking into consideration three key statistics; the
interpuff interval (IPI), the puff amplitude and the puff duration. IPIs are defined as
the time between the peak amplitude of Ca2+ puffs. We determine the start of a Ca2+

puff as the time when the Ca2+ concentration is 20% of the peak amplitude. Similarly,
the end of the puff is defined as the time after the peak where the Ca2+ concentration is
20% of the peak amplitude. The difference between the end and start times determines
the duration of the Ca2+ puff.

Thurley et al. (2011) proposed a time-dependent variant of the exponential distri-
bution for modelling IPI data. We fit our simulated IPI distributions to this probability
density function by calculating the suitable parameters for it. The time-dependent
distribution is

PI P I = λ(1 − exp (−ξ t)) exp (−λt + λ(1 − exp (−ξ t))/ξ), (20)

where λ is the puff rate and ξ is the recovery rate. We estimated the mean IPI from
the data and set λ as the reciprocal of this value, as previously demonstrated by Cao
et al. (2017). ξ is optimised using the lsqcurvefit function in Matlab.

3 Results

Wenow investigate if themodel proposed abovewhich represents the delayed response
of the IP3R to changes of the Ca2+ concentration can be used for producing realistic
puffs. As explained in Sect. 2.3, choosing the integral term (2) over the interval [0, t]
allows us to compare our model with the Cao et al. (2013) model based on gating
variables. In Sect. 3.1 we replace h24, h42, m24 and m42 with the Green’s functions
of the differential equations defining the four gating variables and demonstrate—by
comparison of the statistics described in Sect. 2.7—that the puffs dynamics of the
Cao et al. (2013) model and our new model are equivalent. In Sect. 3.2, we inves-
tigate the effect of reducing the number of states and gating variables described in
Sect. 2.4. Finally, we study the influence of τ , the duration over which the average
Ca2+ concentration c̄(t) is calculated, on the puff dynamics. Directly translating the
gating variables of the Cao et al. (2013)model to integral terms implies that the domain
of integration used for calculating the average Ca2+ concentration c̄(t) extends over
an arbitrarily long time interval [0, t]. A more realistic assumption is that the IP3R
averages the Ca2+ concentration only over the finite interval [t − τ, t]. We will show
that when choosing the time τ too small, the IP3R loses the ability to produce puffs.
Unless otherwise stated, τ and ah42 are set to 3 s and 0.5 s–1, respectively.
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Fig. 2 Examples of Ca2+ traces for models. A Ca2+ trace produced by six-state Markov model with four
integral gating variables produces equivalent results to themodel bySiekmann et al. (2012),Cao et al. (2013).
B Ca2+ trace produced by a six-state Markov model with one integral gating variable. The frequency of
Ca2+ puffs is reduced by the reduction of the model. C Ca2+ trace produced by a two-state Markov model
with one integral gating variable. Table 3 describes the equations used within each model

3.1 Replacing the ODEs calculating the gating variables in the Siekmannmodel
produces equivalent results to Cao et al. (2013)

Directly replacing the ODEs calculating the gating variables in the six-state Siekmann
model with integrodifferential equations (Fig. 2A) reproduces previous results (see
Cao et al. 2013, Fig. 2). The fitting of simulated IPI distributions to Eq. (20) produced
parameter values (λ = 0.2486 and ξ = 0.6267) that are similar to those described by
Cao et al. (2013) (see S5 Fig in the Supplementary Material for plots). Puff amplitude
and duration distributions were also similar to the results in Cao et al. (2013).

3.2 Using quasi-steady-state approximation reduces themodel whilst
maintaining the correct puff dynamics

Quasi-steady-state approximation can be used to reduce the number of gating variables
in the six-state model by setting m24, h24 and m42 to their steady states m24∞, h24∞
and m42∞. This results in a model we refer to as the reduced six-state model which
comprises of six ODEs and an integral, calculating the remaining gating variable
h42. Figure2B shows an example of a Ca2+ trace produced by the reduced six-state
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model. In contrast to the six-state model (Fig. 2A), the reduced six-state model has
fewer puff events, higher puff amplitudes and shorter puff duration’s. Fitting of the
time-dependent distribution by Thurley et al. (2011) produced parameter values of
λ = 0.0986 and ξ = 0.1723, which show the average time between Ca2+ puffs is
greater for the reduced mode, but puff recovery time is slower.

Cao et al. (2014) demonstrated that the six-statemodel can be reduced to a two-state
model using quasi-steady-state approximation and by neglecting low dwell times. We
apply these methods and refer to our final model as the reduced two-state model. Our
results, presented in Fig. 2C, show that the Ca2+ traces simulated by the reduced two-
state model are similar to those produced by the more complex six-state models. The
reduced two-state model does not have a fast lived open state—the equivalent to state
O5 in the six-state model—therefore the model is not able to produce openings of a
small number of IP3R. This difference causes there to be less basal fluctuations in the
reduced two-state model. We fit the simulated IPI distribution to the time-dependent
probability density function and calculate λ = 0.13 and ξ = 0.3099. This illustrates
that the frequency of Ca2+ puffs and puff recovery rate is lower for the reduced two-
state model, in comparison to the six-state model.

Puff statistics for all models described are presented in Fig. 3 as probability dis-
tributions and averages with standard error. The probability distributions demonstrate
all models produce similar puff statistics. Reducing the model to a two-state model
with one gating variable increases the average IPI and puff amplitude, however the
average puff duration remains similar. Comparison of the puff statistics and averages
demonstrates that the reduced two-state model can produce Ca2+ dynamics that are a
good reflection of more complex models.

3.3 The effect of � on Ca2+ dynamics

An important aspect of our two-state model is the length of the time interval τ .
Because τ determines over how much time the calculation of the average c̄(t) of
Ca2+ concentrations c(t) reaches into the past, the value τ determines how much
“memory” the IP3R has. Within our analysis, a fundamental question is: do the ion
channels require “knowledge” of past Ca2+ concentrations, summarised in the tempo-
ral average c̄(t), to function, or is “knowledge” of only the present Ca2+ concentration
sufficient?

To answer this, we aimed to find a threshold value for τ , the length of the distributed
delay in (2), where anything smaller than this will be detrimental to the Ca2+ dynamics.
We found that when τ was set to 0.1 s, Ca2+ puffs were not produced and the ion
channels stayed in a high activity mode. This suggests that there is a threshold below
which Ca2+ puffs cannot be produced. Figure4 compares the Ca2+ traces, simulated
using the reduced two-state model, when the length of τ is 0.1 s to when it is 3 s.

In order to gain more quantitative insight into the value of τ i.e. the length of time
that the “memory” of the IP3R reaches into the past, we investigate the dynamics of
the gating variable h42 which, as previously shown by Cao et al. (2013), is crucial for
the Ca2+ dynamics. In Fig. 5 we compare the average of the solutions of h42 of all 10
IP3R channels for both the two-state model (Fig. 5A) and the six-state model (Fig. 5B)
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Fig. 3 Comparison of average puff statistics across all three models. The six-state model is shown by the
solid black line, the reduced six-state model by the blue dashed line and the reduced two-state model by
the red dot-dashed line. Bars depict the mean of each statistic ± standard error. Simplifying the six-state
model using quasi-steady-state approximation leads to a decrease in the frequency of Ca2+ puff events. The
increase in puff amplitude for these models implies that due to quasi-steady-state approximation a higher
number of channels open at the same time, however, the channel requires a longer time period to recover
from the high Ca2+ concentration and reopen

when τ is set to 3 s, and for the two-state model when τ is set to 15s (Fig. 5C). Results
presented in Fig. 5A show that whilst the Ca2+ concentration remains low at 0.1µM,
the h42 gating variable gradually increases. If the Ca2+ concentration has remained
constant for the length of τ , h42 increases to its steady state value and remains there
until a Ca2+ puff is triggered. An increase in the Ca2+ concentration causes the h42
gating variable to decrease to a value near zero, before gradually increasing again.
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Fig. 4 Comparison of Ca2+ trace for τ = 0.1 s and τ = 3 s. A τ = 0.1 s, the Ca2+ dynamics fail with a
small delay. B τ = 3 s, Ca2+ puffs are successfully produced when τ is larger. Both traces were produced
using the reduced two-state model, where only one gating variable (h42) is used. All parameters remain
the same as those in Table 2 except for the “capacity” of memory, τ . Details of the equations used for the
model can be found in Table 3

We do not see this sudden increase in the h42 gating variable for the six-state model
(see Fig. 5B) as the basal level Ca2+ concentration constantly fluctuates, therefore the
h42 gating variable never reaches equilibrium. If we set τ to be a larger value, such
as 15s, in the two-state model, the increase to equilibrium is less likely to occur,
because a Ca2+ puff is usually triggered within this time frame. The h42 dynamics
resembles that of the six-state model (see Fig. 5C). Although our results show that the
h42 dynamic changes depending on the length of τ within the two-state model, the
Ca2+ puff dynamics are not affected. For this reason we conclude that the length of
the “memory” required for the IP3R to produce puffs is around τ = 3 s.

4 Discussion

Mathematical models simulating the Ca2+ signalling system are often complex and
require a large number of parameters and equations. Moreover, many earlier models
of stochastic Ca2+ signalling are spatially explicit which makes them computationally
demanding. In these models, the cluster of IP3R channels is represented using a sys-
tem of reaction–diffusion equations in a two-dimensional or even three-dimensional
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Fig. 5 Examples of Ca2+ traces and the averaged h42 gating variable simulated using the two-state model
and the six-state model.ACa2+ trace and averaged h42 gating variable produced using the two-state model
with τ set to 3 s. B Ca2+trace and average h42 gating variable produced using the six-state model with τ

set to 3 s. C Ca2+ trace and averaged h42 gating variable with τ set to 15 s. With the exception of τ all
parameters remain the same within the model simulations.A shows when the Ca2+ concentration is low, the
h42 gating variable gradually increases. Once the concentration has remained constant for τ seconds, h42
increases to equilibrium (∼ 0.8) and remains close to this value until a Ca2+ puff is triggered, causing the
h42 value to rapidly decrease. B shows h42 simulated by the six-state model also increases gradually whilst
the Ca2+ concentration is low. However, due to the constant fluctuations in the basal Ca2+ concentration,
h42 does not reach its equilibrium value. Increasing the length of τ in the two-state model to 15s, shown
in C, produces a h42 dynamic that is similar to that simulated by the six-state model. The h42 gradually
increases to its equilibrium value without the sudden jump seen when τ is of a shorter length. Black full
line is the Ca2+ concentration, blue dashed line is the averaged h42 gating variable. Arrows show the length
of τ following a Ca2+ puff

spatial domain. The IP3R channels are modelled as stochastic point sources and Ca2+
is transported across the spatial domain by diffusion, see Rüdiger (2013) for a review.
Rüdiger et al. (2010) observed in a spatially explicit puff model that Ca2+ concen-
trations in the vicinity of open IP3Rs reach very large values but decline rapidly to
a lower Ca2+ concentration which remains approximately constant across the clus-
ter. This led Rüdiger et al. (2012) to propose a puff model based on PDMPs where
instead of tracking the spatiotemporal Ca2+ concentrations c(t, x), only changes of
the average Ca2+ concentration across the cluster are represented by the time- but not
spatially-dependent variable c(t) is the average Ca2+ concentration across the cluster.
The Cao et al. (2013) model is an extension of the approach proposed in Rüdiger et al.
(2012). If it is possible to neglect the spatiotemporal puff dynamics within a Ca2+
cluster, PDMPs are computationally much less demanding than puff models based
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on reaction–diffusion equations. Moreover, the results from PDMPs are much easier
to analyse—in order to obtain a puff trace such as Fig. 2 from a reaction–diffusion
model, the spatiotemporal dynamics needs to be averaged analogously to the analysis
of experimental puff data.

The aim of our research was to build a model for the IP3R that accounts for the
delayed response of the channel to changes in Ca2+ concentrations observed by Mak
et al. (2007). Our model is based on the hypothesis that rather than responding only to
the current Ca2+ concentration c(t), the IP3R dynamics depends on the average c̄(t) of
Ca2+ concentrations reaching τ units of time in the past. Starting from the Siekmann
model Siekmann et al. (2012) which has been shown to be incapable of generating
realistic puffs if coupled directly to the time-dependent Ca2+ concentration c(t) (Cao
et al. 2013), we demonstrated that we can enable the model to produce puffs by
replacing the dependency on c(t) by the average concentration c̄(t)—provided that the
length τ of the time interval used for calculating the average Ca2+ concentration c̄(t) is
sufficiently long. When τ was set to a small value of 0.1 s the model failed to generate
Ca2+ puffs, whereas setting τ = 3 s is sufficient for enabling the model to produce
puffs for the parameters chosen in Table 2.

This shows that a data-driven ion channel model that accounts for the delayed
response to changes in ligand concentration can be constructed by first parametris-
ing a ligand-dependent infinitesimal generator Q(c) from single-channel data set at
various ligand concentrations c. The delayed response to changes in ligand concen-
trations can then be incorporated into the model in a second step by parametrising the
weighted average c̄(t), for example, from a data set that shows rapid changes in ligand
concentrations by Mak et al. (2007). Thus, both data sources can be incorporated in
the model separately in a transparent, modular way.

In order to relate our new model to the previous work by Cao et al. (2013), we
calculated the Green’s functions of the gating variables, introduced by Cao et al.
(2013) to account for the delayed response to changes in Ca2+, following an idea
demonstrated by Brady (1972) for the Hodgkin–Huxley model (Hodgkin and Huxley
1952). Our model successfully produced results that were comparable with those
published by Cao et al. (2013) which was expected for distributed delay terms of the
form (2) because in this case our new model and the Cao et al. (2013) model are
mathematically equivalent.

Similar to Cao et al. (2014) and Dupont et al. (2016), we simplified our model by
using quasi-steady-state approximation to reduce the number of gating variables from
four to one. The reduction in our model led to longer IPIs, higher puff amplitudes
and shorter puff durations. Finally, we followed the steps described by Cao et al.
(2014), Siekmann et al. (2019) to simplify our model further, reducing it to a two-state
model. Our results were comparable with both the reduced six-state model and the
results produced by Cao et al. (2014). Such results included longer IPIs and higher
puff amplitudes. Siekmann et al. (2019) state that it is not the intramodal structure
of the Markov model that determines the behaviour of the ion channel, but the time-
dependence of the intramode transitions. This has been shown to be true for the six
and two-state models by Siekmann et al. (2012), Cao et al. (2013, 2014) and is also
true for our models—in the two-state model where active and inactive mode of the six-
state model have been replaced by only one state each, the transitions within modes
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have been removed completely, yet, the puff dynamics of both models is similar.
However, one may argue that the six-state and the reduced six-state model provide
better representations of the activity within the cell because they account for a basal
level of frequent small fluctuations in Ca2+ concentration, which we do not see in the
reduced two-state model.

By construction, our IP3R model is based on the assumption that ion channels
require information of past Ca2+ concentrations. The idea that ion channels have
“memory” of past ligand concentrations is still somewhat uncommon, for exam-
ple, Villalba-Galea and Chiem (2020) state that the activity of ligand-gated channels
depends only on the current concentration of the agonist ligand (yet, interestingly,
Villalba Galea and Chiem make this statement in an article where they review the evi-
dence for memory effects in voltage-gated ion channels!). However, the experiments
by Mak et al. (2007) clearly show that the dynamics of the IP3R not only depends on
the current concentrations of its ligands Ca2+ and IP3 but also on the concentrations
of Ca2+ and IP3 that the channel has been exposed to in the past.

We would like to consider two possible explanations for the memory effect found
in the data by Mak et al. (2007) and represented in the architecture of our model of the
IP3R. One explanation is based on the biophysical architecture of the IP3R and other
ion channels which are proteins with a complex three-dimensional molecular struc-
ture. As previously discussed in the authors’ work on modal gating (Siekmann et al.
2014, 2016), changes in ion channel activity are related to conformational changes.
The time required for the channel to change its three-dimensional structure most likely
is one important part of the explanation of the delayed response to changes in ligand
concentrations. A related interpretation is based on the fact that the numerical concen-
tration of the Ca2+ concentration does not fully reflect the interactions of Ca2+ ions
with the Ca2+ binding sites of the IP3R. Rather than being able to directly “measure”
the Ca2+ concentration, a ligand-gated ion channel like the IP3R has to infer the ligand
concentration in its environment from the interactions of the ligand with its binding
sites. Thus, rather than responding to the current Ca2+ concentration c(t) it is more
reasonable to assume a model where the channel kinetics depends on an average Ca2+
concentration c̄(t) which can be related to the average time that Ca2+ has been bound
to the various binding sites of the channel for a time interval τ .

An alternative explanation for the memory effect is that the memory of the
IP3R might have emerged due to physiological necessity—the IP3R is only capa-
ble of responding appropriately to variations in Ca2+ concentrations if the channel
“observes” Ca2+ over the recent past. This view is supported by the dynamics of h42,
see Fig. 5. As long as no major increase in the Ca2+ concentration occurs, the average
over the gating variables h42 of all IP3Rs in the cluster continuously increases which
makes the cluster of IP3Rs increasingly excitable—once h42 has increased above a
certain level, a small increase in the Ca2+ concentration causes a large proportion
of channels to open and release Ca2+, triggering a puff. In response, the average of
the h42 nearly instantaneously decreases to a value close to zero but starts to gradually
increase again after the puff terminates and the Ca2+ concentration has returned to the
resting level.

Finally, we would like to highlight that a model based on integrodifferential equa-
tions might be much more amenable to systematic analysis than approaches based
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on gating variables such as the Cao et al. (2013) model. For ODE systems coupled
to Markov models, the theory of piecewise deterministic Markov processes (PDMP)
can be used for calculating probability densities ρO(t, x) and ρC(t, x) that relate the
variables x modelled by the ODE system like, for example, Ca2+, to the time spent in
the open and closed states of the Markov model representing the IP3R channel. Con-
sidering that the analysis of stochastic models is often a considerable computational
challenge, being able to gain more systematic insight into the dynamics by analysing
the distributions ρO(t, x) and ρC(t, x) can be a considerable advantage when investi-
gating the mechanisms behind the generation of Ca2+ puffs. Due to the large number
of differential equations needed for representing the gating variables it is unlikely that
this approach can be implemented for the Cao et al. (2013) model or other models
based on similar approaches. In contrast, for a model that requires only a few integrod-
ifferential equations as proposed in this study, it is possible to calculate the open and
closed time distributions. Similar to the study of single ion channels, the sojourn dis-
tributions for the IP3Rs in a cluster are expected to be very useful for gaining general
insights into the processes underlying the puff dynamics. The theory of PDMPs has
already been applied in both cellular biology (Tveito and Lines 2016; Bressloff and
Maclaurin 2018) and individual-based modelling in mathematical ecology (Hawker
and Siekmann 2023), a particularly interesting question is to consider, as in Tveito and
Lines (2016), how the probability density functions differ depending on how healthy
an ion channel is.
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