

LJMU Research Online

Leońska-Duniec, A, Jastrzębski, Z, Jażdżewska, A, Moska, W, Lulińska-Kuklik, E, Sawczuk, M, Gubaydullina, SI, Shakirova, AT, Cięszczyk, P, Maszczyk, A and Ahmetov, II

Individual responsiveness to exercise-induced fat loss and improvement of metabolic profile in young women is associated with polymorphisms of adrenergic receptor genes

http://researchonline.ljmu.ac.uk/id/eprint/26133/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Leońska-Duniec, A, Jastrzębski, Z, Jażdżewska, A, Moska, W, Lulińska-Kuklik, E, Sawczuk, M, Gubaydullina, SI, Shakirova, AT, Cięszczyk, P, Maszczyk, A and Ahmetov, II (2018) Individual responsiveness to exerciseinduced fat loss and improvement of metabolic profile in voung women is

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

http://researchonline.ljmu.ac.uk/

1	INDIVIDUAL RESPONSIVENESS TO EXERCISE-INDUCED FAT LOSS AND
2	IMPROVEMENT OF METABOLIC PROFILE IN YOUNG WOMEN IS
3	ASSOCIATED WITH POLYMORPHISMS OF ADRENERGIC RECEPTOR
4	GENES
5	
6	Agata Leońska-Duniec ¹ , Zbigniew Jastrzębski ¹ , Aleksandra Jażdżewska ¹ , Waldemar
7	Moska ¹ , Ewelina Lulińska-Kuklik ¹ , Marek Sawczuk ¹ , Svetlana I. Gubaydullina ² , Alsu
8	T. Shakirova ³ , Pawel Cięszczyk ⁴ , Adam Maszczyk ⁵ , Ildus I. Ahmetov ^{6,7}
9	
10	¹ Faculty of Tourism and Recreation, Gdansk University of Physical Education and
11	Sport, Gdansk, Poland
12	² Sport Technology Research Centre, Volga Region State Academy of Physical Culture,
13	Sport and Tourism, Kazan, Russia
14	³ Department of Propaedeutics of Childhood Diseases, Kazan State Medical University,
15	Kazan, Russia
16	⁴ Faculty of Physical Education, Gdansk University of Physical Education and Sport,
17	Gdansk, Poland
18	⁵ Department of Theory and Practice of Sport; Academy of Physical Education in
19	Katowice; Poland.
20	⁶ Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St
21	Petersburg, Russia
22	⁷ Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
23	Corresponding author: Dr. Ildus I. Ahmetov, Kazan State Medical University, 6/30,
24	Tolstoy Street, 420015, Kazan, Russia; genoterra@mail.ru; Tel. +79625586002

1 Running head: ADRs genes and fat loss in response to training

2

3 Abstract

4 The effectiveness of physical exercise on fat loss and improvement of aerobic capacity 5 varies considerably between individuals. A strong linkage exists between common 6 allelic variants of the adrenergic receptor genes and weight gain, as well as changes in 7 body composition. Therefore we aimed to check if body composition and metabolic 8 variables were modulated by the ADRB2 (Gly16Arg and Glu27Gln), ADRB3 9 (Trp64Arg) and ADRA2A (rs553668 G/A) gene polymorphisms in 163 Polish sedentary 10 women (age 19-24; body mass index (BMI) 21.7 ± 0.2 kg/m²) involved in a 12-week 11 aerobic training program. Only 74.8% of participants lost fat mass. On average, 12 participants lost 5.8 (10.4)% of their relative fat mass with training (range: +28.3 to -13 63.6%). The improvement of VO_{2max} was significantly greater in women who could lose 14 their fat mass compared to women who were unsuccessful in fat loss (4.5, (5.6)% vs. 1.5)(3.8)%; P = 0.0045). The carriers of a low number (0-3) of obesity-related risk alleles 15 16 (ADRB2 Gly16, ADRB2 Glu27, ADRA2A rs553668 G) were more successful in fat mass 17 loss compared to the carriers of a high number (5-6) of risk alleles (7.7 (9.8) vs 4.0 18 (9.4)%, P=0.0362). The presented results support the assumption that variation within 19 adrenergic receptor genes contributes to interindividual changes of body composition in 20 response to physical exercise.

21

22 Key words: ADRB2, ADRB3, ADRA2A, polygenic, obesity, fat, HDL

- 23
- 24

1	Key points
2	• There is a wide range of individual variability in the change of relative fat mass
3	and BMI in response to a 12-week aerobic training program.
4	• The efficiency of fat loss was inversely correlated with the improvement of
5	VO _{2max} in response to a 12-week aerobic training.
6	• The carriers of a low number of obesity-related risk alleles were more successful
7	in fat mass loss compared to the carriers of a high number of risk alleles.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1 Introduction

2 Unhealthy lifestyle habits like lack of physical activity and excessive energy intake may 3 result in overweight and obesity (Rank et al., 2012). The latter is one of the major and 4 growing health problems of the XXI century. The presence of the elevated adipose 5 tissue (increased adiposity) increases the likelihood of various medical conditions, such 6 as hypertension, coronary heart disease, type 2 diabetes mellitus, and certain types of 7 cancer (Masuo and Lambert, 2011). Thus, it is at least partly preventable by developing 8 healthy diet and regular physical exercises that, in consequence, could help participants 9 stay at a healthy weight (Greenway, 2015). However, a wide range of inter-individual 10 variability in weight gain and changes in body composition induced by physical 11 exercises and diets is seen in human populations which indicates the role of non-12 environmental factors such as genetic modifiers (Masuo et al., 2001; Garenc et al., 13 2003; Wolfarth et al., 2005; Bouchard, 2008; Eynon et al., 2013; Leońska-Duniec et al., 14 2016).

15 Various epidemiological and clinical studies indicate that strong linkage exists 16 between common allelic variants of the adrenergic receptor genes and weight gain as 17 well as changes in body composition (Phares et al., 2004; Masuo et al., 2005a; Bea et 18 al., 2010; Szendrei et al., 2016). These adrenergic receptors (ADRs) encoded by the 19 ADRA (α -adrenergic receptors - inhibitory) and ADRB (β -adrenergic receptors -20 stimulatory) genes are part of the sympathetic nervous system and exert their actions via 21 coupling with the catecholamines. Because catecholamines are important regulators of 22 lipolysis and energy expenditure during both energy restriction as well as exercise, it is 23 clearly understandable that sympathetic nerve activation may play a role in modifying weight gain and changes in body composition. Reduced energy expenditure and 24

lowered resting metabolic rate are predictive of overweight and obesity (Ahles and
 Engelhardt, 2014; O'Dell et al., 2015).

~

3 Recent studies have shown that allelic variation in the ADRs family exists, with 4 the single nucleotide polymorphisms (SNPs) as the most common genetic 5 polymorphisms (Green et al., 1993; Ikegami et al., 1996). Genetic diversity of the 6 ADRs influence receptor expression, activity, and agonist regulation, in consequence 7 contribute to the variable changes in body composition as well as weight gain and 8 obesity (Large et al., 1997; Hellstrom et al., 1999). Within the β-adrenergic receptor 9 family genes, the ADRB2 and the ADRB3 are of particular interest. B2-adrenergic 10 receptors (β 2-ADRs) encoded by the *ADRB2* gene are the dominant lipolytic receptors 11 in white adipose tissue and skeletal muscle (Hagstrom-Toft et al., 1998; Enoksson et al., 12 2000). *β*2-ADRs are also expressed throughout the smooth muscles of the 13 cardiovascular and respiratory tracts and in the heart. Therefore, they play a pivotal role 14 in the metabolic and musculoskeletal systems, promoting gluconeogenesis and 15 glycogenolysis in the liver and skeletal muscles. They also influene insulin secretion 16 and regulate energy expenditure through lipid mobilization from white adipose tissue 17 (Brodde, 2008; Sarpeshkar and Bentley, 2010).

18 Gly16Arg (rs1042713,46G>A, G285A) and Glu27Gln (rs1042714, 79G>C, 19 G318C) are the most common investigated polymorphisms of the *ADRB2* gene 20 (Meirhaeghe et al., 2000; Petrone et al., 2006; Gjesing et al., 2009; Masuo and Lambert, 21 2011; Szendrei et al., 2016). Studies of agonist stimulation in cultured cells revealed 22 that neither Gly16Arg nor Glu27Gln affected the function of the β 2-ADRs in terms of 23 ligand binding or adenylyl cyclase activity. However, transfected cells expressing the 24 Gly16 variant of the receptor were shown to have greater reduction in numbers or undergo significantly enhanced agonist-promoted downregulation when compared to
 Arg16. In contrast to Gly16, the Glu27 receptor form appears to be resistant to
 downregulation when compared to Gln27 variant (Green et al., 1994, 1995).

4 Numerous studies have investigated the impact of these polymorphic variants on 5 changes in body composition, weight gain and obesity, as well as physical activity and 6 athletic performance and conflicting results have been obtained (Ahmetov et al., 2016; 7 Leońska-Duniec et al., 2016). In some studies it was found, that subjects carrying the 8 Gly16 or Glu27 alone or both had increased risk of obesity (Large et al., 1997; 9 Gonzalez Sanchez et al., 2003; Lange et al., 2005; Masuo et al., 2005a; Kawaguchi et 10 al., 2006). Specifically, it was observed that Glu27 polymorphism interacts with 11 physical activity influencing obesity risk among female subjects (Corbalan et al., 2002). 12 Some research groups on the contrary, reported that the Gln27 is the risk allele 13 (Meirhaeghe et al., 2000; Pereira et al., 2003). However, others found no relationship 14 between Gly16Arg and Gln27Glu polymorphisms and obesity-related phenotypes 15 (Echwald et al., 1998; Kortner et al., 1999; Bea et al., 2010; Gjesing et al., 2009; 16 Rosado et al., 2015).

17 The β 3-adrenergic receptors (β 3-ADRs) that are encoded in human by ADRB3 18 gene are mainly expressed in adipose tissue and differ from the β 2-ADRs in terms of a 19 lower affinity for catecholamines, and resistance to desensitisation and downregulation 20 (Masuo and Lambert, 2011). These differences lead to the different effects of 21 catecholamine on β 3-ADRs - they exert their effects mainly by lipolysis in white 22 adipose tissue and thermogenesis in brown adipose tissue (Hoffstedt et al., 1999; Collins et al., 2004; Kirstein and Insel, 2004). It seems that decreased function of \$3-23 ADRs in white adipose tissue could slow the mobilization of lipids from the white 24

1 adipose tissue and, in consequence cause the retention of lipids in adipocytes. It could 2 also affect thermogenesisin brown adipose tissue influencing body weight in humans. 3 Within the ADRB3 gene the Trp64Arg (rs4994, T387C) polymorphism exists in human 4 population. It was shown that adipose cells carrying at least one mutated Arg64 allele 5 exhibit 2/3-fold reduced ability to produce cyclic adenosine monophosphate (cAMP) 6 and lypolitic glycerol when compared to Trp64 homozygotes (Pietri-Rouxel et al., 1997; Umekawa et al., 1999; Ahles and Engelhardt, 2014). These results suggest that the 7 8 Arg64 allele carriers have less ability to stimulate adenylyl cyclase, and in consequence 9 lipolytic activity through the β 3-adrenergic might be suppressed. Many studies have 10 confirmed increased BMI (average 0.28 kg/m²) and body fat in carriers of the Arg64 11 allele (Ahles and Engelhardt, 2014; Leońska-Duniec et al., 2016). Polymorphic variants 12 of the Trp64Arg are associated in many studies with abdominal obesity, weight gain, 13 difficulty in losing weight, and lower resting metabolic rate as well as changes in body 14 weight in response to exercise pointing at the Arg64 allele as risk allele or showed that 15 the Trp64 allele is protective against obesity (Clement et al., 1995; Walston et al., 1995; 16 Widen et al., 1995; Yoshida et al., 1995; Kim-Motoyama et al., 1997, Ukkola et al., 17 2000; Corella et al., 2001). In some cases no association was observed between the 18 Trp64Arg polymorphism and obesity-phenotypes (Gagnon et al., 1996; Bea et al., 2010) 19 or even contradictory results have been obtained (Phares et al., 2004).

As opposed to *ADRB* genes, there is less information about relationship between polymorphisms in *ADRA* genes and changes in body composition as well as weight gain and obesity-related phenotypes. However there are evidences that polymorphisms of the *ADRA2B* and the *ADRA2A* genes could be involved (Phares et al., 2004; Bea et al., 2010). Specifically, it was observed that the A allele of the G1780A (rs553668) polymorphism localized in the 3'UTR of the *ADRA2A* gene is associated with obesity
 and type 2 diabetes, as well as body mass index (BMI) and percentage of body fat
 (Lima et al., 2007; Langberg et al., 2013).

4 Considering the aforementioned facts we have decided to check if body mass and body composition, as well as metabolic variables observed in physically active 5 participants will be modulated by the ADRB2, ADRB3 and ADRA2A gene 6 7 polymorphisms. To test this hypothesis, we have performed a genetic association study 8 that aimed to detect a correlation between the Gly16Arg and Glu27Gln of the ADRB2 9 gene, Trp64Arg of the ADRB3 gene as well as G1780A of the ADRA2A gene 10 polymorphisms and selected body composition measurements as well as obesity-related 11 metabolic traits in response to a 12-week aerobic training program.

12

13 Materials and Methods

14

15 *Ethics Statement*

16 All the procedures followed in the study were approved by the Ethics Committee of the 17 Regional Medical Chamber in Szczecin (Approval number 09/KB/IV/2011) and were 18 conducted ethically according to the principles of the World Medical Association 19 Declaration of Helsinki and ethical standards in sport and exercise science research. The 20 experimental procedures were conducted in accordance with the set of guiding 21 principles for reporting the results of genetic association studies defined by the 22 Strengthening the Reporting of Genetic Association studies (STREGA) Statement 23 (Little et al., 2009).

1 Participants

2 One hundred and sixty three Polish European Caucasian women mean age 21 ± 1 years 3 (range 19-24) met the inclusion criteria and were included in the study. None of these 4 individuals had engaged in regular physical activity in the previous 6 months. They had 5 no history of any metabolic, cardiovascular diseases or previous musculoskeletal 6 injuries. Participants were nonsmokers and refrained from taking any medications or 7 supplements known to affect metabolism. Prior to the start of the training phase, 8 participants were included into a dietary program and on the basis of individual dietary 9 plan they were asked to keep a balanced diet, of approximately 2000 kcal a day. The 10 participants were asked to keep a food diary every day. Weekly consultations were held 11 on which the quality and quantity of meals were analyzed and, if necessary, minor 12 adjustments were made.

13

14 Physical exercise training protocol

15 The training stage was preceded by a week-long familiarization stage, when the 16 examined women exercised 3 times a week for 30 min, at an intensity of about 50% of 17 their maximum heart rate (HR_{max}) (Zarebska et al., 2016). After the week-long 18 familiarization stage, the main training started. Each training unit consisted of a warm-19 up routine (10 min), the main aerobic routine (43 min), and cool-down phase (stretching and breathing exercise for 7 min). The main aerobic routine was a combination of 2 20 21 alternating styles – low and high impact. Music of variable rhythm intensity (tempo) 22 was incorporated into both styles. A 12-week program of low-high impact aerobics was 23 divided as follows: (i) 3 weeks (9 training units), 60 min each, at about 50%-60% of HR_{max}, tempo 135–140 beats per minute (BPM), (ii) 3 weeks (9 training units), 60 min 24

each, at 60%–70% of HR_{max}, tempo 140–152 BPM, (iii) 3 weeks (9 training units), 60
min with the intensity of 65%–75% of HR_{max}, tempo 145–158 BPM, and (iv) 3 weeks
(9 training units), 60 min with an intensity of 65%–80% of HR_{max}, tempo 145–160
BPM. All 36 training units were administered and supervised by the same instructor.

5

6 Body Composition Measurements

7 All participants were measured for selected body mass and body composition variables 8 before and after the completion of a 12-week training period. Body composition tests 9 took place after fasting for at least 8 hours. Body mass and body composition were 10 assessed with the bioimpedance method using a Tanita TBF 300M electronic scale 11 (Arlington Heights, Illinois, USA). Body mass and body composition measurements 12 taken with the use of the Tanita electronic scale are as follows: total body mass (kg), fat 13 free mass (FFM, kg), fat mass (kg), fat mass percentage (FM, %), BMI (kg/m²), tissue 14 impedance (Ohm), total body water (TBW, kg) and basal metabolic rate (BMR, kJ or 15 kcal).

16

17 Biochemical and Hematological Analyses

Fasting blood samples were obtained in the morning from the elbow vein. Blood samples from each participant were collected in 2 tubes. Biochemical and hematological analyses were performed before the start of the aerobic fitness training programme and repeated at the 12th week of this training programme (after the 36th training unit). The analyses were performed immediately after the blood collection. Complete blood count, including white blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), hematocrit (HTC), mean corpuscular volume (MCV), mean corpuscular hemoglobin

1 (MCH), mean corpuscular hemoglobin concentration (MCHC), and total platelet level 2 (PLT) were obtained using Sysmex K-4500 Haematology Analyzer (TOA SYSMEX, 3 Kobe, Japan). All biochemical analyses were conducted using Random Access 4 Automatic Biochemical Analyzer for Clinical Chemistry and Turbidimetry A15 (BIO-5 SYSTEMS S.A., Barcelona, Spain). Blood plasma was used to determine lipid profile: 6 triglycerides (Tg), cholesterol (Chol), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) concentrations. Plasma Tg and Chol concentrations were determined 7 8 using diagnostic colorimetric enzymatic method according to the manufacturer's 9 protocol (BioMaxima S.A., Lublin, Poland). HDL plasma concentration was determined 10 using human anti-ß-lipoprotein antibody and colorimetric enzymatic method according 11 to the manufacturer's protocol (BioMaxima S.A.). Plasma concentrations of LDL were 12 determined using a direct method according to the manufacturer's protocol (PZ Cormay 13 S.A., Lomianki, Poland). All analysis procedures were verified with the use of 14 multiparameteric control serum (BIOLABO S.A.S, Maizy, France), as well as control serum of normal level (BioNormL) and high level (BioPathL) lipid profiles 15 16 (BioMaxima S.A.).

17

18 VO_{2max} measurement

Subjects performed a continuous graded exercise test on an electronically braked cycle ergometer (VIAsprint[™] 150P Bicycle, CareFusion Germany GmbH, Hoechberg, Germany) with an automatically calibrated volume sensor and a breath-by-breath gas analyzer (Oxycon Pro, Erich JAEGER GmbH, Hoechberg, Germany) to determine their maximal oxygen uptake (VO_{2max}) before and after the completion of a 12-week training period. The device was calibrated in accordance with the manufacturer's instructions.

The test began by 5 min continuous pedaling, with a frequency of 60 revolutions per minute (RPM) and a relative load of 1.2 W/kg. After this phase, the workload was systematically increased by 15 watts every minute until voluntary exhaustion. The effort was interrupted when pedaling frequency declined by 10%, that is, when the pedalling frequency fell below 54 RPM. All of the participants reached RER greater than 1.0. The highest value of oxygen uptake was considered to be VO_{2max}.

7

8 Genetic Analyses

9 The buccal cells donated by the subjects were collected in Resuspension Solution 10 (GenElute Mammalian Genomic DNA Miniprep Kit; Sigma, Steinheim, Germany) with 11 the use of sterile foam-tipped applicators (Puritan, Guilford, Maine, USA). DNA was 12 extracted from the buccal cells using a GenElute Mammalian Genomic DNA Miniprep 13 Kit (Sigma) according to the manufacturer's protocol. Obtained concentration of 14 genomic DNA was 30–50 ng/1 µl. All samples were genotyped in duplicate using allelic 15 discrimination assays with TaqMan® probes (Applied Biosystems, Carlsbad, 16 California, USA) on CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, 17 Hercules, California, USA). Freshly purified/sterile water was used as a negative control for PCR. To discriminate the ADRB2 Gly16Arg and Glu27Gln, ADRB3 18 Trp64Arg as well as ADRA2A G1780A alleles, TaqMan® Pre-Designed SNP 19 20 Genotyping Assays were used (assay IDs: C 2084764 20, C 2084765 20, C 2215549 20 and C 996424 20, respectively), including appropriate primers 21 22 and fluorescently labelled (FAM and VIC) MGBTM probes to detect the alleles.

23

24 Statistical Analyses

1 Hardy-Weinberg equilibrium was tested by comparing the observed genotype 2 frequencies with the expected ones using the Chi-square test with one degree of 3 freedom in Microsoft EXCEL. Training responses were expressed as percentage change 4 from baseline. The percentage changes were compared across genotypes using either 5 parametric (t-test or one-way ANOVA) or non-parametric (Mann-Whitney or Kruskal-6 Wallis) tests for normally and non-normally distributed data, respectively. Spearman's 7 (non-parametric) correlations were used to assess the relationships between different 8 phenotypes. Differences in phenotypes between groups were analysed using unpaired t9 tests. Power was calculated using non-central chi-square distribution (pchisq function in 10 R, https://cran-r.projec.org) assuming alpha 0.05 and a variance explained of 0.01, 0.05, 11 and 0.10 by additive effects at the marker of interest. The power for a stated sample size 12 (n=163) was 24.8%, 81.5% and 98.1% for variances of 0.01, 0.05 and 0.10, 13 respectively, Normality of the distribution was evaluated using the Kolmogorov-14 Smirnov test. The association of ADRB2 haplotypes with training responses was 15 analysed using haplo.stats package for R. The regression of percentage change of body 16 composition parameters, lipids and glucose on ADRB2 haplotypes was conducted using 17 haplo.glm function assuming the additive model and minimum haplotype frequency of 18 5%.

Power for a stated sample size (n=163) was calculated for a given set of haplotypes, their population frequencies and a specified genetic effect size (additive model of haplotype effects) in terms of a regression model R squared value (a haplo.power.qt function of the haplo.stats package). The power for the R squared values 1%, 5% and 10% was 18.9%, 74.1% and 97.3%, respectively. Linear regression coefficients corresponding to R squared 1%, 5% and 10% were 0.14, 0.32, 0.45, respectively

1 Gene-gene interactions among ADRB2, ADRB3 and ADRA2A polymorphisms were 2 analysed using non-parametric model-free method of reducing genotype combinations 3 called multifactor dimensionality reduction (MDR) using he MDR software package 4 (version 3.0.2, http://sourceforge.net) (Ritchie et al., 2001; Gui et al., 2013). The 10-fold 5 cross-validation training scores, cross-validation testing scores (the t-test statistic for the 6 unequal variance computed by comparing phenotype between high- and low-level 7 genotypes for the ten pooled testing sets), as well as cross validation consistency (CVC, 8 the number of times the same model was chosen in the training set) were determined. P 9 values for interactions were calculated using permutation tests. Single-locus analyses 10 were carried out in STATISTICA data analysis software system, version 12 (StatSoft, 11 Inc. 2014, www.statsoft.com).

12

13 **Results**

14 Individual variability in the change of relative fat mass and BMI is shown in Figures 1-2. Only 74.8% of participants could lose their relative fat mass in response to a 12-week 15 16 aerobic training program, which was not dependent on their initial relative fat mass 17 (p=0.744) or BMI (p=0.988). On average, participants lost 5.8 (10.4)% of their relative fat mass with training (range: +28.3 to -63.6%). The improvement of VO_{2max} was 18 19 significantly greater in women who could lose their fat mass compared to women who were unsuccessful in fat loss (4.5 (5.6)% vs. 1.5 (3.8)%; P = 0.0045). The efficiency of 20 fat loss was inversely correlated with the improvement of VO_{2max} in response to a 12-21 22 week aerobic training (r = -0.37; P < 0.0001).

23

FIGURES 1-2

1	All investigated polymorphisms conformed to Hardy-Weinberg expectations
2	$(\chi^2=0.92, p=0.337; \chi^2=2.36, p=0.124; \chi^2=2.31, p=0.129; \chi^2=0.17, p=0.680, for$
3	Gly16Arg, Glu27Gln of the ADRB2, Trp64Arg of the ADRB3 and G1780A of the
4	ADRA2A, respectively. Owing to the low number of the ADRB3 Arg64/Arg64 (n=3)
5	and ADRA2A AA (n=2) homozygotes, they were pooled together with corresponding
6	heterozygous genotypes. There were no differences in percentage changes across
7	genotypes for any of the analysed polymorphisms (Tables 1-4). However, polygenic
8	analysis has shown that the carriers of a low number (0-3) of obesity-related risk alleles
9	(ADRB2 Gly16, ADRB2 Glu27, ADRA2A rs553668 G) were more successful in fat mass
10	loss compared to the carriers of a high number (5-6) of risk alleles (7.7 (9.8)% vs 4.0
11	(9.4)%, <i>P</i> =0.0362).
12	TABLE 1
13	TABLE 2
14	TABLE 3
15	TABLE 4

16 Three haplotypes (Gly16;Glu27, 45.1%; Arg16; Gln27, 34.4%; Gly16; Gln27, 17 20.6%) were reconstructed. The most prevalent ADRB2 haplotype was Gly16;Glu27 18 (45.1%) and it was used as a reference in haplotype-based association analysis. The 19 Arg16; Gln27 haplotype was associated with significantly smaller percentage change of 20 BMI (-0.57 per copy of haplotype, p=0.036) compared with reference Gly16;Glu27 21 haplotype (Table 5). Additionally, a two-way ADRB3 x ADRA2A interaction was 22 detected for HDL percentage change (cross-validation consistency 10/10, cross-23 validation testing score 3.67, p=0.018, Table 6). The double heterozygotes (ADRB3 24 Trp64Arg64/ADRA2A AG) and double homozygotes (ADRB3 Trp64Trp64/ADRA2A

1	GG) exhibited a decrease while single heterozygotes (ADRB3 Trp64Arg64/ADRA2A
2	GG and ADRB3 Trp64Trp64/ADRA2A AG) showed an increase in HDL serum
3	concentration in response to training (Figure 3).
4	
5	TABLE 5
6	TABLE 6
7	FIGURE 3
8	

9

10 **Discussion**

11 Our genetic association study was designed to test whether variation in the ADRB2, 12 ADRB3 and ADRA2A genes can modulate changes in selected body mass, body 13 composition and metabolic variables following 12 weeks of supervised aerobic exercise 14 training in women. Despite the fact that there were no differences in percentage changes 15 across genotypes for any of the analysed polymorphisms of the ADRB2 (Gly16Arg, 16 Glu27Gln), ADRB3 (Trp64Arg) and ADRA2A (G1780A), the polygenic analysis has 17 shown that the carriers of a low number (0-3) of obesity-related risk alleles (ADRB2 18 Gly16, ADRB2 Glu27, ADRA2A rs553668 G) were more successful in fat mass loss compared to the carriers of a high number (5-6) of risk alleles (7.7 (9.8)% vs 4.0 (9.4)%, 19 20 P=0.0362). Moreover, ADRB3xADRA2A interaction was detected for HDL percentage 21 change. Therefore the presented results support the assumption that, i) genetic variation 22 contributes to interindividual changes of selected body mass, body composition and 23 metabolic variables in response to physical exercise as well as that ii) complex 24 interaction of multiple genetic polymorphisms rather than an individual effect of a

single polymorphic site have an influence on individual variation in responsiveness to
 exercise training (Jensen et al., 2009; Rankinen and Bouchard, 2012).

3 The ADRs gene family members have been extensively studied in the obesity 4 field because of their participation in the regulation of energy expenditure (Ochoa et al., 5 2004; Marti et al., 2008). Particularly, the role of the lipolytic receptors genes, ADRB2, 6 with its Gly16Arg and Glu27Gln polymorphisms, alone or in haplotype combination, in 7 weight gain, obesity and changes in body composition have been investigated by many 8 scientists. It has been shown that the Gly16 allele may influence the propensity to 9 higher BMI, because the Gly16 allele is associated with lower receptor density, and in 10 consequence reduced efficiency, when compared to Arg16 allele (Chou et al., 2012). A 11 higher frequency of the Gly16 allele in men resistant to weight loss and those who 12 regained body weight after successful initial weight loss at 6 months was noticed in a 13 study of overweight men who participated in a 24-month weight loss programme 14 consisting of a low-calorie diet and everyday aerobic exercise (Masuo et al., 2005b). 15 Numerous studies have also focused on the second polymorphic site in the ADRB2 16 gene. Some studies showed that the Glu27 allele may limit ADRB2 downregulation and 17 thus affect body weight (Lange et al., 2005; Kawaguchi et al., 2006). Corbalan et al. 18 (2002) reported that women who were more active during their free time and were 19 carriers of the Glu27 allele had higher body weight compared to non-carriers, 20 suggesting that these women may be more resistant to losing weight.

In contrast, the study by Phares et al. (2004) and Szendrei et al. (2016) showed that Glu27 carriers had a tendency for a greater loss of percent total body fat, greater weight and BMI reductions compared with noncarriers. What is more, the study of Bea et al. (2010) showed gene x exercise interactions for *ADRB2* Glu27Gln on change in lean soft tissue (LST). There was a significant LST gain with exercise of the Glu27
 allele carriers compared to loss among controls and no intervention effect of the Glu27
 allele noncarriers (Bea et al., 2010).

4 In our study we have observed only a tendency of association of Gly16Arg and 5 Glu27Gln alone with changes of selected body mass and body composition variables. 6 However, we found that the ADRB2 risk alleles (Gly16 and Glu27) in combination with 7 another risk allele of the ADRA2A gene (rs553668 G) were associated with significantly 8 smaller change of fat mass following 12 weeks of supervised aerobic exercise training 9 in women. The results of Jensen et al. (2009) were focused on analyzing the haplotype 10 structure of the ADRB2 gene in Danish Caucasian subjects and association with BMI. 11 The investigation clearly suggested that when multiple SNPs from a single gene were 12 analyzed, unique interactions in specific haplotype pairs rather than individual SNPs 13 may affect BMI.

14 Because the main role of catecholamines in human fat cells depends on the 15 balance between lipolytic ADRB and antilipolytic ADRA receptors activities, gene-16 gene interactions in genes involved in the reciprocal regulation of lipolysis is inevitable 17 (Phares et al., 2004). Indeed, such polygenic interactions have been spotted by some 18 researchers. It has been reported that interactive effect of the ADRA2B Glu12/Glu9 and 19 the ADRB3 Trp64Arg polymorphisms on obesity-related phenotypes in healthy white 20 women exist (Dionne et al., 2001). It is worth noting that when the Glu12/Glu9 21 ADRA2B polymorphism did not associate with obesity-related phenotypes alone, 22 subjects that carried the Arg64 ADRB3 and Glu9 ADRA2B variants had 9.3 kg greater 23 fat mass and 4.8% greater percent body fat compared with subjects carrying only the Arg64 ADRB3 variant. Phares et al. (2004) found that the combined effects of the 24

Glu12/Glu9, *ADRA2B*, Trp64Arg *ADRB3*, and Gln27Glu *ADRB2* gene polymorphisms
 and their gene-gene interactions contribute significantly to explaining interindividual
 variability in body fat responses to exercise training. However, *ADRA2B* and *ADRB3* interaction was the most significant source of variation for change in total body fat,
 trunk fat, and fat mass.

6 In the current study, we also observed interaction between ADRs genes; 7 specifically, ADRB3xADRA2A interaction was detected for HDL percentage change. 8 Our study showed that only single heterozygotes (ADRB3 Trp64Arg64/ADRA2A GG 9 and ADRB3 Trp64Trp64/ADRA2A AG) had an increase in HDL serum concentration in 10 response to training; the double heterozygotes (ADRB3 Trp64Arg64/ADRA2A AG) and 11 double homozygotes (ADRB3 Trp64Trp64/ADRA2A GG) exhibited a decrease in HDL 12 serum concentration after completion of 12 weeks of supervised aerobic exercise 13 training.

14 It is widely accepted that regular aerobic exercise increases HDL-Chol. It was 15 showed that beneficial adaptations in lipoprotein profile is achieved with moderate 16 training intensities below the anaerobic threshold and training above the anaerobic 17 threshold has no or even negative effects on blood lipoprotein profiles (Aellen et al., 18 1993; Drygas et al., 2000). Meta-anlysis by Kodama et al. (2007) showed that the 19 minimum aerobic exercise volume for an increase in HDL level exist - minimal weekly 20 exercise volume for HDL level increase was 900 kcal of energy expenditure or 120 21 minutes of exercise per week (Kodama et al., 2007). The intensity of our 12-week 22 exercise program gradually increased from 50-60% HRmax to 65%-80% of HRmax in the 23 last 3 weeks of the training programme and the weekly exercise volume was 180 24 minutes. Each training unit consisted of a warm-up, the main aerobic routine which was a combination of 2 alternating styles – low and high impact, and cool-down phase. Despite that, low-high impact aerobics in general refer to cardio with moderate training intensities zones, one may speculate that low- and high-impact workouts are at least partly similar to interval training with the high-intensity periods that are typically at or close to anaerobic exercise, while the recovery periods involve activity of lower intensity.

7 With respect to our findings, there is a reason for us to hypothesise that subjects 8 with combination of ADRB 3Arg64 / ADRA2A G and ADRB3 Trp64 / ADRA2A A rather 9 than ADRB3 Trp64 / ADRA2A G respond better to our physical exercise program in 10 terms of larger increase in HDL. It seems that duration, intensity as well as exercise 11 frequency of our physical exercise programme were appropriate stimuli for ADRB3 12 Arg64 / ADRA2A G and ADRB3 Trp64 / ADRA2A A carriers to increase the HDL level. On the other hand, the ADRB3 Trp64 / ADRA2A G rather than ADRB3 Arg64 / 13 14 ADRA2A A carriers respond with lowered HDL serum concentration in response to our 15 12 weeks of supervised aerobic exercise training. Therefore, there is a reason to 16 hypothesise that low- and high- aerobic exercise training is not suitable for ADRB3 17 Trp64 / ADRA2A G carriers in terms of lower HDL levels, and the observed effect can 18 be explained by an increase in energy consumption and achieving an 'energy 19 expenditure threshold' during physical effort (Gibala and McGee, 2008; Kostrzewa-20 Nowak et al., 2015). It is also, higly probable, that other, rhythmic and repeated, aerobic 21 exercises with moderate training intensities below the anaerobic threshold such as 22 bicycling, jogging, or swimming would be more appropriate for this group of 23 participants.

1 In summary, our findings suggest that the carriers of a low number of obesity-2 related risk alleles were more successful in fat mass loss compared to the carriers of a 3 high number of risk alleles, as well as ADRB3xADRA2A gene interaction modifies the 4 effects of aerobic exercise training in women on HDL levels. However, when we 5 consider all aforementioned facts, the impact of genetic markers on determination of 6 obesity-related traits is still unclear. Thus, the true level and the nature of the genotype x 7 physical activity interactions in the field of obesity-related traits deserves to be further 8 investigated. One of the possibile ways is using a composite score of genetic markers 9 that have been identified in GWAS as an obesity risk SNPs in the gene \times physical 10 activity interaction analyses (Li et al., 2010). However, only a comprehensive 11 understanding of the underlying genetic and epigenetic mechanisms will enable us to 12 uncover the "missing heritability" of the obesity-related traits (Herrera et al., 2011, 13 Rankinen and Bouchard, 2012).

14

15 Acknowledgments

The study was supported by National Science Centre (grant no. 2012/07/B/NZ7/01155).
The authors declare that they have no conflicts of interest regarding the publication of
this paper. Current experiment complied with the current laws of the Poland.

- 21
- 22
- 23
- 24

1 References

2	Aellen, R., Hollmann, W. and Boutellier U. (1993) Effects of aerobic and anaerobic
3	training on plasma lipoproteins. International Journal of Sports Medicine 14(7), 396-
4	400.

- 5 Ahles, A. and Engelhardt, S. (2014) Polymorphic variants of adrenoceptors:
 6 pharmacology, physiology, and role in disease. *Pharmacological Reviews* 66(3),
 7 598-637.
- 8 Ahmetov, I.I., Egorova, E.S., Gabdrakhmanova, L.J. and Fedotovskaya ON. (2016)
 9 Genes and Athletic Performance: An Update. *Medicine and Sport Science* 61, 41-54.
- Bea, J.W., Lohman, T.G., Cussler, E.C., Going, S.B. and Thompson, P.A. (2010)
 Lifestyle modifies the relationship between body composition and adrenergic
 receptor genetic polymorphisms, ADRB2, ADRB3 and ADRA2B: a secondary
 analysis of a randomized controlled trial of physical activity among postmenopausal
- 14 women. *Behavioral Genetics* **40(5)**, 649-59.
- 15 Bouchard, C. (2008) Gene-environment interactions in the etiology of obesity: defining
- 16 the fundamentals. *Obesity (Silver Spring)* **16**(Suppl 3), S5-S10.
- Brodde, O.E. (2008) Beta1- and beta2-adrenoceptor polymorphisms and cardiovascular
 diseases. *Fundamental and Clinical Pharmacology* 22(2), 107-25.
- Chou, Y.C., Tsai, C.N., Lee, Y.S. and Pei, J.S. (2012) Association of adrenergic
 receptor gene polymorphisms with adolescent obesity in Taiwan. Pediatrics
 International 54(1), 111-6.
- 22 Clément, K., Vaisse, C., Manning, B.S., Basdevant, A., Guy-Grand, B., Ruiz, J., Silver,
- 23 K.D., Shuldiner, A.R., Froguel, P. and Strosberg, A.D. (1995) Genetic variation in

1	the b3-adrenergic receptor and an increased capacity to gain weight in patients with
2	morbid obesity. New England Journal of Medicine 333(6), 352-4.
3	Collins, S., Cao, W. and Robidoux, J. (2004) Learning new tricks from old dogs: beta-
4	adrenergic receptors teach new lessons on firing up adipose tissue metabolism.
5	Molecular Endocrinology 18(9), 2123–2131.
6	Corbalán, M.S., Marti, A., Forga, L., Martínez-González, M.A. and Martínez, J.A.
7	(2002) The 27Glu polymorphism of the beta2-adrenergic receptor gene interacts with
8	physical activity influencing obesity risk among female subjects. Clinical Genetics
9	61(4), 305–7.
10	Corella, D., Guillen, M., Portoles, O., Sorli, J.V., Alonso, V., Folch, J. and Sáiz C.
11	(2001) Gender specific associations of the Trp64Arg mutation in the beta3-
12	adrenergic receptor gene with obesity-related phenotypes in a Mediterranean
13	population: interaction with a common lipoprotein lipase gene variation. Journal of
14	Internal Medicine 250(4), 348–360.
15	Dionne, I.J., Turner, A.N., Tchernof, A., Pollin, T.I., Avrithi, D., Gray, D., Shuldiner,
16	A.R. and Poehlman, E.T. (2001) Identification of an interactive effect of beta3- and
17	alpha2b-adrenoceptor gene polymorphisms on fat mass in Caucasian women.
18	Diabetes 50(1), 91–95.
19	Drygas, W., Kostka, T., Jegier, A. and Kuński, H. (2000) Long-term effects of different
20	physical activity levels on coronary heart disease risk factors in middle-aged men.
21	International Journal of Sports Medicine 21(4), 235-41.
22	Echwald, S.M., Sorensen, T.I., Tybjaerg-Hansen, A., Andersen, T. and Pedersen, O.
23	(1998) Gln27Glu variant of the human beta2-adrenoreceptor gene is not associated

24 with early-onset obesity in Danish men. *Diabetes* **47(10)**, 1657–1658.

1	Enoksson, S., Talbot, M., Rife, F., Tamborlane, W.V., Sherwin, R.S. and Caprio, S.
2	(2000) Impaired in vivo stimulation of lipolysis in adipose tissue by selective β 2-
3	adrenergic agonist in obese adolescent girls. Diabetes 49(12), 2149-53.
4	Eynon, N., Nasibulina, E.S., Banting, L.K., Cieszczyk, P., Maciejewska-Karlowska, A.,
5	Sawczuk, M., Bondareva, E.A., Shagimardanova, R.R., Raz, M., Sharon, Y.,
6	Williams, A.G., Ahmetov, I.I., Lucia, A. and Birk, R. (2013) The FTO A/T
7	polymorphism and elite athletic performance: a study involving three groups of
8	European athletes. PLoS One 8(4), e60570.
9	Gagnon, J., Mauriege, P., Roy, S., Sjostrom, D., Chagnon, Y.C., Dionne, F.T., Oppert,
10	J.M., Pérusse, L., Sjöström, L. and Bouchard, C. (1996) The Trp64Arg mutation of
11	the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Quebec
12	Family Study and Swedish Obese Subjects cohorts. Journal of Clinical Investigation
13	98(9) , 2086–2093.
14	Garenc, C., Pérusse, L., Chagnon, Y. C., Rankinen, T., Gagnon, J., Borecki, I. B., Leon,
15	A. S., Skinner, J. S., Wilmore, J. H., Rao, D.C., Bouchard, C. and HERITAGE
16	Family Study. (2003) Effects of β 2-Adrenergic Receptor Gene Variants on
17	Adiposity: The HERITAGE Family Study. Obesity Research 11, 612–618.
18	Gibala, M.J. and McGee, S.L. (2008) Metabolic adaptations to short-term high-intensity
19	interval training: a little pain for a lot of gain? Exercise and Sport Sciences Reviews
20	36(2) , 58-63.
21	Gjesing, A.P., Sparsø, T., Borch-Johnsen, K., Jørgensen, T., Pedersen, O., Hansen, T.
22	and Olsen, N.V. (2009) No consistent effect of ADRB2 haplotypes on obesity,
23	hypertension and quantitative traits of body fatness and blood pressure among 6,514
24	adult Danes. PLoS One 4(9), e7206.

1	González Sánchez, J.L., Proenza, A.M., Martínez Larrad, M.T., Ramis, J.M., Fernández
2	Pérez, C., Palou, A. and Serrano Ríos, M. (2003) The glutamine 27 glutamic acid
3	polymorphism of the beta2-adrenoceptor gene is associated with abdominal obesity
4	and greater risk of impaired glucose tolerance in men but not in women: a
5	population-based study in Spain. Clinical Endocrinology (Oxford) 59(4), 476-481.
6	Green, S.A., Cole, G., Jacinto, M., Innis, M. and Liggett, S.B. (1993) A polymorphism
7	of the human beta 2-adrenergic receptor within the fourth transmembrane domain
8	alters ligand binding and functional properties of the receptor. Journal of Biological
9	Chemistry 268(31), 23116-21.
10	Green, S.A., Turki, J., Bejarano, P., Hall, I.P. and Liggett, S.B. (1995) Influence of beta
11	2-adrenergic receptor genotypes on signal transduction in human airway smooth
12	muscle cells. Am. J. Respir. Molecular and Cellular Biology 13(1), 25-33.
13	Green, S.A., Turki, J., Innis, M. and Liggett, S.B. (1994) Aminoterminal
14	polymorphisms of the human β 2-adrenergic receptor impart distinct agonist
15	promoted regulatory properties. Biochemistry 33(32), 9414-9.
16	Greenway, F.L. (2015) Physiological adaptations to weight loss and factors favouring
17	weight regain. International Journal of Obesity (London) 39(8), 1188-96.
18	Gui, J., Moore, J.H., Williams, S.M., Andrews, P., Hillege, H.L., van der Harst, P.,
19	Navis, G., Van Gilst, W.H., Asselbergs, F.W. and Gilbert-Diamond, D. (2013) A
20	Simple and Computationally Efficient Approach to Multifactor Dimensionality
21	Reduction Analysis of Gene-Gene Interactions for Quantitative Traits. PLoS One
22	8(6) , e66545.

1	Hagstrom-Toft, E., Enoksson, S., Moberg, E., Bolinder, J., and Arner, P. (1998) β -
2	adrenergic regulation of lipolysis and blood flow in human skeletal muscle in vivo.
3	Amercan Journal of Physiology 275(6 Pt 1), E909-16.
4	Hellstrom, L., Large, V., Reynisdottir, S., Wahrenberg, H. and Arner, P. (1999) The
5	different effects of a Gln27Glu β 2-adrenoceptor gene polymorphism on obesity in
6	males and in females. Journal of Internal Medicine 245(3), 253-9.
7	Herrera, B.M., Keildson, S. and Lindgren, C.M. (2011) Genetics and epigenetics of
8	obesity. Maturitas 69(1), 41-9.
9	Hoffstedt, J., Poirier, O., Thorne, A., Lonnqvist, F., Herrmann, S.M., Cambien, F. and
10	Arner, P. (1999) Polymorphism of the human beta3-adrenoceptor gene forms a well-
11	conserved haplotype that is associated with moderate obesity and altered receptor
12	function. Diabetes 48(1), 203–205.
13	Ikegami, H., Yamato, E., Fujisawa, T., Hamada, Y., Fujioka, Y., Rakugi, H., Higaki, J.,
14	Murakami, H., Shimamoto, K. and Ogihara, T. (1996) Analysis of candidate genes
15	for insulin resistance in essential hypertension. Hypertension Research 19(Suppl 1),
16	S31-4.
17	Jensen, M.K., Nielsen, M., Koefoed, P., Nielsen, H.B., Ullum, H., Haastrup, E.,
18	Romner, B., Moltke, F.B. and Olsen, N.V. (2009) Haplotype structure of the beta2-
19	adrenergic receptor gene in 814 Danish Caucasian subjects and association with body
20	mass index. Scandinavian Journal of Clinical and Laboratory Investigation 69(7),
21	801-8.
22	Kawaguchi, H., Masuo, K., Katsuya, T., Sugimoto, K., Rakugi, H., Ogihara, T. and
23	Tuck, M.L. (2006) β 2- and β 3- adrenoceptor polymorphisms relate to subsequent

- weight gain and blood pressure elevation in obese normotensive individuals.
 Hypertension Research 29(12), 951-9.
- Kim-Motoyama, H., Yasuda, K., Yamaguchi, T., Yamada, N., Katakura, T., Shuldiner,
 A.R., Akanuma, Y., Ohashi, Y., Yazaki, Y. and Kadowaki, T. (1997) A mutation of
 the beta-3-adrenergic receptor is associated with visceral obesity but decreased
- 6 serum triglyceride. *Diabetologia* **40**, 469–472.
- Kirstein, S.L. and Insel, P.A. (2004) Autonomic nervous system pharmacogenomics: a
 progress report. *Pharmacology Reviews* 56(1), 31–52.
- 9 Kodama, S., Tanaka, S., Saito, K., Shu, M., Sone, Y., Onitake, F., Suzuki, E., Shimano,
- H., Yamamoto, S., Kondo, K., Ohashi, Y., Yamada, N. and Sone, H. (2007) Effect of
 aerobic exercise training on serum levels of high-density lipoprotein cholesterol.
 Archives of Internal Medicine 167(10), 999-1008.
- Kortner, B., Wolf, A., Wendt, D., Beisiegel, U. and Evans, D. (1999) Lack of
 association between a human beta-2 adrenoceptor gene polymorphism (gln27glu)
 and morbid obesity. *International Journal of Obesity and Related Metabolic Disorders* 23(10), 1099–1100.

Kostrzewa-Nowak, D., Nowak, R., Jastrzębski, Z., Zarębska, A., Bichowska, M.,
Drobnik-Kozakiewicz, I., Radzimiński, Ł., Leońska-Duniec, A., Ficek, K. and
Cięszczyk, P. (2015) Effect of 12-week-long aerobic training programme on body
composition, aerobic capacity, complete blood count and blood lipid profile among
young women. *Biochemia Medica* 25(1), 103-13.

22 Långberg, E.C., Seed Ahmed, M., Efendic, S., Gu, H.F. and Östenson, C.G. (2013)

23 Genetic association of adrenergic receptor alpha 2A with obesity and type 2 diabetes.

24 *Obesity (Silver Spring)* **21(8)**, 1720-5.

1	Lange, L.A., Norris, J.M., Langefeld, C.D., Nicklas, B.J., Wagenknecht, L.E., Saad,
2	M.F. and Bowden, D.W. (2005) Association of adipose tissue deposition and beta-2
3	adrenergic receptor variants: the IRAS family study. International Journal of Obesity
4	(London) 29(5) , 449–57.
5	Large, V., Hellström, L., Reynisdottir, S., Lönnqvist, F., Eriksson, P., Lannfelt, L. and
6	Arner, P. (1997) Human beta-2 adrenoceptor gene polymorphisms are highly
7	frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function.
8	Journal of Clinical Investigation 100(12), 3005-13.
9	Leońska-Duniec, A., Ahmetov, I.I. and Zmijewski, P. (2016) Genetic variants
10	influencing effectiveness of exercise training programmes in obesity - an overview of
11	human studies. Biology of Sport 33(3), 207-14.
12	Li, S., Zhao, J.H., Luan, J., Ekelund, U., Luben, R.N., Khaw, K.T., Wareham, N.J. and
13	Loos, R.J. (2010) Physical activity attenuates the genetic predisposition to obesity in
14	20,000 men and women from EPIC-Norfolk prospective population study. PLoS
15	<i>Medicine</i> 7(8) , e1000332.
16	Lima, J.J., Feng, H., Duckworth, L., Wang, J., Sylvester, J.E., Kissoon, N. and Garg, H.
17	(2007) Association analyses of adrenergic receptor polymorphisms with obesity and
18	metabolic alterations. Metabolism 56, 757–765.
19	Little, J., Higgins, J.P., Ioannidis, J.P., Moher, D., Gagnon, F., von Elm, E., Khoury,
20	M.J., Cohen, B., Davey-Smith, G., Grimshaw, J., Scheet, P., Gwinn, M., Williamson,
21	R.E., Zou, G.Y., Hutchings, K., Johnson, C.Y., Tait, V., Wiens, M., Golding, J., van
22	Duijn, C., McLaughlin, J., Paterson, A., Wells, G., Fortier, I., Freedman, M.,
23	Zecevic, M., King, R., Infante-Rivard, C., Stewart, A. and Birkett, N. (2009)

1	Strengthening the reporting of genetic association studies (STREGA), an extension
2	of the STROBE Statement. Human Genetics 125(2), 131-51.
3	Marti, A., Martinez-González, M.A. and Martinez, J.A. (2008) Interaction between
4	genes and lifestyle factors on obesity. Proceedings of the Nutrition Society 67(1), 1-
5	8.
6	Masuo, K. and Lambert, G.W. (2011) Relationships of adrenoceptor polymorphisms
7	with obesity. Journal of Obesity 2011, 609485.
8	Masuo, K., Katsuya, T., Fu, Y., Rakugi, H., Ogihara, T. and Tuck, M.L. (2005a) β2-
9	and β 3-adrenergic receptor polymorphisms are related to the onset of weight gain
10	and blood pressure elevation over 5 years. Circulation 111(25), 3429-34.
11	Masuo, K., Katsuya, T., Kawaguchi, H., Fu, Y., Rakugi, H., Ogihara, T. and Tuck, M.L.
12	(2005b) Rebound weight gain as associated with high plasma norepinephrine levels
13	that are mediated through polymorphisms in the beta2-adrenoceptor. American
14	Jornal of Hypertension 18(11), 1508–16.
15	Masuo, K., Mikami, H., Ogihara, T. and Tuck, M.L. (2001) Familial obesity,
16	sympathetic activation and blood pressure level. <i>Blood Pressure</i> 10(4) , 199-204.
17	Meirhaeghe, A., Helbecque, N., Cottel, D. and Amouyel, P. (2000) Impact of
18	polymorphisms of the human β 2-adrenoceptor gene on obesity in a French
19	population. International journal of obesity and related metabolic disorders 24(3),
20	382-7.
21	Ochoa, M.C., Marti, A. and Martinez, J.A. (2004) Obesity studies in candidate genes.
22	<i>Medicina Clinica</i> 122(14) , 542-51.

1	O'Dell, T.J., Connor, S.A., Guglietta, R. and Nguyen PV. (2015) β-Adrenergic receptor
2	signaling and modulation of long-term potentiation in the mammalian hippocampus.
3	Learning & Memory 22(9), 461-71.
4	Pereira, A.C., Floriano, M.S., Mota, G.F., Cunha, R.S., Herkenhoff, F.L., Mill, J.G. and
5	Krieger, J.E. (2003) Beta2 adrenoceptor functional gene variants, obesity and blood
6	pressure level interactions in the general population. Hypertension 42(4), 685-92.
7	Petrone, A., Zavarella, S., Iacobellis, G., Zampetti, S., Vania, A., Di Pietro, S., Galgani,
8	A., Leonetti, F., Di Mario, U. and Buzzetti, R. (2006) Association of $\beta 2$ adrenergic
9	receptor polymorphisms and related haplotypes with triglyceride and LDL-
10	cholesterol levels. Eur. Journal of Human Genetics 14(1), 94-100.
11	Phares, D.A., Halverstadt, A.A., Shuldiner, A.R., Ferrell, R.E., Douglass, L.W., Ryan,
12	A.S., Goldberg, A.P. and Hagberg, J.M. (2004) Association between body fat
13	response to exercise training and multilocus ADR genotypes. Obesity Research
14	12(5) , 807–815.
15	Piétri-Rouxel, F., St John Manning, B., Gros, J. and Strosberg, A.D. (1997) The
16	biochemical effect of the naturally occurring Trp64>Arg mutation on human beta3-
17	adrenoceptor activity. Europena Journal of Biochemistry 247(3), 1174-9.
18	Rank, M., Siegrist, M., Wilks, D.C., Haller, B., Wolfarth, B., Langhof, H. and Halle, M.
19	(2012) Long-term effects of an inpatient weight-loss program in obese children and
20	the role of genetic predisposition-rationale and design of the LOGIC-trial. BMC
21	<i>Pediatrics</i> 12 , 30.
22	Rankinen, T. and Bouchard, C. (2012) Gene-exercise interactions. Progress in

Molecular Biology and Translational Science 108, 447-60. 23

1	Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F. and
2	Moore, J.H. (2001) Multifactor-dimensionality reduction reveals high-order
3	interactions among estrogen-metabolism genes in sporadic breast cancer. American
4	Journal of Human Genetics 69, 138-147.
5	Rosado, E.L., Bressan, J. and Martinez, J.A. (2015) Environmental factors and beta2-
6	adrenergic receptor polymorphism: influence on the energy expenditure and
7	nutritional status of obese women. Lipids 50(5), 459-467.
8	Sarpeshkar, V. and Bentley, D. J. (2010) Adrenergic-beta(2) receptor polymorphism
9	and athletic performance. Journal of Human Genetics 55(8), 479-85.
10	Szendrei, B., González-Lamuño, D., Amigo, T., Wang, G., Pitsiladis, Y., Benito, P.J.,
11	Gomez-Candela, C., Calderón, F.J., Cupeiro, R. and PRONAF Study Group. (2016)
12	Influence of ADRB2 Gln27Glu and ADRB3 Trp64Arg polymorphisms on body
13	weight and body composition changes after a controlled weight-loss intervention.
14	Applied Physiology, Nutrition, and Metabolism 41(3), 307-14.
15	Ukkola, O., Rankinen, T., Weisnagel, S.J., Sun, G., Pérusse, L., Chagnon, Y.C.,
16	Després, J.P. and Bouchard, C. (2000) Interactions among the alpha2-, beta2- and
17	beta3-adrenergic receptor genes and obesity-related phenotypes in the Quebec
18	Family Study. Metabolism 49(8), 1063-1070.
19	Umekawa, T., Yoshida, T., Sakane, N., Kogure, A., Kondo, M. and Honjyo H. (1999)
20	Trp64Arg mutation of beta3-adrenoceptor gene deteriorates lipolysis induced by
21	beta3-adrenoceptor agonist in human omental adipocytes. Diabetes 48(1), 117-20.
22	Walston, J., Silver, K., Bogardus, C., Knowler, W.C., Celi, F.S., Austin, S., Manning,
23	B., Strosberg, A.D., Stern, M.P., Raben, N., Sorkin, J.D., Roth, J. and Shuldiner,
24	A.R. (1995) Time of onset of non-insulin- dependent diabetes mellitus and genetic

variation in the b3-adrenergic receptor gene. New England Journal of Medicine
 333(6), 343-7.

Widén, E., Lehto, M., Kanninen, T., Walston, J., Shuldiner, A.R. and Groop, L.C.
(1995) Association of a polymorphism in the b3-adrenergic receptor gene with
features of the insulin resistance syndrome in Finns. *New England Journal of Medicine* 333(6), 348–351.

- Wolfarth, B., Bray, M.S., Hagberg, J.M., Perusse, L., Rauramaa, R., Rivera, M.A.,
 Roth, S.M., Rankinen, T. and Bouchard, C. (2005) The human gene map for
 performance and health-related fitness phenotypes: the 2004 update. *Medicine and Science in Sports and Exercise* 37(6), 881–903.
- Yoshida, T., Sakane, N., Umekawa, T., Sakai, M., Takahashi, T. and Kondo, M. (1995)
 Mutation of b3-adrenergic-receptor gene and response to treatment of obesity. *Lancet*46(8987), 1433-4.
- 14 Zarębska, A., Jastrzębski, Z., Moska, W., Leońska-Duniec, A., Kaczmarczyk, M.,
 15 Sawczuk, M., Maciejewska-Skrendo, A., Żmijewski, P., Ficek, K., Trybek, G.,
 16 Lulińska-Kuklik, E., Semenova, E.A., Ahmetov, I.I. and Cięszczyk, P. (2016) The
- 17 AGT Gene M235T Polymorphism and Response of Power-Related Variables to
- 18 Aerobic Training. Journal of Sports Science and Medicine **15(4)**, 616-624.
- 19
- 20
- 21
- 22
- 23
- 24

1	AUTHOR BIOGRAPHY
2	
3	Agata LEOŃSKA-DUNIEC
4	Employment
5	Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport,
6	Gdansk, Poland
7	Degree
8	PhD, MD
9	Research interests
10	Genetics, Genomics
11	E-mail: leonska.duniec@gmail.com
12	
13	Zbigniew JASTRZĘBSKI
14	Employment
15	Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport,
16	Gdansk, Poland
17	Degree
18	PhD, MD
19	Research interests
20	Sport Exercise, Physiology, Genetics
21	E-mail: zb.jastrzebski@op.pl
22	
23	Aleksandra JAŻDZEWSKA

24 **Employment**

- 1 Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport,
- 2 Gdansk, Poland
- 3 Degree
- 4 PhD, MD
- 5 Research interests
- 6 Sport Exercise, Physiology, Genetics
- 7 E-mail: olazarebska@o2.pl
- 8
- 9 Waldemar MOSKA
- 10 Employment
- 11 Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport,
- 12 Gdansk, Poland
- 13 Degree
- 14 PhD, MD
- 15 Research interests
- 16 Sport Exercise, Sport Managements
- 17 E-mail: waldemarmoska@wp.pl
- 18
- 19 Ewelina LILIŃSKA-KUKLIK
- 20 Employment
- 21 Faculty of Physical Education, Gdansk University of Physical Education and Sport,
- 22 Gdansk, Poland
- 23 Degree
- 24 PhD, MD

1	Research interests
2	Traumatology, Physical Exercise, Physiology
3	E-mail: e.lulinska-kuklik@osw2wejherowo.pl
4	
5	Marek SAWCZUK
6	Employment
7	Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport,
8	Gdansk, Poland
9	Degree
10	PhD, MD
11	Research interests
12	Genetics, Genomics
13	E-mail: sawczuk_marek@wp.pl
14	
15	Svetlana I. GUBAYDULLINA
16	Employment
17	Sport Technology Research Centre, Volga Region State Academy of Physical Culture,
18	Sport and Tourism, Kazan, Russia
19	Degree
20	MS
21	Research interests
22	Anthropology, nutrition, genetics
23	E-mail: gubajdullina_svetlana@mail.ru
24	

1	Alsu	T.	SHAKIROVA

- 2 **Employment**
- 3 Department of Propaedeutics of Childhood Diseases, Kazan State Medical University,
- 4 Kazan, Russia
- 5 Degree
- 6 PhD, MD
- 7 **Research interests**
- 8 Nutrition, Genetics
- 9 E-mail: a.t.shakirova@mail.ru
- 10
- 11 Paweł CIĘSZCZYK
- 12 Employment
- 13 Faculty of Physical Education, Gdansk University of Physical Education and Sport,
- 14 Gdansk, Poland
- 15 Degree
- 16 PhD, MD
- 17 **Research interests**
- 18 Genetics, Genomics
- 19 E-mail: cieszczyk@poczta.onet.pl
- 20
- 21 Adam MASZCZYK
- 22 Employment
- 23 Department of Theory and Practice of Sport; Academy of Physical Education in
- 24 Katowice; Poland.

1	Degree
2	PhD, MD
3	Research interests
4	Statistics, Physical Exercise, Physiology
5	E-mail: a.maszczyk@awf.katowice.pl
6	
7	Ildus I. AHMETOV
8	Employment
9	Head of the Laboratory of Molecular Genetics, Kazan State Medical University, Kazan,
10	Russia.
11	Degree
12	Dr. Med. Sci., PhD, MD
13	Research interests
14	Exercise and sports genomics
15	E-mail: genoterra@mail.ru
16	
17	
18	
19	
20	
21	
22	
23	
24	

Table 1. The ADRB2 Gly16Arg genotypes and response to training

Percentage				
change from	Gly16/Gly16 (n=73)	Gly16/Arg16 (n=68)	Arg16/Arg16 (n=22)	р
baseline				
body mass (kg)	-0.86±2.52	-1.42±2.51	-1.67±2.16	0.259
BMI	-0.54±2.25	-1.40±2.42	-1.48±1.74	0.051
BMR	-0.33 (-0.82, 0.19)	-0.43 (-0.82, 0.0)	-0.55 (-0.79, -0.13)	0.214†
%FM	-3.80 (-7.14, 2.73)	-5.45 (-9.53, -1.77)	-6.94 (-10.98, -0.29)	0.088†
FFM	0.63 (-0.65, 1.36)	1.07 (-0.33, 2.29)	1.27 (-0.70, 2.06)	0.524†
TBW	0.61 (-0.58, 1.67)	0.77 (-0.92, 2.35)	1.51 (-0.63, 2.24)	0.813†
TC	0.10±12.30	-0.64±11.67	0.54±14.67	0.904
TGL	10.06±40.55	8.25±35.40	20.73±40.06	0.410
HDL	-4.58±17.06	-5.40±18.41	-5.29±15.92	0.959
LDL	4.89±20.89	4.06±20.54	3.20±22.59	0.938
glucose	-4.55 (-11.25, 2.86)	-2.74 (-9.97, 4.98)	-0.69 (-6.10, 2.50)	0.512†

Mean ± SD or median with interquartile range (in brackets), † Kruskal-Wallis test; BMI - body mass index; BMR - basal metabolic rate; %FM - fat mass percentage; FFM fat free mass; TBW - total body water; TC - total cholesterol; TGL - triglycerides; HDL - high density lipoprotein, LDL -low density lipoprotein

Table 2. The *ADRB2* Glu27Gln genotypes and response to training

Percentage					
change	from	Glu27/Glu27 (n=38)	Glu27/Gln27 (n=71)	Gln27/Gln27 (n=54)	p
baseline					
body mass,	kg	-0.98±2.85	-1.10±2.38	-1.50±2.32	0.545
BMI		-0.59±2.32	-1.03±2.44	-1.33±2.05	0.310
BMR		-0.24 (-0.99, 0.20)	-0.42 (-0.83, 0.07)	-0.47 (-0.79, -0.12)	0.450†
%FM		-3.31 (-7.04, 0.98)	-4.33 (-8.33, -0.82)	-6.09 (-10.71, -0.29)	0.412†
FFM		0.77 (-0.42, 1.93)	0.64 (-0.88, 1.92)	1.15 (-0.69, 2.18)	0.955†
TBW		0.60 (-0.31, 1.73)	0.67 (-0.90, 2.06)	1.19 (-0.63, 2.29)	0.967†
TC		-1.35±11.02	1.94±12.49	-2.05±12.75	0.159
TGL		3.69±35.67	14.07±40.31	11.34±37.67	0.404
HDL		-4.11±16.60	-6.35±19.13	-3.90±15.65	0.693
LDL		3.71±18.83	7.48±21.30	0.59±21.33	0.184
glucose		-5.26 (-11.27, 3.95)	-2.70 (-9.64, 4.35)	-2.62 (-9.41, 3.23)	0.787†

Mean ± SD or median with interquartile range (in brackets), † Kruskal-Wallis test; BMI
– body mass index; BMR – basal metabolic rate; %FM – fat mass percentage; FFM –
fat free mass; TBW – total body water; TC – total cholesterol; TGL – triglycerides;
HDL – high density lipoprotein, LDL –low density lipoprotein

Percentage				
change from	m Trp64/Trp64 (n=136)	Arg64/Arg64+1rp64/Arg64	p	
		(n=27)	1	
baseline				
body mass, kg	-1.14±2.45	-1.56±2.62	0.416	
BMI	-0.99±2.35	-1.23±2.02	0.620	
BMR	-0.42 (-0.83, 0.04)	-0.39 (-0.80, 0.23)	0.551†	
%FM	-4.34 (-9.03, 0.0)	-5.08 (-7.04, -0.82)	0.986†	
FFM	0.65 (-0.67, 2.13)	1.08 (-0.44, 1.71)	0.915†	
TBW	0.74 (-0.63, 2.32)	1.11 (-0.60, 1.67)	0.787†	
TC	0.08±12.51	-1.28±11.44	0.603	
TGL	11.46±39.36	7.14±33.44	0.594	
HDL	-6.10±17.58	0.44±15.61	0.074	
LDL	5.13±21.10	0.21±19.40	0.263	
glucose	-2.84 (-9.61, 3.82)	-3.95 (-11.25, 4.29)	0.844†	

Table 3. The *ADRB3* Trp64Arg genotypes and response to training

Mean ± SD or median with interquartile range (in brackets), † Mann-Whitney test ;
BMI – body mass index; BMR – basal metabolic rate; %FM – fat mass percentage;
FFM – fat free mass; TBW – total body water; TC – total cholesterol; TGL –
triglycerides; HDL – high density lipoprotein, LDL –low density lipoprotein

Percentage			
change from	GG (n=124)	AA+AG (n=39)	р
baseline			
body mass,kg	-1.18±2.45	-1.30±2.59	0.796
BMI	-1.10 ± 2.40	-0.80±1.92	0.470
BMR	-0.40 (-0.84, 0.08)	-0.48 (-0.79, 0.0)	0.782†
%FM	-4.44 (-8.65, -0.15)	-5.11 (-10.98, 0.0)	0.472†
FFM	0.64 (-0.57, 1.92)	1.08 (-0.93, 2.40)	0.547†
TBW	0.85 (-0.59, 2.11)	0.81 (-1.24, 2.29)	0.849†
TC	-0.51±12.10	0.99±13.08	0.509
TGL	11.08±38.44	9.67±38.68	0.841
HDL	-6.47±16.42	-0.39±19.71	0.057
LDL	4.33±20.64	4.27±21.79	0.987
glucose	-2.74 (-9.50, 4.32)	-3.95 (-11.59, 2.38)	0.610†

Table 4. The *ADRA2A* G1780A genotypes and response to training

Mean ± SD or median with interquartile range (in brackets), † Mann-Whitney test ;
BMI – body mass index; BMR – basal metabolic rate; %FM – fat mass percentage;
FFM – fat free mass; TBW – total body water; TC – total cholesterol; TGL –
triglycerides; HDL – high density lipoprotein, LDL –low density lipoprotein

Haplotype /intercept	body mass, kg	BMI	BMR	%FM	FFM	TBW	ТС	TGL	HDL	LDL	glucose
	-0.93	-0.65	-0.28	-4.70	1.0	1.01	0.58	7.18	-5.39	6.54	-2.06
Intercept	(-2.67)	(-2.04)	(-1.15)	(-3.23)	(2.50)	(2.45)	(0.36)	(1.33)	(-2.21)	(2.24)	(-1.03)
	p=0.008	p=0.043	p=0.251	p=0.001	p=0.013	p=0.015	p=0.738	p=0.184	p=0.029	p=0.027	p=0.306
ΓΑ1.(-0.43	-0.57	-0.36	-1.86	0.12	0.001	-0.33	3.92	-0.18	-1.53	1.19
[Arg16; Gln27]	(-1.49)	(-2.11)	(-1.71)	(-1.51)	(0.35)	(0.005)	(-0.23)	(0.86)	(-0.09)	(-0.62)	(0.70)
	p=0.138	p=0.036	p=0.088	p=0.132	p=0.723	p=0.996	p=0.821	p=0.390	p=0.929	p=0.537	p=0.485
[C] 1(0.05	0.03	-0.16	0.37	-0.23	-0.04	-1.22	2.12	1.22	-2.85	-2.34
[Gly16;	(0.13)	(0.08)	(-0.60)	(0.24)	(-0.53)	(-0.10)	(-0.66)	(0.37)	(0.47)	(-0.91)	(-1.09)
	p=0.893	p=0.937	p=0.548	p=0.814	p=0.595	p=0.920	p=0.509	p=0.713	p=0.640	p=0.363	p=0.277

1 **Table 5.** Regression of percentage change of body composition parameters, lipids and glucose on *ADRB2* haplotypes

2 Regression coefficients and t statistic (in brackets); minimum frequency for a haplotype to be included 5%; the most common haplotype

3 [Gly16;Glu27] (45.1%) was the reference haplotype; BMI – body mass index; BMR – basal metabolic rate; %FM – fat mass percentage;

- 1 FFM fat free mass; TBW total body water; TC total cholesterol; TGL triglycerides; HDL high density lipoprotein, LDL -low
- 2 density lipoprotein
- 3 Table 6. Analysis of the two-way and three-way interactions between ADRB2, ADRB3 and ADRA2A genes using quantitative multifactor
- 4 dimensionality reduction for body composition parameters, lipids and glucose.

⁵

		Cross-validation	Cross-validation		
Parameter	Best model*			CVC*	p†
		training score	testing score		
body mass (kg)	Gly16Arg	1.57	0.61	9/10	0.557
BMI (kg/m ²)	Gly16Arg	2.35	1.06	9/10	0.435
%FM (%)	Gly16Arg,G1780A	2.45	-0.75	6/10	0.875
FFM (kg)	G1780A	1.18	-2.29	6/10	0.995
$TDW(1_{-1})$	Gly16Arg,	2.20	1.97	C/10	0.007
IBW (Kg)	Glu27Gln,Trp64Arg	2.20	-1.80	6/10	0.986
TC (mg/dL)	Glu27Gln	1.81	1.91	10/10	0.213
TGL (mg/dL)	Glu27Gln	2.11	-1.56	6/10	0.969

HDL (mg/dL)	Trp64Arg, G1780A	3.69	3.67	10/10	0.018
LDL (mg/dL)	Glu27Gln	1.76	0.55	7/10	0.557
Chasse (mg/dI)	Gly16Arg,Glu27Gln,	2.45	1 25	0/10	0.060
Glucose (llig/dL)	Trp64Arg	2.43	-1.23	9/10	0.900

2 * the best gene-gene interaction model was determined using cross-validation consistency (CVC) and cross-validation testing score; †

3 permuted p value (1000 permutations)

Figure 3.