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Abstract 
Although globally scarce, Middle Jurassic dinosaur tracks are known from the Isle of 

Skye, Scotland, and help indicate the palaeoenvironmental preferences and behaviour of 

major dinosaur clades. Here, we report an extensive new tracksite from Skye: 131 in-situ 

dinosaur tracks at Prince Charles’s Point on the Trotternish Peninsula. The tracks occur in 

multiple horizons of rippled sandstones of the Late Bathonian aged Kilmaluag Formation, 

part of the Great Estuarine Group, which formed in a locally, shallowly submerged lagoon 

margin. We assign these tracks to two morphotypes, further divided into four morphotype 

subgroups, most likely representing large megalosaurid theropods, and sauropods that 

are either non-neosauropods or basal neosauropods. The trackways, although relatively 

short, evidence time-averaged milling behaviour, as observed at other tracksites in the 

Great Estuarine Group. The presence of sequential manus and pes sauropod tracks 

amends their previous identification by geologists as fish resting burrows, raising the 

potential that other such structures locally and globally may in fact be dinosaur tracks, and 

emphasises the predominant occurrence of sauropods in lagoonal palaeoenvironments in 

the Great Estuarine Group. At Prince Charles’s Point, however, unlike previously described 

lagoonal assemblages, large theropod trackmakers are more abundant than sauropods.

Introduction
The Middle Jurassic (c. 174–164 Ma) was a time when many dinosaur clades including 
large-bodied and long-necked Eusauropoda/Neosauropoda, herbivorous Ornithischia, and 
carnivorous Theropoda (specifically allosauroids and coelurosaurs) diversified [1–4]. Despite 
this apparent diversification, the Middle Jurassic fossil record is sparse [5], and much of our 
understanding of dinosaur evolution from this time is implied from dated phylogenies rather 
than directly supported by considerable fossil evidence.

On the Isle of Skye, the Great Estuarine Group (c. 170–166 Ma) is one of the most fossil-
iferous Middle Jurassic (Late Bajocian?-Bathonian) sedimentary sequences in the UK with a 
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variety of subtropical terrestrial faunas [6–8]. Vertebrates from this sequence include croco-
dylomorphs, salamanders, stem lizards, turtles, docodont and tritylodontid cynodonts, and 
pterosaurs [7–20]. Although scarce, dinosaur body fossils are also present on Skye and a few 
other Inner Hebridean isles in Western Scotland. At present, specimens from Skye include: 
several sauropod teeth and vertebrae, a sauropod humerus, and a thyreophoran ulna and 
radius [21–25]. Theropods are represented by several teeth and a middle caudal vertebra 
[26–28]. Additionally, a thyreophoran limb bone, referred to a stegosaur fibula, was docu-
mented from the nearby Isle of Eigg [29].

Given the paucity of bone material, Scottish dinosaur communities have been primarily 
inferred from Skye’s abundant track record. The first scientifically described track (GLAHM 
V1980) by [30] was found in the Lealt Shale Formation at Rubha nam Bràthairean (Brothers’ 
Point) and is a large tridactyl track variably discussed as either a theropod [30] or an ornitho-
pod [31–32]. Subsequent trackway discoveries throughout the Great Estuarine Group, includ-
ing in the Lealt Shale, Duntulm, Valtos, and Kilmaluag formations, have illuminated a variety 
of dinosaurs present on Skye in the Middle Jurassic. These include theropods, sauropods, 
thyreophorans (particularly stegosaurs), and putative ornithopods [32–38]. Dinosaur tracks 
in the Kilmaluag Formation (c. 167 ma), in particular, include a small assemblage of theropod 
tracks from Lùb Score [35]. In general, however, tracks from the Kilmaluag Formation, largely 
formed in and near freshwater lagoons, are rarer than those preserved in the Great Estuarine 
Group facies formed on beaches, in or near brackish lagoons, or in fluviodeltaic settings.

In this study, we document 131 newly discovered in-situ dinosaur tracks in the Kilmaluag 
Formation at Prince Charles’s Point, situated on the northwest coast of Skye’s Trotternish Pen-
insula (Fig 1). This site includes extensive and morphologically well-defined trackways of large 
theropods and sauropods, some of which are among the longest continuous track sequences 
yet found on Skye. Interestingly, some of the sauropod tracks encompassed features that had 
previously been identified as ‘fish resting/burrow traces’ [39]. Here, we present an alternative 
argument to show that they match the morphology of sauropod tracks, which opens the possi-
bility that other such structures in local and global stratigraphy may in fact be dinosaur tracks. 
The presence of sauropods amongst theropods provides further evidence for their preferential 
use of lagoonal palaeoenvironments on Skye. Such tracks furthermore complement other 
in-situ tracksites and body fossils found on Skye.

Geological and stratigraphic context
The Great Estuarine Group contains a series of sedimentary formations deposited c. 
170–166 Ma. The sediments represent alternating freshwater and marine-influenced delta 
and lagoonal systems in a paralic sequence [6,40,41]. Its constituent sedimentary forma-
tions crop out across the Inner Hebrides and were deposited across two basins – the Inner 
Hebrides Basin and the Sea of the Hebrides Basin. The Inner Hebrides Basin extended from 
the present-day Straithaird Peninsula, Skye, to the Isles of Eigg and Muck. The more north-
erly Sea of the Hebrides Basin extended from the Outer Hebrides landmass to the Central 
Skye Palaeo High – a hypothetical landmass now occupied by the Cullin Mountains [6,41]. 
Prince Charles’s Point would have been situated ~ 42.8°N within the Sea of the Hebrides 
basin [42]. The basin formed part of a series of low-lying small landmasses and shallow seas 
which resulted from localised volcanic induced uplift and falling global eustatic sea levels 
[41,43].

At Prince Charles’s Point, [40] logged a nine-bed sequence < 2 m in thickness (Fig 1C). The 
sequence is correlated to the clastic facies of the upper Kilmaluag Formation (late Bathonian, 
~ 167 Ma). This correlation is supported by the presence of the freshwater ostracod Darwinula 
in most beds [40,41,44]. The sequence represents an ephemeral, low salinity, closed lagoonal 
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Fig 1.  Geographical and geological context of the Prince Charles’s Point tracksite. The tracksite is situated on the northwest coast of the 
Trotternish peninsula. (A) Overall map of the Isle of Skye. MiniScale® [EPS geospatial data], Scale 1:1000000, Tiles: NG; NM, Updated: 
20 November 2023, Ordnance Survey (GB), Using: EDINA Digimap Ordnance Survey Service (https://digimap.edina.ac.uk/os), Down-
loaded: April 2024. Contains public sector information licensed under the Open Government Licence v3.0. Available at: https://www.
nationalarchives.gov.uk/doc/open-government-licence/version/3 (B) Overview map with the tracksite highlighted by a yellow polygon. 

https://digimap.edina.ac.uk/os
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
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system within a vast river delta alternating between subaerial and submerged states [40,45]. 
Beds 1-2 and 5 represent a regressive, lagoon margin (near-shoreline) palaeoenvironment, 
characterised by horizons of fine-grained rippled sandstones deposited by small rivers which 
fed the lagoon [40]. A lack of radial and desiccation cracks in and around dinosaur tracks 
present in bed 2 and 5 suggests the surface was shallowly submerged [46]. Intermittent peri-
ods of evaporation and extensive drying are indicated by brecciated and desiccated calcilutite 
dolomite and desiccated argillaceous shales (beds 4 and 8) [47]. Beds 6-7, and 9 are composed 
of argillaceous shales and silty shales and signify prolonged periods of increased river sedi-
ment input and lagoon margin transgression [40].

At Prince Charles’s Point, the majority of dinosaur tracks occur within bed 2 – measured 
by [40] as a ~ 10 cm thick bed of fine-grained sandstone with abundant ostracods (Fig 2); 
we note here that the thickness of this bed varies laterally and can be greater than 10 cm. We 
determined a south westerly bed dip of ~ 4° in bed 2. Additional tracks occur in bed 5 – a 
~ 5 cm thick bed with near identical sediment properties to bed 2 (Fig 2). Bed 5 differs with the 
presence of intraclasts and lack of ostracods [48]. Both beds are pale-dark grey in colour on 
fresh surfaces and weather orange or dark grey.

Bed 2 is composed of multiple generations of shallow, wave-generated, bifurcated, asym-
metric current ripples [40]. Bed 5, in contrast, is composed of at least a single generation 
of these ripples. Each set of ripples typically varies between 2-4 cm in vertical thickness. 
Track-bearing horizons in beds 2 and 5 typically feature ripple wavelengths between ~ 5-8 cm. 
Non-track-bearing horizons in the same beds are characterised by ripple wavelengths between 
~ 9-17 cm. Such wavelengths imply a greater water depth which might indicate inaccessibil-
ity to dinosaurs [49]. In a closed lagoon palaeoenvironment, wave-formed ripples may have 
formed perpendicular to wind-induced currents over very shallow water [49].

Sequence biota
Other than dinosaur tracks, the outcrop at Prince Charles’s Point records a relatively mini-
mal floral and faunal assemblage. Fish fragments are present in all beds, including a poorly 
preserved jawbone from bed 4 and scales within beds 2 and 8. Ostracods were previously 
recorded in infilled desiccation cracks within beds 6-9, and some exhibited rare ‘cup-in-cup’ 
preservation [48]. We additionally recorded ostracods in beds 1-2 (e.g., Fig 2A-B). A palyno-
logical study by [50] highlighted the presence of terrestrial miospores, predominantly gymno-
spermous pollen. Pollen such as Lycopodiacidites baculatus within the Prince Charles’s Point 
sequence constrained the locality to no younger than the Bathonian [51]. The presence of the 
planktonic alga Botryococcus and lack of marine palynomorphs provided further evidence that 
the depositional palaeoenvironment was non-marine [50]. The predominant absence of inver-
tebrate bioturbation in all exposed beds may have reflected the rate of sediment accretion, 
food availability, or variation in salinity as recorded in deltaic palaeoenvironments [52–53].

Tracksite discovery
In the early 1980s, Prince Charles’s Point was visited by Julian Andrews, who measured the 
section and documented ‘circular obstacle marks’ in bed 2 [40]. Later, Andrews discussed 

OS VectorMap™ District [TIFF geospatial data], Scale 1:25000, Tiles: ng36_clipped, ng46_clipped, Updated: 23 September 2024, Ordnance 
Survey (GB), Using: EDINA Digimap Ordnance Survey Service (https://digimap.edina.ac.uk/os), Downloaded: December 2024. Contains 
public sector information licensed under the Open Government Licence v3.0. Available at: https://www.nationalarchives.gov.uk/doc/
open-government-licence/version/3 (C) Stratigraphic log of the Kilmaluag Formation exposed at Prince Charles’s Point. Log is adapted 
from [40,48 ] to show new observations – including beds with dinosaur tracks.

https://doi.org/10.1371/journal.pone.0319862.g001

https://digimap.edina.ac.uk/os
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
https://doi.org/10.1371/journal.pone.0319862.g001


PLOS ONE | https://doi.org/10.1371/journal.pone.0319862  April 2, 2025 5 / 67

PLOS ONE A new Middle Jurassic dinosaur tracksite on the Isle of Skye, Scotland

the possibility that the structures were ‘animal tracks’ but proceeded to identify them as fish 
resting burrows [39] – see ‘interpretation of sauropod tracks’ discussion section.

In August 2019, Tone Blakesley (TB), Dugald Ross (DR), Anne Martin (AM), and Victoria 
Bradder (VB) visited Prince Charles’s Point and found three tridactyl tracks on the northerly, 
bed 2-dominated wave-cut platforms. The vast majority of tracks and trackways were discovered 
during subsequent fieldwork led by TB in July-August of 2021 and 2022 and in April 2023 and 
2024. TB described this tracksite for his MScR dissertation at the University of Edinburgh [54].

Materials and methods

Sampling permissions and ethics statement
Permission to conduct fieldwork, unmanned aerial vehicle (UAV) based photography, and 
collect sample sediments was provided by Ewan MacPherson (Kilmuir Estate landowner). No 
organic material was collected for this study.

Fig 2.  Sediment thin sections of track-bearing beds. Bed 2 (A, B) preserves abundant ostracods while Bed 5 (C, D) lacked ostracods. Sections were examined 
under plane polarised light (A, C) and cross polarised light (B, D).

https://doi.org/10.1371/journal.pone.0319862.g002

https://doi.org/10.1371/journal.pone.0319862.g002
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Field recording
Prince Charles’s Point is a tidal platform and can only be accessed at low tide (ideally with a 
high tidal coefficient). Prior to the morphological description, photography, and measurement 
of in-situ tracks, seaweed and limpets were carefully removed from in and around tracks while 
seawater was sponged out of concave epirelief tracks. Trackways are regarded as sequences 
with ≥ 3 tracks, while track associations featured two consecutive tracks, sensu [55].

Each track is catalogued with a site-specific number with prefixes to denote: the locality 
(‘PC’ for Prince Charles’s Point); clade designation (‘TH’ for theropods, ‘SA’ for sauropods, ‘U’ 
for unidentified); ‘A’ for associated tracks or ‘I’ for isolated individual tracks; trackway/track 
association number; and track number. ‘PC-TH-1-07’ for example is theropod trackway one 
and track seven at the locality. During fieldwork, we described each track and recorded their 
location, bed, symmetry, relief, and preservation grade (see S1 Appendix of S7 Table). Orien-
tations for isolated tracks were recorded in the field with a compass.

Morphological preservation grading
Previous studies by [56–57] graded the ‘morphological preservation’ of tracks on an ordi-
nal scale of 0-3 (at 0.5 intervals) to state how well preserved a track is. Tracks graded closer 
to 3 are considered more diagnostic and suitable for characterising morphotypes. Grades 
are informed by the presence or absence, and sharpness and wear, of morphology. For our 
theropod tracks, grades are influenced by the preservation of digits ii-iv (digit i if present) and, 
for each digit, ungual marks, tapering, and phalangeal and metatarsophalangeal pads. Our 
sauropod tracks grades are influenced by the preservation of an overall track shape, digits i-iv, 
ungual marks, heel and pedal pads, and pad creases. The grading criteria are outlined in Table 
1 in [57].

Complete theropod tracks graded ≥ 1.5 are measured and used to characterise morpho-
types. Theropod tracks graded 1 are referred to specific morphotypes. Theropod tracks 
graded < 1 are either incomplete or possess poorly defined margins and are not measured 
or used to characterise morphotypes. Sauropod tracks graded ≥ 0.5 are used to characterise 
morphotypes.

Photogrammetric datasets of tracks
Photogrammetric image sets for individual tracks consist of ≥ 50 photographs taken at three 
relative angles in a circular rotation on a 24.2-megapixel resolution Nikon D5600 with a 
35mm lens. Specific trackways were photographed with the camera attached to an ~ 2 m high 
monopod with a shutter release controller. Photographs were taken at near nadir angles and 
sequentially overlap. Each track or trackway was photographed in calm weather in bright, dif-
fuse lighting conditions. Camera parameters included: aperture ≥ f13, ISO ≤ 640, and shutter 
speed ≥ 1/200. These parameters ensured that the photographs were sharp and not too grainy.

We used a DJI Matrice 300 RTK UAV with a payload of a 45-megapixel Zenmuse P1 cam-
era to survey the entire tracksite. All UAV flights were conducted in calm weather conditions 
with wind speeds < 15 mph. Due to weather constraints and UAV availability, flights took 
place in sunny conditions with the exposure compensation (EV) value lowered (up to -1.0) on 
photographs to compensate for bright lighting. The UAV was piloted via the DJI Pilot 2 app 
installed on a smart controller and flown autonomously using the smart oblique mode setting. 
This enabled the collection of a total of 4,528 images at five angles (928 images were nadir) at 
a 1.5-3 mm per pixel resolution from 12 m above the surface.

Prior to flights, corner markers were placed to establish the limits of a defined ‘poly-
gon’ area of interest. Ground control points (GCPs) were then placed randomly across the 
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tracksite. Coordinates (WGS84) of the GCPs were recorded using Emlid Reach RS survey 
units. The base station was set up outside the area of interest at set coordinates. The receiver 
units were operated through the Emlid Flow iPhone app. The coordinates were post-
processed through Emlid Studio using RINEX data from the Ordnance Survey Benbecula 
Continuously Operating Reference Station (CORS) for an absolute positioning reference. The 
reference station is 60.1 km from the tracksite.

Generation of photogrammetric models
Track and trackway 3D models were generated in Agisoft Metashape (Version 1.8.0, 64 bit, 
2023) installed on two workstations (Athena and Goliath) based in the University of Edin-
burgh Airborne Research and Innovation facility. Workstation specs are: Athena (i7-7820X 
8-core (16 with hyper-threading) and 1 x NVIDIA GeForce GTX 1080 Ti 11GB, 128GB RAM) 
and Goliath (2 x Intel Xeon E5-2640V4/ 2.4 GHz processor Total: 20 cores, 40 threads, and 2 
x ASUS GTX1080TI-FE, 256GB RAM). Models were generated following the workflow from 
[32]. The resolution parameters for point cloud and mesh generation were set to the ‘highest’ 
setting. For sharp texture generation, the source data was set to ‘3D model’ and other fields 
left on default. Due to the large area of the tracksite, high resolution models were generated 
from UAV imagery of two sections. Each section contained a concentration of several track-
ways. A model of the entire tracksite meanwhile was generated at lower resolution parameters 
(highest image alignment, high dense point cloud, medium mesh), to ensure the tracksite 
model was manipulable in post-processing software. This combination of resolutions ensured 
ripple marks were also resolvable.

For handheld imagery of individual tracks or trackways, check points were placed to 
denote a scale reference on the track-bearing surface after the medium imagery alignment 
process. The scale calibration was then used to optimise the imagery in place of the GCPs. 
These were generated following the same ‘highest’ resolution workflow.

Post-processing photogrammetric models
Photogrammetric models were post-processed in Meshlab (Version 2022.02, 64 bit). Models 
> 2 GB were processed on a University of Edinburgh Geosciences CT lab workstation PC 
(Intel Xeon W-2125 CPU at 4.00GHz with NVIDIA GeForce GTX 1060 6GB, 160GB RAM). 
A laptop workstation processed models < 2 GB (i7-11800H at 2.3 GHz with NVIDIA RTX™️ 
A3000 (6 GB GDDR6 dedicated) 32GB RAM). Meshlab was used to remove excessive mesh 
and boulders on trackway models to accurately set planes through the track-bearing surface. 
Subsequently generated digital representations included textured orthophotos, digital eleva-
tion maps (DEM), and contour maps in Paraview (Version 5.10.1) also installed on the laptop 
workstation. Contours on contour maps are spaced by 2 mm. Model outlines were drawn in 
Inkscape (Version 1.2.2, 64 bit).

Track measurements
For theropod tracks, we measured: the overall length (L), width (W), digit lengths (LII-
LIV), and toe extension of digit iii (te), as used in [55,58,59], in FIJI ImageJ [60] (Fig 3A). 
Full pes track length measurements enabled tracks to be classified in accordance with [58] 
(Table 1).

For sauropod manus and pes tracks, the overall length and width were respectively mea-
sured across the long and short axes sensu [63] (Fig 4). Each track was classified by track 
length size sensu [58] (Table 1). Due to their poor definition across all tracks, digits and pads 
were described qualitatively, but not individually measured.
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Trackway measurements
We measured trackway characteristics of both theropod (Fig 3C) and sauropod (Fig 4) 
trackways based on [55,58] using FIJI ImageJ [60] and Inkscape. Stride (λ) was measured 
between the intersecting point (IP) of the overall track length and width lines of two consec-
utive tracks impressed by the same foot. The right or left pace (RP or LP respectively) were 
measured between the IP of two consecutive, alternating tracks. The width of pes angulation 
(WAP) intersects the stride length line perpendicular from an IP and measures the trackway 
width. The track midline (TMD) was drawn between the midpoint of the pace length lines 
and interpolated for the first and final tracks in a visible sequence. The pace angulation (γ) 
was measured based on the intersection of two pace lines at an IP. The angle of rotation (α) 
was measured from the intersection of the pace length and TMD lines between two alternat-
ing tracks in the forward direction of the trackway. Track orientations for sauropod pes and 
manus tracks were measured between respective forward stride lines and track long axes 
(Fig 4A-B).

The approximate track area of sauropod pes tracks (IPS) was calculated using Eq 1, while 
Eq 2 determined the manus track area (IMS) [65]. Heteropody (Eq 3) expressed the difference 
between the areas of a paired pes and manus track as a ratio [66]. While [67] illustrates carpal 
width might provide a better overall estimate, an absence of clearly defined digits on most of 
the sauropod tracks at Prince Charles’s Point precluded that approach to assessing the hetero-
pody ratio. Heteropody was not calculated when manus tracks were overprinted or absent.

	 IPS  Pes length x Pes width= ( )0 5. 	 (1)

	 IMS  Manus length x Manus width= ( )0 5. 	 (2)

	 Heteropody ratio IPS
IMS

 = 	 (3)

Table 1.  Pes tracks are categorised by their length in accordance with [58].

Trackmaker Track size classification Pes length (PL)
Theropod Tiny <10 cm

Small 10 cm ≤  PL <  20 cm
Medium 20 cm ≤  PL <  30 cm
Large 30 cm ≥  PL <  50 cm
Giant PL ≥  50 cm

Sauropod Tiny PL <  25 cm
Small 25 cm ≤  PL <  50 cm
Medium 50 cm ≤  PL <  75 cm
Large PL ≥  75 cm

Length/width (l/w) ratios illustrated whether a track was longer than wide or vice versa. Track width and te deter-
mined the track mesaxony (te/W) – i.e., how elongated, well-developed digit iii was sensu [59]. Digit lengths were 
measured in accordance with [55], from the base of the digit to its most distal point (excludes ungual marks). These 
lengths were used to calculate digit ‘iii/ii’ and ‘iii/iv’ ratios sensu [61]. Phalangeal pads were identified in accordance 
with [59] (Fig 3B). Interdigital angles between digits ii-iii (α) and digits iii-iv (β) were measured following [62] in 
Inkscape. The sum of these interdigital angles provided a digit ii-iv divarication angle.

https://doi.org/10.1371/journal.pone.0319862.t001

https://doi.org/10.1371/journal.pone.0319862.t001
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Sauropod pes trackway gauges were classified based on trackway ratios (TR) as proposed 
by [64] (Eq 4) – in which side width (SW) was measured across an individual track, while 
overall width (OW) was measured between the outermost side width lines of respective pes 
tracks and perpendicular to the TMD (Fig 4C). The equation output a percentage value based 

Fig 3.  Theropod track and trackway measurements and track phalangeal pads. (A) Measurements for theropod tracks included: overall length (L), 
width (W), digit lengths (LII-LIV), toe extension length (te), and interdigital angles between digits ii-iii (α) and digits iii-iv (β). (B) Theropod track 
phalangeal pad configuration (2:3:4 formula) between digits ii-iv (right to left). (C) Bipedal trackway measurements derive from [55] and included: pace 
– the distance between common reference points (intersecting point (IP) of track length and width lines) on a sequential right and left track (RP and LP 
respectively); stride (λ) – the distance between two successive right or left track IPs; width of the pes angulation pattern (WAP) – overall width of stride 
from the IP of a respective alternate track; angle of rotation (α) – measured between the pace line and trackway midline (TML); and pace angulation (γ) 
– the angle of two intersecting pace lines from a preceding and proceeding track in the stride. The TML was drawn from the midpoints of pace lengths.

https://doi.org/10.1371/journal.pone.0319862.g003

https://doi.org/10.1371/journal.pone.0319862.g003
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Fig 4.  Sauropod track and trackway measurements. Measurements are based on [55,58]. (A-B) Pes and manus trackway measurements included overall 
pes (P) or manus (M) length (PL or ML) and width (PW or MW). As per bipedal tracks, right and left pes or manus paces (RPP or RMP and LPP or LMP) 
were measured between alternating track IPs, while strides (Pλ or Mλ) from the IP of two consecutive right or left tracks. Further measurements included 



PLOS ONE | https://doi.org/10.1371/journal.pone.0319862  April 2, 2025 11 / 67

PLOS ONE A new Middle Jurassic dinosaur tracksite on the Isle of Skye, Scotland

on measurements taken perpendicular to the track midline for pes and manus tracks. The 
equation expanded on previous gauge designations by [68] to provide values that signify: wide 
below 35%, medium between 35-50% and narrow above 50%.

	 TR=  SW
OW

x100 	 (4)

Trackway gauge was further quantified through dividing WAP by pes length (PL) (Eq 5) or 
the width of manus angulation (WAM) by manus width (MW) (Eq 6) [58]. Pes gauge ratios 
could then be assessed as: narrow below 1.0, medium between 1.0-1.2, and wide above 1.2. Eq 
5 also determined the extent to which pes tracks touched the TMD: overlaps midline below 
1.0, and separated from midline above 1.0. The gauge difference and proximity of manus 
tracks to pes tracks to the track midline was determined by a WAP/WAM ratio (Eq 7) – signi-
fied as: further than pes below 1.0, and nearer than pes above 1.0.

	 Pes gauge ratio   WAP
PL

= 	 (5)

	 Manus gauge ratio   WAM
MW

= 	 (6)

	 Manus midline distance ratio    WAP
WAM

= 	 (7)

Gauge was also assessed according to [58] from ratios of WAP with the index of pes size 
(IPS) and/or WAM with the index of manus size (IMS) (Eqs 8-9).

	 Pes index gauge ratio    WAP
IPS

= 	 (8)

	 Manus index gauge ratio    WAM
IMS

= 	 (9)

Due to the low number of sequential tracks per quadrupedal trackway, progression was 
used to determine the forward motion of a trackmaker in a single footfall for pes and manus 
tracks (Eqs 10-11).

	 Pes progression Pace WAP    = −2 2 	 (10)

	 Manus progression Pace WAM    = −2 2 	 (11)

An estimated trackmaker hip height (h) was obtained by multiplying a track length (FL) 
by four in Eq 12 [69]. Hip height further informed velocity calculations. Velocity (V) was 

the width of the pes angulation pattern (WAP), width of the manus angulation pattern (WAM), and the pes and manus angles of rotation (α) and pace angu-
lation (γ). A track midline (PMD for pes and MMD for manus trackways) was drawn from the midpoint of pace lengths. Progression (PG) was based on the 
Pythagorean theorem and determined the distance between an IP of one track and WAP intersection point of a consecutive track within a respective stride. 
(C) The pes trackway ratio (gauge) was based on measurements perpendicular to the TMD including: side width ‘SW’ – measured across an individual 
track; and overall width ‘OW’ – measured across the outermost side width lines of consecutive pes tracks – as stipulated by [64].

https://doi.org/10.1371/journal.pone.0319862.g004

https://doi.org/10.1371/journal.pone.0319862.g004
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calculated per stride (three consecutive tracks as per [55]) (Eq 13). Average values of track 
length and stride across a trackway were used to calculate overall velocity and enabled 
comparison between trackways. The calculation utilised a trackway average stride length (λ), 
acceleration due to gravity (g =  9.81 m/s^2) and average estimated hip height (h) (based on 
the mean FL per λ) [69]. An updated version of this equation, devised by [70], is also used (Eq 
14). Stride length was furthermore divided by an estimated hip height to estimate trackmaker 
gait (Eq 15) sensu [71]. Gait values were approximated as: walking below 2.0, trotting between 
2.0-2.9, and running above 2.9.

	 h FL= 4 	 (12)

	 V g h  = −0 25 0 5 1 67 1 17. . . .λ 	 (13)

	 V g h  = −0 226 0 5 1 67 1 17. . . .λ 	 (14)

	 Gait
h

=  λ 	 (15)

Morphotype classification
Both track metrics and morphology were used to group tracks into tracksite morphotypes (Fig 
5). Tridactyl morphotypes were further subgrouped based on subtle differences and shared mor-
phologies or metrics. Morphotype subgroups featured an additional letter added onto the end of 
each number. The main representative morphotype of the group was first, e.g., morphotype-1a. 
Each morphotype was compared with previously described ichnotaxa with similar metrics and 
morphologies to suggest a representative ichnotaxon and inform on possible trackmakers.

Trackmaker orientations and palaeocurrent directions
The orientations of tracks and flow directions (ripples) were digitally measured from the 
tracksite DEM. Track orientation categories included trackways, track associations, and 
isolated theropod tracks. Trackways and track associations were measured based on a midline. 
Isolated theropod track orientations were measured in the field from the length line. Flow 
directions were measured perpendicular to ripples around tracks (if visible). The steeper lee 
side of ripples represent forward flow directions [49].

Results

Tracksite summary
A total of 131 tracks were catalogued and preservation graded (65 theropods, 58 sauropods, 
8 unidentified). Out of these tracks, 77 were measured, with 16 theropod and 27 sauropod 
tracks used to classify morphotypes (Fig 5). The tracks generally occur within or near two 
clusters, each in their own ‘section’ (Fig 6).

In Section One, most tracks occur in a single horizon of bed 2 exposed as a partially 
boulder-covered, intertidal platform. A cluster of 17 (predominantly concave epirelief) theropod 
and 23 (shallow convex epirelief) sauropod tracks occur in a ~ 92 m2 clearing – as shown in our 
tracksite orthophoto (Fig 7). This includes morphotype-1a theropod track sequences ‘PC-TH-1 
and 2’, associations ‘PC-TH-A-1 and 2’, and morphotype-2 sauropod trackways ‘PC-SA-1 and 
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Fig 5.  Track morphotypes recorded at Prince Charles’s Point. Note outlines for morphotypes 1b and 2 are right pes tracks, the rest 
are left.

https://doi.org/10.1371/journal.pone.0319862.g005

Fig 6.  Overview orthomosaic of Prince Charles’s Point. UAV orthomosaic of full tracksite with Section One and Section Two divided accord-
ingly by a dashed line. Track clusters in each section are highlighted in each by a yellow polygon.

https://doi.org/10.1371/journal.pone.0319862.g006

https://doi.org/10.1371/journal.pone.0319862.g005
https://doi.org/10.1371/journal.pone.0319862.g006
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2’. A trackway which includes an example of morphotype-1b (PC-TH-3) is situated 20.2 m 
north of the main track cluster and distantly surrounded by further isolated morphotype-1a 
and morphotype-2 tracks. Tracks impressed by an undetermined quadrupedal trackmaker, i.e., 
PC-U-A-1-66 to 67, PC-U-A-2-93 to 95, PC-U-A-3-96 to 97, and PC-U-A-4-98 to 100, were 
recorded in bed 5 below the ~ 92 m2 track accumulation. As most tracks in bed 5 have suffered 
considerable wear, they are not measured, figured or further described in this study.

Fig 7.  UAV orthophoto and outline map of main track cluster in Section One. (A) In the orthophoto, the rippled sandstones of bed 2 gradually wear down 
toward the worn surface of bed 1 exposed toward the present-day high-tide mark due to a ~ 4° south-westerly dip. The orthophoto was composited from photo-
graphs taken by our UAV during fieldwork in April 2023. (B) The outline map highlights the position and distribution of tracks. Each track is labelled with its track-
site catalogue number. Trackways of ‘TH’ represent theropods, ‘SA’ signify sauropod, and ‘TH-A’ denote theropod track associations. Dark grey outlines highlight 
the bedding plane edge. Pale grey outlines signify boulders.

https://doi.org/10.1371/journal.pone.0319862.g007

https://doi.org/10.1371/journal.pone.0319862.g007
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In Section Two, tracks occur across multiple scoured bed 2 rippled sandstone horizons and 
are worn by erosion. A cluster of 34 (mostly concave epirelief) theropod and 23 (shallow con-
vex epirelief) sauropod tracks are present on a ~ 171 m2 area of intertidal platform – as shown 
in our tracksite orthophoto (Fig 8). These include morphotype-1a trackways ‘PC-TH-4 to 6’ 
and track associations ‘PC-TH-A-4 and 5’, amongst several isolated tracks. Morphotype-1d 
is solely represented by ‘PC-TH-A-3’. Morphotype-2 is most clearly represented by track-
way ‘PC-SA-3’, alongside the worn and partial ‘PC-SA-4’ track sequence. Elsewhere, 
morphotype-1b is known from an isolated track (PC-TH-I-55) toward the northern end of 
Section Two. Morphotype-1c, represented by PC-TH-I-56 and 59, is present in the lower 
most bed 2 horizons to the south of the main Section Two cluster. Meanwhile, ‘PC-SA-5’, an 
isolated morphotype-2 trackway, represented at the northern end of the section is surrounded 
by sparsely distributed isolated morphotype-1a and 2 tracks.

Morphotype-1a
Material – PC-TH-I-01, PC-TH-1-07 – 09, PC-TH-2-11 – 14, PC-TH-5-40, PC-TH-A-4-49 
(Figs 9–10,14A-D,15A-D,16I-L; Table 2).

Referred material – PC-TH-1-06, 10, PC-TH-2-15, PC-TH-4-23 – 29, PC-TH-5-31-38, 
PC-TH-6-43 – 45, PC-TH-A-1-04, 05, PC-TH-A-2-18, PC-TH-A-4-50, PC-TH-A-5-60, 61, 
PC-TH-I-16, 41, 46, 54 (Figs 11–16; S1–S8 Figs).

Diagnosis.  Track lengths typically range between 40-55 cm. Some phalangeal pad margins 
more discernible than others based on digit margins and configured up to a ‘2:3:4’ formula. 
Digit iv features a large, sub-circular metatarsophalangeal pad. Digit ii-iv divarication angles 
are generally between 40°-60°. Digit i is absent.

Description.  A large, tridactyl footprint between 43.0-53.2 cm long and 28.0-38.1 cm wide 
(l/w ratio 1.22-1.66). Tracks are weakly-moderately mesaxonic (0.36-0.52) with broad, distally 
tapering digits. Digit margins are often parallel sided with anteriorly oriented, narrow, long 
ungual marks. Average digit iii/ii length ratios (1.24) are larger than digit iii/iv equivalents 
(0.81). Digits feature a clearly defined ‘2:3:4’ phalangeal pad formula (which include the 
shallowly impressed metatarsophalangeal pad on digit iv). Digit iv is the longest digit followed 
by digits iii and ii. Digit ii-iv divarication angles range between 44.0°-59.4° (average 51.1°).

Morphotype-1a material description
PC-TH-1 and 2.  PC-TH-1 and 2 are the most diagnostic morphotype-1a trackways  

(Fig 9, Tables 3–8) and cross one another in Section One. Both exhibit similar trajectories with PC-
TH-1 extending over 5.9 m at 47.5° relative to north and PC-TH-2 extending 6 m at 32.2° relative 
to north - against a south westerly flow direction implied by the ripples (219°). Each trackway is 
composed of five large tridactyl footprints. All except PC-TH-2-15 are in concave epirelief. PC-
TH-1 tracks ranged in preservation grades between 0.5-2. PC-TH-2 preservation grades ranged 
between 1-1.5. Due to their incompleteness, PC-TH-1-06 and PC-TH-2-15 were not measured.

The tracks are characterised by similar overall and digit lengths (Fig 10, Tables 3–4). 
PC-TH-1 track lengths vary between 43.0-45.8 cm (average 44.9 cm), while PC-TH-2 equiva-
lents range between 43.1-47.7 cm (average 45.8 cm). Based on these track lengths, the esti-
mated trackmaker hip height of PC-TH-1 (1.80 m) is almost identical to PC-TH-2 (1.83 m). 
The PC-TH-1 and 2 tracks also possess longer than wide l/w ratios (1.36-1.42 in PC-TH-1 
and 1.42-1.66 in PC-TH-2). Although subtle, the digit ii-iv divarication angles are on average 
larger in PC-TH-1 (55.1°) than PC-TH-2 (51.2°).

The distal region of digits ii-iii of PC-TH-1-08 appear to overprint into the lower margin 
of digit ii and heel region of PC-TH-2-12 (Fig 10B). This cross-cutting relationship and the 
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Fig 8.  UAV orthophoto and outline map of main track cluster in Section Two. (A) In the orthophoto, extensive bed wear has revealed a variety of ripple 
wavelengths and bearings across multiple bed 2 horizons. The orthophoto was composited from photographs taken by our UAV during fieldwork in April 2023. 
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presence of more clearly defined ripples within the PC-TH-2 track impressions suggests that 
the PC-TH-1 trackway was impressed slightly later than PC-TH-2. Their similar track margin 
definitions further imply that both trackways were likely impressed within a similar timeframe 
of one another. PC-TH-2-15 also overprints the worn displacement rim of sauropod track 
PC-SA-2-85 and further suggests the PC-TH-2 trackmaker traversed the lagoon margin soon 
after PC-SA-2 was registered and before PC-TH-1 was registered. These relationships demon-
strate that the footprints in Section One are at least a little bit time-averaged and the track-
makers may not have crossed the same physical space at the same time.

Both trackways also exhibit relatively consistent pace and stride lengths (Tables 5–6). On 
average, PC-TH-1 paced (1.40 m) and strode (2.90 m) similar distances to PC-TH-2, which 
paced at 1.48 m and strode at 2.93 m. The estimated velocities of PC-TH-1 are on average 
between 2.15-2.37 m/s (7.74-8.53 km/h) and very similar to that of PC-TH-2 at 2.11-2.34 m/s 
(7.60-8.42 km/h) (Tables 7–8). Overall, based on the gait parameters of [69], PC-TH-1 (1.62-
1.66) and PC-TH-2 (1.58-1.64) both demonstrate walking gaits. Despite similarity in track 
morphology and velocity, both trackways are distinguished by contrasting WAP. The PC-TH-1 
trackmaker overall paced at a much wider WAP (15.7-24.6 cm) than PC-TH-2 (4.3-6.8 cm). 
Regardless, both trackmakers are considered to have walked at a relatively narrow gauge.

PC-TH-4.  PC-TH-4 consists of eight large to giant-sized tracks, with seven clearly 
tridactyl, spanning over 12.2 m oriented 237° (Fig 11, Tables 9–11). All except PC-TH-4-23 
are in concave epirelief. The tracks almost bear the same direction as palaeocurrents indicated 
by ripples (228.2°). Due to present-day erosion, tracks range from worn surface tracks to 
transmitted tracks and score low preservation grades between 0-1 (average 0.69). The overall 
lower preservation grade of this trackway may explain why length and width measurements 
appear larger than tracks with more crisply defined margins in PC-TH-1 and 2. Although the 
measurements of the PC-TH-4 tracks were not used to characterise morphotype-1a, the tracks 
were referred to the morphotype based on shared characteristics.

Measurements such as low l/w ratios (1.24-1.41) and low-moderate mesaxony (0.39-0.53) 
are consistent with morphotype-1a (Table 9). Similarly, most digit ii-iv divarication angles are 
within the 40°-60° morphotype range (50.6°-57.2°), apart from PC-TH-4-26 (38.6°). Though 
phalangeal pads were difficult or impossible to distinguish within this trackway, faint digit 
margins indicate the tracks possessed broad digits with tapering, elongated ungual marks (Fig 
12). Further morphotype-1a similarities include a declining digit length between digits iv to ii.

The trackway exhibits relatively consistent pace (1.42-1.53 m) and stride (2.83-3.00 m) 
lengths, with generally subtly larger right pace angulations (161.2°-164.9°) than left equiv-
alents (153.8°-161.5°) (Table 10). Right track WAPs meanwhile are generally smaller (19.0-
24.1 cm) than left equivalents (24.1-33.5 cm). On average, the trackmaker exhibited a relatively 
steady walking gait (1.47) travelling between 1.90-2.10 m/s (6.84-7.56 km/h) (Table 11).

PC-TH-5.  PC-TH-5 is composed of ten large-giant sized tridactyl tracks, with an overall 
bearing of 7.2° over 15.2 m (Fig 13, Tables 12–14). All except PC-TH-5-38 and 39 are in 
concave epirelief. Track preservation grades are mostly between 0-1 due to poorly defined 
digit margins. As in PC-TH-4, track length and width appear subtly exaggerated. This 
exaggeration may have contributed to relatively low l/w ratios (Table 12).

In contrast to most PC-TH-5 tracks, PC-TH-5-40 (preservation grade =  1.5) pos-
sesses clearly defined digit and phalangeal pad margins. PC-TH-5-40 was used to diagnose 

(B) Outline map highlights the position and distribution of trackways. Each track is labelled with its tracksite catalogue number. Trackways of ‘TH’ represent 
theropods, ‘SA’ signify sauropod, and ‘TH-A’ or ‘SA-A’ denote track associations. Dark grey outlines highlight the edge of a bedding plane. Pale grey outlines 
signify boulders.

https://doi.org/10.1371/journal.pone.0319862.g008

https://doi.org/10.1371/journal.pone.0319862.g008
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Fig 9.  Overview of PC-TH-1 and 2. (A) Orthophoto, (B) DEM, (C) outline with trackways highlighted by dashed lines – PC-TH-1 is pale grey, while PC-TH-2 is 
dark grey. Both trackways are oriented in the opposite direction to the palaeocurrent inferred from ripples. A horizon which directly underlies the track-bearing 
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morphotype-1a while the remaining PC-TH-5 tracks were referred to morphotype-1a (Fig 
14). The digit ii-iv divarication angle in most PC-TH-5 tracks were larger than those used 
to distinguish morphotype-1a, i.e., (53.7°-85.9°), possibly in part due to their eroded, more 
poorly defined margins, or a specific mode of locomotion. The largest interdigital angles were 

surface features ripples oriented in a southeasterly direction, from which we infer variation in the current direction across relatively short timescales. Note PC-TH-
2-15 is excluded from imagery as the track was most clearly exposed after the photogrammetric dataset was collected.

https://doi.org/10.1371/journal.pone.0319862.g009

Fig 10.  Photographs of selected PC-TH-1 and 2 tracks. (A) PC-TH-1-07 (right) and PC-TH-2-11 (left). (B) The 
distal regions of digit iii and ii on PC-TH-1-08 (left) overprint the lower margins of digit ii and heel region of PC-TH-
2-12 (right). (C) PC-TH-1-09 (left) penetrated the substrate more deeply but suffers from present-day erosion, while 
PC-TH-2-13 (right) features a shallower relief with greater sediment infill and ripples.

https://doi.org/10.1371/journal.pone.0319862.g010

https://doi.org/10.1371/journal.pone.0319862.g009
https://doi.org/10.1371/journal.pone.0319862.g010
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predominantly measured between digits iii-iv. The largest difference is recorded in PC-TH-5-
37, which featured digits iii-iv angled at 51.2° and digits ii-iii at 18.6°.

The trackway meanwhile exhibits natural fluctuations across an overall linear path (Table 
13). Stride (2.34-2.89 m) and pace (1.30-1.58 m) exhibit greater ranges compared to other 
morphotype-1a trackways. These lengths appear to reduce between PC-TH-5-31 and 34 and 
increase thereafter. This fluctuation is therefore reflected in the stride/hip height ratio (1.46-
1.18) and estimated velocities: 2.07-1.46 m/s =  7.45-5.26 km/h according to the equation 
in [69]; or 1.87-1.32 m/s =  6.73-4.75 km/h according to the equation in [70]. Regardless of 
velocity equation, the results highlight a walking gait (Table 14).

PC-TH-A-4.  PC-TH-A-4 is composed of two tridactyl tracks and extends over 3.41 m 
at 280.2° (Fig 15; S6 Fig, Table 15). PC-TH-A-4-49 is a shallow concave epirelief track with 
a preservation grade of 1.5. The track features well-defined digit margins, phalangeal pads, 
and ungual marks and was used to define morphotype-1a. The track features an enlarged 
heel region which extends its overall length to 53.2 cm, a 34.4 cm width, 1.55 l/w ratio and 
moderate mesaxony (0.50). These metrics, apart from l/w ratios, are subtly larger in PC-
TH-A-4-50, which was not used to define morphotype-1a due to poorly defined digit margins 
toward the heel (preservation grade =  1). Despite this, the digit ii-iv divarication angle is 
larger in PC-TH-A-4-50 (59.5°) than PC-TH-A-4-49 (44.1°). In PC-TH-A-4-49, the digit ii-iii 
interdigital angle is unusually < 10° (5.9°).

Isolated tracks.  Most isolated tracks referred to morphotype-1a were generally incomplete 
or lacked clear margins. These tracks ranged in preservation grade between 0-2 (Fig 16, 
Table 16). Although isolated, such tracks are documented as they provide an indication of 
the number of theropod trackmakers, their varied directions, and close co-occurrences to 
sauropod trackmakers. PC-TH-I-46 occurs immediately ahead of the trajectory of sauropod 
trackway PC-SA-3 and bears 345° (Fig 16A-D). Unusually, a single unidentified bone is 
preserved within the heel region. PC-TH-I-16 occurs between the gauge margins of PC-SA-1 
and bears 42° (Fig 16E-H). Exceptional tracks such as PC-TH-I-01 retain clear morphological 
detail and are used to define morphotype-1a (Fig 16I-L). PC-TH-I-01 bears 210° and is 
situated closest to the present-day high-tide mark in bed 2. The track is similarly preserved 

Table 2.  Morphotype 1a track measurements.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-I-01 2 R 46.34 38.12 1.22 25.71 28.90 36.18 1.12 0.80 18.01 34.43 52.44 14.43 0.38
PC-TH-1-07 2 R 45.50 32.90 1.38 20.90 25.10 32.70 1.20 0.77 20.70 31.41 52.11 14.90 0.45
PC-TH-1-08 1.5 L 45.20 31.90 1.42 21.70 24.90 30.80 1.15 0.81 23.89 27.16 51.05 16.40 0.51
PC-TH-1-09 1.5 R 43.00 31.70 1.36 22.00 25.30 30.10 1.15 0.84 27.05 26.16 53.21 15.20 0.48
PC-TH-2-11 1.5 L 47.70 31.10 1.53 21.00 25.40 36.30 1.21 0.70 20.96 23.08 44.04 13.00 0.42
PC-TH-2-12 1.5 R 46.60 28.00 1.66 19.40 26.20 34.10 1.35 0.77 26.82 18.70 45.52 14.60 0.52
PC-TH-2-13 1.5 L 43.10 29.60 1.46 20.20 25.30 34.40 1.25 0.74 31.38 24.37 55.75 10.60 0.36
PC-TH-2-14 1.5 R 45.60 32.20 1.42 20.20 25.40 35.80 1.26 0.71 32.15 27.21 59.36 11.80 0.37
PC-TH-5-40 1.5 R 46.30 36.20 1.28 22.90 32.60 31.00 1.42 1.05 16.76 36.96 53.72 18.20 0.50
PC-TH-A-5-49 1.5 L 53.20 34.40 1.55 24.40 32.40 33.90 1.33 0.96 5.92 38.19 44.11 17.30 0.50
AVERAGE 1.6 46.25 32.61 1.43 21.84 27.15 33.53 1.24 0.81 22.36 28.77 51.13 14.64 0.45

Morphotype-1a is characterised by large track lengths, weak-moderate l/w ratios and mesaxony, and < 60° total divarication angles. Preservation grades (PG) are scored 
based on track morphology. The ‘L/ R’ column states whether a track was printed by a left or right foot. Measurements include: overall length (L), overall width (W), 
length/width ratio (L/W), digit lengths (DL) for digits ii-iv, digit iii/ii and digit iii/iv ratios (III/II and III/IV respectively), digit divarication angles between digits ii-iii 
(II-III), digits iii-iv (III-IV), and digits ii-iv (II-IV), toe extension (te), and mesaxony (M). All lengths were measured in cm. Divarication angles were measured in 
degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t002

https://doi.org/10.1371/journal.pone.0319862.t002
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Fig 11.  Overview of PC-TH-4. (A) Orthophoto with software-based shadowing, (B) DEM, (C) outline highlights the trackway. 
Note the greyed-out tracks of PC-TH-5 (37 and 38) can be seen crossing the path of PC-TH-4 in a northerly direction. The tracks of 
PC-TH-4 gradually become less well-defined through the sequence as present-day erosion exposed underlying layers.

https://doi.org/10.1371/journal.pone.0319862.g011

https://doi.org/10.1371/journal.pone.0319862.g011
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to some PC-TH-1 and 2 tracks with sharp, elongated ungual marks and ripples intruding 
the heel region. A ‘2:3:4’ phalangeal pad formula was discerned from a clear digit margin. 
The track is 46.3 cm long by 38.1 cm wide (l/w ratio 1.22) with a weak 0.38 mesaxony. The 
track features some of the most narrowly divaricated digits of the morphotype: digits ii-iii are 
divaricated by 18.0°, while digits iii-iv are 34.4° (total divarication angle 52.4°).

Another clearly preserved track is PC-TH-I-41 (Fig 16M-N, Table 16). PC-TH-I-41 
is a convex epirelief tridactyl track which bears 282° and scores a preservation grade of 
2. As a large boulder covered the anterior portion of the track during later fieldwork, a 

Fig 12.  Digital representations of selected PC-TH-4 tracks. Textured orthophotos, outlines, contour maps, and DEMs are respectively represented for: (A-D) 
PC-TH-4-29, (F-H) PC-TH-4-28, and (I-L) PC-TH-4-26. The tracks likely represent worn surface tracks with morphotype-1a configurations (i.e., longer digit 
iv than ii) and low ~ 1.2 mesaxony. (M) Selected tracks, indicated by red boxes, in context to the rest of the trackway sequence. Due to present-day erosion, track 
margin definitions gradually decline across the sequence.

https://doi.org/10.1371/journal.pone.0319862.g012

https://doi.org/10.1371/journal.pone.0319862.g012
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Fig 13.  Overview of PC-TH-5. (A) Textured orthophoto with software-based shadowing, (B) DEM, (C) outline highlights the trackway. 
Note the greyed-out tracks of PC-TH-4 can be seen intersecting the south-westerly path of PC-TH-4. Although most tracks are eroded, 
some featured large divarication angles.

https://doi.org/10.1371/journal.pone.0319862.g013

https://doi.org/10.1371/journal.pone.0319862.g013
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Fig 14.  Digital representations of selected PC-TH-5 tracks. Textured orthophotos, outlines, contour maps, and DEMs are respectively represented from left to 
right. (A-D) PC-TH-5-40 enables other poorly preserved PC-TH-5 tracks to be referred as morphotype-1a. PC-TH-5 tracks are variably preserved: (E-H) much of 
PC-TH-5-38 is obscured by sediment, (I-L) PC-TH-5-35 exhibits wide digit ii-iv divarication which may have reflected the trackmaker turning, (M-P) PC-TH-5-
34 was similarly widely divaricated. (Q) Selected tracks, indicated by red boxes, in context to the rest of the trackway.

https://doi.org/10.1371/journal.pone.0319862.g014

https://doi.org/10.1371/journal.pone.0319862.g014
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photogrammetric model could not be produced. Despite this, approximate track mea-
surements were taken from photographs. The track metrics occupy the extreme ranges of 
morphotype-1a and include a ~ 41.2 cm length and ~ 34.8 cm width (l/w ratio 1.18) with a 
0.41 mesaxony and digit ii-iv divarication angle of ~ 58.7°. Like morphotype-1a, PC-TH-I-41 
features clearly defined phalangeal pads and long ungual marks and digits with sharp mar-
gins. The lateral digits however feature sigmoidal curvature. Pad Piv1 furthermore is poorly 
defined.

Morphotype-1b
Material – PC-TH-3-20, PC-TH-I-55 (Figs 17 and 18A-D; Table 17).

Diagnosis.  Differentiated from morphotype-1a with the presence of a tapering digit i 
and/or heel. Digits are broad and lack metatarsophalangeal pads. Digit i is inconsistently 
preserved. – i.e., phalangeal pads and ungual marks may be present. Digit ii and iv lengths are 
generally subequal in length. The digit ii-iv divarication angle is > 65°.

Description.  A large tridactyl track, between 41.8-43.3 cm long and 32.7-33.3 cm wide 
(l/w ratio 1.26-1.32). Tracks are moderately mesaxonic (0.51-0.53) with moderately slender, 
distally tapering digits and narrow, long ungual marks. Digit margins are generally linear. 
Digits could possess clear phalangeal pad margins and subtly anterolateral oriented ungual 
marks. Tracks can possess a ‘X:2:3:3’ phalangeal pad formula. Digit iii is the longest digit. A 

Fig 15.  Overview of PC-TH-A-4 tracks. Photographs, outlines, contour maps, and DEMs are respectively represented from left to right. (A-D) PC-TH-A-4-49 was 
posteriorly heavily intruded by ripples and partially infilled on digits iii and iv. Unusually, the phalangeal pad creases for Piv3-1 are distinguishable. (E-H) PC-TH-
4-50 retains most of its sediment infill and possesses a wider digit divarication angle than PC-TH-4-49.

https://doi.org/10.1371/journal.pone.0319862.g015

https://doi.org/10.1371/journal.pone.0319862.g015
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Fig 16.  Photographic and digital representations of selected isolated tracks. Photographs, outlines, contour maps, and DEMs are respectively represented from 
left to right. (A-D) PC-TH-I-46, (E-H) PC-TH-I-16, (I-L) PC-TH-I-01, and PC-TH-I-41 (M-N). PC-TH-I-46 and PC-TH-I-16 occur in close proximity to sauro-
pod trackways and were likely impressed in the same horizon. Unlike these tracks, PC-TH-I-01 was used to define morphotype-1a due to its clear digit margins, 
‘2:3:4’ phalangeal pad formula, and sharp, elongated ungual marks. The track heel region is intruded by ripples. Due to a large boulder covering the anterior portion 
of the track, a photogrammetric model could not be produced for PC-TH-I-41.

https://doi.org/10.1371/journal.pone.0319862.g016

https://doi.org/10.1371/journal.pone.0319862.g016
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Table 3.  PC-TH-1 track measurements.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-1-06 0.5 L n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PC-TH-1-07 2 R 45.50 32.90 1.38 20.90 25.10 32.70 1.20 0.77 20.70 31.41 52.11 14.90 0.45
PC-TH-1-08 1.5 L 45.20 31.90 1.42 21.70 24.90 30.80 1.15 0.81 23.89 27.16 51.05 16.40 0.51
PC-TH-1-09 1.5 R 43.00 31.70 1.36 22.00 25.30 30.10 1.15 0.84 27.05 26.16 53.21 15.20 0.48
PC-TH-1-10 1 L 45.80 32.50 1.41 18.60 25.40 31.50 1.37 0.81 36.69 27.33 64.02 17.10 0.53
AVERAGE 1.3 44.88 32.25 1.39 20.80 25.18 31.28 1.22 0.81 27.08 28.02 55.10 15.90 0.49

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t003

Table 4.  PC-TH-2 track measurements.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-2-11 1.5 L 47.70 31.10 1.53 21.00 25.40 36.30 1.21 0.70 20.96 23.08 44.04 13.00 0.42
PC-TH-2-12 1.5 R 46.60 28.00 1.66 19.40 26.20 34.10 1.35 0.77 26.82 18.70 45.52 14.60 0.52
PC-TH-2-13 1.5 L 43.10 29.60 1.46 20.20 25.30 34.40 1.25 0.74 31.38 24.37 55.75 10.60 0.36
PC-TH-2-14 1.5 R 45.60 32.20 1.42 20.20 25.40 35.80 1.26 0.71 32.15 27.21 59.36 11.80 0.37
PC-TH-2-15 1 L n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AVERAGE 1.4 45.75 30.23 1.52 20.20 25.58 35.15 1.27 0.73 27.83 23.34 51.17 12.50 0.42

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t004

Table 5.  Trackway measurements for PC-TH-1.

Specimen L/ R L h P λ WAP αR αL γ
PC-TH-1-06 L n/a n/a n/a n/a n/a n/a n/a n/a
PC-TH-1-07 R 45.50 1.82 1.47 n/a 15.70 n/a 6.15 167.73
PC-TH-1-08 L 45.20 1.81 1.48 2.93 24.60 6.11 n/a 160.76
PC-TH-1-09 R 43.00 1.72 1.21 2.90 18.40 n/a 9.69 165.35
PC-TH-1-10 L 45.80 1.83 1.43 2.87 n/a 7.39 n/a n/a
AVERAGE 44.88 1.80 1.40 2.90 19.57 6.75 7.92 164.61

All values were rounded to two decimal places. Total track length (L) and width of pes angulation (WAP) were measured in cm. Hip height (h), pace (P) and stride (λ) 
lengths were measured in m. Right or left angles of rotation (αR or αL respectively) and pace angulation (γ) were measured in degrees.

https://doi.org/10.1371/journal.pone.0319862.t005

Table 6.  Trackway measurements for PC-TH-2.

Specimen L/ R L h P λ WAP αR αL γ
PC-TH-2-11 L 47.70 1.91 n/a n/a 4.30 n/a n/a n/a
PC-TH-2-12 R 46.60 1.86 1.57 n/a 6.80 n/a 1.62 176.59
PC-TH-2-13 L 43.10 1.72 1.42 2.98 n/a 1.79 n/a 174.59
PC-TH-2-14 R 45.60 1.82 1.46 2.88 n/a n/a 2.66 n/a
PC-TH-2-15 L n/a n/a n/a n/a n/a n/a n/a n/a
AVERAGE 45.75 1.83 1.48 2.93 5.55 1.79 2.14 175.59

All values were rounded to two decimal places. Total track length (L) and width of pes angulation (WAP) were measured in cm. Hip height (h), pace (P) and stride (λ) 
lengths were measured in m. Right or left angles of rotation (αR or αL respectively) and pace angulation (γ) were measured in degrees.

https://doi.org/10.1371/journal.pone.0319862.t006

https://doi.org/10.1371/journal.pone.0319862.t003
https://doi.org/10.1371/journal.pone.0319862.t004
https://doi.org/10.1371/journal.pone.0319862.t005
https://doi.org/10.1371/journal.pone.0319862.t006


PLOS ONE | https://doi.org/10.1371/journal.pone.0319862  April 2, 2025 28 / 67

PLOS ONE A new Middle Jurassic dinosaur tracksite on the Isle of Skye, Scotland

digit i ungual mark may be present and laterally directed opposite a posterolaterally oriented 
subtriangular heel region. The digit ii-iv divarication angle ranges between 73.5°-75.7°.

Morphotype-1b material description
PC-TH-I-55.  PC-TH-I-55 represents the clearest example of morphotype-1b, with a 

preservation grade of 1.5. Metrically, the track is distinguished by its low l/w ratio (1.26), 
moderate mesaxony (0.51), and pronounced acute divarication angle (75.7°) (Table 17). 
Morphologically, the track is distinguished from other morphotype-1 subgroup by lacking a 
digit iv metatarsophalangeal pad and featuring a anteromedially directed, triangular shaped 
digit i ungual mark impression (Fig 17). A second morphotype-1b track, PC-TH-3-20, forms a 
part of the PC-TH-3 trackway as discussed below.

Table 7.  Stride and overall trackway velocities and gait ratios for PC-TH-1.

Track λ L/ R L L-SD h λ λ/h AX-V RT-V AX-V-SD RT-V-SD
PC-TH-1-08-06 L 43.50 0.55 1.77 2.93 1.66 2.42 2.11 0.00 0.00
PC-TH-1-09-07 R 44.57 0.10 1.77 2.90 1.64 2.37 2.14 0.00 0.00
PC-TH-1-10-08 L 44.67 0.18 1.77 2.87 1.62 2.33 2.19 0.00 0.00
AVERAGE 44.24 0.53 1.77 2.90 1.64 2.37 2.15 0.04 0.03

All values were rounded to two decimal places. Track stride (track λ) denotes the tracks from which a stride was measured between. ‘L/ R’ denoted whether a stride 
originated from the left or right foot. Track length (L) represented an average value of at least three track lengths from within the denoted stride and were measured in 
cm. These measurements can be inferred from two tracks if an alternating track is missing from within the stride. Hip height (h), and stride length (λ) were measured 
in metres. Hip height represented an average value obtained from stride averages. λ/h ratios represented an estimated gait. Velocity (V) was measured in m/s. Standard 
deviation (SD) of track length and velocity are also reported. AX velocity follows [69], while RT velocity follows [70].

https://doi.org/10.1371/journal.pone.0319862.t007

Table 8.  Stride and overall trackway velocities and gait ratios for PC-TH-2.

Track λ L/ R L L-SD h λ λ/h AX-V RT-V AX-V-SD RT-V-SD
PC-TH-2-13-11 L 45.80 0.12 1.82 2.98 1.64 2.41 2.05 0.00 0.00
PC-TH-2-14-12 R 45.10 0.12 1.82 2.88 1.58 2.27 2.18 0.00 0.00
AVERAGE 45.45 0.35 1.82 2.93 1.61 2.34 2.11 0.07 0.06

Note, PC-TH-2-15 was not clearly exposed when fieldwork took place for a stride measurement to be taken and would have been omitted due to incompleteness. All 
values were rounded to two decimal places. Track length was measured in cm. Hip height (h), and stride length (λ) were measured in metres. Velocity was measured in 
m/s. AX velocity follows [69], while RT velocity follows [70].

https://doi.org/10.1371/journal.pone.0319862.t008

Table 9.  Track measurements for PC-TH-4.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-4-23 0.5 R 52.20 41.80 1.25 n/a n/a n/a n/a n/a n/a n/a n/a 20.80 0.50
PC-TH-4-24 1 R 47.60 33.90 1.40 27.60 29.30 38.30 1.06 0.77 26.82 23.77 50.59 13.40 0.40
PC-TH-4-25 1 L 51.80 39.70 1.30 28.30 33.70 36.20 1.19 0.93 24.86 32.35 57.21 21.20 0.53
PC-TH-4-26 0.5 R 44.50 33.70 1.32 25.20 35.90 33.10 1.42 1.08 20.25 18.34 38.59 13.30 0.39
PC-TH-4-27 0.5 L 51.40 36.40 1.41 27.50 35.50 38.10 1.29 0.93 25.03 30.61 55.64 18.00 0.49
PC-TH-4-28 1 R 48.00 37.40 1.28 23.70 30.40 32.40 1.28 0.94 19.01 34.74 53.75 19.90 0.53
PC-TH-4-29 1 L 53.40 43.10 1.24 29.10 31.10 35.70 1.07 0.87 29.12 25.48 54.60 23.00 0.53
PC-TH-4-30 0 R n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AVERAGE 0.69 49.84 38.00 1.32 26.90 32.65 35.63 1.22 0.92 24.18 27.55 51.73 18.51 0.48

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t011

https://doi.org/10.1371/journal.pone.0319862.t007
https://doi.org/10.1371/journal.pone.0319862.t008
https://doi.org/10.1371/journal.pone.0319862.t011
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Table 12.  Track measurements for PC-TH-5.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-5-31 0.5 L 50.70 41.50 1.22 n/a n/a n/a n/a n/a 37.10 48.82 85.92 22.50 0.54
PC-TH-5-32 0.5 R 46.20 41.80 1.11 26.00 33.20 33.80 1.28 0.98 29.97 35.05 65.02 14.20 0.34
PC-TH-5-33 1 L 51.80 45.20 1.15 28.90 36.70 45.90 1.27 0.80 27.76 32.32 60.08 14.80 0.33
PC-TH-5-34 1 R 51.20 42.60 1.20 25.70 32.90 39.90 1.28 0.82 33.42 37.16 70.58 17.30 0.41
PC-TH-5-35 1 L 55.10 42.50 1.30 n/a n/a n/a n/a n/a 30.97 32.29 63.26 21.60 0.51
PC-TH-5-36 1 R 46.50 38.90 1.20 26.10 28.80 35.00 1.10 0.82 38.12 36.71 74.83 18.50 0.48
PC-TH-5-37 1 L 49.00 42.80 1.14 27.80 28.60 37.00 1.03 0.77 18.57 51.21 69.78 15.80 0.37
PC-TH-5-38 0.5 L 46.90 44.00 1.07 n/a n/a n/a n/a n/a 35.59 49.58 85.17 18.10 0.41
PC-TH-5-39 0 R n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PC-TH-5-40 1.5 R 46.30 36.20 1.28 22.90 32.60 31.00 1.42 1.05 16.76 36.96 53.72 18.20 0.50
AVERAGE 0.8 49.30 41.72 1.18 26.23 32.13 37.10 1.23 0.88 29.81 40.01 69.82 17.89 0.43

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t012

Table 10.  Trackway measurements for PC-TH-4.

Specimen L/ R L h P λ WAP αR αL γ
PC-TH-4-23 R 52.20 2.09 n/a 3.00 n/a n/a n/a n/a
PC-TH-4-24 R 47.60 1.90 1.48 2.88 n/a n/a 13.12 n/a
PC-TH-4-25 L 51.80 2.07 1.48 2.88 33.50 7.37 n/a 153.81
PC-TH-4-26 R 44.50 1.78 1.42 2.83 19.00 n/a 12.52 164.92
PC-TH-4-27 L 51.40 2.06 1.48 2.91 30.70 9.42 n/a 155.45
PC-TH-4-28 R 48.00 1.92 1.47 2.96 24.10 n/a 9.46 161.15
PC-TH-4-29 L 53.40 2.14 1.53 n/a 24.10 9.10 n/a 161.45
PC-TH-4-30 R n/a n/a n/a n/a n/a n/a n/a n/a
AVERAGE 49.84 1.99 1.48 2.91 26.28 8.63 11.70 159.36

All values were rounded to two decimal places. Total track length (L) and width of pes angulation (WAP) were measured in cm. Hip height (h), pace (P) and stride (λ) 
lengths were measured in m. Right or left angles of rotation (αR or αL respectively) and pace angulation (γ) were measured in degrees.

https://doi.org/10.1371/journal.pone.0319862.t009

Table 11.  Stride and overall trackway velocities and gait ratios for PC-TH-4.

Track λ L/ R L L-SD h λ λ/h AX-V RT-V AX-V-SD RT-V-SD
PC-TH-4-23-24 R 49.90 0.20 1.97 3.00 1.52 2.22 2.00 0.01 0.01
PC-TH-4-24-26 R 47.97 2.20 1.97 2.88 1.47 2.08 1.88 0.00 0.00
PC-TH-4-25-27 L 49.23 0.05 1.97 2.88 1.46 2.07 1.87 0.00 0.00
PC-TH-4-26-28 R 47.97 2.20 1.97 2.83 1.44 2.01 1.82 0.01 0.01
PC-TH-4-27-29 L 50.93 2.20 1.97 2.91 1.48 2.11 1.91 0.00 0.00
PC-TH-4-28-30 R 50.70 1.56 1.97 2.96 1.51 2.17 1.97 0.00 0.00
AVERAGE 49.45 1.30 1.98 2.91 1.47 2.10 1.90 0.07 0.06

Due to a missing track between the PC-TH-4-23-24 stride, average measurements of only two tracks were taken. The average length for the PC-TH-4-28-30 stride does 
not include PC-TH-4-30 due to its poorly defined margins. All values were rounded to two decimal places. Track length was measured in cm. Hip height (h), and stride 
length (λ) were measured in metres. Velocity was measured in m/s. AX velocity follows [69], while RT velocity follows [70].

https://doi.org/10.1371/journal.pone.0319862.t010

https://doi.org/10.1371/journal.pone.0319862.t012
https://doi.org/10.1371/journal.pone.0319862.t009
https://doi.org/10.1371/journal.pone.0319862.t010
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Table 13.  Trackway measurements for PC-TH-5.

Specimen L/ R L h P λ WAP αR αL γ
PC-TH-5-31 L 50.70 2.03 1.58 2.89 n/a 20.85 n/a n/a
PC-TH-5-32 R 46.20 1.85 1.48 2.63 48.90 n/a 21.78 142.41
PC-TH-5-33 L 51.80 2.07 1.40 2.52 58.40 18.57 n/a 131.87
PC-TH-5-34 R 51.20 2.05 1.30 2.34 49.20 n/a 26.00 137.16
PC-TH-5-35 L 55.10 2.20 1.33 2.56 59.70 22.09 n/a 125.88
PC-TH-5-36 R 46.50 1.86 1.43 n/a 51.20 n/a 20.96 136.27
PC-TH-5-37 L 49.00 1.96 n/a 2.56 n/a n/a n/a n/a
PC-TH-5-38 L 46.90 1.88 1.51 n/a n/a n/a n/a n/a
PC-TH-5-39 R n/a n/a n/a 2.60 n/a n/a n/a n/a
PC-TH-5-40 R 46.30 1.85 n/a n/a n/a n/a n/a n/a
AVERAGE 49.30 1.97 1.43 2.59 53.48 20.50 22.91 134.72

All values were rounded to two decimal places. Total track length (L) and width of pes angulation (WAP) were measured in cm. Hip height (h), pace (P) and stride (λ) 
lengths were measured in m. Right or left angles of rotation (αR or αL respectively) and pace angulation (γ) were measured in degrees.

https://doi.org/10.1371/journal.pone.0319862.t013

Table 14.  Stride and overall trackway velocities and gait ratios for PC-TH-5.

Track λ L/ R L L-SD h λ λ/h AX-V RT-V AX-V-SD RT-V-SD
PC-TH-5-31-33 L 49.57 0.00 1.99 2.89 1.46 2.07 1.87 0.12 0.10
PC-TH-5-32-34 R 49.73 0.01 1.99 2.63 1.32 1.76 1.59 0.00 0.00
PC-TH-5-33-35 L 52.70 9.45 1.99 2.52 1.27 1.64 1.48 0.01 0.00
PC-TH-5-34-36 R 50.93 1.71 1.99 2.34 1.18 1.46 1.32 0.07 0.06
PC-TH-5-35-37 L 50.20 0.33 1.99 2.56 1.29 1.69 1.53 0.00 0.00
PC-TH-5-37-38 L 47.95 2.81 1.99 2.56 1.29 1.68 1.52 0.00 0.00
PC-TH-5-39-40 R 46.30 11.06 1.99 2.60 1.31 1.73 1.57 0.00 0.00
AVERAGE 49.63 1.90 1.99 2.59 1.30 1.72 1.55 0.17 0.15

Due to missing tracks, average measurements of only two tracks informed the metrics of the PC-TH-5-37-38 and PC-TH-5-39-40 strides. All values were rounded to 
two decimal places. Track length was measured in cm. Hip height (h), and stride length (λ) were measured in metres. Velocity was measured in m/s. AX velocity follows 
[69], while RT velocity follows [70].

https://doi.org/10.1371/journal.pone.0319862.t014

Table 15.  Track measurements for PC-TH-A-4.

In cm Digit length (DL) in cm DL ratios Divarication angles In cm
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-A-4-49 1.5 L 53.20 34.40 1.55 24.40 32.40 33.90 1.33 0.96 5.92 38.19 44.11 17.30 0.50
PC-TH-A-4-50 1 R 50.90 38.20 1.33 24.20 37.70 35.60 1.56 1.06 24.33 35.16 59.49 19.90 0.52
AVERAGE 1.25 52.05 36.30 1.44 24.30 35.05 34.75 1.44 1.01 15.13 36.68 51.80 18.60 0.51

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t015

Table 16.  Track measurements for selected isolated tracks.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-I-01 2 R 46.34 38.12 1.22 25.71 28.90 36.18 1.12 0.80 18.01 34.43 52.44 14.43 0.38
PC-TH-I-16 0.5 ? n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PC-TH-I-41 2 ? 41.20 34.80 1.18 20.70 27.80 30.70 1.34 0.91 26.50 32.20 58.70 14.10 0.41
PC-TH-I-46 1 L? 42.90 29.30 1.46 n/a n/a n/a n/a n/a 24.40 37.51 61.91 17.20 0.59

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t016

https://doi.org/10.1371/journal.pone.0319862.t013
https://doi.org/10.1371/journal.pone.0319862.t014
https://doi.org/10.1371/journal.pone.0319862.t015
https://doi.org/10.1371/journal.pone.0319862.t016
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Fig 17.  Digital representations of PC-TH-I-55. (A) Textured orthophoto, (B) outline, (C) contour, (D) DEM. Unlike morphotype-1a tracks, PC-TH-I-55 pos-
sesses an anteromedially oriented digit i ungual impression. The digits are slenderer than morphotype-1a with well-defined phalangeal pad margins.

https://doi.org/10.1371/journal.pone.0319862.g017

PC-TH-3.  PC-TH-3 is an isolated trackway which extends over 4.93 m at 311.14° and 
is composed of four tracks – including a single morphotype-1b track (Figs 18, S9). Shales 
appear to obscure most of PC-TH-3-21. Due to the occurrence of incomplete tracks, 
trackway measurements were omitted. Although most tracks score low preservation grades 
(0-0.5), a single complete track diagnosed as morphotype-1b, PC-TH-3-20, is graded 1.5. 
The track measures 43.3 cm long by 32.7 cm wide (l/w ratio 1.32) with a 0.53 mesaxony. 
Like PC-TH-I-55, the digit iii-iv interdigital angle (44.5°) is greater than digit ii-iii (29.0°). 

https://doi.org/10.1371/journal.pone.0319862.g017
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Morphologically, the track possesses an extensive ‘U’ shaped heel region (Fig 18A-D). 
Although part of the same trackway as PC-TH-3-20, PC-TH-3-19 and PC-TH-3-22 
morphologically differ with isolated digits and no digit i impression (Fig 18E-H). Due to this, 
while these tracks reflect characteristics of an alternative morphotype like morphotype-1c, 
they are unreferred. Their presence within this trackway suggests a single trackmaker could 
produce multiple track shapes.

Morphotype-1c
Material – PC-TH-I-56, 59 (Fig 19, Table 18).

Diagnosis.  Differentiated from morphotype 1a-b with ~ 30 cm track lengths and weak 
l/w ratios. Digits are slenderer with sub-parallel margins which taper toward narrow, 
subtriangular ungual marks. The digit iv metatarsophalangeal pad is not well defined. Digit 
ii-iv divarication angles are > 60°.

Fig 18.  Photographic and digital representations of PC-TH-3 tracks. (A-D) From left to right, textured orthophoto, outline, contour map, and DEM of PC-TH-3-
20 - a complete convex epirelief track with a ‘U’ shaped heel and poorly defined digit margins. (E-F) Photograph and outline of PC-TH-3-22, a partial convex epirelief 
track composed of lateral digits. (G-H) Photograph and outline of PC-TH-3-19, a second partial concave epirelief track with poorly defined digit ii and iii margins. 
The latter two tracks could not be attributed to morphotype-1b due to their incompleteness, isolated digits and absent digit i impression. Despite this, the tracks are 
described due to their occurrence in a trackway sequence with PC-TH-3-20.

https://doi.org/10.1371/journal.pone.0319862.g018

Table 17.  Track measurements for morphotype-1b.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-3-20 1.5 L? 43.30 32.70 1.32 17.10 23.20 19.10 1.36 1.21 29.03 44.50 73.53 17.30 0.53
PC-TH-I-55 1.5 R 41.80 33.30 1.26 17.70 27.80 19.20 1.57 1.45 24.81 50.93 75.74 17.10 0.51
AVERAGE 1.5 42.55 33.00 1.29 17.40 25.50 19.15 1.46 1.33 26.92 47.72 74.64 17.20 0.52

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t017

https://doi.org/10.1371/journal.pone.0319862.g018
https://doi.org/10.1371/journal.pone.0319862.t017
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Fig 19.  Photographic and digital representations of morphotype-1c tracks. From left to right, textured orthophoto, outline, contour map, and DEM. (A-D) 
PC-TH-I-56 was the only recorded concave epirelief morphotype-1c track. The track is situated in a slightly younger bed 2 horizon behind an igneous intrusion. 
(E-H) PC-TH-I-59 is distinguished as morphotype-1c due to its smaller track length, more slender digits, and wider > 60° digit ii-iv divarication angle. (I) Photo-
graph and (J) outline of PC-TH-I-65. The track is referred to morphotype-1c and is partially metamorphosed. The track occurs in the same horizon as PC-TH-I-59.

https://doi.org/10.1371/journal.pone.0319862.g019

Table 18.  Track measurements for morphotype-1c tracks.

Digit length (DL) DL ratios Divarication angles
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-I-56 1.5 L 32.10 28.40 1.13 15.60 20.70 22.60 1.33 0.92 33.50 30.34 63.84 10.30 0.36
PC-TH-I-59 2 L 30.60 26.30 1.16 17.20 19.10 22.10 1.11 0.86 32.12 44.85 76.97 13.20 0.50
AVERAGE 1.75 31.35 27.35 1.15 16.40 19.90 22.35 1.22 0.89 32.81 37.60 70.41 11.75 0.43

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t018

https://doi.org/10.1371/journal.pone.0319862.g019
https://doi.org/10.1371/journal.pone.0319862.t018
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Description.  A large, tridactyl footprint between 30.6-32.1 cm long and 26.3-28.4 cm wide 
(l/w ratio 1.13-1.16). Mesaxony varies between 0.36-0.50. Digits are moderately slender with sub-
parallel margins and distally tapered to narrow, long anteriorly-oriented ungual marks. Digit iv is 
subtly longer than digit iii, while digit ii is the shortest digit. Digit length ratios on average differ 
slightly from morphotype-1a; digit iii/ii (1.22) and digit iii/iv (0.89). Vague phalangeal pad margins 
exhibit a ‘2:3:4’ formula. Wide digit ii-iv divarication angles measure between 63.8°-77.0°.

Morphotype-1c material description
Isolated tracks.  Morphotype-1c is known from two isolated tracks which occur in the 

lower portion of bed 2 (Fig 19, Table 18). PC-TH-I-56 is the only known concave epirelief 
morphotype-1c track and occurs in a slightly younger rippled bed 2 horizon than PC-
TH-I-59 (Fig 19A-D). Due to wear, the track scores a preservation grade of 1.5. The shallowly 
convex epirelief PC-TH-I-59 features clear digit and phalangeal pad margins and scores a 
preservation grade of 2. The track is situated in an older bed 2 horizon which directly overlies 
the topmost, desiccated bed 1 horizon (Fig 19E-H). In the same horizon, PC-TH-I-65, a 
partial track, is referred to the morphotype because it possesses similar digit slenderness, 
narrow tapering digits, and subtle sigmoidal curvature to PC-TH-I-59 (Fig 19I-J). The track is 
partially metamorphosed on the edge of the wave cut platform.

Morphotype-1d
Material – PC-TH-A-3-47, 48 (Fig 20, Table 19).

Diagnosis.  Differentiated from morphotype-1a-c with shorter track lengths < 30 cm and 
widths < 20 cm and absent digit i. Digits are slenderer, shorter in length, with smaller, narrow 
ungual marks. Phalangeal pads are typically longer than wide and ovular/subcircular in shape.

Description.  A medium-sized, tridactyl track between 26.3-27.6 cm long by 17.6-19.4 cm 
wide (l/w ratio 1.42-1.49). Mesaxonic indices are moderate (0.51-0.56). Digits are moderately 
slender with straight margins, gradually shortening distally toward short, narrow anteriorly-
oriented ungual marks. The digit iii/ii ratio (1.43) is larger than its digit iii/iv equivalent (0.96). 
A ‘2:3:4’ phalangeal pad formula was distinguished through bulges on digit margins or weakly 
defined interdigital creases. The pads are typically longer than wide and ovular/subcircular in 
shape. Digit ii-iv divarication angles are < 60° (53.7°-58.3°).

Morphotype-1d material description
PC-TH-A-3.  PC-TH-A-3 is composed of two shallow convex epirelief tridactyl tracks – 

the only representatives of morphotype-1d (Fig 20, Table 19). The tracks are situated in bed 
2 in Section Two, bear 87.7°, with preservation grades of 1.5. PC-TH-A-3-47 is a right track, 
while PC-TH-A-3-48 is a left track. Compared to PC-TH-A-3-47, PC-TH-A-3-48 features 
a larger digit iii-iv interdigital angle (33.6°) over digits ii-iii (24.7°). In PC-TH-A-3-47, the 
digit ii-iii interdigital angle is almost identical to PC-TH-A-3-48 (24.5°), while its digit iii-iv 
interdigital angle (29.2°) is smaller than that of PC-TH-A-3-48. PC-TH-A-4-48 furthermore 
features faintly defined interdigital creases on digit ii and pads Piv1 and Piii3. Based on track 
length, the represented trackmaker stood at ~ 1.08 m to the hip. Across the visible track 
association, the trackmaker paced 89.7 cm.

Morphotype-1 ichnotaxonomy
Ichnotaxonomically, despite differences in overall track length, morphotype-1 is metrically and 
morphologically most like Megalosauripus [72]. Megalosauripus is functionally tridactyl with 
an elongate ‘heel’, i.e., the digit iv metatarsophalangeal pad (Piv1), and features weak-moderate 
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Table 19.  Measurements for tracks used to define morphotype-1d.

In cm Digit length (DL) in cm DL ratios Divarication angles In cm
Specimen PG L/ R L W L/W II III IV III/II III/IV II-III III-IV II-IV te M
PC-TH-A-3-47 1.5 R 26.30 17.60 1.49 13.50 20.00 18.40 1.48 1.09 24.48 29.17 53.65 9.80 0.56
PC-TH-A-3-48 1.5 L 27.60 19.40 1.42 12.90 17.80 21.30 1.38 0.84 24.65 33.61 58.26 9.80 0.51
AVERAGE 1.5 26.95 18.50 1.46 13.20 18.90 19.85 1.43 0.96 24.57 31.39 55.96 9.80 0.53

All lengths were measured in cm. Divarication angles were measured in degrees. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t019

Fig 20.  Overview of PC-TH-A-3. (A) Photograph cropped to model area, (B) DEM, (C) outline of PC-TH-A-3. Although characterised by a smaller < 30 cm overall 
length, the tracks of PC-TH-A-3 are classified under morphotype-1 due to a similar average l/w ratio (1.46), < 60° digit ii-iv divarication angle, and ‘2:3:4’ phalan-
geal pad configuration to morphotype-1a. From left to right, photographs, outline, contour map, and DEM of (D-G) PC-TH-A-3-47 and (H-K) PC-TH-A-4-48. 
Although worn, PC-TH-A-4-48 features clear phalangeal pad creases on digit ii. The creases of Piv1 and Piii3 are also visible.

https://doi.org/10.1371/journal.pone.0319862.g020

https://doi.org/10.1371/journal.pone.0319862.t019
https://doi.org/10.1371/journal.pone.0319862.g020
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l/w ratios (~1.2) and mesaxonic indices (0.40) and digit ii-iv divarication angles < 70° [72–73]. 
Megalosauripus furthermore possesses a ‘2:3:4’ phalangeal pad digit configuration and broad 
to moderately slender digits with elongated, sharp ungual marks [59,73]. The phalangeal pads 
themselves are often sub-circular or oval-shaped and longer than wide [72]. Morphotypes 1a and 
d possess all these characteristics. In the Cleveland Basin, Yorkshire, UK, ‘morphotype Bxviii’ 
was likened by [74–75] to Megalosauripus isp. due to its relatively low l/w ratios (1.24-1.34) and 
digit ii-iv divarication angles (45°-70°). In Portugal, [76] described ~ 80 Megalosauripus-like 
tracks with similar l/w ratios (1.24-1.39) and interdigital angles < 40° (22°-40°). Further 
morphotype-1 similarities to Megalosauripus include large obtuse pace angulations in trackways, 
which overlap with the 140°-160° range proposed by [77]. Megalosauripus uzbekistanicus tracks 
also feature similar pace angulation ranges of 125°-175° [72].

Similarly weak l/w ratios and mesaxonic indices were reported in the Late Jurassic Jurabron-
tes curtedulensis [59], which differ from morphotype-1 with bulkier, tear-drop shaped digits. 
The Late Jurassic Iberosauripus grandis is similar to Jurabrontes but differs with bulkier digits 
[78]. Other similar ichnotaxa include the Early Jurassic Eubrontes giganteus, which possess l/w 
ratios (1.40-1.50) and mesaxonic indices (0.58) within the range of some morphotype-1 tracks 
[61,79]. However, unlike Eubrontes, morphotype-1 possesses parallel-sided digit margins (not 
spindle-shaped) and a ‘2:3:4’ phalangeal pad formula (instead of ‘3:3:4’) [72].

Although most morphotype-1 tracks are characterised by digit ii-iv divarication angles < 60°, 
some like morphotype-1c, possess subtly slenderer digits and larger divarication angles like 
the Early Jurassic Kayentapus. Type tracks from North America reassessed by [32] from [80] 
possessed a subtly broader ~ 63° digit ii-iv divarication angle. These higher divarication angles 
contribute to low l/w ratios [79]. Morphotype-1 tracks with large digit ii-iv divarication angles 
> 70°, such as those of PC-TH-5, could reflect a subtle change in substrate composition or 
locomotion. Type Kayentapus tracks are further distinguished from morphotype-1 by generally 
slenderer, more digitigrade digits, with a detached or unimpressed Piv1 [81]. Morphotype-1c, 
although ~ 30 cm in length, is more similar in digit thickness and length to Megalosauripus isp. 
tracks reported from Portugal and Morocco – particularly morphotype 2c [72,82].

In contrast to most morphotype-1 tracks, morphotype-1b additionally possesses a sub-
triangular tapering heel region, with an anteromedially oriented digit i ungual mark on 
PC-TH-I-55 (Fig 17). These morphologies resemble those of the Early Cretaceous Buecke-
burgichnus maximus [83]. However, rather than decrease in thickness between digits ii-iv, 
PC-TH-I-55 differs from Bueckeburgichnus maximus with relatively uniform digit slender-
ness. Furthermore, like Megalosauripus, oval-shaped and longer than wide phalangeal pads 
are present across digits ii-iv rather than in digit ii alone in Bueckeburgichnus maximus. The 
morphotype-1b characters more closely resemble type ichnospecies Megalosauripus tracks 
(Megalosauripus uzbekistanicus) identified by [73], which could also possess phalangeal pads, 
a heel impression and digit i ungual impression. These morphologies of morphotype-1b, 
in addition to its shorter digit lengths and wide digit ii-iv divarication angles compared to 
morphotype-1a, may have arisen due to deeper foot penetration into a softer substrate [84]. 
The extended heel impression on PC-TH-3-20, which resembles Bueckeburgichnus maxi-
mus, may have registered due to moderate sediment saturation. This is emphasised by large, 
shallow posterior displacement rims. These extend across a larger area compared to anterior 
displacement rims (Fig 18A-D). This may emphasise the longer duration to which the autopo-
dia remained in contact with the sediment upon registration and a subtle posterior slide when 
removed sensu [85].

Overall, morphotype-1 is considered Megalosauripus isp. due to the possession of 
parallel-sided digit margins, broad digits, weak-moderate l/w ratios and mesaxony, and 
‘2:3:4’ phalangeal pad formula. The impression of digit i in type Megalosauripus tracks and 
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morphotype-1b demonstrates the variability of tracks, potentially due to substrate conditions. 
The presence of tracks with similar morphologies and divarication angles larger than typical 
Megalosauripus tracks, i.e., morphotype-1c and referred morphotype-1a tracks, may reflect on 
substrate or behaviour. Although morphotype-1c-d are smaller than typical Megalosauripus 
tracks, their possession of previously mentioned Megalosauripus-like metrics and morphology 
cannot be ignored.

Morphotype-2
Material – PC-SA-1-69, 71-73, 75-84, PC-SA-2-85, 88, 90, PC-SA-I-101, PC-SA-3-102, 104-
106, 108, 110-111, PC-SA-5-127-128 (Figs 21-28, Tables 20–29).

Diagnosis – Pes tracks are ~ 50 cm long and can feature four digits with ungual marks. 
Digit i is typically oriented anteromedially or anterolaterally in the opposite direction to subtle 
anterolateral digits ii-iv. Manus tracks lack non-pollex digits and possess a subtle posterolater-
ally subtriangular, tapering pollex. Track rotations rarely exceed 40°. Trackways are narrow to 
medium gauged.

Description.  Small-medium sized oval/subtriangular shaped pes tracks between 46.4-
56.9 cm in length and 33.9-42.4 cm wide (l/w ratio 1.22-1.58) with an IPS between 39.7-47.8. 
Tracks are asymmetrical and anteriorly widen from rounded heels. The widest width was 
measured across the anterior third of the track. Most pes tracks are outwardly rotated from 
the stride line (10.7°-48.5°). Digits and ungual marks i-iv are subtriangular in shape and rarely 
observed. The pedal and heel pads are also rarely observed. Each is separated by a shallow ‘s’ 
shaped heel-demarcating crease when visible.

Manus tracks measured between 17.0-26.2 cm long and 32.8-41.6 cm wide (l/w ratio 
0.47-0.66) with an IMS between 23.6-33.0. Tracks are asymmetric, crescentic, and lack digits 
(except for a posterolaterally tapering pollex). Almost all tracks are outwardly orientated at 
greater angles than pes equivalents (14.6°-43.7°). On average, outward manus rotations (24.5°) 
are shallower than pes equivalents (31.3°).

Morphotype-2 material description
PC-SA-1.  Eight visible manus/pes pairs, and an additionally isolated pes, make up a 

12.4 m long trackway overall bearing 37.9° against a 226° flow-direction indicated by ripples 
(Fig 21, Tables 21–24). Due to the south westerly bed dip, bed 1 is gradually exposed toward 
the present-day high tide mark as bed 2 appears more eroded. As a result, the track margin 
definition declines (preservation grades =  0-1.5). Tracks are surrounded by large, shallow 
convex epirelief displacement rims which are variably scoured by present-day erosion. 
Uneroded displacement rims are shallowly mounded with ripples, while track surfaces are 
unrippled.

Pes tracks are on average 52.8 cm long by 38.9 cm wide (l/w ratio 1.36), with an IPS of 45.3. 
Based on track length, the trackmaker may have possessed an estimate hip height of ~ 2.11 m. 
Tracks are oval/subtriangular in shape and widest subtly anterior of the long axis midpoint. 
Although most tracks lack digits and pads, four anterolaterally oriented worn digits (i-iv) and 
faint ungual marks (ii-iv only) are present on PC-SA-1-82 (Fig 22). Although visible, due to 
erosion, the orientation of digit i could not be determined. The heel pad on PC-SA-1-82 is 
separated from the pedal impression by a heel-demarcating crease.

Manus tracks are on average 21.9 cm long by 38.4 cm wide with an IMS of 29.0. Though 
clearly defined, manus tracks (like PC-SA-1-79) lack non-pollex digits and correspondent 
ungual marks. Most possess a posterolaterally-directed, subtriangular pollex (Fig 23). Paired 
manus and pes tracks possess an average heteropody ratio of 1:1.56.
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Fig 21.  Overview of PC-SA-1. (A) Textured orthophoto with software-based shadowing, (B) DEM, (C) outline. Unlike PC-SA-1-82, most pes tracks 
lack digits and pads. Each are surrounded by wide, rippled displacement rims. Manus tracks are crescentic and possess a posterolaterally oriented 
pollex. The tracks gradually become increasingly scoured toward the present-day shoreline due to bed dip, exposing under tracks impressed down 
into bed 1.

https://doi.org/10.1371/journal.pone.0319862.g021

https://doi.org/10.1371/journal.pone.0319862.g021
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Due to poorly defined track margins, the gauge could only be measured between 
PC-SA-1-82 and 78. Between these three tracks, the gauge is narrow-medium (40.2-
50.1%) (Table 22). This contributes to the overall trackway asymmetry. This is further 
emphasised by the variation of pes and manus track positions. Manus centres can be 

Fig 22.  Overview of PC-SA-1-82. (A) Photograph, (B) DEM, (C) contour map, (D) outline of PC-SA-1-82 – the only pes track in sequence with digits preserved. 
Digits, except digit i, possess anterolaterally oriented, triangular shaped ungual marks. The heel pad and heel-demarcating crease are also preserved. The widest 
displacement rim widths are lateral to the pes track.

https://doi.org/10.1371/journal.pone.0319862.g022

https://doi.org/10.1371/journal.pone.0319862.g022
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positioned slightly outside (e.g., PC-SA-1-80 and 84) or inside (e.g., PC-SA-1-78 and 82) 
of corresponding extended pes long axes. Despite this, manus tracks are predominantly 
further away from the track midline than pes equivalents (average WAP/WAM ratio =  
0.60). Track rotations fluctuate throughout the sequence and are on average subequal 

Fig 23.  Overview of PC-SA-1-79 and 80. (A) Photograph and (B) DEM showing left manus and pes pair in context. The eroded pes track lacks clear digits and pads. 
(C) Photograph, (D) outline, (E) contour map, (F) DEM of manus track PC-SA-1-79. The pollex is posterolaterally oriented on the right side of this left manus.

https://doi.org/10.1371/journal.pone.0319862.g023

https://doi.org/10.1371/journal.pone.0319862.g023
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between pes (27.5°) and manus tracks (28.5°). Right pes rotations from PC-SA-1-82 
decrease, while left equivalents fluctuate and remain consistently outwardly rotated. The 
PC-SA-1-73 manus is the only recorded inwardly rotated track in the sequence (Table 23).

Left (2.35-2.87 m) and right (2.60-2.75 m) pes strides both increase up to PC-SA-1-74, 
when the right stride declines to 2.43 m. Paces from left tracks are larger (1.33-1.97 m) than 
respectively subsequent right equivalents (1.24-1.42 m) in sequence. Likewise, left-right track 
progressions are larger (1.21-1.69 m) than vice versa (1.02-1.24 m). These asymmetrical 

Fig 24.  Overview of PC-SA-2. (A) Textured orthophoto, (B) DEM, (C) outline. The right pes tracks in the sequence partially overprint their correspondent manus 
tracks. PC-TH-2-15 (partially uncovered) partly over-impresses the displacement rim of PC-SA-2-85. PC-TH-1-10 and PC-TH-2-14 can be seen opposite PC-SA-
2-87 and 85 respectively. Worn heel pads are visible on PC-SA-2-88 and 90. (D) photograph and (E) DEM of PC-SA-2-85 (foreground) shows a sharply defined 
mounded displacement rim with ripples. Such a structure is almost absent from PC-SA-2-87 (background).

https://doi.org/10.1371/journal.pone.0319862.g024

https://doi.org/10.1371/journal.pone.0319862.g024
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patterns may reflect natural fluctuations in the trackmaker path. The average trackway 
velocity estimates (1.45-1.61 m/s =  5.22-5.80 km/h) and stride/hip height ratio (1.23) overall 
indicate a walking gait (Table 24).

PC-SA-2.  Four pes and two partially overprinted manus tracks make up a 3.4 m long 
trackway bearing 311.2° (Fig 24, Table 25). Most tracks feature displacement rims. The clearest 
is mounded and rippled and surrounds PC-SA-2-85 (Fig 25D-E). The concave epirelief right 

Fig 25.  Overview of PC-SA-3. (A) Textured orthophoto, (B) DEM, (C) outline. Most pes tracks lack digits and pad impressions and overprint correspondent 
manus tracks. Each pes was surrounded by a variably eroded, rippled displacement rim - likely originally mounded as seen on PC-SA-3-111. PC-SA-3-109 is 
obstructed by a large boulder and was unmeasured. PC-SA-A-1 (PC-SA-A-1-112 to 114) meanwhile intersects PC-SA-3 between PC-SA-3-108 and 110.

https://doi.org/10.1371/journal.pone.0319862.g025

https://doi.org/10.1371/journal.pone.0319862.g025
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pes tracks are more clearly defined than the shallow convex epirelief left equivalents. Overall, 
tracks score preservation grades between 0-1.

Pes tracks are on average 53.4 cm long by 39.4 cm wide (l/w ratio 1.36), with an IPS of 45.9. 
Tracks are ovular and widest subtly anterior of the long axis midpoint. Although most pes 
tracks lack digits, four worn digits are visible on PC-SA-2-85. PC-SA-2-88 is in concave epire-
lief and may have been impressed with emphasis on the left side of the foot as the heel pad 
appears more deeply registered into the sediment than the rest of the track. Although mea-
sured, the visible right manus tracks were overprinted by correspondent pes and do not reflect 
the true track length. Based on other trackways at Prince Charles’s Point, PC-SA-2 could be 
incomplete as two possible pes tracks may have occupied the large space between PC-SA-2-87 
and 88. Due to this, trackway measurements are not taken. The sauropod is estimated to have 
a ~ 2.14 m hip height.

Fig 26.  Overview of PC-SA-3-111. (A) Photograph, (B) outline, (C) contour map, (D) DEM. PC-SA-3-111 is the only pes in the trackway with well-defined digits 
and a mounded displacement rim with ripples across the surface. Note the widest displacements occur laterally to the track.

https://doi.org/10.1371/journal.pone.0319862.g026

https://doi.org/10.1371/journal.pone.0319862.g026
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PC-SA-3.  PC-SA-3 consists of eight sequential shallow convex epirelief pes tracks and two 
manus tracks bearing 330° over 5.2 m (Figs 25, Tables 26–28). Across the sequence, pes tracks 
gradually become rounded and score lower preservation grades (between 0.5-1.5). Manus tracks 
were overprinted by the corresponding pes and are not measured (preservation grades =  0.5).

Pes tracks are on average 50.1 cm long by 36.7 cm wide (l/w ratio 1.37) with an IPS of 
42.9. Tracks are variably ovular and widest across the anterior third of the long axis. Each is 
surrounded by large, often scoured displacement rims. The displacement rim surrounding 
PC-SA-3-111 is one of the most uneroded at the locality and is mounded with clear ripples 
across the surface. Like other tracks in PC-SA-3, the displacement rim is widest and in most 
relief laterally to the track. PC-SA-3-111 is also the only pes to feature clearly defined, subtri-
angular, anterolaterally oriented digits (i-iv) in the trackway (Fig 26). These digits decrease in 
size toward digit iv like PC-SA-1-82. Manus tracks, meanwhile, are difficult to distinguish due 
to pes overprinting. As a result, the measurements do not reflect the true track dimensions 

Fig 27.  Overview of PC-SA-5. (A) Textured orthophoto, (B) DEM, (C) outline. This pes only trackway is similar to PC-SA-3 in track spacing. However, due to 
the poor track definition of PC-SA-5-129 and other possible preceding tracks before PC-SA-3-127, trackway measurements could not be recorded. PC-SA-5-
127 features four well-defined anterolaterally oriented subtriangular digits – amongst the most clearly defined at the locality.

https://doi.org/10.1371/journal.pone.0319862.g027

https://doi.org/10.1371/journal.pone.0319862.g027
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and heteropody estimation is omitted for this trackway. An estimated hip height of ~ 2.01 m is 
inferred from pes track length.

The quadrupedal trackway is characterised by a narrow to marginal medium gauge by 
trackway ratios between 46.2-54.6% (Table 27). These gauges are emphasised by pes tracks 
mostly overlapping the track midline as WAP/PL ratios range between 0.84-1.05. Left pes 
track rotations gradually decline across the sequence (35.7°-17.1°) while right equivalents 
fluctuate (34.3°-27.2°). The 17.1° from PC-SA-3-102 is based on the projection of the PC-SA-
3-105 stride. Unlike PC-SA-1, the low track rotation ranges contributed to a minimalised 
track asymmetry. This is also reflected in the low variation in stride (1.40-1.59 m), pace (0.78-
0.97 m), and progression (0.60-0.80 m). Right pes track paces (0.84-0.97 m) and progression 

Fig 28.  Overview of PC-SA-5-127. (A) Photograph, (B) outline, (C), contour map, (D) DEM. Digit i is the largest digit and anterolaterally oriented to the left. 
Digits ii-iv gradually decline in length and subtriangular pronouncement and are anterolaterally oriented to the right.

https://doi.org/10.1371/journal.pone.0319862.g028

https://doi.org/10.1371/journal.pone.0319862.g028
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(0.67-0.80 m) consistently decline in between fluctuations in left paces (0.78-0.91 m) and 
progression (0.60-0.80). The estimated average trackmaker velocity estimates (0.63-0.69 m/s =  
2.27-2.48 km/h) and stride/hip height ratio (0.76) signify a slow walking gait (Table 28).

PC-SA-3-109 track lengths were omitted due to obstruction by a boulder. Track length (L) 
was measured in cm. Hip height (h) and stride (λ) were measured in m. Velocity was mea-
sured in m/s. AX velocity follows [69], while RT velocity follows [70].

PC-SA-5.  Situated on a narrow exposure of bed 2 before the main Section Two track 
cluster, PC-SA-5 is composed of at least three consecutive pes tracks (Fig 27, Table 29). The 
trackway spans 2 m bearing 328.4°. Further tracks may be present before PC-SA-5-127. 
However, these hints of sedimentary features have margins too poorly defined to confidently 
confirm. Due to the exposure of multiple ripple horizons, track margins become progressively 
poorly defined and score preservation grades between 0.5-1.5. As a result, trackway 
measurements were not taken, and a precise horizon of origin could not be determined. 

Table 20.  Track measurements used to characterise morphotype-2.

Specimen PG L/ R Manus or pes L W L/W IPS IMS H ROT
PC-SA-1-69 1 R Manus 23.20 34.90 0.66 n/a 28.45 n/a n/a
PC-SA-1-71 0.5 L Manus 18.60 39.50 0.47 n/a 27.11 n/a n/a
PC-SA-1-72 0.5 L Pes 48.50 39.60 1.22 43.82 n/a 1.62 n/a
PC-SA-1-73 0 R Manus 18.80 38.90 0.48 n/a 27.04 n/a 4.68
PC-SA-1-75 1 L Manus 21.10 39.30 0.54 n/a 28.80 n/a 43.66
PC-SA-1-76 0.5 L Pes 50.50 37.40 1.35 43.46 n/a 1.51 48.50
PC-SA-1-77 0.5 R Manus 20.60 33.60 0.61 n/a 26.31 n/a 14.55
PC-SA-1-78 0.5 R Pes 54.60 40.70 1.34 47.14 n/a 1.79 10.65
PC-SA-1-79 1.5 L Manus 26.20 41.60 0.63 n/a 33.01 n/a 26.80
PC-SA-1-80 0.5 L Pes 53.30 42.40 1.26 47.54 n/a 1.44 18.04
PC-SA-1-81 0.5 R Manus 21.90 38.10 0.57 n/a 28.89 n/a 24.83
PC-SA-1-82 1 R Pes 49.20 36.80 1.34 42.55 n/a 1.47 38.07
PC-SA-1-83 1 L Manus 24.80 41.20 0.60 n/a 31.96 n/a 32.39
PC-SA-1-84 0.5 L Pes 56.90 35.90 1.58 45.20 n/a 1.41 22.03
PC-SA-2-85 1 R Pes 51.30 38.60 1.33 44.50 n/a 1.83 35.68
PC-SA-2-88 1 R Pes 52.40 38.50 1.36 44.92 n/a 1.72 44.06
PC-SA-2-90 0.5 L Pes 55.10 40.70 1.35 47.36 n/a n/a 44.58
PC-SA-I-101 1 L? Manus 17.00 32.80 0.52 n/a 23.61 n/a n/a
PC-SA-3-102 0.5 L Pes 56.20 39.00 1.44 46.82 n/a n/a 17.11
PC-SA-3-104 0.5 R Pes 53.30 37.50 1.42 44.71 n/a 1.95 30.86
PC-SA-3-105 0.5 L Pes 46.70 34.90 1.34 40.37 n/a n/a 27.03
PC-SA-3-106 0.5 R Pes 49.40 39.70 1.24 44.29 n/a n/a 34.28
PC-SA-3-108 1 L Pes 46.40 33.90 1.37 39.66 n/a 1.67 35.53
PC-SA-3-110 1.0 L Pes 46.60 36.70 1.27 41.35 n/a n/a 35.66
PC-SA-3-111 1.5 R Pes 52.30 35.20 1.49 42.91 n/a n/a 27.24
PC-SA-5-127 1.5 R Pes 55.40 41.20 1.34 47.78 n/a n/a n/a
PC-SA-5-128 1 L Pes 51.60 39.00 1.32 44.86 n/a n/a n/a
AVERAGE PES 0.78 51.65 38.21 1.35 44.10 n/a 1.64 31.29
AVERAGE MANUS 0.78 21.36 37.77 0.57 n/a 28.35 n/a 24.49

All lengths were measured in cm. Additional measurements included the index of pes size (IPS), index of manus size (IMS), track heteropody (H), and rotation (ROT). 
Rotation was measured in degrees between the pes long axis and stride length line. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t020

https://doi.org/10.1371/journal.pone.0319862.t020
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Despite this, large partial or complete shallow convex epirelief displacement rims surround 
each track.

PC-SA-5-127 and 128 feature sufficient margin definition to be measured and described. 
On average, the tracks measure 53.5 cm long by 40.1 cm wide (l/w ratio 1.33) with an IPS of 
46.3. Both tracks are ovular in shape and anteriorly widen. PC-SA-5-127 is the only track 
to feature four clearly defined subtriangular digits. Digit i is anterolaterally oriented in the 
opposite direction to digits ii-iv (Fig 28). Tapering ungual marks are most visible on digits i-ii. 
Faint, shallow convex epirelief heel and pedal impressions are also distinguished. An esti-
mated hip height of ~ 2.14 m was interpolated from track length.

Morphotype-2 discussion
Morphotype-2 is inferred to have been made by a sauropod trackmaker based on the follow-
ing synapomorphies: quadrupedal trackways, relatively digitigrade pes and manus posture, 

Table 21.  Track measurements for PC-SA-1.

Specimen PG L/ R Manus  
or pes

L W L/W Hip  
height

IPS IMS H

PC-SA-1-68 0 L? Pes n/a n/a n/a n/a n/a n/a n/a
PC-SA-1-69 1 R Manus 23.20 34.90 0.66 n/a n/a 28.45 n/a
PC-SA-1-70 0 R Pes 56.30 39.50 1.43 2.25 47.16 n/a 1.66
PC-SA-1-71 0.5 L Manus 18.60 39.50 0.47 n/a n/a 27.11 n/a
PC-SA-1-72 0.5 L Pes 48.50 39.60 1.22 1.94 43.82 n/a 1.62
PC-SA-1-73 0 R Manus 18.80 38.90 0.48 n/a n/a 27.04 n/a
PC-SA-1-74 0 R Pes n/a n/a n/a n/a n/a n/a n/a
PC-SA-1-75 1 L Manus 21.10 39.30 0.54 n/a n/a 28.80 n/a
PC-SA-1-76 0.5 L Pes 50.50 37.40 1.35 2.02 43.46 n/a 1.51
PC-SA-1-77 0.5 R Manus 20.60 33.60 0.61 n/a n/a 26.31 n/a
PC-SA-1-78 0.5 R Pes 54.60 40.70 1.34 2.18 47.14 n/a 1.79
PC-SA-1-79 1.5 L Manus 26.20 41.60 0.63 n/a n/a 33.01 n/a
PC-SA-1-80 0.5 L Pes 53.30 42.40 1.26 2.13 47.54 n/a 1.44
PC-SA-1-81 0.5 R Manus 21.90 38.10 0.57 n/a n/a 28.89 n/a
PC-SA-1-82 1 R Pes 49.20 36.80 1.34 1.97 42.55 n/a 1.47
PC-SA-1-83 1 L Manus 24.80 41.20 0.60 n/a n/a 31.96 n/a
PC-SA-1-84 0.5 L Pes 56.90 35.90 1.58 2.28 45.20 n/a 1.41
AVERAGE PES 0.39 52.76 38.90 1.36 2.11 45.27 n/a 1.56
AVERAGE MANUS 0.75 21.90 38.39 0.57 n/a n/a 28.95 n/a

Length (l) and width (w) were measured in cm. Hip height was measured in m. Rotation was measured in degrees between the pes long axis and stride length line. All 
track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t021

Table 22.  PC-SA-1 gauges.

Specimen SW OW TR Gauge
PC-SA-1-78 0.43 1.06 40.23 Medium
PC-SA-1-80 0.46 0.92 50.11 Narrow
PC-SA-1-82 0.41 0.97 41.83 Medium
AVERAGE 0.43 0.99 44.05 Medium

The gauge was determined by a trackway ratio (TR). TR was calculated based on side width (SW) and overall width 
(OW) – measured in metres. Note a gauge could not be determined for the first and last pes in sequence. Gauges for 
pes tracks after PC-SA-1-78 could not be determined with certainty due to poorly defined track margins.

https://doi.org/10.1371/journal.pone.0319862.t022

https://doi.org/10.1371/journal.pone.0319862.t021
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four entaxonic, semi-circularly arranged digits with ungual marks on pes tracks, and ver-
tically oriented metacarpals that do not therefore leave impressions but impart an overall 
crescent shape to a pronated/semi-tubularly arranged manus track [86–90]. In contrast to 
morphotype-2, quadrupedal tracks made by Middle Jurassic stegosaurs described by [91] were 
smaller with a tridactyl pes (digit iii is the most pronounced digit) and a narrower crescentic 
manus with a pronounced pollex. Morphotype-2 pes tracks feature comparable morphologies 
to a non-neosauropod or basal eusauropod. These include a prominently impressed digit i, 
sickle-shaped digits ii-iii, and comparatively smaller digit iv [88–90]. Although the digits can 
taper and are anterolaterally oriented, their relatively low pronation contrasts with the syn-
apomorphic pronounced curvature observed on more derived neosauropod tracks [88].

Table 23.  PC-SA-1 trackway measurements.

Specimen P λ PRG γ ROT WAP WAM WAP
/WAM

WAP
/PL

WAM
/MW

WAP
/IPS

WAM
/IMS

PC-SA-1-68 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PC-SA-1-69 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PC-SA-1-70 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PC-SA-1-71 1.80 n/a n/a n/a n/a n/a 1.00 n/a n/a 2.53 n/a 3.69
PC-SA-1-72 1.36 n/a n/a 121.94 n/a 0.67 n/a 0.67 1.39 n/a 1.54 n/a
PC-SA-1-73 1.77 2.95 2.77 n/a 4.68 n/a 1.18 n/a n/a 3.03 n/a 4.36
PC-SA-1-74 1.42 2.43 1.24 120.57 n/a 0.80 n/a 0.67 n/a n/a n/a n/a
PC-SA-1-75 1.91 2.81 2.55 n/a 43.66 n/a 1.13 n/a n/a 2.87 n/a 3.92
PC-SA-1-76 1.87 2.87 1.69 123.00 48.50 0.71 n/a 0.63 1.40 n/a 1.63 n/a
PC-SA-1-77 1.47 2.53 2.26 n/a 14.55 n/a 1.07 n/a n/a 3.18 n/a 4.07
PC-SA-1-78 1.24 2.75 1.02 121.01 10.65 0.67 n/a 0.62 1.22 n/a 1.42 n/a
PC-SA-1-79 1.65 2.27 2.00 n/a 26.80 n/a 0.98 n/a n/a 2.35 n/a 2.96
PC-SA-1-80 1.52 2.40 1.36 137.70 18.04 0.50 n/a 0.51 0.93 n/a 1.05 n/a
PC-SA-1-81 1.74 2.77 2.59 n/a 24.83 n/a 1.09 n/a n/a 2.86 n/a 3.78
PC-SA-1-82 1.27 2.60 1.17 128.91 38.07 0.56 n/a 0.51 1.14 n/a 1.32 n/a
PC-SA-1-83 1.43 2.28 2.01 n/a 32.39 n/a n/a n/a n/a n/a n/a n/a
PC-SA-1-84 1.33 2.35 1.21 n/a 22.03 n/a n/a n/a n/a n/a n/a n/a
AVERAGE PES 1.43 2.57 1.28 125.52 27.46 0.65 n/a 0.60 1.22 n/a 1.39 n/a
AVERAGE MANUS 1.68 2.60 2.36 n/a 28.45 n/a 1.07 n/a n/a 2.81 n/a 3.80

Note PC-SA-3-73 is inwardly rotated – the rest exhibit outward rotation. Pace (P), stride (λ), progression (PRG), width of pes angulation (WAP), width of manus angu-
lation (WAM) were measured in metres. The pace angulation (γ) and track rotation (ROT) were measured in degrees.

https://doi.org/10.1371/journal.pone.0319862.t023

Table 24.  Overall trackway velocity and gait ratio for PC-SA-1.

Track λ L/ R L L-SD h λ λ/h AX-V TR-V AX-V-SD TR-V-SD
SA-1-72, 70 R 52.40 0.08 2.09 2.43 1.16 1.46 1.32 0.02 0.02
SA-1-76, 72 L 49.50 6.89 2.09 2.87 1.38 1.92 1.74 0.10 0.08
SA-1-78, 76 R 52.55 0.18 2.09 2.81 1.35 1.86 1.68 0.06 0.05
SA-1-80, 78, 76 L 52.80 0.46 2.09 2.40 1.15 1.43 1.29 0.03 0.03
SA-1-82, 80, 78 R 52.37 0.06 2.09 2.60 1.25 1.63 1.47 0.00 0.00
SA-1-84, 82, 80 L 53.13 1.02 2.09 2.35 1.13 1.38 1.25 0.05 0.04
AVERAGE 52.13 1.20 2.09 2.57 1.23 1.61 1.45 0.21 0.19

Note the length of PC-SA-1-74 was not recorded due to track incompleteness. Track length (L) was measured in cm. Hip height (h) and stride (λ) were measured in m. 
Velocity was measured in m/s. AX velocity follows [69], while RT velocity follows [70].

https://doi.org/10.1371/journal.pone.0319862.t024

https://doi.org/10.1371/journal.pone.0319862.t023
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Additional similarities to eusauropods include: an anteriorly widening pes with a horizontally 
held and spread-out metatarsus and clearly defined heel impression [87,88,92]. Most eusau-
ropod manus metacarpals form shallowly concave posterior margins rather than the tightly 
bunched metacarpal colonnades of arched ‘U’ shaped equivalents of derived neosauropods 
[86,93,94]. This is especially apparent on morphotype-2 manus tracks, which are shallowly 
crescentic. Like most eusauropods and some basal neosauropods (which included diplodocoids 
and basal macronarians), the pollex of morphotype-2 manus tracks are the only visible digit with 
a pronounced ungual mark [86,95]. Large pollex ungual marks were also identified by [37] in 
sauropod manus tracks from the nearby Duntulm Formation at Cairidh Ghlumaig (Duntulm). 
The tracks contrast the smaller or absent pollex ungual mark of the titanosauriform manus [96].

Morphotype-2 pes sequences are predominantly narrow-medium gauge with an average 
trackway ratio of 47.1%. Wider gauge trackways are typically associated with Titanosauri-
formes – sauropods which may have originated, or at least most thoroughly diversified, in 
the Late Jurassic [68,89]. Despite its medium gauges, the tracks of PC-SA-1 feature similar 
dimensions and track morphologies present in narrower gauged trackways at Prince Charles’s 

Table 26.  Trackway measurements for PC-SA-3.

Specimen PG L/ R Manus or pes L W L/W Hip height IPS IMS
PC-SA-3-102 0.5 L Pes 56.20 39.00 1.44 2.25 46.82 n/a
PC-SA-3-103 0.5 R Manus 17.50 29.90 0.59 n/a n/a 22.87
PC-SA-3-104 0.5 R Pes 53.30 37.50 1.42 2.13 44.71 n/a
PC-SA-3-105 0.5 L Pes 46.70 34.90 1.34 1.87 40.37 n/a
PC-SA-3-106 0.5 R Pes 49.40 39.70 1.24 1.98 44.29 n/a
PC-SA-3-107 0.5 L Manus 16.90 33.20 0.51 n/a n/a 23.69
PC-SA-3-108 1 L Pes 46.40 33.90 1.37 1.86 39.66 n/a
PC-SA-3-109 n/a R Pes n/a n/a n/a n/a n/a n/a
PC-SA-3-110 1 L Pes 46.60 36.70 1.27 1.86 41.35 n/a
PC-SA-3-111 1.5 R Pes 52.30 35.20 1.49 2.09 42.91 n/a
AVERAGE PES 0.79 50.13 36.70 1.37 2.01 42.87 n/a
AVERAGE MANUS 0.50 17.20 31.55 0.55 n/a n/a 23.28

Heteropody was not recorded as manus tracks were overprinted by pes. This additionally led to manus track measurements which did not reflect a true track length. 
Length (l) and width (w) were measured in cm. Hip height was measured in m. Rotation was measured in degrees between the pes long axis and stride length line. All 
track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t026

Table 25.  Trackway measurements for PC-SA-2.

Specimen PG L/ R Manus or pes L W L/W Hip height IPS IMS ROT
PC-SA-2-85 1 R Pes 51.30 38.60 1.33 2.05 44.50 n/a 35.68
PC-SA-2-86 0.5 R Manus 16.20 36.40 0.45 n/a n/a 24.28 n/a
PC-SA-2-87 0 L Pes? 54.90 39.80 1.38 2.20 46.74 n/a 32.36
PC-SA-2-88 1 R Pes 52.40 38.50 1.36 2.10 44.92 n/a 44.06
PC-SA-2-89 0 R Manus 18.00 37.90 0.47 n/a n/a 26.12 n/a
PC-SA-2-90 0.5 L Pes 55.10 40.70 1.35 2.20 47.36 n/a 44.58
AVERAGE PES 0.63 53.43 39.40 1.36 2.14 45.88 n/a 39.17
AVERAGE MANUS 0.25 17.10 37.15 0.46 n/a n/a 25.20 n/a

Heteropody was not recorded as manus tracks were overprinted by pes. This additionally led to manus track measurements which did not reflect a true track length. 
Length (l) and width (w) were measured in cm. Hip height was measured in m. Rotation was measured in degrees between the pes long axis and stride length line. All 
track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t025

https://doi.org/10.1371/journal.pone.0319862.t026
https://doi.org/10.1371/journal.pone.0319862.t025
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Point, i.e., PC-SA-3. This suggests that a likely single, non-neosauropod or basal neosauropod 
trackmaker species may have been capable of leaving multiple trackway gauges. This variation 
could be due to individual behaviour or dimorphism [63].

Many of the morphotype-2 morphologies are present in tracks assigned as  
‘Breviparopus-like/Parabrontopodus-like’ as per [37,97]. These characteristics include shal-
lowly crescentic manus tracks with a large pollex ungual mark: similar to tracks identified as 
Breviparopus from the Middle Jurassic of Morocco [98; Fig 9.5]; and Parabrontopodus from 
the Late Jurassic of North America [66]. Undiagnosed manus tracks from Yorkshire described 
by [99] also featured these morphologies.

Table 28.  The overall trackway velocity and gait ratio for PC-SA-3.

Track λ L/ R L L-SD h λ λ/h AX-V TR-V AX-V-SD TR-V-SD
SA-3-105, 104, 102 L 52.07 10.22 1.95 1.49 0.76 0.70 0.63 0.00 0.00
SA-3-106, 105, 104 R 49.80 0.87 1.95 1.59 0.81 0.78 0.70 0.01 0.01
SA-3-108, 106, 105 L 47.50 1.88 1.95 1.40 0.72 0.63 0.57 0.00 0.00
SA-3-108, 106 R 47.90 0.94 1.95 1.40 0.71 0.62 0.56 0.00 0.00
SA-3-110, 108 L 46.50 5.61 1.95 1.48 0.76 0.69 0.62 0.00 0.00
SA-3-111, 110 R 49.45 0.34 1.95 1.55 0.79 0.74 0.67 0.00 0.00
AVERAGE 48.87 1.82 1.95 1.48 0.76 0.69 0.63 0.06 0.05

https://doi.org/10.1371/journal.pone.0319862.t028

Table 27.  Trackway and gauge measurements for PC-SA-3.

Specimen P λ PRG γ ROT WAP WAP
/PL

WAP
/IPS

SW OW TR Gauge

PC-SA-3-102 n/a n/a n/a n/a 17.11 n/a n/a n/a 0.43 0.85 50.06 Narrow
PC-SA-3-103 n/a n/a n/a n/a 27.06 n/a n/a n/a n/a n/a n/a n/a
PC-SA-3-104 0.84 n/a 0.67 117.76 30.86 44.90 0.84 1.00 0.45 0.82 54.62 Narrow
PC-SA-3-105 0.91 1.49 0.80 123.55 27.03 42.70 0.91 1.06 0.40 0.80 50.00 Narrow
PC-SA-3-106 0.90 1.59 0.78 113.44 34.28 45.70 0.93 1.03 0.43 0.83 51.69 Narrow
PC-SA-3-107 n/a n/a n/a n/a 36.17 n/a n/a n/a n/a n/a n/a n/a
PC-SA-3-108 0.78 1.40 0.60 n/a 35.53 48.90 1.05 1.23 0.40 0.86 46.16 Medium
PC-SA-3-109 0.93 1.40 0.80 n/a n/a 47.80 n/a n/a n/a n/a n/a n/a
PC-SA-3-110 0.83 1.48 0.69 n/a 35.66 45.80 0.98 1.11 0.40 0.82 48.72 Medium
PC-SA-3-111 0.97 1.55 n/a n/a 27.24 n/a n/a n/a 0.40 0.79 50.00 Narrow
AVERAGE PES 0.88 1.48 0.72 118.25 29.67 45.97 0.94 1.09 0.41 0.82 50.15 Narrow
AVERAGE MANUS n/a n/a n/a n/a 31.62 n/a n/a n/a n/a n/a n/a n/a

As manus tracks are mostly absent or overprinted by pes, WAM, WAP/WAM, WAM/MW, and WAM/IMS calculations were omitted. Pace (P), stride (λ), progression 
(PRG), and width of pes angulation (WAP) were measured in metres. The pace angulation (γ) and track rotation (ROT) were measured in degrees. The gauge was deter-
mined by a trackway ratio (TR). TR was calculated based on side width (SW) and overall width (OW) – measured in metres.

https://doi.org/10.1371/journal.pone.0319862.t027

Table 29.  Measurements of PC-SA-5 tracks.

Specimen PG L/ R Manus or pes L W L/W Hip height IPS
PC-SA-5-127 1.5 R Pes 55.40 41.20 1.34 2.22 47.78
PC-SA-5-128 1 L Pes 51.60 39.00 1.32 2.06 44.86
PC-SA-5-129 0.5 R Pes n/a n/a n/a n/a n/a
AVERAGE PES 1.00 53.50 40.10 1.33 2.14 46.32

Track length (l) and width (w) were measured in cm. Hip height was measured in m. All track measurements were rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0319862.t029

https://doi.org/10.1371/journal.pone.0319862.t028
https://doi.org/10.1371/journal.pone.0319862.t027
https://doi.org/10.1371/journal.pone.0319862.t029
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Morphotype-2 pes tracks meanwhile occupy the lower ~ 50 cm range of either ichnotaxon 
[66,100]. The tracks additionally anteriorly widen and feature four anterolaterally oriented 
digits and ungual marks. Although most pes tracks lack digits, [63] suggested the classifica-
tion of equivalent tracks in Late Jurassic shallow marine carbonate platform sediments in 
Switzerland was appropriate as some diagnosed Breviparopus or Parabrontopodus trackways 
featured tracks without digits. Like the type Breviparopus and Parabrontopodus trackways, 
morphotype-2 equivalents are predominantly narrow-medium gauged, although are char-
acterised by a lower average heteropody. Overall, morphotype-2 most resembles equivalent 
Middle Jurassic Breviparopus/Parabrontopodus-like morphotypes, such as Ai-Aii from the 
Cleveland Basin, Yorkshire, England [99,101].

Discussion

Summary
Prince Charles’s Point provides evidence for a dinosaur assemblage, which includes large 
theropods and sauropods, that likely traversed across a locally, shallowly submerged lagoon 
margin of variable substrate composition in the Late Bathonian on Skye. A further undeter-
mined quadrupedal trackmaker is represented separately in bed 5 and evidences the occur-
rence of dinosaurs across multiple beds. The overall variation in the preservation of tracks 
within trackways also indicates variable substrate conditions despite present-day erosion and 
burial soon after impression. The slow gaits of both theropod and sauropod trackmakers and 
variability in the preferred direction of travel further suggests cumulative milling behaviour 
[102].

Assemblage comparison
At Prince Charles’s Point, we recorded 63 large theropod pes tracks over 56 sauropod manus 
and pes – in this case representing a greater abundance of large theropod trackmakers. 
Middle Jurassic aged theropod-dominated assemblages such as this are rare across much of 
Europe and North America [32,34,35,38,76,96,103,104]. A previously described assemblage 
in the Kilmaluag Formation at Lùb Score contrasts with an abundance of tiny-medium sized 
(<30 cm long) theropod tracks [35]. At Prince Charles’s Point, only two medium-sized tracks 
are known (PC-TH-A-3-47 and 48). Given the short duration of substrate exposure, the 
absence of tiny-medium sized tracks and dominance of large theropods and sauropods could 
reflect a census of the most locally abundant dinosaurs [105]. Although both localities are 
considered lagoon margins, the hypothesised occurrence of post-hatchling care at Lùb Score 
by [35], may reflect closer proximity to more suitable habitat for such behaviour and the 
inhabitation of smaller theropods than at Prince Charles’s Point. The assemblage composition 
thus may have been influenced by the idiosyncratic needs of each clade that was present.

The brackish lagoonal, rippled sandstones of the Duntulm Formation at An Corran 
meanwhile have thus far mostly yielded large theropod tracks [34]. Morphologically, like 
morphotype-1a (and European and North American examples of Megalosauripus), the 
tracks possess broad, parallel-sided digits with a ‘2:3:4’ phalangeal pad formula. Metrically, 
the average length (44.2 cm) and digit ii-iv divarication angles (52°) overlap with the ranges 
of morphotype-1a. The shorter trackways also reached similar pace angulations up to 180°. 
A single small sized tridactyl track was further recorded from An Corran [101]. Like Prince 
Charles’s Point, the track-bearing surface was likely shallowly submerged as it is rippled and 
lacks desiccation and radial cracks. In the same formation, a single large theropod track is 
recorded from the sauropod-dominated assemblage at Cairidh Ghlumaig – composed of 
similar ‘Breviparopus-Parabrontopodus-like’ tracks to Prince Charles’s Point [37,106; Fig 27]. 
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In the Lealt Shale Formation of Rubha nam Bràithrean (BP2), several poorly preserved large 
theropod tracks with parallel sided digit margins and weak l/w ratios like morphotype-1a and 
Megalosauripus constitute approximately 10% of the tracks [38]. These are recorded in the 
same horizon of brackish lagoonal sediment as more abundant sauropod tracks [38]. Similar 
theropod tracks are also recorded in horizons of Lealt Shale Formation at BP1 and BP3 which 
represent periods of subaerial exposure [32].

When compared to Rubha nam Bràithrean (BP2) [38] and Cairidh Ghlumaig [37], the 
balance of trackmakers at Prince Charles’s Point is strikingly different with a greater abun-
dance of theropod tracks over sauropods. The track-bearing horizons across the three 
localities reflect lagoonal settings and provide little indication of subaerial exposure. However, 
there appears to be salinity differences between these lagoonal settings, possibly due to their 
location within the broader and dynamic coastal palaeoenvironment [45]. At Prince Charles’s 
Point, the lagoonal palaeoenvironment within the Kilmaluag Formation was influenced by 
freshwater sources [6,40], while the Lealt Shale and Duntulm Formations at BP2 and Cairidh 
Ghlumaig evidence more brackish/marine influences [6,107,108]. Speculatively, the difference 
in trackmaker balance between Prince Charles’s Point and other localities with in-situ sau-
ropod tracks might arise from the substrate or palaeoenvironmental preferences of different 
dinosaur clades. Despite these differences in trackmaker assemblage, the takeaways of other 
Scottish in-situ localities remain consistent: sauropods frequently spent time in lagoonal 
palaeoenvironments along with large-bodied theropods [37–38].

In contrast, it is unclear whether the absence of ornithopods and thyreophorans at Prince 
Charles’s Point reflects genuine absence or preservation bias. Their presence in the subaerially 
exposed mudflat sediments of Rubha nam Bràithrean (BP3), described by [32], may suggest 
that these groups favoured these environments more than shoreline lagoons, although we 
must be mindful of interpreting such small numbers of tracks.

Elsewhere, similar theropod and sauropod morphotypes, Bxviii and Ai-Aiii respectively, 
are reported from ex-situ blocks of carbonate mudflat sediment in the Cleveland basin 
[75,99,109]. These bear similar morphologies to the Prince Charles’s Point tracks (see mor-
photype ichnotaxonomy sections) and are respectively classified as Megalosauripus isp. and 
Breviparopus isp. [101]. Despite their presence, smaller theropod and ornithopod morpho-
types are recorded in greater abundance along much of the north Yorkshire coast [109]. 
Bathonian aged sediments in Ardley, Oxfordshire, UK, preserve multiple extensive theropod 
and sauropod trackways across an emergent/shallowly submerged, carbonate mudflat surface 
[96]. Although identified as Megalosauripus, the tracks are > 50 cm in length (larger than 
morphotype-1). The sauropod tracks are also much larger and are referred to Titanosau-
riforms – currently not known from the Inner Hebrides. In Portugal, similarly aged, sized, 
divaricated, and padded Megalosauripus tracks are found within bimodially oriented track-
ways on a tidal mudflat surface [76]. Based on this comparison, the dinosaur tracks at Prince 
Charles’ Point are generally consistent with the broader global context. These fit into a bigger 
global story that appears to show a preference for both sauropods and megalosaurid thero-
pods in more marginal, coastal environments on the basis of their footprints. This pattern 
could either be due to the higher preservation potential of these environments or genuine 
trackmaker preferences.

Trackmaker behaviour
The lagoonal margin at Prince Charles’s Point hosted several theropod and sauropod individ-
uals, as evidenced by their tracks and trackways. All bear multiple directions (Fig 29A, Table 
30) and lack evidence of gregarious behaviour, i.e., parallel, or structurally spaced trackways 
[110–112]. Such wide directional variation, coupled with walking gaits, is often attributed to 
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milling behaviour [102]. As evidenced by trackways such as PC-TH-1 and 2, coupled with 
relatively sharp track definition and lack of invertebrate bioturbation, this behaviour appears 
time averaged over a short period prior to burial. Similar time averaged milling behaviour has 
also been observed at other Great Estuarine Group tracksites [32,37,38].

Such behaviour furthermore was generally independent to the predominant NE to SW 
flow direction indicated by ripples (Fig 29B, Table 30). In the track-bearing horizons of beds 
2 and 5, the ripple orientations opposite tracks predominantly indicated south westerly flow 
directions (210.5°-230.8°). Occasional southerly (~179°) and south easterly (~143°-159°) flow 
directed horizons generally lacked tracks. This implies that trackmakers were not constrained 
by local topography, i.e., shoreline position [111,113]. Despite this, it is noteworthy that no 
tracks bearing directly south or in southeasterly directions have been recorded. Interestingly, 
horizons with large ripple wavelengths that lack tracks feature southeasterly flow-directed 
ripples. A deeper water source could have existed to the southeast of the tracksite. While it is 
possible to speculate why these trackmakers used the lagoon, such as for food or shelter, there 
is currently no evidence to support specific usages.

Interpretation of sauropod tracks
The unusual shallow relief of the Prince Charles’s Point sauropod tracks have led previous 
geologists observing these structures to hypothesise various non-track explanations for 

Fig 29.  Track and flow-direction (ripple) bearings from magnetic north. (A) Trackmaker and (B) ripple orientations. Classifications include: theropod trackways 
(TH), theropod track associations (TH-A) isolated theropod tracks (TH-I), sauropod trackways (SA), and sauropod track associations (SA-A). Ripple orientations 
were measured opposite respective tracks when present. Both theropod and sauropod trackmakers generally show no favoured direction.

https://doi.org/10.1371/journal.pone.0319862.g029

https://doi.org/10.1371/journal.pone.0319862.g029
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their size and shape. Andrews first recognised the tracks as ‘circular obstacle marks’ within 
his locality sediment log [40]. Obstacle marks are flow-induced structures which form on 
sediment surfaces when current eddies become trapped and cause the substrate surface to 
be scoured around or ahead of an anchored object [114–115]. Andrews later amended this 
hypothesis and stated that the low energy conditions present in the lagoon would unlikely 
instigate “turbulent eddy scour-pool excavations” under any large boulder [39; pp. 249].

Andrews then proceeded to provide an extended description of the ‘circular impres-
sions’ and described them as: “platelike structures about 50 cm in diameter, which are found 
on wave-rippled sandstone” [39; pp. 249]. Andrews suggested four alternative formation 
mechanisms: scour marks induced by plant remains, jelly fish traces, animal footprints, or 
fish resting/burrow traces. Andrews considered fish resting/burrow traces as the most likely 

Table 30.  Track and flow-direction (ripple) bearings.

Specimen Track orientation (TO) TO Class Ripple orientation (RO) RO Class
PC-TH-1 47.46 45-75 219.29 195-225
PC-TH-2 32.24 15-45 219.04 195-225
PC-TH-3 311.14 285-315 139.21 135-165
PC-TH-4 237.02 225-255 228.22 225-255
PC-TH-5 7.24 345-15 215.83 195-225
PC-TH-6 279.61 255-285 n/a n/a
PC-TH-A-1 201.71 195-225 213.36 195-225
PC-TH-A-2 87.22 75-105 n/a n/a
PC-TH-A-3 87.73 75-105 210.56 195-225
PC-TH-A-4 280.2 255-285 221.55 195-225
PC-TH-A-5 42.09 15-45 n/a n/a
PC-SA-1 37.86 15-45 225.98 225-255
PC-SA-2 311.17 285-315 226.88 225-255
PC-SA-3 330.01 315-345 222.23 195-225
PC-SA-4 314.67 285-315 227.74 225-255
PC-SA-5 328.41 315-345 n/a n/a
PC-SA-A-1 270 255-285 230.83 225-255
PC-TH-I-01 210 195-225 214.96 195-225
PC-TH-I-02 219 195-225 n/a n/a
PC-TH-I-16 42 15-45 n/a n/a
PC-TH-I-41 282 255-285 n/a n/a
PC-TH-I-46 345 315-345 n/a n/a
PC-TH-I-53 90 75-105 n/a n/a
PC-TH-I-54 62.39 45-75 n/a n/a
PC-TH-I-55 231 225-255 n/a n/a
PC-TH-I-56 5 345-15 221.36 195-225
PC-TH-I-57 50 45-75 n/a n/a
PC-TH-I-58 104 75-105 n/a n/a
PC-TH-I-59 27 15-45 215.31 195-225
PC-TH-I-62 39 15-45 n/a n/a
PC-TH-I-63 225 195-225 n/a n/a
PC-TH-I-64 98 75-105 n/a n/a

The variety of bearings of multiple tracks suggests that trackmakers were not necessarily restricted by local topography, i.e., shoreline positions, or influenced by the 
direction of palaeocurrents. The ‘TO’ and ‘RO’ classes denote the angular range occupied in the wind rose diagrams.

https://doi.org/10.1371/journal.pone.0319862.t030

https://doi.org/10.1371/journal.pone.0319862.t030
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explanation, as he described them as most comparable in structure and shape to modern 
mudskipper burrows described by [116]. These burrows were reported to be 20-45 cm in 
diameters with narrow embankments between 5-10 cm. Andrews, however, noted the absence 
of mudskippers until the Oligocene and suggested an unknown fish species was responsible 
[39]. Known burrowing freshwater/low salinity fish, such as lungfish, produce long tubular 
and ovular subsurface concavities [39,117]. Although circular in cross-section, the widest 
lungfish burrow diameters are typically < 15 cm [118–119].

Andrews rejected an ‘animal footprint’ interpretation, stating: “the shallow, regular shape 
of these circular structures is not consistent with the footprints of a heavy animal; neither is 
there any predictable sequence of depressions, which might be expected in a trackway” [39; 
pp. 249]. Andrews also commented that “nine of these structures were seen within an area of 
about 10 m2 (the limit of bedding plane exposure)”. Based on this description, [39] most likely 
described the sedimentary structures we describe as the PC-SA-3 trackway (Fig 25).

Contrary to Andrews’s observations, PC-SA-3 and other diagnosed sauropod trackways are 
composed of a continuous alternating left-right sequences of oval-subtriangular shaped, ante-
riorly widening, asymmetric pes tracks – some with digits. The asymmetry is also consistent 
with a single direction of movement. The lack of un-overprinted elliptical/crescentic manus 
tracks with a pollex in PC-SA-3, as observed in other trackways (e.g., PC-SA-1), may have 
contributed to the initial diagnosis. The track figured in [39; Fig 2] may presently suffer from 
erosion but could feature digits (S10 Fig). All these details are more apparent to us than they 
were to Andrews because our site drone imagery allows the spatial relationships of the tracks 
to be viewed from an aerial perspective.

Unlike previously recorded sauropod tracks in the Great Estuarine Group, the Prince 
Charles’s Point sauropod tracks are shallower with wide displacement rims and are in convex 
epirelief. Similar tracks have been described in the lagoonal/sabkha Middle Jurassic Iouaridène 
Formation of Morocco [98] and lagoonal Lower Cretaceous Broome Sandstone [120–121]. 
[120; pp. 5] attributed similar track morphology to “the physical properties of the substrate and 
the size and behaviour of the trackmaker.” Sediment properties included grain size, moisture 
content, viscosity, and sediment disturbance [122–123]. Each property determined the extent of 
morphological retention based on the duration of exposure before burial [124].

Based on our observations, we can hypothesise how the tracks at Prince Charles’s Point 
formed in their particular environmental setting. The ~ 10 cm thick (but variable, and some-
times thicker) rippled sandstone which our sauropod tracks occur in are underlain by a hard-
ened, desiccated surface (the bed 1-2 boundary horizon). Due to this, as hypothesised by [120; 
pp. 6], the downward forces of impressing a track would proximally displace and ripple the 
sediment outwards, with greater emphasis on a horizontal component, between and during 
the touch down and weight bearing phases of track impression (Fig 30). This horizontal 
component would be reinforced by reflected forces from the underlying hardened horizons. 
A shallow submersion component would emphasise this process and enable sediment to be 
displaced over a larger distance as no air gaps were present to resist. Eventually, the sediment 
would gradually displace upwards to form wide, shallowly mounded, consolidated displace-
ment rims as seen on tracks such as PC-SA-2-85 and PC-SA-3-111 (Figs 24, 26). The widest 
widths of each generally occur laterally around the tracks, which suggests the autopodia were 
planted almost perpendicular to the substrate. The presence of mounded displacement rims 
further suggests that at the time of impression, the track-bearing surface was relatively firm 
sensu [122,125]. The sediment, however, was soft enough to be reworked as evidenced by 
subsequent ripples forming across uneroded mounded displacement rim surfaces.

The resultant track formed as a shallow, concave impression with variable morpholog-
ical retention. Based on track infills in the same relatively uneroded horizon viewed in the 
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present-day, most are rounded, featureless impressions which could appear larger than the 
actual trackmaker autopodium. The morphological variation of tracks within individual 
trackways may indicate localised variation in sediment moisture content prior to burial sensu 
[58,120], especially with the presence of morphologies such as digits and pads in some tracks 
and not others. An absence of radial and desiccation cracks within or around the tracks 
suggests the lagoon margin surface at this time was constantly moist [46]. Based on this, the 
sauropods likely traversed a locally shallowly submerged lagoon margin surface with variable 
moisture content (Fig 31).

After impression, the tracks would have become increasingly submerged by the shallow 
lagoonal body of water, indicated by ~ 5-8 cm long amplitude flow-directed ripples on the 
track-bearing surface (and displacement rims), and did not suffer uniform morphological 
degradation, i.e., a few tracks featured digits and pads while most did not. This implies that 
weak lagoonal currents alone could not have necessarily erased all track morphologies in the 
time between track impression and burial. This time was likely brief as the track-bearing sur-
face lacked invertebrate bioturbation. Presently, the tracks appear infilled with sediment from 
an overlying layer, almost level with the surrounding track-bearing layer. Although raised, 
most displacement rims are affected by present-day erosion and are rarely seen as mounded 
structures. Due to their fine-grained composition, the sediments may have eroded at a similar 
rate to induce their unusually shallow appearance.

Possible trackmaker identification
Great Estuarine Group theropod and sauropod body fossils are scarce and often limited to isolated 
bones. Theropod bones include a middle caudal vertebra and several teeth [7,26–28]. For sauro-
pods, several vertebra and teeth, and a humerus are known [23–25]. The humerus, previously iden-
tified as a femur, was affiliated with a cetiosaurid-type sauropod [23]. A similar scarcity of dinosaur 

Fig 30.  The hypothesised distribution of forces during track impression. Blue arrows represent the downward 
forces exerted by the sauropod’s limb. Red arrows show the direction of displacement. Due to the desiccated (hard-
ened) bed 1-2 boundary horizon and thinness of compliant bed 2 substrate, the horizontal component of sediment 
displacement was emphasised (black arrows).

https://doi.org/10.1371/journal.pone.0319862.g030

https://doi.org/10.1371/journal.pone.0319862.g030
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body fossils has been observed across most European Middle Jurassic sediments [5]. Identifications 
based on these bones have been limited to vague higher-level taxa which may or may not necessar-
ily correspond to the identity of the Prince Charles’s Point trackmakers.

[76] suggested various possible trackmaker identities for their theropod tracks based on 
the trackmaker body proportions of appropriately spatiotemporally distributed large Middle 
Jurassic theropods. We used a similar approach due to a lack of comparable skeletal autopodia 
– typically lost during fossilisation [93].

For morphotype-1a, the relatively moderate average l/w ratios (1.43), 40°-55° digit ii-iv 
divarication angles, and presence of narrow, elongated ungual marks and padded, parallel 

Fig 31.  Cross-section demonstrates the hypothesised formation of shallow sauropod tracks. (A) Tracks were impressed into a thin 
layer of fine-grained sand with variable moisture content. (B) The lagoonal water table increased and enabled further sediment to be 
quickly deposited on top of the track-bearing layer. (C) The fine-grained sand was overlaid by finer sediment deposited when water 
levels continued to increase. This would go on to become the bed 3 shale layer. (D) Present-day exposure of the sauropod tracks, some 
with eroded displacement rims and uneven sediment infill.

https://doi.org/10.1371/journal.pone.0319862.g031

https://doi.org/10.1371/journal.pone.0319862.g031
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sided, broad digits indicate a megalosaurid type theropod diagnosis sensu [75]. Based on 
the average morphotype-1a track length (46.3 cm), trackmakers possessed a ~ 1.85 m hip 
height. [126] suggested < 50 cm long tracks, represented by the Late Jurassic Megalosauripus 
transjuranicus, did not reflect trackmakers with body lengths < 5 m or > 7 m. We adopt this 
conclusion and suggest the following potential trackmakers. Megalosaurus bucklandii pos-
sessed a ~ 6 m total body length and was spatiotemporally widespread across what is now 
England during the Bathonian [127]. Duriavenator hesperis, also recorded in England, was 
similarly sized at ~ 7 m [128]. Both species were considered capable of registering < 50 cm 
long tracks with the morphologies of morphotype-1a and Megalosauripus isp. [75–76]. The 
specimens representing Magnosaurus nethercombensis (which possessed a ~ 1 m hip height 
[129]) and Cruxicheiros newmanorum (which likely produced larger > 50 cm tracks [130]), are 
subadults of uncertain ontogenetic status and may have grown to larger body sizes to become 
appropriate trackmakers. Regardless of potential species, megalosaurids are the only known 
theropod trackmakers which could impress large tridactyl footprints in the Late Bathonian of 
modern-day Britain [76,129].

We reach a similar conclusion for morphotype-1b-d. Morphotype-1d could have repre-
sented a juvenile megalosaurid, perhaps the same species as represented by morphotype-1a 
due to similarity in average metrics such as l/w ratios (1.46) and digit ii-iv divarication (56°). 
Alternatively, morphotype-1d could have represented an entirely different species with a ~ 1 
m hip height. Possible English Middle Jurassic theropod trackmakers include Eustreptospon-
dylus oxoniensis [131].

For morphotype-2, based on track characteristics, the known Skye body fossil record, and 
contemporary English taxa, we suggest a non-neosauropod or basal neosauropod species 
was likely present at Prince Charles’s Point, consistent with the interpretations of [37] for the 
Duntulm Formation sauropod tracks. On Skye, at least two sauropod species were present 
based on the differences in morphology between two teeth described by [24] and [25]. The 
best known sauropod postcranial element from Skye, an isolated 90 cm long near complete 
left humerus from the Valtos Sandstone Formation, was described as similar to the equivalent 
bone of the type cetiosaurid species, the Middle Jurassic Cetiosaurus oxoniensis, by [23]. Based 
on the average 51.7 cm pedal track length of morphotype-2, the Valtos humerus would likely 
proportionally fit within the estimated average trackmaker hip height of ~ 2.07 m. Determin-
ing possible affinities with wider English/European skeletal material is problematic due to the 
relative incompleteness of available autopodia. Cetiosaurus oxoniensis was widespread across 
England with a total body length up to 16 m, but its autopodia are only known from a handful 
of metatarsals and metacarpals, making it difficult to match the foot to tracks [132]. Other 
potential eusauropod trackmakers included the similarly aged Cardiodon [133]. However, 
trackmaker identification based on Cardiodon is highly uncertain as the species was erected 
based on a handful of teeth [133–134]. Currently, we consider the most plausible trackmaker 
to be Cetiosaurus or a similar basal eusauropod or potentially a basal neosauropod.

Conclusion
In the Kilmaluag Formation at Prince Charles’s Point, on the Isle of Skye in Scotland, we 
report and document 131 dinosaur tracks of Middle Jurassic age. These include tracks we 
hypothesised were made by a large megalosaurid and a non-neosauropod or basal neosauro-
pod trackmaker. All traversed across a shallowly submerged lagoonal margin surface within a 
closed, ephemeral, freshwater (low salinity) lagoon palaeoenvironment, represented by a fine-
grained rippled sandstone. The trackmakers consistently walked in non-uniform directions, 
which likely represented cumulative milling behaviour rather than interspecies or gregarious 
interactions. The occurrence of these tracks in a lagoonal shoreline provides further evidence 
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to the widespread habitation of sauropods in these palaeoenvironments on ancient Skye, as 
indicated by previous discoveries, and suggests that theropods may have been more common 
components of the lagoonal assemblages than previously recognised.

Supporting information
S1 Appendix.  Further tracksite details including field observations and further tracks. The 
appendix is formatted in a.pdf file and contains descriptions, figure captions, and tables for 
further tracks present at Prince Charles’s Point (including referred morphotype track associ-
ations) and additional information recorded in the field. Track photogrammetric models and 
photo sets are available to download via Dryad: https://doi.org/10.5061/dryad.wh70rxwwx.
(DOCX)

S1 Fig.  Overview of PC-TH-6. (A) Textured orthophoto with software-based shadowing, (B) 
DEM, (C) outline highlights the trackway. The tracks exhibit mixed preservation: PC-TH-6-
43 is a concave epirelief track with poorly defined margins, while PC-TH-6-44 and 45 are in 
convex epirelief.
(TIF)

S2 Fig.  Photographic and digital representations of selected PC-TH-6 tracks. Photographs, 
outlines, contour maps, and DEMs are respectively represented from left to right. (A-D) 
Although the digit margins of PC-TH-6-44 are indistinct, unlike PC-TH-6-45, the anterior 
most phalangeal pads are most visible on digits iii-iv. (E-H) PC-TH-6-45 features poor digit 
margin definition and missing diagnostic morphologies such as phalangeal pads. The original 
surrounding substrate has been mostly eroded. (I) Selected tracks, indicated by red boxes, in 
context to the rest of the trackway.
(TIF)

S3 Fig.  Overview of PC-TH-A-1. (A) Textured orthophoto with software-based shadowing, 
(B) DEM, (C) outline. Most tracks were marginally worn and partly infilled by ripples, partic-
ularly PC-TH-A-1-04 and 05.
(TIF)

S4 Fig.  Overview of PC-TH-A-2. (A) Photograph cropped to model area, (B) DEM, (C) 
outline. The tracks are in shallow convex epirelief and appear on top of bed 1 as the original 
surrounding original horizon was eroded.
(TIF)

S5 Fig.  Overview of PC-TH-A-2-18. (A) Photograph and (B) outline of PC-TH-A-2-18, 
which is missing most of its heel. Unlike most morphotype-1a tracks, such as those of 
PC-TH-1 and 2, PC-TH-A-2-18 exhibits distinct sigmoidal curvature on digit iii.
(TIF)

S6 Fig.  Overview of PC-TH-A-4. (A) Photograph cropped to model, (B) DEM, (C) outline. 
The tracks are almost perpendicular to the long axis of the ripples.
(TIF)

S7 Fig.  Overview of PC-TH-A-5. (A) Textured orthophoto with software-based shadowing, 
(B) DEM, (C) outline. The tracks have low mesaxony like morphotype-1a but overall have 
poorly defined margins.
(TIF)

S8 Fig.  Close up photographic and digital representations of PC-TH-A-5 tracks. Photo-
graphs, outlines, contour maps, and DEMs are respectively represented from left to right. 

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0319862.s001
https://doi.org/10.5061/dryad.wh70rxwwx
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0319862.s002
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0319862.s003
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http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0319862.s005
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0319862.s006
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(A-D) PC-TH-A-5-60, (E-H) PC-TH-A-5-61. The tracks are in concave epirelief, with partial 
sediment infill on digits, and are heavily worn.
(TIF)

S9 Fig.  Overview of PC-TH-3. (A) Textured orthophoto with software-based shadowing, 
(B) DEM, (C) outline. Most tracks are incomplete or unexposed. PC-TH-3-21 was recognised 
from its heel, which resembles that of PC-TH-3-20.
(TIF)

S10 Fig.  Photograph and outlines of PC-SA-I-124. (A) Photograph highlights a worn dis-
placement rim around the track. (B) Outline highlights possible digits around the top of the 
track. The ripples which intersected the track have likely since eroded. Presently, a few of these 
ripples are faintly recognised.
(TIF)
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