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Abstract 

Although geometry is one of the main areas of mathematical learning, the cognitive processes 

underlying geometry-related academic achievement have not been studied in detail. This study 

explored the relationship between working memory (WM), intelligence (g-factor) and geometry in 

176 typically-developing children attending school in their 4
th

 and 5
th

 grades. Structural equation 

modeling showed that about 40% of the variance in academic achievement and in intuitive 

geometry (which is assumed to be independent of a person’s cultural background) were explained 

by WM and the g-factor. After taking intelligence and WM into account, intuitive geometry was no 

longer significantly related to academic achievement in geometry. We also found intuitive geometry 

closely related to fluid intelligence (as measured by Raven) and reasoning ability, while academic 

achievement in geometry depended largely on WM. These results were confirmed by a series of 

regressions in which we estimated the contributions of WM, intelligence and intuitive geometry to 

the unique and shared variance explaining academic achievement in geometry. Theoretical and 

educational implications of the relationship between WM, intelligence and academic achievement 

in geometry are discussed.  

Keywords: Geometry, Geometrical achievement, Working memory, Intelligence; Children; 

Development 

 

Highlights: i) WM uniquely predicts a large proportion of the variance in 4
th

- and 5
th

-graders’ 

academic achievement in geometry. ii) When the contribution of WM is partialled out, intelligence 

does not significantly explain academic achievement in geometry. iii) Intuitive geometry is closely 

related to fluid intelligence. 
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The Relationship Between Geometry, Working Memory and Intelligence in Children 

 

Geometry is a fundamental component of mathematical learning, and also important in 

many aspects of everyday life (Cass, Cates, Smith, & Jackson, 2003). Without a proficient 

geometrical knowledge, students may lack the skills they need to gain an advanced knowledge in 

the fields of science, technology, engineering and mathematics (STEM; Zhang, Ding, Stegall, & 

Mo, 2012). Despite this, the cognitive processes underlying the development of geometrical 

knowledge have not been studied in depth. 

Previous studies revealed that geometry involves visuospatial working memory (VSWM), 

i.e. the ability to retain and manipulate visuospatial information (Giofrè, Mammarella, Ronconi, & 

Cornoldi, 2013). Furthermore, geometrical academic problems typically also involve finding a 

solution to a problem, and this capacity should relate to reasoning, and therefore to intelligence 

(Clements & Battista, 1992). To our knowledge, however, there has been no research to date on the 

involvement of working memory (WM) and intelligence in geometry. The present study explored 

the involvement of WM and intelligence in two different aspects of geometry, i.e. intuitive 

geometry and academic achievement. 

Intuitive and academic geometry 

It has been suggested that human mathematical skills emerge from different 

representational systems. A first system should be based on intuition and shared by adults, 

infants and non-human animals, and rely on non-symbolic representations; a second system 

should be unique to humans who have received a formal education, and rely on symbolic 

representations (Halberda, Mazzocco, & Feigenson, 2008). Regarding numerical cognition, 

other authors assume the existence of two different types of preverbal intuitive 

representations, i.e. analogue representations of approximate numerosities for large sets, 

object-tracking representations for small sets (Feigenson, Dehaene, & Spelke, 2004). 
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Moreover, some researchers actually hypothesize the existence of more than two systems 

(Carey, 2009) or propose that geometry systems are distinct from number systems (Spelke, 

Lee, & Izard, 2010), thus further articulating the mathematical domain. 

Concerning geometry in particular, a distinction has been proposed between intuitive 

and academic geometry (Giofrè, Mammarella, Ronconi, et al., 2013). The former includes 

abilities that are believed to be independent of a person’s cultural background and education; 

the latter depends on learning and education. In fact, it has been suggested (Spelke et al., 

2010; see also Dehaene, Izard, Pica, & Spelke, 2006) that geometry includes a core intuitive 

knowledge. Numerous intuitions seem to develop during childhood and spontaneously accord 

with the principles of Euclidean geometry, even in the absence of training in mathematics 

(Izard, Pica, Spelke, & Dehaene, 2011). Dehaene and co-authors (2006), suggested a 

procedure for assessing intuitive geometry and examining to what extent it may be culture-

independent. They administered multiple-choice tests that involved identifying elements that 

violated intuitive geometric rules to Amazonian Indians with no formal geometry education 

and found that Amazonian Indian children’s and adults’ performance in these intuitive 

geometry tasks was relatively good and comparable with that of a sample of North American 

children, while North American adults had a better performance. These authors’ intuitive 

geometry assessment procedure was also able to predict a significant portion of the variance 

in an academic achievement task (Giofrè, Mammarella, Ronconi, et al., 2013), and to 

discriminate between children with nonverbal learning disabilities (who failed in spatial but 

not in verbal tasks) and typically-developing children (Mammarella, Giofrè, Ferrara, & 

Cornoldi, 2013).  

Academic geometry, on the other hand, represents a student’s ability to answer the 

typical geometry questions contained in the mathematical curriculum (Giofrè, Mammarella, 

Ronconi, et al., 2013) that could be not solved without formal instruction. It is considered one 

of the most important areas of mathematical learning, and it is linked to a student’s future 
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academic and professional success (Verstijnen, Van Leeuwen, Goldschmidt, Hamel, & 

Hennessey, 1998). The main difference between intuitive geometry and academic geometry 

lies in that the latter requires formal education and relies on a symbolic system, while the 

former does not. Academic geometry demands an explicit knowledge of mathematics, and 

particularly of geometrical principles such as diagonals, parallel lines, and right angles, and 

the ability to solve geometrical problems such as calculating the area or perimeter of a figure; 

it relies heavily on formal education. In Italy, for example, the primary school geometry 

curriculum is divided into two phases. During the first three years, teaching is partly informal 

and children have to learn how to locate and move objects in space using terms such as 

“above” or “below”, and to recognize and correctly name plane and three-dimensional 

figures. In the 4
th

 and 5
th

 grades, there is a crucial transition: teaching becomes more formal 

and structured, and children learn formulas for measuring the perimeter and area of 

geometrical figures, for instance, and for converting units of measure (e.g. from mm to cm). 

The passage to 4
th

 grade therefore marks the distinction between intuitive and academic 

geometry, as applied by the standardized procedures for assessing school achievement in 

geometry (in Italy, the Geometry test devised by Mammarella, Todeschini, Englaro, 

Lucangeli & Cornoldi, 2012), which includes questions and problems that individuals who 

have received no formal instruction would be unable to answer. 

Cognitive processes involved in geometry: working memory and intelligence 

Working memory. WM is a limited-capacity system that enables information to be 

stored temporarily and manipulated (Baddeley, 2000). In the tripartite model of WM initially 

proposed by Baddeley and Hitch (1974), the central executive is the component responsible 

for controlling resources and monitoring information processing across informational 

domains, while the storage of information is mediated by two domain-specific slave systems, 

i.e. the phonological loop, which handles the temporary storage of verbal information, and the 
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visuospatial sketchpad, which specializes in retaining and manipulating visual and spatial 

representations (Baddeley, 1996). This model met with strong support (Baddeley, 2012) and 

further refinements of the model (Baddeley, 2000; Cornoldi & Vecchi, 2003) have maintained 

the distinction between the modality-independent central and the specific verbal and 

visuospatial components.  

Various other models have been suggested for describing WM in children. In 

particular, WM has been considered as: i) a single construct (Pascual-Leone, 1970); ii) a 

modality-dependent construct, distinguishing only between a visuospatial and a verbal 

component (Shah & Miyake, 1996); and iii) a modality-independent model, distinguishing 

only between WM and short-term memory (STM; Engle, Tuholski, Laughlin, & Conway, 

1999). A tripartite model distinguishing between a partly modality-independent active WM 

component and two modality-dependent short-term memory components (one verbal and the 

other visuospatial) has proved the best (i.e. produced a better fit than the other WM models) 

(Alloway, Gathercole, & Pickering, 2006; Giofrè, Mammarella, & Cornoldi, 2013).  

It is important to understand the structure of WM because this enables us to see how it 

relates to performance in various tasks. A large body of research has shown that WM predicts 

success in school-related tasks, such as reading comprehension (Carretti, Borella, Cornoldi, & 

De Beni, 2009), approximate mental addition (Caviola, Mammarella, Cornoldi, & Lucangeli, 

2012), mathematical skills (Alloway & Passolunghi, 2011), multi-digit operations (Heathcote, 

1994), nonverbal problem-solving (Rasmussen & Bisanz, 2005), mathematical achievement 

(Bull, Espy, & Wiebe, 2008; Jarvis & Gathercole, 2003; Maybery & Do, 2003; Passolunghi, 

Mammarella, & Altoè, 2008). Giofrè, Mammarella, Ronconi, and coauthors (2013) recently 

showed that WM may also be related to geometrical achievement in late adolescence. 

Intelligence. Intelligence can be defined as the ability to reason, plan, solve problems, 

think abstractly, understand complex ideas, learn quickly, and learn from experience 

(Gottfredson, 1997, p. 13). Intelligence has been variously defined and measured, but the ‘g-
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factor’ derived from the common variance in a representative sample of intellectual tests 

seems to offer a useful approximation of the basic aspects of intelligence (e.g. Hunt, 2011; 

Spearman, 1904). The g-factor and academic achievement are considered closely-related but 

distinguishable constructs (Kaufman, Reynolds, Liu, Kaufman, & McGrew, 2012). In fact, 

language, reasoning, WM and the attentional processes underlying reading and mathematical 

operations also underlie intellectual functioning (Deary, Strand, Smith, & Fernandes, 2007; 

Hunt, 2011). 

Notably, intelligence is a broad construct that involves many aspects, one of which is 

WM. Although the two constructs are closely related, they do not appear to overlap 

completely and the two constructs can be considered as distinguishable (Conway, Kane, & 

Engle, 2003). Their relationship is under debate (Martínez et al., 2011) and there is no 

consensus on this relationship between WM and intelligence in children. The claim that STM 

accounts for this relationship (e.g. Hornung, Brunner, Reuter, & Martin, 2011) has been 

questioned (e.g. Engel De Abreu, Conway, & Gathercole, 2010), and it has also been argued 

that highly-controlled WM processes have a greater power for predicting intelligence in 

typically-developing children (Cornoldi, Orsini, Cianci, Giofrè, & Pezzuti, 2013) than in 

particular populations (Cornoldi, Giofrè, Calgaro, & Stupiggia, 2013). The idea that different 

components of WM relate differently to intelligence has found further support: a recent study 

on 4
th

- and 5
th

-graders, for instance, supported the relationship between WM and intelligence, 

but showed that only active WM and visuospatial short-term memory were significantly 

related to intelligence, while verbal short-term memory did not (Giofrè, Mammarella, & 

Cornoldi, 2013).  

 Relationship between academic geometry, working memory and intelligence. 

Academic geometry can be supported by WM in various ways. It typically involves retaining 

and manipulating different types of information. Giofrè, Mammarella, Ronconi, and coauthors 

(2013) found WM involved in explaining the variance in academic achievement in a geometry 
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task in 12
th

 and 13
th

-graders. They found, for example, that VSWM explains a significant 

portion of the variance in geometrical performance and mediates the relationship between the 

intuitive geometry task proposed by Dehaene and coauthors (2006) and academic 

achievement in geometry. VSWM only mediated some aspects of the intuitive geometry task, 

however (i.e. the manipulation of symmetrical figures, chiral figures, metric properties and 

geometrical transformation), while other aspects (i.e. topology, Euclidean geometry, and 

geometrical figures) were related to academic achievement in geometry, but were not 

mediated by VSWM tasks. The variance in academic achievement in geometry explained by 

the predictors was also relatively low (i.e. 14%). Unfortunately, the study considered only a 

few predictors and did not include a measure of verbal WM and reasoning. Academic 

geometry might also be supported by verbal WM, which could be involved in maintaining the 

verbal information needed to solve a geometrical problem (i.e. the text describing a problem, 

procedures, formulas, and so on). Similarly, reasoning abilities could be especially important 

to solving geometrical problems. In fact, other factors may be involved in academic 

achievement in geometry (see Aydın & Ubuz, 2010), such as verbal WM or reasoning 

abilities (Giofrè, Mammarella, Ronconi, et al., 2013).  

A role for VSWM in success in geometrical tasks is also indirectly supported by the 

study by Mammarella, Giofrè and coauthors (2013), who found that children with symptoms 

of non-verbal learning disabilities (NLD), whose impaired VSWM has been amply 

documented (e.g. Mammarella & Cornoldi, 2013), failed in intuitive geometry tasks (Dehaene 

et al., 2006). Here again, this study suffers from the limitation that the authors did not 

consider other variables potentially correlated with the intuitive geometry task. It could 

therefore be argued that the reason why these children with NLD symptoms performed poorly 

in the intuitive geometry task was because it is similar to some non-verbal intelligence tests in 

which these children also fail. 
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Background and aims of the present study 

The present study was devoted to examining the relationship between intelligence, 

WM and geometry (both intuitive geometry and school achievement in geometry). Previous 

research on the relationship between geometry and VSWM in adolescents showed: that 

VSWM, and ‘active’ VSWM in particular, directly predicted academic achievement in 

geometry; that intuitive geometry affected academic achievement in geometry; and that 

children with NLD have problems with intuitive geometry tasks (Giofrè, Mammarella, 

Ronconi, et al., 2013; Mammarella, Giofrè, et al., 2013). These earlier studies did not consider 

verbal WM tasks or measures of intelligence, however, offering only a partial view of the 

cognitive factors underlying geometrical competence.  

In the present study, we tried to make up for these limitations and explore the nature of 

the relationship between WM, intelligence and geometry (both intuitive and academic 

achievement in geometry) in 4
th

- and 5
th

-grade schoolchildren. We chose to consider 4
th

- and 

5
th

-graders because this age group coincides with the children’s first crucial impact with 

geometry at school, which involves an important transition associated with a broad mental 

reorganization, making it particularly appropriate for studying the relationship between 

different aspects of WM, intelligence (see Demetriou et al., 2013 on this point) and learning 

outcomes. It also enabled us to draw on the findings of a previous study (Giofrè, Mammarella, 

& Cornoldi, 2013), in which we were able to collect WM and intelligence measures in the 

same sample of children. 

The first aim of the present study was to elucidate the relationship between academic 

achievement in geometry, intuitive geometry, WM and intelligence using the structural 

equation modeling (SEM) approach. In a previous study on adolescents by Giofrè and co-

authors (Giofrè, Mammarella, Ronconi, et al., 2013), active VSWM was the best predictor of 

geometrical achievement. We consequently hypothesized that active WM would predict a 

large proportion of the variance in geometrical achievement in younger children too, while the 
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passive component would not. We also expected to find both WM and intelligence strongly 

related to academic achievement in geometry, and predicted that the contributions of WM and 

intelligence could be separated. 

Our second aim was to shed light on intuitive geometry and on the task proposed by 

Dehaene and collaborators (2006), analyzing to what extent this task predicts academic 

achievement in geometry over and above the contribution of intelligence. In fact, Giofrè, 

Mammarella, Ronconi, et al., (2013) found performance in this task significantly related to 

academic achievement in geometry, but they did not measure intelligence, and the g-factor 

may have an important role in solving geometrical problems, irrespective of any instruction. 

The g-factor may be, in fact, implicit in the task proposed by Dehaene et al. (2006) for 

measuring intuitive geometry skills. This intuitive geometry task involves finding the odd 

figure out across a number of distractors, so it may be that this task predicted a part of the 

variance in academic achievement in geometry in the study by Giofrè and co-authors because 

reasoning abilities related with fluid intelligence were also involved (Giofrè, Mammarella, 

Ronconi, et al., 2013). We therefore examined whether the contribution of intuitive geometry 

to academic achievement in geometry is still significant after intelligence has been taken into 

account.  

In the present study we first tested four models concerning the relationship between 

intelligence (the g-factor), WM, intuitive geometry and academic geometry (see Figure 1). 

The first model was based on previous analyses on the structure of WM and its relationship 

with intelligence (Giofrè, Mammarella, & Cornoldi, 2013), and with geometry (Giofrè, 

Mammarella, Ronconi, et al., 2013). In this first model, the short-term verbal (STM-V) and 

short-term visuospatial (STM-VS) factors were regressed on WM, the g-factor was regressed 

on STM-V, STM-VS, and WM, the intuitive geometry factor was regressed on the g-factor, 

and geometrical achievement (GEO-ach) was regressed on the g-factor and on the intuitive 

geometry factor (I-GEO) because previous findings had suggested that the intuitive geometry 
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task predicted a significant portion of the variance in academic achievement in geometry 

(Giofrè, Mammarella, Ronconi, et al., 2013). In our second model, we eliminated the direct 

path from I-GEO to GEO-ach, based on the assumption that the variance explained in GEO-

ach and, attributable to I-GEO was explained by the g-factor instead. In model 3, we included 

the direct effect of WM on GEO-ach to see whether intelligence explained a portion of the 

variance in GEO-ach over and above the effect of WM. In model 4, we included a path from 

WM to I-GEO to see whether WM explains a portion of the variance in I-GEO, over and 

above the effect of intelligence. We also ran a series of regression analyses to shed light on 

the unique and shared contributions of WM, intelligence, and intuitive geometry to explaining 

the variance in academic achievement in geometry.  

 

Figure 1 about here 

Method 

Participants 

We collected data for 183 participants, but 7 of them had extremely low scores for Raven’s 

colored progressive matrices (below the 5th percentile of the Italian norms Belacchi, Scalisi, 

Cannoni, & Cornoldi, 2008) so we preferred to exclude them from the analysis. A total of 176 

typically-developing children (96 male, Mage=9.27, SD=.719 months), in 4
th

 (n=72) and 5
th

 grade 

(n=104) were thus included in the final sample. The children were attending schools in the urban 

area of two large cities of a southern Italian Region. The children were almost all (94%) from 

Italian families, and the remaining 6% had lived in Italy for at least three years and had no difficulty 

understanding the instructions on the tasks. The children were tested from January to March.  
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Materials 

Geometry 

Intuitive geometry task (I-GEO; Dehaene et al., 2006). Items consisting of arrays of 6 

images, 5 of which instantiated the desired concept, while one violated it. For each stimulus, 

participants were asked to click on the odd one out (Figure 2). Items were randomly presented and 

remained on the screen until participants gave an answer. Forty-three items were presented, split 

into 7 categories (Figure 2): topology (e.g. closed vs. open figures), Euclidean geometry (e.g. 

concepts of straight lines, parallel lines, etc.), geometrical figures (e.g. squares, triangles, and so 

on), symmetrical figures (e.g. figures showing horizontal or vertical symmetrical axes), chiral 

figures (in which the odd-one-out was a mirror image), metric properties (e.g. the concept of 

equidistance), and geometrical transformation (e.g. figure translations and rotations).  

Academic achievement test. Tasks were taken from the standardized geometrical 

achievement test (Mammarella et al., 2012). In the Geometrical problems (GEO-P) task, children 

were asked to solve 9 geometrical problems. They had to calculate the area of complex figures, or 

solve complex geometrical exercises and problems. An example of a problem is, “A rectangle has 

one side that is 10 cm long, while the other side is twice as long; calculate the perimeter”. The test 

lasted approximately 30 minutes. For each problem, children scored 2 for the right answer, 1 for a 

partial correct answer, and 0 for a wrong or no answer. The final score was the sum of the scores for 

each problem. In the Geometrical questions (GEO-Q) task, children were asked to answer 8 

multiple-choice geometrical questions concerning geometrical concepts or definitions (e.g. concave, 

segment, goniometer, and parallelogram). An example of a question is: “What is a segment? a) A 

portion of a line with an origin and tending to infinity; b) A portion of a line limited by two points; 

c) A portion of a line with no origin and tending to infinity. The test lasted approximately 10 

minutes. The score was the sum of the correct answers. 

Figure 2 about here 
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General cognitive ability (g) 

Colored progressive matrices (CPM; Raven, Raven, & Court, 1998). In this test, the 

children were asked to complete a geometrical figure by choosing the missing piece from among a 

set of options. The test consisted of 36 items divided into three sets of 12 (A, AB, and B). The test 

lasted approximately 20 minutes. The score was the sum of the correct answers.  

Primary mental ability - reasoning (PMA-R; Thurstone & Thurstone, 1963). This task 

assesses the ability to discover rules and apply them to verbal reasoning. It is a written test in which 

children had to choose which word from a set of four was the odd one out, e.g. cow, dog, cat, cap 

(the answer is cap). The test included 25 sets of words and children were allowed 11 minutes to 

complete it. The score was the sum of the correct answers. 

Primary mental ability - verbal meaning (PMA-V; Thurstone & Thurstone, 1963). In this 

written test, the children had to choose a synonym for a given word from among four options, e.g. 

small: (a) slow, (b) cold; (c) simple; (d) tiny (the answer is tiny). The test included 30 items and had 

to be completed within 12 minutes. The score was the sum of the correct answers. 

Working memory tasks 

Verbal short-term memory (STM-V) 

Simple span tasks (syllable span task, SSPAN; and digit span task, DSPAN). These tasks 

examined short-term memory involving the passive storage and recall of information (Cornoldi & 

Vecchi, 2003). Syllables or digits were presented verbally at a rate of 1 item per second, proceeding 

from the shortest series to the longest (from 2 to 6 items). There was no time limit for recalling the 

syllables or digits in the same, forward order. The score was the number of digits or syllables 

accurately recalled in the right order.  
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Visuospatial short-term memory (STM-VS) 

Matrices span tasks (derived from Hornung et al., 2011). Short-term visuospatial storage 

capacity was assessed by means of two location span tasks. The children had to memorize and 

recall the positions of blue cells that appeared briefly (for 1 second) in different positions on the 

screen. After a series of blue cells had been presented, the children used the mouse to click on the 

locations where they had seen a blue cell appear. The number of blue cells presented in each series 

ranged from 2 to 6. There were two different conditions: in the first, the targets appeared and 

disappeared on a visible (4×4) grid in the center of the screen (matrices span task, grid [MSTG]); in 

the second, the targets appeared and disappeared on a plain black screen with no grid (matrices 

span task, no grid [MSTNG]). The score was the number of cells accurately reproduced in the right 

order.  

Active working memory 

Categorization working memory span (CWMS; Borella, Carretti, & De Beni, 2008; De 

Beni, Palladino, Pazzaglia, & Cornoldi, 1998). The material consisted of series of word lists 

containing four words of high-medium frequency. The series included a variable number of 

lists (from 2 to 5). The children were asked to read each word aloud and to press the space bar 

when there was an animal noun. After completing each series, they had to recall the last word 

in each list, in the right order of presentation. The score was the overall number of accurately 

recalled words. 

Listening span test (LST; Daneman & Carpenter, 1980; Palladino, 2005). The children 

listened to sets of sentences arranged into series of different lengths (containing from 2 to 5 

sentences) and they had to say whether each sentence was true or false. After each series had been 

presented, the children had to recall the last word in each sentence, in the order in which they were 

presented. The score was the number of accurately recalled words.  

Visual pattern test active (VPTA; Mammarella et al., 2006; Mammarella, Borella, Pastore, 

& Pazzaglia, 2013). This task tests the ability to maintain and process spatial information 
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simultaneously presented on a computer screen. Eighteen matrices, adapted from the Visual Pattern 

test (Della Sala, Gray, Baddeley, & Wilson, 1997), of increasing size (the smallest with 4 squares 

and 2 cells filled, the largest with 14 squares and 7 cells filled) contained a variable number of cells 

to remember (from 2 to 7). After each matrix had been shown for 3 seconds, the children were 

presented with a blank test matrix on which they were asked to reproduce the pattern of the 

previously-seen cells by clicking in the cells corresponding to the same positions but one row lower 

down (the bottom row in the presentation matrix was always empty). The score was the number of 

accurately placed cells. 

Procedure 

The tasks were administered as part of an experimental battery designed to explore WM, 

intelligence and academic achievement; some of the results emerging from the project that focused 

specifically on the relationship between intelligence and WM have been presented elsewhere 

(Giofrè, Mammarella, & Cornoldi, 2013). Participants were tested in the classroom in two group 

sessions lasting approximately 1 hour each (sessions 1 and 2), and during individual sessions lasting 

approximately 90 min in a quiet room away from the classroom (session 3). Participants were first 

administered the general cognitive abilities (session 1), then the geometry achievement tasks 

(session 2) and finally the intuitive geometry and the WM tasks (session 3). 

Tests on general cognitive ability were administered in a fixed order (CPM, PMA-V, PMA-

R) in the first collective session; the geometrical tasks were also administered in a fixed order 

(geometrical problems and geometrical questions) in the second collective session. During the 

individual sessions, the tasks were presented in the following fixed order: the intuitive geometry 

task; the syllable span task; the matrix span task, with grid; the visual pattern test, active version; 

the categorization working memory span task; the number span task; the matrix span task, no grid; 

and the listening span task. All these tasks were presented on a 15” laptop and were programmed 

using E-prime II. Each task began with two training trials. The partial credit score was used for WM 
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(see Conway et al., 2005, for details). As the procedure, scoring systems and rationale for the WM 

and intelligence tasks have already been reported elsewhere (Giofrè, Mammarella, & Cornoldi, 

2013), we focus here on the geometry tasks. 

Results 

Statistical analyses  

The assumption of multivariate normality and linearity was tested using the PRELIS 

package and all the CFA and SEM analyses were estimated with the LISREL 8.80 software 

(Jöreskog & Sörbom, 2002, 2006). Individual scores from any variable that were more than 3 

standard deviations from the mean were defined as univariate outliers. Fifteen values, i.e. 3 for the 

PMA reasoning, 1 for the digit span task, 1 for the categorization WM span, 1 for the listening span 

test, and 9 for the intuitive geometry tasks (0.66% of the total) were found to be univariate outliers 

according to this criterion, and were replaced with a value corresponding to 3 standard deviations 

from the appropriate mean (Tabachnick & Fidell, 2007).  

The measure of relative multivariate kurtosis was 1.03. This value can be considered 

relatively small, so the estimation method that we chose (maximum likelihood) is robust against 

several types of violation of the multivariate normality assumption (Bollen, 1989).  

Model fit was assessed using various indices following the criteria suggested by Hu and 

Bentler (1999). We considered the comparative fit index (CFI), the non-normed fit index (NNFI), 

the standardized root mean square residual (SRMR), and the root mean square error (REMSEA). The 

chi-square difference (χ
2

D) and the Akaike Information Criterion (AIC) were also used to compare 

the fit of alternative models (Kline, 2011). To take the children’s different ages and school grades 

into account a partial correlation analysis was conducted with age in months and grade partialled 

out. Partial correlations were used in all the analyses. Descriptive statistics, correlations and 

Cronbach’s alpha values are shown in Table 1.  
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Table 1 about here 

Measurement model 

We used a two-step modeling approach. In the first step, Model 0, we estimated a CFA 

measurement model for testing the relationship between g, STM-V, STM-VS, WM, GEO-ach, and 

I-GEO (Table 2). Note that I-GEO has only one indicator. We thus set the error variance for the 

intuitive geometry task (IGT) at .19 (1-Reliabilty) (see Kline, 2011). This model gave a good fit 

(Table 3). Table 2 shows a very strong correlation between the factors: the g-factor correlates 

closely with WM and I-GEO. The GEO-ach factor also correlates well with the g-factor and WM. 

We consequently decided to test other structural equation models. 

 

Table 2 about here 

Structural equation models 

Model 1. This model was based on previous findings on the relationship between WM and 

intelligence (Giofrè, Mammarella, & Cornoldi, 2013), and between geometry and WM (Giofrè, 

Mammarella, Ronconi, et al., 2013). The fit of the model was appropriate (Table 3; Figure 1). It 

should be noted that I-GEO was not significantly related to GEO-ach once the contribution of the g-

factor had been partialled out, probably due to the strong correlation between I-GEO and the g-

factor (Table 2).  

Model 2. Here we tried to improve the fit of the model by eliminating the path from I-GEO 

to GEO-ach (Figure 1). The model provided a good fit with the data, better than the previous model 

(Table 3), and showed that the path from I-GEO to GEO-ach is no longer significant after 

controlling for the g-factor. 
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Model 3. Here we hypothesized that active WM directly predicted a significant portion of 

the GEO-ach variance (Figure 1). When this pattern was included in the model, the model’s fit 

improved significantly. The path from the g-factor to GEO-ach was also no longer significant. This 

is probably due to the strong correlation between WM and the g-factor (Table 3), and the 

relationship between the g-factor and GEO-ach is likely to be largely attributable to the variance 

shared between WM and the g-factor (Figures 1 and 3). This model had a better fit than any of the 

other models (i.e. had a lower AIC and the fit was significantly better; Table 3). 

Model 4. We also included a path from WM to I-GEO in this model (Figure 1). Its fit 

changed very little and did not improve significantly (Table 3). The relationship between WM and 

I-GEO was not significant either, so Model 3 was retained as our best-fitting model.  

 

Figure 3 about here 

Table 2 and 3 about here 

 

Multiple regressions 

In the final set of analyses, we used variance partitioning to examine the unique and 

shared portions of the variance explained in academic achievement in geometry. This gave us 

the opportunity to see the specific contribution of intuitive geometry to academic achievement 

in geometry. We conducted a series of regression analyses to obtain R
2
 values from different 

combinations of predictor variables in order to partition the variance. For each variable 

entering into the regression, inter-factor correlations were used for WM, g-factor, and 

intuitive geometry (see Unsworth, Spillers, & Brewer, 2010, for a similar procedure). We thus 

portioned the variance into unique and shared components (Chuah & Maybery, 1999). To 

make the analysis more straightforward, we opted to consider WM as a single construct (i.e. 

we entered STM-V, STM-VS and WM simultaneously). As shown in Table 4 and Figure 4, 
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we found that WM, g-factor and intuitive geometry shared a conspicuous portion of the 

variance explained in academic achievement in geometry. The variance explained by the 

combined contribution of WM and g-factor was also considerable. In particular, WM 

explained a large portion of the unique variance in academic achievement in geometry. After 

the contribution of WM had been taken into account, I-GEO only explained a residual portion 

of the variance, and when the g-factor was entered in the first step, I-GEO accounted for a 

very small portion of the variance. 

 

Table 4 about here 

Figure 4 about here 

Discussion 

The present study was devoted to elucidating the relationship between achievement in 

geometry, intuitive geometry, WM and intelligence using the structural equation modeling 

(SEM) approach.  

A first main issue concerned the relationship between WM, intelligence and 

geometrical achievement. An earlier study on adolescents (Giofrè, Mammarella, Ronconi, et 

al., 2013) found that active VSWM was a good predictor of geometrical achievement, but it 

did not systematically consider the role of the different WM components and intelligence. In 

the present study, by considering the role of different WM components separately, we were 

able to test the hypothesis that – as already seen for other measures of achievement in 

complex skills (e.g. Carretti et al., 2009) – active WM would predict a large portion of the 

variance in geometrical achievement in younger children too, while short-term storage 

components would not. Different measures of intelligence were also adopted in the present 

study to ascertain the role of intelligence, which may affect the acquisition of geometrical 

knowledge. By considering both WM and intelligence, we started with the hypothesis that 
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they are strongly related to academic achievement in geometry, and that the contributions of 

WM and intelligence can be separated (e.g. Conway et al., 2003).  

A second aim concerned the specific case of intuitive geometry and the task devised 

by Dehaene and collaborators (2006) to measure it, based on evidence supporting the 

distinction between intuitive geometry and academic achievement in geometry (Giofrè, 

Mammarella, Ronconi, et al., 2013; see also Clements, 2003, 2004; Dehaene et al., 2006; 

Izard & Spelke, 2009; Spelke et al., 2010). It had already been suggested that a relationship 

existed between intuitive geometry, academic achievement in geometry and visuospatial WM. 

This distinction was based on the fact that a previous study had found different aspects of 

VSWM significantly related to intuitive and academic geometry, since an active VSWM task 

predicted academic achievement in geometry, whereas the relationship between a passive 

VSWM task and academic achievement in geometry was mediated by the intuitive geometry 

task (Giofrè, Mammarella, Ronconi, et al., 2013).  

Concerning our first aim, we found WM strongly related to geometrical achievement 

in 4
th

 and 5
th

 graders, irrespective of their intelligence. The present results thus extend our 

previous findings and offer a better insight on the influence of WM on 4
th

- and 5
th

-graders’ 

achievement in geometry. As in Giofrè, Mammarella, Ronconi, et al. (2013), we found that an 

active WM factor – including both verbal and visuospatial measures – is directly related to 

academic achievement in geometry. Unlike earlier studies, in the present research we assessed 

not only visuospatial but also verbal WM, based on the observation that formal education in 

geometry involves both visuospatial and verbal materials, such as texts, definitions, formulas 

and theorems.  

As for the relationship between academic achievement in geometry, WM and intelligence, 

one of the strengths of the present research lies in that intelligence and WM explained a large 

portion of the variance in academic achievement. Compared with the study by Giofrè and co-

authors (Giofrè, Mammarella, Ronconi, et al., 2013), in which only 14% of this variance was 
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explained by VSWM, in the present study we found that WM and the g-factor explained about 40% 

of the variance in academic achievement in geometry. This may be attributable to the fact that: i) we 

included verbal as well as spatial measures of WM; ii) we considered academic achievement in 

geometry as a latent factor, thus reducing the effects of measurement errors.  

Despite the typically strong relationship identified between intelligence and academic 

achievement (e.g. Frey & Detterman, 2004), intelligence did not uniquely explain a significant 

portion of the variance in geometrical achievement in our final model. It is worth noting that the 

relationship between WM and intelligence has been previously documented (e.g. Engle et al., 

1999), and a conspicuous portion of the variance was shared amongst all the variables in the present 

study, particularly between WM and intelligence. Working memory is very important and many 

aspects of intelligence affecting geometrical achievement can be attributed to its contribution. 

Working memory may also support academic geometry by providing the cognitive recourses 

needed to solve a problem, by allowing the temporary storage and manipulation of stimuli in the 

verbal and visuospatial modalities, for instance. It has been shown that WM training may have 

effects on mathematical reasoning (e.g. Holmes, Gathercole, & Dunning, 2009) and that training 

based on visual-chunking representation accommodation, which is related to WM, is effective in 

improving performance on geometry in students with mathematical disabilities (Zhang et al., 2012). 

Therefore, we could hypothesize that the relationship between intelligence and geometry may 

increase in later phases of schooling as a function of the increasing quantity of reasoning requested. 

During primary school the typical geometry school curriculum is, in fact, mainly focused on issues 

strongly relying on WM like the acquisition of definitions and rules, figures manipulations and 

spatial simple transformations, and only in the secondary school children abstract reasoning and the 

construction of a proof are introduced.  

The fact that academic achievement in geometry is predicted by WM and intelligence, but 

the effect of intelligence becomes insignificant after adjusting for WM, is congruent with other 

results in the mathematical fields showing that WM - not intelligence - is the best predictor of 
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literacy and numeracy (Alloway & Alloway, 2010), and math ability (Passolunghi, Vercelloni, & 

Schadee, 2007). It has also been demonstrated that WM and intelligence are both important to 

various aspects of mathematics (Träff, 2013), but the portion of variance uniquely attributable to 

intelligence is only very small. Such evidence reinforces the importance of WM in mathematics and 

geometry.  

Concerning the second aim of our study, we found that intuitive geometry does not predict 

geometrical achievement, but it is strongly related to intelligence. In the present study, different 

models were tested to elucidate the relationship between WM, the g-factor, and intuitive geometry, 

and the best model showed that, once the contributions of intelligence and WM had been taken into 

account, intuitive geometry did not mediate the relationship between WM and the variance in 

academic achievement in geometry. This finding indicates that intuitive geometry is related to 

intelligence, and particularly to the results obtained with Raven’s colored progressive matrices 

(r=.43; Table 1), which are arguably a good measure of fluid intelligence (e.g. Jensen, 1998).  

Compared with previous studies (e.g. Giofrè, Mammarella, Ronconi, et al., 2013), we found 

that intuitive geometry also shared a large portion of variance with intelligence and with different 

measures of WM. Our results showed that active WM is related indirectly to intuitive geometry, 

while intelligence is directly related to it. The intuitive geometry task proposed by Dehaene and co-

authors (2006) seems to involve reasoning processes, which are needed to decide which of a set of 

six simple shapes is the odd one out, and completing this task also calls upon abilities related to 

intelligence (Cattell, 1971). Some of the aspects involved in completing the intuitive geometry task 

(e.g. geometrical transformation) are also important in solving the Raven non-verbal intelligence 

test used in the present study. The intuitive geometry task used here may therefore demand a 

component closely related to fluid intelligence, although it seems also to involve specific 

geometrical intuitions (e.g. symmetry and topology) that seem substantially independent from the 

construct of intelligence. In fact, a portion of the variance of the intuitive geometry task was not 

shared with the intelligence tasks.  
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The present study also shows that intuitive geometry is related but separable from academic 

achievement in geometry. However, intuitive and academic achievement in geometry – similarly to 

what happens for the number system (Dehaene, Bossini, & Giraux, 1993; Halberda et al., 2008; 

Piazza, Pica, Izard, Spelke, & Dehaene, 2013) – can mutually influence one another over the course 

of mathematics instruction. The role of education could also explain why children participating to 

the present study had a lower performance in the intuitive geometry task compared to children of 

the same age participating to other studies (e.g. Izard & Spelke, 2009). This result could be 

attributed to the modest importance given to geometrical instruction in many Italian schools 

(Giofrè, Mammarella, Ronconi, et al., 2013).  

It is worth noting that, unlike previous research (Giofrè, Mammarella, Ronconi, et al., 2013) 

in which the intuitive geometry task was separated into two factors, only a single factor of intuitive 

geometry was considered in the present study. This was done because further analyses generated no 

relevant additional information. Further research is therefore needed to clarify whether or not a 

single- or a multi-factor structure of intuitive geometry is tenable across different age groups (e.g. 

Izard & Spelke, 2009).  

Future studies should also include other cognitive measures that might be related to 

geometrical achievement, and mental rotation tasks in particular, given that geometry is also related 

to the capacity to mentally rotate stimuli (Zhang et al., 2012), and it has been argued that the 

capacity to manipulate and rotate objects is a component of intelligence (Johnson & Bouchard, 

2005). Further research should also analyze how WM and intelligence may change during an 

individual’s development and the geometry curriculum places different demands on different school 

grades. This is because reasoning becomes crucial at higher levels of geometrical education and, 

with time, reasoning ability may become more important to academic achievement in geometry than 

WM.  

Educational implications could be drawn from our findings, which could provide teachers 

and educators with information on the cognitive processes involved in geometrical achievement. 
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For example, knowing that WM, and active WM in particular, is involved in academic geometry 

could help teachers to propose activities and teach strategies designed to avoid overloading 

children’s WM capacity (Gathercole, Alloway, Willis, & Adams 2006). There are many reasons for 

recommending that schools pay particular attention to children’s achievement in geometry. 

Nowadays, geometry is included in the mathematical curriculum all over the world, and in 

international assessments like the PISA (OECD, 2010). It has been suggested that PISA proficiency 

scores predict educational outcomes (Fischbach, Keller, Preckel, & Brunner, 2012) and that 

teaching geometry has a positive effect in helping to improve spatial intelligence (Gittler & Glück, 

1998). Geometry and geometrical problem-solving are needed in the complex society in which we 

live. A nation’s wellbeing depends on its capacity to excel in STEM fields, which are strongly 

related to mathematics and geometry. The study of geometry (e.g. trigonometry) is important 

because people’s cognitive abilities are largely reliant on a society’s mental cognitive artifacts 

(ways of thinking used to reason about phenomena; see Hunt, 2012).  

In conclusion, the present study gives some important insight on the relationship between 

academic achievement in geometry and underlying cognitive factors. In particular, we highlighted 

the major contribution of WM to geometrical achievement, regardless of intelligence, and the 

specific role of intuitive geometry (as measured by the task proposed by Dehaene et al., 2006), 

shedding important light on an area - geometry - which has yet to be thoroughly explored by 

psychological research.  
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Table 1 

Correlations, means (M), standard deviations (SD), and reliabilities for all the measures 

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 

g              

1 CPM — .43 .44 .25 .13 .29 .32 .31 .22 .33 .29 .30 .42 

2 PMA-R .45 — .55 .23 .17 .39 .39 .32 .33 .17 .26 .15 .35 

3 PMA-V .45 .62 — .23 .21 .41 .42 .46 .36 .31 .12 .21 .42 

STM-V              

4 SSPAN .26 .28 .29 — .53 .26 .37 .37 .36 .23 .25 .22 .25 

5 DSPAN .14 .20 .25 .55 — .26 .33 .38 .45 .25 .21 .15 .21 

STM-VS              

6 MSTG .30 .40 .40 .26 .26 — .72 .30 .31 .37 .20 .08 .31 

7 MSTNG .33 .40 .43 .36 .32 .72 — .33 .30 .30 .15 .12 .36 

WM              

8 CWMS .32 .38 .51 .41 .40 .31 .33 — .53 .28 .26 .19 .31 

9 LST .25 .40 .45 .40 .47 .32 .30 .57 — .37 .28 .20 .20 

10 VPTA .33 .19 .32 .25 .26 .38 .30 .30 .38 — .21 .24 .37 

Geometry              

11 GEO-P .30 .28 .15 .26 .22 .21 .17 .27 .29 .21 — .32 .23 

12 GEO-Q .32 .25 .33 .26 .18 .10 .16 .25 .28 .26 .33 — .17 

13 IGT .43 .37 .42 .25 .21 .32 .38 .32 .22 .37 .24 .20 — 

M 28.26 16.32 20.73 41.80 46.30 39.50 29.53 26.59 27.43 59.81 5.82 4.09 25.91 

SD 4.93 4.03 7.34 8.58 8.08 10.14 10.03 6.59 6.76 11.75 3.47 1.82 5.99 

Reliability .82 .78 .93 .69 .70 .83 .83 .77 .83 .91 .59 .50 .81 

 

Note. Zero order correlation below and partial correlation (controlling for age and school grade) 

above the diagonal; all coefficients ≥ .15 are significant at .05 level; CPM=colored progressive 

matrices; PMA-R=primary verbal abilities, reasoning; PMA-V, primary mental abilities, verbal; 

SSPAN, syllable span; DSPAN, number span; MSTG, matrix span task, grid; MSTNG, matrix span 

task, no-grid; CWMS, categorization working memory span; LST, listening span task; VPTA, 

visual pattern test, active; GEO-P, geometrical problems; GEO-Q, geometrical questions; IGT, 

intuitive geometry task; Reliability, Cronbach’s alpha. 
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Table 2 

Factor loadings and inter-factor correlation for the measurement model 

 

Factor loading matrix      

  STM-V STM-VS WM g Math Literacy 

1 CPM .62
*
      

2 PMA-R .69
*
      

3 PMA-V .76
*
      

4 SSPAN  .71
*
     

5 DSPAN  .74
*
     

6 MSTG   .81
*
    

7 MSTNG   .89
*
    

8 CWMS    .71
*
   

9 LST    .71
*
   

10 VPTA    .49
*
   

11 GEO-P     .61
*
  

12 GEO-Q     .53
*
  

13 IGT      .90
F
 

Inter-factor correlation matrix      

 g 1      

 STM-V .40
*
 1     

 STM-VS .63
*
 .51

*
 1    

 WM .71
*
 .74

*
 .54

*
 1   

 GEO-ach .52
*
 .50

*
 .29

*
 .61

*
 1  

 I-GEO .63
*
 .35

*
 .44

*
 .46

*
 .40

*
 1 

 

Note. CPM=colored progressive matrices; PMA-R, primary mental abilities-reasoning; PMA-V, 

primary mental abilities-verbal; SSPAN, syllable span; DSPAN, number span; MSTG, matrix span 

task, grid; MSTNG, matrix span task, no-grid; CWMS, categorization working memory span; LST, 

listening span task; VPTA, visual pattern test, active; IGT, intuitive geometry task; GEO-P, 

geometrical problems; GEO-Q, geometrical questions; STM-V, verbal short-term memory; STM-

VS, visuospatial short-term memory; WM, working memory; I-GEO, intuitive geometry; g, g 

factor; GEO-ach, geometrical achievement. 

*
p<.05. 

F
=Fixed. 
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Table 3 

Fit indices for the measurement model and structural equation models for relationships 

between WM, g and geometry  

 

 

Model χ
2

M(df) χ
2

D(df) RMSEA SRMR CFI NNFI AIC 

Measurement model      

0 76.393(51)
a
 — .05 .05 .98 .97 154.00 

Structural equation models      

1 88.922(58)
b
 — .05 .06 .98 .97 149.82 

2 89.059(59)
c
 0.14(1)

d
 .05 .06 .98 .97 148.27 

3 81.526(58)
e
 7.53(1)

f
 .05 .05 .98 .98 145.40 

4 80.915(57)
g
 0.61(1)

h
 .05 .05 .98 .97 147.41 

 

 

Note. χ
2

M=model chi-square, χ
2

D=chi-square difference, RMSEA=root mean square error of 

approximation, SMSR=standardized root mean square residuals, CFI=comparative fit index, 

NNFI=non-normed fit index, AIC=Akaike Information Criterion.  

a
p=.012. 

b
p=.006. 

c
p=.007. 

d
p=.711. 

e
p=.023. 

f
p=.006. 

g
p=.020. 

h
p=.435.  
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Table 4 

Regression analysis predicting academic achievement in geometry from WM, g, and I-GEO. 

 

Step Estimate Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

1 R
2
 .381

a
 .381

a
 .269

b
 .269

b
 .158

c
 .158

c
 

2 R
2

change .043
ab

 .024
ac

 .155
ba

 .009
bc

 .247
ca

 .120
cb

 

3 R
2

change .005
abc

 .024
acb

 .005
bac

 .151
bca

 .024
cab

 .151
cba

 
 

Note. 
a
working memory (WM). 

b
g-factor (g). 

c
intuitive geometry (I-GEO). 
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Figure 1. Structural models of the relationship between WM, g and geometry. Paths significant at 

.05 level are indicated by solid lines. STM-V, verbal short-term memory; STM-VS, visuospatial 

short-term memory; WM, working memory; I-GEO, intuitive geometry; g, g-factor; GEO-ach, 

geometrical achievement.   
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Figure 2. Examples of each geometrical category in the intuitive geometry task (Dehaene et al., 

2006). The odd one out is shown at the top in each image for easy reference, but in the real test the 

odd one out  was placed at random among the other five elements.
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Figure 3. Measurement model of the relationship between WM, g-factor and geometry. Paths 

significant at .05 level are indicated by solid lines and paths in gray are fixed. CPM=colored 

progressive matrices; PMA-R=primary verbal abilities, reasoning; PMA-V=primary mental 

abilities, verbal; SSPAN=syllable span; DSPAN=number span; MSTG=matrix span task, grid; 

MSTNG=matrix span task, no-grid; CWMS=categorization working memory span; LST=listening 

span task; VPTA=visual pattern test, active; GEO-P=geometrical problems; GEO-Q=geometrical 

questions; IGT=intuitive geometry task; STM-V=verbal short-term memory; STM-S=spatial short-

term memory; WM=working memory; g=g-factor; GEO-ach=geometrical achievement; I-

GEO=intuitive geometry.  
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Figure 4. Venn diagrams indicating the shared and unique variance explained in academic 

achievement in geometry by working memory (WM), the g-factor (g), and intuitive geometry 

(I-GEO).  
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