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Abstract

The Proportional, Integral, and Derivative (PID) controller is the most common control

algorithm in industry because of its simplicity, well-understood behaviour, and ease of

design. PID is a linear controller with trade-offs between performance and robustness

that cause performance compromises and a limited operating region in highly nonlinear

industrial systems, which require iterative tuning for each operating region. This process

is time-consuming, and the literature indicates that nonlinear PID controllers are a better

alternative. However, a nonlinear PID controller that is simple, model-free, and easy to

implement is required with an extensive analysis of stability.

This thesis proposes a novel Nonlinear PID (NLPID) controller using a unique set of nonlin-

ear gain functions that can improve performance and robustness and eliminate step input

derivative kicks, making the controller more energy efficient. The proposed controller is

tuned using a Particle Swarm Optimization (PSO) algorithm with an objective function

prioritising fast performance with minimum overshoot. An indicative stability analysis has

also been conducted through extensive simulations to justify the constraints region, which

allows for the determination of stable control gain parameters.

The proposed NLPID controller is simulated for a Nonlinear Continuous Stirred Tank Re-

actor (NCSTR) model with saturation and disturbances at various operating regions. The

proposed controller is also benchmarked against the conventional PID, two degrees of free-

dom PID, and Smith predictor PID controllers in the three linearised dynamics, which are,

a First Order Plus Time Delay (FOPTD), a Negative Gain Second Order Plus Time Delay

(NG-SOPTD), and a Non-minimum Phase SOPTD (NmP-SOPTD) systems. The bench-

marking results show that the proposed NLPID controller improves the performance in all

nominal systems, and improves robustness against parametric, additive, and multiplicative

uncertainties.

In summary, the proposed NLPID controller improves performance and robustness, ex-

panding the operating region of PID in nonlinear systems, using the proposed unique set of

nonlinear gain functions. The proposed controller provides an alternative control algorithm

to the literature that is model-free, nonlinear, and supported with an indicative stability

analysis. Future work can be done to expand the stability analysis with a rigorous mathem-

atical approach for linearisations and to a class of nonlinear systems and potentially include

an observer to improve robustness.
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Chapter 1

Introduction

The Proportional, Integral, and Derivative (PID) controller is a ubiquitous controller in

industry (Åström and Hägglund, 1995). The PID controller is commonly used because of

its simplicity, performance, and the ability to control systems without requiring knowledge

of the system dynamics (Åström and Hägglund, 1995). In addition, the PID controller is a

feedback control strategy that is useful in any single-input, single-output system, and it has

the flexibility to work in synthesis with any other control strategy or architecture (Åström

and Hägglund, 1995). This flexibility allows for improved control and robustness in various

systems, which has enlarged the literature on PID control (Åström and Hägglund, 1995).

This intuitive design is an advantage in linear systems, however, in nonlinear systems, the

controller design is no longer intuitive, and the engineers rely heavily on analytical tools

and heuristic methods to establish the design. Hence, plenty of algorithms and approaches

that can tune a PID controller have been developed with little performance improvements

(Åström and Hägglund, 1995; O’Dwyer, 2009; Abushawish, Hamadeh and Nassif, 2020).

The PID controller also possesses a single-degree-of-freedom structure that can focus either

on performance or regulation of the system (Åström and Hägglund, 1995; Åström, 2000;

Chen, J., Fang and Ishii, 2019). This also builds an additional problem to its tuning, re-

quiring trade-offs in performance and robustness (Åström and Hägglund, 1995; Åström,

2000; Chen, J., Fang and Ishii, 2019). These limitations of PID control are then amplified

by nonlinear systems and it becomes more complicated to achieve improved performance

(Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Bernstein, 2022; Chaturvedi, Ku-

mar, N. and Kumar, R., 2023).

1.1. Motivation

Nonlinear dynamics are more complex because they possess multiple equilibrium points,

each with distinct and independent qualitative local properties, meaning that a general

solution cannot be established (Hale and LaSalle, 1963; Slotine and Li, 1991; Khalil, 2002).

Other nonlinear properties include chaos and limit-cycles, which can cause problems in

control systems if left untreated (Hale and LaSalle, 1963; Khalil, 2002). Linear systems

do not suffer from these problems, because of the superposition property that allows one

to understand the global behaviour of the system from the local set of dynamics, which

makes the system more predictable (Hale and LaSalle, 1963; Khalil, 2002). However, non-

1
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linear systems describe the nature of the system more closely since linear systems are only

approximations of small regions of nonlinear systems (Hale and LaSalle, 1963; Slotine and

Li, 1991; Khalil, 2002). For that reason, linear controllers provide a satisfactory response

to nonlinear systems if the desired control is near the operating point and does not stave

away from it and enter a different region. If this occurs, the control system can be rendered

unstable or observe a major deterioration in performance. To resolve this using linear con-

trollers, different tunings are established for each operating region, which requires extensive

tuning trials and analysis (Khalil, 2002; Sinha and Mishra, 2018; Bernstein, 2022). This

approach requires linearisation of the nonlinear dynamics near an equilibrium point and as

a consequence, requires robust control design to maintain stability near that operating re-

gion (Khalil, 2002; Sinha and Mishra, 2018; Bernstein, 2022). However, the PID controller

suffers from trade-offs in performance and robustness and experiences major deterioration

in performance due to the prioritization in robustness. This requires improved performance

while maintaining robust control of nonlinear systems (Khalil, 2002; Sinha and Mishra,

2018; Bernstein, 2022).

Motivating Example:

One highly nonlinear system that is commonly seen in industry is the Nonlinear Continuous

Stirred Tank Reactor (NCSTR). This system is widely seen in the chemical industries and

its system dynamics are used as a benchmarking model in nonlinear control (Colantonio

et al., 1995; Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Chaturvedi, Kumar,

N. and Kumar, R., 2023). The NCSTR model possesses multiple equilibrium points and

engineers resort to linearising the system dynamics to the desired equilibrium points, which

then allows the engineer to design a linear control system (Colantonio et al., 1995; Krishna

et al., 2012). Because of its complex dynamics other control methods, such as sliding mode

control, feedback linearization, and model predictive control become more complicated to

implement (Harmon Ray, 1981; Colantonio et al., 1995). Hence, the most common control

approach for the NCSTR system is using the PID controller for a set of linearised dynamics

(Colantonio et al., 1995; Krishna et al., 2012). As a result, multiple tuning methodologies

have been developed for the PID controller to maintain fast regulation and achieve improved

performance, with little improvements made (O’Dwyer, 2009; Krishna et al., 2012). Because

of the little improvements made and the single degree of freedom structure of the PID

controller, the tuning and control problem is commonly focused on the system regulation

rather than performance (Krishna et al., 2012; So and Jin, 2018; Sinha and Mishra, 2018;

Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Chaturvedi, Kumar, N. and Kumar,

R., 2023). Due to these issues amplified by the complex NCSTR dynamics and its frequent

use in industry, it’s effective control has been an on-going problem (So and Jin, 2018;

Sinha and Mishra, 2018; Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Chaturvedi,

Kumar, N. and Kumar, R., 2023).
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The dimensionless nonlinear CSTR model is used to show the classical nonlinear control

problem where the dynamics are mathematically represented as follows (Harmon Ray, 1981;

Colantonio et al., 1995; So and Jin, 2018; Sinha and Mishra, 2018):

9x1ptq “ ´x1ptq ` Dap1 ´ x1ptqqe

»

—

—

—

–

x2ptq

1 ` x2ptq{γ

fi

ffi

ffi

ffi

fl

` d1ptq,

9x2ptq “ ´p1 ` βqx2ptq ` HDap1 ´ x1ptqqe

»

—

—

—

–

x2ptq

1 ` x2ptq{γ

fi

ffi

ffi

ffi

fl

` βuptq ` d2ptq,

yptq “ x2,

(1.1)

where H is the heat of reaction, Da is the Damkohler constant, γ “ E{pR ¨ Tf q, E is

the activation energy, R is the gas constant, β is the heat transfer coefficient, Tf is the

temperature of the inlet.

The example dimensionless NCSTR system possesses three equilibrium points that have

different stability properties (Harmon Ray, 1981; Colantonio et al., 1995; So and Jin, 2018;

Sinha and Mishra, 2018). The control problem that is solved for the NCSTR system is to

control the system so that the states change from the equilibrium point xA to xB . Then

the second change is from equilibrium point xB to xC . That is xA Ñ xB Ñ xC . The three

equilibrium points possess a completely different set of dynamical properties. This means

that linear controllers require different tuning to control the system for each equilibrium

point. The desired scenario is to control the system, regardless of the equilibrium point

with stability and robust performance results using a single tuning. To accomplish this,

the desired control approach must have adaptability for each equilibrium point, must be

model-free, and maintain the simplicity of use.

An alternative approach to control nonlinear systems is to use adaptive gains to establish

a nonlinear PID control form that is consistent and adaptive across all operating regions,

without the need for re-design (So and Jin, 2018; Pugazhenthi P, Selvaperumal and Vijayak-

umar, 2021). One simple method of adaptive gains is to incorporate nonlinear functions

that determine the gains of the PID controller, which can work for a larger variety of systems

when adaptive control methodologies provide plant-specific design (Zhang and Mao, 2017;

Frank, 2018; Slama, Errachdi and Benrejeb, 2019). Hence, there is an advantage to hav-

ing a nonlinear control algorithm that is not model-dependent and can generate adequate

performance and robustness for nonlinear systems with ease. For that reason studying the

nonlinear gains PID control strategy is useful, due to the well-known model-free nature of

the PID controller and due to the adaptive nature of nonlinearity to change the control

gains in response to the system in an easy-to-understand approach.
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1.2. Aims and Objectives

This thesis aims to develop a practical novel nonlinear PID controller that provides improved

performance to nonlinear systems with robustness against uncertainty and disturbances.

This thesis comprises a selection of objectives that aim at filling the identified gaps in the

literature as follows:

1. To design a novel NLPID controller.

2. To tune the parameters of the NLPID gains to meet specifications.

3. To test the proposed controller in a nonlinear system.

4. To benchmark the proposed controller against conventional control methods in linear

and nonlinear control problems.

5. To test the robustness of the proposed controller against various uncertainties.

1.3. Thesis Contributions

1. A novel nonlinear model-free PID control algorithm has been proposed and bench-

marked that shows improved performance and robustness in nonlinear systems.

2. An indicative stability analysis has been established for the proposed nonlinear PID

controller to justify its effectiveness and robustness.

3. The proposed nonlinear PID controller improves key PID limitations such as derivative

kicks, gain adaptation, and windup.

4. The proposed controller extends the operating region of the conventional PID con-

troller in the NCSTR problem so that it is not bounded within a linearised operating

region.

1.4. Thesis Outline

Chapter 2: An overview of the recent literature on feedback systems, PID control, its

limitations, and alternative control methods. In addition, this chapter presents the back-

ground of nonlinear systems and nonlinear controllers. Extensive literature on adaptive and

nonlinear PID control is also shown. Finally, the gap in the literature is identified together

with the scope and impact of this research.

Chapter 3: The introduction of a novel nonlinear PID controller is proposed in this

thesis as an alternative control method. An extensive simulations-based indicative stability

analysis of the proposed controller is also shown in this chapter. The improvements that

the proposed NLPID controller provides to the fundamental limitations of PID are also

shown.

Chapter 4: The performance, disturbance rejection, and operating region capacity of the
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proposed controller are shown for the nonlinear CSTR model. In addition, the bench-

mark against the PID, two-degree-of-freedom PID, and Smith Predictor PID controllers is

shown for various plant models. The plant models included are a First Order Plus Time

Delay (FOPTD), a Negative Gain Second Order Plus Time Delay (NG-SOPTD), and a

Non-minimum Phase SOPTD (NmP-SOPTD) model. Finally, the stability regions of the

proposed controller are also shown for each plant model.

Chapter 5: Robustness simulations against various types of uncertainty are shown for the

proposed NLPID controller. The NCSTR model is simulated against parametric uncer-

tainty and incremental load disturbances to show the robustness of the proposed controller.

The FOPTD, NG-SOPTD, and NmP-SOPTD systems are simulated against parametric,

additive, and multiplicative uncertainties. This shows an extensive simulation-based testing

of the proposed NLPID controller for its robustness to deal with various uncertainties.

Chapter 6: Discussion, conclusions, and future work chapter shows a discussion of the

results, the performance, and robustness capabilities of the proposed NLPID controller. The

benchmarking results of the proposed controller are discussed together with the limitations

that have been observed. In addition, the conclusions are summarized for the overall thesis

and how this research has answered the key research aims and the contributions to the

literature gap, proposed in Chapter 2. Finally, future work is discussed and the potential

for future plans that can improve the proposed NLPID controller.
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Literature Review

2.1. Introduction

The advancements in modern technology have an increasing need for feedback control with

the future direction towards intelligent and autonomous systems. Control theory is a well-

established and multi-disciplinary research field that studies the interplay of feedback sys-

tems in an autonomous system. For that reason, control theory has tools and methods

available to promote industrial automation and advance autonomous technology. However,

the nonlinear nature of advanced technologies requires new developments and research

gaps in nonlinear and adaptive control. This means an increasing need for more intric-

ate and developed control algorithms that better deal with uncertainty, nonlinearity, and

time delays. This chapter shows the literature review conducted on the well-established

background of feedback control theory and control limitations. The limitations of feed-

back control in industry-facing uncertainties, the limitations of linear control, and inherent

nonlinear dynamics are also discussed. Different industrial methods that deal with those

control problems are also shown with a rigorous appeal to their limitations. This literature

review establishes the background of the thesis and the noticed gaps in the literature that

the contributions of this thesis are to fulfil.

2.2. Feedback Control

Feedback control theory is a long and well-established theory within the literature for both

linear and nonlinear systems. Figure 2.1 shows a graphical representation of a classical

simple feedback loop with the lines connecting the different blocks representing system

signals.

Controller Plant
`Set-Point Error System Input `

Disturbance

Output

Measurement

´

Figure 2.1: A classical feedback control strategy.
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The feedback control strategy relies on sensor measurements, providing superior control

response without assuming perfect system knowledge and relying on ideal conditions for

its successful function. The ability of feedback control to deal with uncertainties and dis-

turbances is why feedback is such a widespread control methodology (Chen, J., Fang and

Ishii, 2019; Bernstein, 2022). Feedback mitigates uncertainties in models and environ-

mental conditions through sensor measurements that inform the controller to make better

decisions. However, a limitation present in feedback are the inherent noisy signals in sensor

measurements and inconsistencies in the model parameters that can change the dynam-

ics of industrial systems (Boubaker, 2013; Mangera, Pedro and Panday, 2022; Bernstein,

2022). In essence, feedback control makes systems insensitive to external disturbances and

to parameter variations in the individual systems (Bernstein, 2022). A direct consequence

of feedback is that stable systems can become unstable, and unstable systems can become

stable (Bernstein, 2022). This consequence has inquired theorists and mathematicians to

develop stability tools to understand and analyse how parameter variations and uncertain-

ties may render the system unstable or deteriorate its performance (Åström and Hägglund,

1995; Isidori, 1995; Khalil, 2002; Chen, J., Fang and Ishii, 2019; Bernstein, 2022). This

brings the design of any feedback loop into an iterative process of analysis and design until

the response converges to as close of a solution as desired by the specifications (Slotine

and Li, 1991; Khalil, 2002). As a result, the fundamental problem of feedback is to an-

swer; how can one design a feedback control strategy influenced by model uncertainties and

unpredictable disturbances to maintain stability and desired performance (Bernstein, 2022)?

The control of feedback systems can be conducted in two major strategies, the error-based

controllers, and the model-based controllers (Cheng, L., 2021; Bernstein, 2022). The error-

based controllers have the advantage that they do not rely on the plant dynamics and as

a consequence, they are reactive control systems that are robust and can maintain stabil-

ity for large uncertainties and disturbances. However, they lack in performance in certain

cases, for which model-based controllers can be superior (Konstantopoulos and Baldivieso-

Monasterios, 2020; So, 2021; Bernstein, 2022). It is rarely the case that models are certain

and disturbances do not occur, as a result, model-based controllers rarely achieve the prom-

ised performance and are highly sensitive to disturbances and uncertainties (Boubaker, 2013;

Konstantopoulos and Baldivieso-Monasterios, 2020; So, 2021; Bernstein, 2022). This is a

limitation when applied to advanced technologies, which require advanced control strategies

that are practical and model-free. This increase in control demand and with the advance-

ments of information systems, there is an increasing need for nonlinear and adaptive control

methodologies that can increase the operational range and robustness of feedback systems

(Boubaker, 2013; Iqbal et al., 2017; Rehman, Petersen and Pota, 2017; Mo and Farid, 2019;

Konstantopoulos and Baldivieso-Monasterios, 2020; Bernstein, 2022).

However, it is also necessary to know the limitations of any control system that is designed
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to achieve a specific feedback response. There is well-documented literature on the design

limitations of any feedback controller, which is predominantly restricted by plant dynamics.

More specifically, the major concerns are when plants possess one or a combination of un-

stable poles, unstable (positive) zeros, and time delays (Åström and Hägglund, 1995; Chen,

J., Fang and Ishii, 2019). In addition, there is a fundamental performance vs robustness

trade-off to be considered that any control design cannot avoid (Åström and Hägglund,

1995; Chen, J., Fang and Ishii, 2019; So, 2021; Bernstein, 2022). These limitations are

inherent to both linear and nonlinear systems. To improve performance, adaptive and non-

linear control methods are commonly used, which can change the loop design according

to the conditions, to prioritise robustness during steady-state and prioritise performance

during the transient state (Iqbal et al., 2017; Rehman, Petersen and Pota, 2017; Mo and

Farid, 2019; So, 2021; Bernstein, 2022).

Robustness in Feedback Control

Stability robustness is a measure of how much uncertainty can the control system be able

to accommodate before reaching instability (Skogestad and Postlethwaite, 2001; Frank,

2018). The more robust a control system is, the better it can handle uncertainty (Skogestad

and Postlethwaite, 2001; Frank, 2018). In addition, performance robustness is defined

as a measure of the controller’s ability to accommodate uncertainty and maintain close

performance as that defined by the specification (Skogestad and Postlethwaite, 2001; Frank,

2018). It can be seen that the two definitions of robustness have to deal with how much

uncertainty the controller can accommodate to achieve a reliable performance or stability

(Skogestad and Postlethwaite, 2001; Frank, 2018). To achieve such a measure, one must

be able to model or predict the expected type of uncertainty and consider it as part of

the analysis process. The different types of uncertainties are (Skogestad and Postlethwaite,

2001):

• Model Uncertainty,

• Parametric Uncertainty,

• Sensor and Actuator Failure,

• Physical system constraints, and

• Changes in control objectives.

The different methods of modelling and representing parametric and model uncertainties

are well-developed and established within the literature. It is customary to model the uncer-

tainty in parameter estimations using parametric uncertainty, while unmodelled dynamics

are commonly modelled as additive or multiplicative or different forms of uncertainty (Sko-

gestad and Postlethwaite, 2001; Normey-Rico and Camacho, 2007; Zhang and Mao, 2017;

Frank, 2018; Parnianifard, Fakhfakh et al., 2021).
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2.3. Nonlinear Systems

Nonlinear systems are systems whose output response is not linearly dependent on the in-

puts provided into the system. This means that nonlinear systems are more difficult to

predict and understand when compared to linear systems that have linearly dependent in-

puts and outputs. Natural systems are inherently nonlinear, as a result, the mathematical

description of such systems possesses nonlinear dynamics. The mathematical models de-

scribe systems of interest using a set of ordinary differential equations with respect to their

time-dependent or state-dependent behaviour. The study of these systems begins from

the autonomous nonlinear equations, which form the pure dynamical properties without

considering external inputs to the system. The state-space representation of autonomous

nonlinear systems can be shown as (Hale and LaSalle, 1963; Khalil, 2002):

9xptq “ fpxptqq,

xp0q “ x0.

The solution of the nonlinear system (2.1) is admitted under a set of initial conditions x0

that determine the future states of the system, called the initial value problem. As a result,

system solutions must have continuous dependence on the initial conditions, globally or

locally in a defined continuous neighbourhood. In order for the nonlinear system Eq.(2.1)

to have global continuous dependence on initial conditions, the nonlinearity fpxq must be

Lipschitz continuous (Hale and LaSalle, 1963; Khalil, 2002). Lipschitz continuity is defined

as follows (Khalil, 2002):

Definition 2.3.1 (Lipschitz Continuity). A nonlinear function fp¨q is Liprschitz continuous

if it satisfies the condition:

||fpyq ´ fpxq|| “ K||y ´ x||. (2.1)

For some constant K, called the Lipschitz constant, and fp0q “ 0

Lipschitz is a broader definition of continuity and is necessary for the existence of solutions

of nonlinear initial value problems. Finding the solution to nonlinear systems is complex

and many can have multiple solutions that do not satisfy the convenient superposition

principle that linear systems possess (Hale and LaSalle, 1963; Khalil, 2002). As a result,

mathematicians and theorists have developed mathematical tools that can determine the

general behaviour of the system solutions, based on the knowledge of the system (Hale and

LaSalle, 1963; Khalil, 2002). A key element of nonlinear systems is to determine the states

that if an initial condition is defined in such state, then the future states of the system

naturally remain static. These points are called equilibrium points and the mathematical

definition of an equilibrium point is stated as follows (Khalil, 2002):

Definition 2.3.2 (Equilibrium Points). The equilibrium point xeq of a nonlinear system,
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defined as Eq.(2.1), is a state that satisfies the following equation:

9xptq “ fpxeqq “ 0. (2.2)

From the above definition, it can be seen that a nonlinear function fp¨q may admit multiple

equilibrium points xeq, which satisfy the equation. This is a major drawback in nonlinear

systems, since each equilibrium point may possess different dynamical properties, which can

cause various types of unpredictable, complex, and periodic behaviour (Hale and LaSalle,

1963; Khalil, 2002). To analyse the system behaviour and to visualise the equilibrium points,

phase-plane analysis can be used for both linear and nonlinear systems, which can help

intuitively understand the system behaviour (Hale and LaSalle, 1963; Khalil, 2002; Frank,

2018). The main limitation of phase-plane analysis is that it works for two dimensional

systems and cannot represent higher-order dynamics, which limits its application (Hale

and LaSalle, 1963; Khalil, 2002; Frank, 2018). Hence, stability tools are useful methods

for establishing the general solution trends near equilibrium points to determine the overall

behaviour of the system (Hale and LaSalle, 1963; Khalil, 2002). To state the stability

criteria of different systems it is critical to first define stability properties of an equilibrium

point. The stability definitions are as follows:

Definition 2.3.3 (Stability (Khalil, 2002)). The equilibrium point at the origin of a system

defined as Eq.(2.1) is:

• stable, if for each ϵ ą 0, there is a δ “ δpϵq ą 0 such that:

||xp0q|| ă δ ñ ||xptq|| ă ϵ,@t ě 0. (2.3)

• unstable, if it is not stable.

• asymptotically stable, if it is stable and δ can be chosen such that:

||xp0q|| ă δ ñ lim
tÑ8

xptq “ 0. (2.4)

The above definitions of stability determine the mathematical properties of the solutions

near the equilibrium states that can aid in understanding the overall system behaviour

without directly solving the system (Hale and LaSalle, 1963; Slotine and Li, 1991; Khalil,

2002). Stability criteria are then based on these fundamental definitions with different

requirements and constraints imposed to show stability or asymptotic stability (Hale and

LaSalle, 1963; Slotine and Li, 1991; Khalil, 2002). The key difference between the two

being that asymptotically stable systems are stable but also convergent on the equilibrium

state (Hale and LaSalle, 1963; Slotine and Li, 1991; Khalil, 2002). The most used criterion

to determine stability or asymptotic stability is the Lyapunov stability criterion that is a

sufficient condition for autonomous nonlinear systems, such as Eq.(2.1).
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Lyapunov theory utilises energy-type functions, such as V pxptqq, to determine stability.

Energy functions show that the system trajectories defined by the solutions near a stable

equilibrium have decreasing energy over time. Meaning that a stable equilibrium does not

provide additional energy into the system. As a result, Lyapunov stability is an overarch-

ing stability theorem that has many other stability criteria developed using that energy

principle, such as, small gain theorem, passivity and dissipativity, but also for specific non-

linearities the Circle and Popov criteria (Slotine and Li, 1991; Khalil, 2002). The Circle and

Popov criteria are also called in the literature as hyper-stability criteria. This is because

they are conservative sufficient conditions of stability, meaning that they predict instability

prematurely (Maddi, Guessoum and Berkani, 2014). Hence, resulting in a control design

that is restricted to smaller region of feedback stabilising controller gains (Slotine and Li,

1991; Khalil, 2002; Maddi, Guessoum and Berkani, 2014).

2.4. Nonlinear Control Theory

Nonlinear controllers are increasingly necessary for the effective control of complex systems

and for improving the operating region (Khalil, 2002; Iqbal et al., 2017; Mo and Farid, 2019;

Konstantopoulos and Baldivieso-Monasterios, 2020). Most nonlinear controllers use the

nonlinear dynamics that are underlying within the mathematical model of the system, with

the majority generating a control algorithm that relies on the Lie derivatives (Khalil, 2002;

Iqbal et al., 2017; Mo and Farid, 2019; Konstantopoulos and Baldivieso-Monasterios, 2020).

However, such nonlinear control algorithms are extremely demanding for the hardware

and they complicate the process of discretization for hardware implementation (Iqbal et

al., 2017; Konstantopoulos and Baldivieso-Monasterios, 2020). In addition, for feedback

linearization and Lie derivative approach control algorithm development, nonlinear systems

must have a nonlinear control affine model, which is described by system Eq. (2.5)-(2.6)

(Mo and Farid, 2019).

9xptq “ fpxptqq ` gpxptqqu, (2.5)

yptq “ hpxptqq. (2.6)

Feedback linearization is an effective and powerful control methodology that fully linearises

the dynamics of the system, without limiting the operating region of the system (Slotine and

Li, 1991; Khalil, 2002; Mo and Farid, 2019). However, to conduct feedback linearization,

it requires high order Lie derivative computations and it is necessary that the involutivity

condition holds for the system dynamics (Slotine and Li, 1991; Khalil, 2002; Mo and Farid,

2019). Moreover, feedback linearisation is sensitive to external disturbances and noisy

signals, which has significant implications for practical control systems (Slotine and Li,

1991; Khalil, 2002; Mo and Farid, 2019). This sensitivity to disturbance is because feedback
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linearization works for nonlinear control affine systems, which transform the control problem

into a linear control problem through the following control affine transformation (Slotine

and Li, 1991; Khalil, 2002; Mo and Farid, 2019):

uptq “
1

gpxq
pv ´ fpxqq. (2.7)

This means that the nonlinear function gpxq or in the case that it is a matrix Gpxq must

be invertible, which is an additional condition of the feedback linearization method. This

means that fpxq and gpxq are both continuous and differentiable. Using the control input

Eq.(2.7) cancels the nonlinearities, by utilising the system model and then defining a linear

controller v. If the system model is slightly different to the feedback linearization, it can

render the system unstable (Slotine and Li, 1991; Khalil, 2002; Frank, 2018; Mo and Farid,

2019).

The concept of adaptation is a very powerful nonlinear control scheme and is useful in

establishing a control algorithm that works for a large range of operating points (Zhou and

Doyle, 1998; Khalil, 2002; Zhang and Mao, 2017; Mo and Farid, 2019; Slama, Errachdi

and Benrejeb, 2019; Cheng, L., 2021). Adaptation prescribes gains dynamically through

utilising system identification that models the plant dynamics and accordingly assigns the

gains of the controller using an objective function criteria (Zhou and Doyle, 1998; Khalil,

2002; Zhang and Mao, 2017; Mo and Farid, 2019; Slama, Errachdi and Benrejeb, 2019;

Cheng, L., 2021). Adaptive control harnesses data collection technologies to establish the

gains actively making it a powerful tool for control of nonlinear systems, with a well-

developed literature and theory (Zhou and Doyle, 1998; Khalil, 2002; Zhang and Mao,

2017; Mo and Farid, 2019; Slama, Errachdi and Benrejeb, 2019; Cheng, L., 2021; Pesce,

Colagrossi and Silvestrini, 2023). The drawback in adaptive control are that it requires a

two-fold of the control structure that complicates the problem, which are gain adaptation

and system model identification (Zhou and Doyle, 1998; Khalil, 2002; Zhang and Mao,

2017; Slama, Errachdi and Benrejeb, 2019; Pesce, Colagrossi and Silvestrini, 2023).

These two problems are difficult to solve and convergence of the system model identi-

fication algorithm must also be reassured, while the gain adaptation relies on objective

function evaluations that may render the system unstable (Zhou and Doyle, 1998; Khalil,

2002; Zhang and Mao, 2017; Slama, Errachdi and Benrejeb, 2019; Pesce, Colagrossi and

Silvestrini, 2023). Due to the potential for the gains to establish an unstable control, robust

adaptive rules have also been studied and are well-established in the literature as it is a

well known issue in adaptive control (Zhou and Doyle, 1998; Khalil, 2002; Pesce, Colagrossi

and Silvestrini, 2023). In addition, adaptive control requires a large amount of reliable

data and the effectiveness of the control algorithm is directly related and has trade-offs
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between the data reliability and data filter processing time (Zhou and Doyle, 1998; Khalil,

2002; Zhang and Mao, 2017; Slama, Errachdi and Benrejeb, 2019; Pesce, Colagrossi and

Silvestrini, 2023). The adaptation rules and the system model identification algorithms rely

on expensive computations that can also take large and expensive hardware to implement in

practice (Zhou and Doyle, 1998; Khalil, 2002; Zhang and Mao, 2017; Mo and Farid, 2019;

Slama, Errachdi and Benrejeb, 2019; Cheng, L., 2021; Pesce, Colagrossi and Silvestrini,

2023). As a result, although adaptive control is a major corner stone of nonlinear control

theory, it is computationally expensive, it is dependent on reliable data and efficient filters.

This makes adaptive control the ideal resort for specific applications where the additional

cost of hardware is less concerning and priority is made on automation (Zhang and Mao,

2017; Mo and Farid, 2019; Slama, Errachdi and Benrejeb, 2019; Cheng, L., 2021; Pesce,

Colagrossi and Silvestrini, 2023).

2.5. The PID Controller

The Proportional, Integral, and Derivative (PID) controller is a well-established control

algorithm that is used in the majority of control applications (Åström and Hägglund, 1995;

Sung and Lee, 1996; O’Dwyer, 2009). It has three gains, which are tunable and have an

intuitive effect to the feedback system response, which makes them simple and effective

(Åström and Hägglund, 1995; Faccin and Trierweiler, n.d.; O’Dwyer, 2009). PID is an

error-based controller that takes the form of linearly combining the past errors (integration),

present errors (proportional), and the future estimates of error (derivative). The PID control

algorithm can be expressed in many forms, the most commonly used are the series form

and the parallel form (Åström and Hägglund, 1995; Sung and Lee, 1996). Figure 2.2 shows

the schematic of the parallel and series structures. Figure 2.2a shows the parallel structure

form where the three different gains are applied to the feedback error distinctly and the

three actions are added in a linear combination. Figure 2.2b shows the series structure with

the primary difference being the application of the proportional gain, which is applied as a

cascaded gain to the PID controller, influencing all the PID parameters simultaneously.
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ştf
0
ϵptqdt

d
dt

ki
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kd

`
ϵptq uptq

(a) The parallel structure.
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ştf
0
ϵptqdt

d
dt

1
Ti

Td

`
ϵptq uptq

(b) The series structure.

Figure 2.2: The schematic diagram of the parallel and series structures of the PID con-
troller.

In terms of robustness and flexibility, the parallel form PID controller is the most robust

and effective form, offering increased flexibility in the tuning (Åström and Hägglund, 1995;

Sung and Lee, 1996; O’Dwyer, 2009). This is because the parallel form combines the three

error aspects into three linearly independent vectors that decouples the effect of each gain,

making it more intuitive and flexible (Åström and Hägglund, 1995; Sung and Lee, 1996;

O’Dwyer, 2009). The transfer function and time-domain representations of the parallel

form PID control are given, respectively, as follows:

KPIDpsq “ kpc
` kic

1

s
` kdc

s, uPIDptq “ kpc
ϵptq ` kic

ż tf

0

ϵptq dt ` kdc
9ϵptq, (2.8)

where kpc , kic , and kdc are the proportional, integral, and derivative gains, respectively, ϵptq

is the feedback error and tf is the integration time. These gains serve as weights of im-

portance of the three key aspects of PID control, which mathematically are: proportional,

integral, and derivative. These three key aspects possess certain advantages and disadvant-

ages to the control algorithm, but also to the effect of the feedback response. Table 2.1

shows the respective effects on the feedback response, by increasing each PID gain.

Table 2.1: Effects of PID gains on feedback response (Åström and Hägglund, 1995).

Rise-Time Settling-Time Overshoot Steady-State Error Stability

Ò kp Decrease Small Increase Increase Decrease Degrade

Ò ki Small Decrease Increase Increase Major Decrease Degrade

Ò kd Small Decrease Decrease Decrease Small Changes Improve

These effects of the gains in the feedback response are intuitive and simple to understand,
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which also gives the ability for educated guesses and trial and error tuning of the controller.

However, there are some additional practical implications of using the integral and the de-

rivative of the feedback error. For example, all actuators have certain limits of operations,

this is not seen directly by the controller, since it only knows the feedback error. Hence,

when the actuator reaches its operational limits, it saturates and the controller keeps de-

manding for more. This can cause large actuator degradation and can potentially cause

damage. In addition, the integrator in effect is adding more errors, which are not corrected,

since the actuator can not handle the appropriate load, which in turn increases the control

demand. Effectively, the control signal increases continually and the more error it collects,

the longer it takes to reduce the control demand when the control input is corrected.

Another practical disadvantage is that all feedback measurements come from inaccurate

and noisy sensors. These sensors essentially cause small but rapid and random variations

in the signals, which are amplified by the derivative control. This noise amplification can

be seen in the following simple example.

Example 2.5.1. Assume a noise described by the following sinusoidal function:

nptq “ Asinpωtq. (2.9)

Take the derivative of npsq and we have:

9nptq “ Aωcospωtq. (2.10)

One can see that the larger ω is, the larger the derivative of the noise, multiplied by the

amplitude of the signal. △

This effectively shows that the amplitude of the derivative is directly proportional to the

frequency of the noise. As a result, PID controllers rely on filtering procedures for fully

robust PID control, to reduce signal noise. Moreover, this amplification effect also causes

large disturbing signals when a rapid step function is implemented as a set-point input.

This can also be shown by a simple example of a discrete-time derivative as follows.

Example 2.5.2. Suppose a step set point is implemented as an input to the system and

the feedback error becomes momentarily for n “ 0 as:

ϵn :“

$

’

&

’

%

k if n ą 1 ,

0 if n “ 0.

(2.11)

Take the forward Euler discrete derivative as:

dϵ

dt
“

ϵn`1 ´ ϵn
∆t

. (2.12)
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This then drives the value of the PID derivative to be as follows:

kd
ϵn`1 ´ ϵn

∆t
“ kd

k ´ 0

1.00001 ´ 1
, (2.13)

“ kd
k

0.00001
, (2.14)

“ kdk ˆ 105. (2.15)

This is a simplified example of a discrete-time derivative, where a simple step function can

generate a large derivative signal that causes significant issues to PID control. △

It can be seen from the example that the derivative generates a large derivative-kick signal.

Some remedies for the derivative kick are to generate a smooth set-point input that is not

a sharp step-function signal, effectively filtering the set-point input. One can see that in

practical applications, the derivative gain becomes slightly more complicated in terms of

stability, since the larger the derivative gain, the larger the undesirable side effects that

come with the derivative action. This means there is an interval of derivative gain value

that the controller can render the system unstable, forming a small interval in which the

derivative improves the stability margins for practical applications.

The effects of the PID gains on the feedback system response are important to tune the

controller, which becomes one of the fundamental issues of PID control design (Åström

and Hägglund, 1995; O’Dwyer, 2009; Krishna et al., 2012; Parnianifard, Fakhfakh et al.,

2021; Somefun, Akingbade and Dahunsi, 2021; Joseph et al., 2022). In terms of feedback

response, the PID controller is intuitive and has robust performance against uncertainties.

However, it does also have certain disadvantages and limitations that increase the complex-

ity of the problem. Another complication of PID is the single-degree-of-freedom (1-DoF)

structure. This effectively means that the PID controller can only be tuned to maximise

either set-point response, where overshoot and rise-time are minimised, or optimise for dis-

turbance rejection, where an overshoot is frequently observed with a larger settling-time

(Chen, J., Fang and Ishii, 2019; Parnianifard, Fakhfakh et al., 2021; Somefun, Akingbade

and Dahunsi, 2021; So, 2021; Joseph et al., 2022). This can be accommodated by intro-

ducing more complicated and advanced tuning algorithms that can find a balance between

the disturbance rejection and set-point tracking of the PID (Åström and Hägglund, 1995;

O’Dwyer, 2009; Abushawish, Hamadeh and Nassif, 2020). The drawback of such algorithms

is that usually the control specifications are deteriorated, in order to compensate for the

unavoidable compromise in achieving a balance of the trade-offs (Åström and Hägglund,

1995; O’Dwyer, 2009; Abushawish, Hamadeh and Nassif, 2020; So, 2021).
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2.5.1 PID Tuning Methods

Classical Methods

The tuning procedures of PID control have been extensively studied in the past and are a

broad research field. The problem of PID tuning is extremely vast and multiple methods

have been developed that use different strategies for tuning. The first methods of PID design

used heuristics from designer experience and experimentation, using the plant estimated

parameters to assign PID gains through a relationship (Åström and Hägglund, 1995; Some-

fun, Akingbade and Dahunsi, 2021; Joseph et al., 2022). The most popular heuristic meth-

ods are the Ziegler-Nichols (ZN), the Cohen-Coon (CC), and the Chien-Hrones-Reswick

(CHR) tuning methods (Åström and Hägglund, 1995; Somefun, Akingbade and Dahunsi,

2021; Joseph et al., 2022). The Ziegler-Nichols and Cohen-Coon methods use the First

Order Plus Time Delay (FOPTD) model to tune the PID gains using relations between

kp, ki, kd and k, tp, τ to establish the tuning (Åström and Hägglund, 1995; Somefun, Aking-

bade and Dahunsi, 2021; Joseph et al., 2022). Although these two approaches are able to

compensate against input disturbances, it is challenging to generate a fast set-point track-

ing without generating oscillatory responses and overshoots (Åström and Hägglund, 1995;

Åström and Hägglund, 2004; Somefun, Akingbade and Dahunsi, 2021; Joseph et al., 2022).

The CHR tuning method can provide improved performance and allows for two different

tuning approaches, one that has 0% overshoot and one that has 20% overshoot (Somefun,

Akingbade and Dahunsi, 2021; Joseph et al., 2022). It also allows for the capability to focus

on either set-point tracking or disturbance rejection (Åström and Hägglund, 1995; Åström

and Hägglund, 2004; Somefun, Akingbade and Dahunsi, 2021; Joseph et al., 2022). The

main issues with these tuning approaches is that they suffer from deteriorated perform-

ance but also they are only useful for a specific type of system problems and new tuning

rules have to be re-established for every model (Åström and Hägglund, 1995; Åström and

Hägglund, 2004; O’Dwyer, 2009; Somefun, Akingbade and Dahunsi, 2021; Joseph et al.,

2022).

PSO and Optimization Based Tuning Methods

To resolve the problem of having multiple heuristics, various approaches can be used to tune

the PID gains automatically, one of which is using an optimization algorithm (Somefun,

Akingbade and Dahunsi, 2021; Joseph et al., 2022). Optimization algorithms search for the

optimal response according to a certain objective function criteria, that can then provide

the best response (Valluru and Singh, 2018; Gomez et al., 2020; Somefun, Akingbade

and Dahunsi, 2021; Joseph et al., 2022; Chaturvedi, Kumar, N. and Kumar, R., 2023).

There are various optimization algorithms that can be used for that purpose, spanning two

different categories, evolutionary algorithms and swarm algorithms (Valluru and Singh,
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2018; Gomez et al., 2020; Somefun, Akingbade and Dahunsi, 2021; Joseph et al., 2022).

The Genetic Algorithm (GA) and the Simulated Annealing (SA) algorithm have previously

been used to effectively tune PID controllers (Dangor et al., 2014; Fraga-Gonzalez et al.,

2017; Qin et al., 2019). Moreover, there are swarm optimization algorithms such as the

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) algorithms that

have been previously used successfully to tune PID controllers (Saxena and Dubey, 2019;

Chaturvedi, Kumar, N. and Kumar, R., 2023). There have also been extensive surveys

conducted on the optimization based tuning algorithms that have been used in tuning

PID controllers. These surveys have found extensive research on Differential Evolutionary

algorithms (DE), Cuckoo Search (CS), Bat, Hybrid Bat (HB), and many more, together

with comparisons in their effectiveness and convergence speed to the PID tuning problem

(Somefun, Akingbade and Dahunsi, 2021; Joseph et al., 2022).

The Particle Swarm Optimization (PSO) algorithm has received particular attention in the

PID tuning literature due to its simplicity and effectiveness in finding optimal solutions

(Chaturvedi, Kumar, N. and Kumar, R., 2023; Joseph et al., 2022; Abushawish, Hamadeh

and Nassif, 2020; Shaikh and Yadav, 2022). The PSO algorithm has previously been used to

tune PID controllers with multiple applications, including SISO and MIMO systems, show-

ing improved performance, when compared to heuristic and manual approaches (Dangor

et al., 2014; Joseph et al., 2022). An adaptive PSO algorithm has also been used to tune

both linear and nonlinear PID controllers, improving performance of a highly nonlinear

system, when compared to other methods (Valluru and Singh, 2018). In addition, the PSO

algorithm has been able to provide optimal tuning to a neural-network based PID con-

troller for a nonlinear continuous stirred tank reactor plant, minimizing the mean squared

error, when compared to other control approaches of the same system (Chaturvedi, Ku-

mar, N. and Kumar, R., 2023). A study compared different evolutionary-based algorithms

as tuning approaches of PID controllers in two cascaded loops for a vibration suspension

control system using an electro-hydraulic actuator, where the PSO algorithm showed im-

proved results in comparison to manual and genetic algorithm approaches (Dangor et al.,

2014). The PSO algorithm also has the advantage that one can re-define the algorithm so

that it finds the Pareto optimal solution of a multi-objective function, becoming useful for

the tuning of PID in MIMO systems (Parnianifard, Zemouche et al., 2020). The multi-

objective PSO algorithm managed to provide PID tuning showing good performance, in

terms of overshoot, rise time, and root mean square error of a highly nonlinear and MIMO

quadrotor UAV (Parnianifard, Zemouche et al., 2020). Moreover, the PSO algorithm can

be easily combined with other optimization approaches, creating a hybrid algorithm that

can improve the weak features of PSO specific to a problem (Valluru and Singh, 2018). A

great example of PSO combined with a genetic algorithm surrogate model has been used

to design an FOPID controller to control a five-bar linkage robotic arm in a cyber-physical
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system (Parnianifard, Zemouche et al., 2020).

Gain-Scheduling and Miscellaneous Methods

Gain scheduling strategies have also been used effectively to increase the operational range of

linear controllers to nonlinear systems, which is also an effective remedy against robustness

trade-offs (Åström and Hägglund, 1995; Kapsalis et al., 2020). However, the drawback is

that it takes a long and complex design process of continual analysis and re-design with each

design restricted to a single operating point, which are then interpolated to define the gain

values across the global phase plane (Åström and Hägglund, 1995; Kapsalis et al., 2020).

This procedure increases the design time but also the hardware memory size (Åström and

Hägglund, 1995; Kapsalis et al., 2020).

Other common approaches improve performance are the adaptive gains or nonlinear func-

tion gains PID control, that establish a semi-adaptive controller by using the system dy-

namics to express the gains dynamically (Slama, Errachdi and Benrejeb, 2019; Chong et al.,

2021; Joseph et al., 2022). This approach allows for a more efficient and robust control ap-

proach that improves the performance of the control systems with minimal tuning (Slama,

Errachdi and Benrejeb, 2019; Chong et al., 2021; Somefun, Akingbade and Dahunsi, 2021;

Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Joseph et al., 2022). These con-

trol architectures also target the common trade-offs that exist in feedback control, such as

set-point tracking and disturbance rejection, without requiring separate tunings for each

(Slama, Errachdi and Benrejeb, 2019; Chong et al., 2021; Somefun, Akingbade and Dahunsi,

2021; Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Joseph et al., 2022). This in

turn means that the tuning approach of such control algorithms requires a single tuning and

the system is effectively adapting to the system requirements according to the specifications

(Zhang and Mao, 2017; Slama, Errachdi and Benrejeb, 2019; Mo and Farid, 2019; Chong

et al., 2021; Somefun, Akingbade and Dahunsi, 2021; Pugazhenthi P, Selvaperumal and

Vijayakumar, 2021; Joseph et al., 2022).

2.5.2 Control Design Objectives

The objectives of feedback control systems tend to have different design criteria and as a

result are split into two categories of problems for design purposes, which possess trade-

offs between them (Åström and Hägglund, 1995; Garpinger, Hägglund and Åström, 2014;

Frank, 2018; Bernstein, 2022). The two problems are split into the servo control problem

and the regulator control problem.

Servo Control
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The servo control problem is the transient performance and speed to achieve the set-point.

The most common control performance criteria for servo problems are the % overshoot

(%Os), rise-time (tr), settling time (ts), % undershoot (%Us), and the system input energy

consumption (Åström and Hägglund, 1995; Garpinger, Hägglund and Åström, 2014). The

way to compute the system input energy is frequently in terms of L2, L8, H2, and H8

norms of the signals or systems.

Regulator Control

The regulator control problem is the ability of the feedback system to maintain the desired

output for any external disturbance, perturbations, or uncertainties. The control criteria

for regulator control are the disturbance rejection, gain margin, phase margin, and the

H8 norm of the sensitivity and complementary sensitivity functions. Many times feedback

systems are prioritised to simply follow the regulator problem specifications, without the

need for optimal servo performance criteria (Chen, J., Fang and Ishii, 2019; Bernstein,

2022).

Performance Criteria

The common control performance criteria are the Integral Absolute Error (IAE), the In-

tegral Squared Error (ISE), and the Integral Time Absolute Error (ITAE), which are as

follows (Åström and Hägglund, 1995; Garpinger, Hägglund and Åström, 2014):

IAE “

ż tf

0

|ϵptq|dt, (2.16)

ISE “

ż tf

0

ϵptq2dt, (2.17)

ITAE “

ż tf

0

t|ϵptq|dt. (2.18)

These control performance criteria can be used to compute any signal size, including the

system input signal and mostly the feedback error of the system. In addition, linearly

independent combinations of these performance criteria can also be used to define objective

functions for optimization problems, with assigned weights to each criterion. This is a

simple way to define the optimal control objectives to use optimization algorithms as part

of the design process of the feedback controller (Åström and Hägglund, 1995; Garpinger,

Hägglund and Åström, 2014; Wu et al., 2019; Parnianifard and Azfanizam, 2020; Joseph

et al., 2022).
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2.6. The 2-DoF PID Controller

A different approach to this problem is a well-established control algorithm that can be

implemented along PID, which is a 2-DoF feedback structure that incorporates the PID

control algorithm (Alfaro, Vilanova and Arrieta, 2008; Suthar, 2015; Hirahara et al., 2017;

Mohan et al., 2019; Schröders et al., 2020; So, 2021). The 2-DoF PID controller offers

the advantage of an additional independently tuned loop that can establish the tuning

for optimal disturbance rejection and set-point tracking performance simultaneously (Al-

faro, Vilanova and Arrieta, 2008; Suthar, 2015; Hirahara et al., 2017; Mohan et al., 2019;

Schröders et al., 2020; So, 2021). The idea behind this structure is to combine the ability

of feedback to correct for disturbances and uncertainties without assuming perfect system

knowledge and the principle of feed-forward, which presumes a perfect system to com-

pensate for the optimal transient response (Alfaro, Vilanova and Arrieta, 2008; Suthar,

2015; Hirahara et al., 2017; Mohan et al., 2019; Schröders et al., 2020; So, 2021). The

2-DoF PID controller has received a lot of attention and has been extensively used, due to

its excellent ability to conduct simultaneous set-point tracking and disturbance rejection,

with minimal compromises to performance (Taguchi and Araki, 2000; Suthar, 2015; Mohan

et al., 2019; Schröders et al., 2020; So, 2021). The drawback of 2-DoF PID controllers,

is that they have a larger number of tunable parameters and they offer a multi-objective

optimization problem, that requires a Pareto optimal solution (Taguchi and Araki, 2000;

Alfaro, Vilanova and Arrieta, 2008; Suthar, 2015; Wang, X. et al., 2018; So, 2021).

Figure 2.3 shows the two degrees of freedom control structure that utilises an additional

feedforward loop as a set-point weighting.

Cfbpsq

Cff psq

P psq
`rptq ϵptq uptq ` yptq

Measurement

´

Figure 2.3: The 2-DoF PID control structure.

The transfer function of a 2-DoF PID controller is mathematically described as follows

(Taguchi and Araki, 2000; Alfaro, Vilanova and Arrieta, 2008; Suthar, 2015; So, 2021):

Cfbpsq “ kp ` ki
1

s
` kds, (2.19)

Cff psq “ ´kp2 ´ kd2s, (2.20)

where Cfbpsq is the feedback control structure that is applied to the feedback error, and
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Cff psq is the feed-forward control structure applied to the set-point, which is the set-point

weighting function of the 2-DoF structure.

The 2-DoF PID controller also suffers from the same practical disadvantages as the PID

controller. The integral part requires anti-windup strategies to eliminate integrator windup

in saturated systems. In addition, the derivative of the controller requires filtering to reduce

the effects of noise and step functions on the derivative action. The major advantage that

the 2-DoF PID structure has over the PID is that it has two independently tuned loops

that offer a simultaneous set-point tracking and disturbance rejection response, providing

improved robustness.

The 2-DoF PID control structure has shown significant improvements to performance and

robustness in both linear and nonlinear systems (Sharma, Gaur and Mittal, 2015; Mohan et

al., 2019; Schröders et al., 2020; So, 2021). In addition, it provides an improved system input

energy cost when compared against the conventional PID (Mohan et al., 2019; Schröders

et al., 2020; So, 2021). Moreover, the drawback with linear control remains with this

control strategy, since the linear control of nonlinear systems is limited in operating region,

which means that linearization or feedback linearization methods have to be implemented

alongside the linear 2-DoF PID controller (Schröders et al., 2020).

2.7. Smith-Predictor PID Controller

One of the most common nonlinearities that exist in industrial systems is the time delay

(Frank, 2018; Normey-Rico, Santos et al., 2022). Time delay in systems can be caused by

multiple sources or side-effects, some of which are the following (Normey-Rico and Camacho,

2007; Frank, 2018; Normey-Rico, Santos et al., 2022).

• Process delays caused by energy, mass, or information transportation.

• Processing time and Sensor delays.

• Actuator response time.

• Apparent time-delay from a series of systems that possess lag dominant dynamics.

These physical properties exist within any system and effectively all industrial systems

have some form of delay in their processes. These delay dynamics are most often modelled

as a FOPTD or SOPTD system transfer function model of the form (Normey-Rico and

Camacho, 2007):

P1psq “ T psqe´τs “
kpe

´τs

ptps ` 1q
, (2.21)

P2psq “ T psqe´τs “
kpe

´τs

ptp1
s ` 1qptp2

s ` 1q
“

kpe
´τs

1 `
2ξ
ωn

s ` s2

ω2
m

. (2.22)
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This set of dynamics effectively delays the knowledge of the state to the controller, which

causes the feedback error to be that of the previous output. This then causes the controller

to have a delayed response to the system, causing a large deterioration in performance and

many times even instabilities (Normey-Rico and Camacho, 2007; Frank, 2018; Normey-Rico,

Santos et al., 2022). This can be viewed in the frequency domain analysis as a decrease in

the system phase. Transforming the delay dynamics into the transfer function form helps

improve the understanding of the delay dynamics in the frequency domain, but also simpli-

fies the analytical process. The delay dynamics can be effectively approximated as a transfer

function, which is commonly used in control design, using the Pade approximation. The

most common Pade approximations are the following first-order and second-order transfer

functions, respectively.

Gp1
psq “ e´τs “

2 ´ τs

2 ` τs
, (2.23)

Gp2psq “ e´τs “
τ2s2 ´ 6τs ` 12

τ2s2 ` 6τs ` 12
. (2.24)

Time delay dynamics complicate the design and control procedure, however, the PID con-

troller is a very effective control strategy that is commonly used to control systems with

time-delay (Sigurd Skogestad, 2018; Frank, 2018; Normey-Rico, Santos et al., 2022). A

method to compensate time delays has been developed by Otto Smith since 1957, and it

has been effectively used in industry to provide improved responses to the systems (Hung,

Yu and Cheng, Y.-C., 2004). The Smith predictor uses a model of the expected delay dy-

namics of the plant and uses these dynamics to estimate the control signal for the nominal

system without time delay (Hung, Yu and Cheng, Y.-C., 2004; Sigurd Skogestad, 2018;

Frank, 2018; Normey-Rico, Santos et al., 2022). This method is combined with a clas-

sical control algorithm, which is often using the PID controller, making the system more

effective. The Smith predictor PID controller has the transfer function form as follows:

K
SP PID

psq “
KPIDpsq

1 ` KPIDpsqT psqp1 ´ Gp2psqq
. (2.25)

The major advantage that the Smith predictor provides to systems with time delay is

that the classical control algorithm can be tuned much more simply, by using a classical

tuning algorithm (Hung, Yu and Cheng, Y.-C., 2004; Sigurd Skogestad, 2018; Frank, 2018;

Normey-Rico, Santos et al., 2022). Effectively, the smith predictor allows for the PID

controller to be tuned for the system with no time-delay, making it much more simple

and effective. However, the drawback of using Smith Predictor PID (SP PID) controller

is that the predicted time-delay is not always the same as the plant time-delay due to

estimation errors and variations in delay (Hung, Yu and Cheng, Y.-C., 2004; Normey-Rico

and Camacho, 2007; Normey-Rico and Camacho, 2008; Sigurd Skogestad, 2018; Frank,

2018; Normey-Rico, Santos et al., 2022). The major drawback of this is that the smith
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predictor can introduce instability to the feedback system, although the PID controller has

been tuned to maintain large gain and phase margins for the delay-free system (Normey-

Rico and Camacho, 2007; Sigurd Skogestad, 2018; Frank, 2018; Normey-Rico, Santos et

al., 2022). This is caused because the delay dynamics introduce new robustness criteria,

which is the delay margin, which has to be considered (Normey-Rico and Camacho, 2007;

Sigurd Skogestad, 2018; Frank, 2018; Normey-Rico, Santos et al., 2022). Moreover, if the

open loop system possesses slow dynamics, the input disturbances are compensated very

slowly and the SP PID controller has a 1-DoF control structure (Hung, Yu and Cheng,

Y.-C., 2004; Normey-Rico and Camacho, 2007; Normey-Rico and Camacho, 2008; Sigurd

Skogestad, 2018; Frank, 2018; Normey-Rico, Santos et al., 2022). Effectively, the SP PID

controller can only be tuned to have optimal performance or disturbance rejection response

for any feedback system. This performance trade-off is worsened as time-delay increases

(Normey-Rico, Santos et al., 2022).

Different control strategies have also been developed to improve the response against dis-

turbance rejection, such as a disturbance compensator SP PID controller or a 2-DoF SP PID

controller structure (Normey-Rico and Camacho, 2008). Moreover, control strategies where

a frequency-dependent gain is introduced to give different weights to the prediction and to

the control compensation of the feedback system, to reduce the effects of unmodelled time-

delay dynamics to the predictor (Hung, Yu and Cheng, Y.-C., 2004; Normey-Rico and

Camacho, 2008). To resolve the performance issues different tuning algorithms have also

been provided to optimise servo control or regulatory control of delay systems (Normey-Rico

and Camacho, 2007; Normey-Rico and Camacho, 2008).

2.8. Nonlinear PID Control

Less computationally expensive adaptive control methods can also be achieved by defining

variable gains that are expressed in terms of feedback parameters. This effectively com-

putes in real-time a pre-defined relationship between the gain parameters and the feedback

variables to establish the tuning. A very common control algorithm that uses this structure

is the PID controller, where the gains are expressed as nonlinear functions instead of con-

stants (Zaidner et al., 2010; So and Jin, 2018; Pathak, Bhati and Gaur, 2020; Hua et al.,

2020; Chong et al., 2021; Pugazhenthi P, Selvaperumal and Vijayakumar, 2021). This is an

extremely effective method because PID controllers are well-established in industry, they

are effective and simple, which makes them ideal candidates for nonlinear gain adaptation.

Nonlinear PID controllers are less reliant on the accuracy of the mathematical model and

hence, they are more robust against uncertainty (Zaidner et al., 2010). As a result, in

applications where performance and robustness improvements are desirable, nonlinear PID

offers a simple alternative to the PID control (Zaidner et al., 2010; Hua et al., 2020). Non-
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linear PID has had a large expanse and on-going research literature, where improvements

in performance and robustness are seen, without the need for expensive hardware (So and

Jin, 2018; So, 2019; Jin and Son, 2019; Pathak, Bhati and Gaur, 2020; Hua et al., 2020;

Chong et al., 2021; Pugazhenthi P, Selvaperumal and Vijayakumar, 2021; Son, Bin and

Jin, 2021; Liu, T., 2022; Shamseldin, 2023; Chaturvedi, Kumar, N. and Kumar, R., 2023;

Sivadasan et al., 2023). This expanse in the research literature is because of its effectiveness

in performance and its ease of use in hardware (Zaidner et al., 2010; Hua et al., 2020).

Nonlinear PID Control with Tracking Differentiators

A method for nonlinear PID control was formulated in 1994 (Han, 1994). The controller

was implemented for nonlinear systems and it used nonlinear combination PID control with

two tracking differentiators (Han, 1994). Figure 2.4 shows the control scheme developed

by Han, using one nonlinear tracking differentiator at the set-point signal to shape the

form of the set-point and a nonlinear tracking differentiator in the feedback to estimate the

derivative and state (Han, 1994).

TD1 fpkpϵ, ki
ş

ϵdt, kd 9ϵq Σ :

TD2

rptq ` ϵptq uptq yptq

´

Figure 2.4: The system of a nonlinear PID controller using tracking differentiators as
depicted in the paper (Han, 1994).

This controller has shown significant improvements in performance and robustness of the

control of nonlinear systems with the trade-offs minimised (Han, 1994). This nonlinear PID

controller has been used in many applications and research papers, where improvements

in performance and robustness have been shown for both linear and nonlinear systems

(Rakesh, Satheesh and Thirunavukkarasu, 2014; Kasim and Riyadh, 2016; Valluru, 2017;

Liu, T., 2022). A drawback of using the nonlinear tracking differentiator is that it creates

a chattering effect and noise reduces the quality of the derivative estimation significantly

(Kasim and Riyadh, 2016). This drawback has received some research attention where

improved tracking differentiators aim at improving the chattering effect and noise rejec-

tion, where this has shown an apparent improvement in the performance of the system (Su,

Sun and Duan, 2005; Kasim and Riyadh, 2016). Although this nonlinear PID control al-

gorithm is robust and offers significant improvements in control performance for linear and

nonlinear systems, it requires a complex tuning problem (Rakesh, Satheesh and Thirun-

avukkarasu, 2014; Valluru, 2017; Liu, T., 2022). This complexity in tuning comes from the
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multi-objective optimization problem that the nonlinear 2-DoF structure of the controller

offers, but also from the large number of parameters to be tuned (Rakesh, Satheesh and

Thirunavukkarasu, 2014; Valluru, 2017; Liu, T., 2022).

Lure-type NLPID controllers using Circle and Popov Criteria

There is also a special type of nonlinear control, which can be transformed into the frequency

domain analysis that makes their study much simpler. Assuming that a linear system is a

feedback interconnected with nonlinear memoryless dynamics (i.e. it only depends on the

present state and input) then the system can be transformed into the following definitions

(Slotine and Li, 1991; Khalil, 2002; Frank, 2018):

Definition 2.8.1 (Memoryless Sector Bounded Nonlinearity (Khalil, 2002)). A memoryless

function ϕ : r0,8q ˆ Rn Ñ Rn is said to belong to the sector:

• r0,8s if uTϕpt, uq ě 0.

• rK1,8s if uT rϕpt, uq ´ K1us ě 0.

• r0,K2s with K2 “ KT
2 ą 0 if ϕT pt, uqrϕpt, uq ´ K2us ď 0.

• rK1,K2s with K “ K2 ´ K1 “ KT ą 0 if rϕT pt, uq ´ K1usT rϕpt, uq ´ K2us ď 0.

The inequality should hold for all pt, uq, in all cases. For any case that the equality does

not hold, it is said that the interval is open at that bound of the sector, eg. p0,8q,pK1,8q,

p0,K2q, and pK1,K2q.

Definition 2.8.2 (Lure System). A system that can be described as a linear function with

a nonlinear memoryless function in its feedback, as shown by Figure 2.5, can be described

mathematically as follows:
$

’

’

’

’

&

’

’

’

’

%

9xptq “ Axptq ` Buptq,

yptq “ Cxptq ` Duptq,

u “ ´ϕpt, yq,

(2.26)

with a minimal realisation expressed as a transfer function Gpsq “ CpsI ´ Aq´1B ` D.

pA,B,C,Dq

ϕp¨q

`0 uptq yptq

´

Figure 2.5: Schematic of a simple Lure system.

Such nonlinear control cases can be transformed into a linear system, which can be studied

under the same tools as linear systems. The most prominent methods of stability analysis
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are the Popov and Circle criteria (Slotine and Li, 1991; Khalil, 2002). The underlying

assumptions that play an important role are that the nonlinearity is memoryless and sector-

bounded within a region, which then forms the stability bounds in the Nyquist plots (Slotine

and Li, 1991; Khalil, 2002). The Circle theorem is then stated as follows:

Theorem 2.8.1 (Circle Criterion - Scalar Case (Khalil, 2002)). Consider a scalar system of

the form Eq. (2.26), where pA,B,C,Dq is a minimal realization of Gpsq and ϕ P ra, bs. Then,

the system is absolutely stable if one of the following conditions is satisfied, as appropriate:

• If 0 ă a ă b, the Nyquist plot of Gpjωq does not enter the disk Dpa, bq and encircles

it m times in the counterclockwise direction, where m is the number of unstable poles

of Gpsq.

• If 0 “ a ă b, Gpsq is Hurwitz and the Nyquist plot of Gpjωq lies to the right of the

vertical line defined by Rerss “ ´1{b.

• If a ă 0 ă b, Gpsq is Hurwitz and the Nyquist plot of Gpjωq lies in the interior of the

disk Dpa, bq.

If the sector condition is satisfied only on an interval ra, bs, then the foregoing conditions

ensure that the system is absolutely stable with a finite domain.

Moreover, Popov criteria have a further simplification that the dynamics are of:

9xptq “ Ax ` bu, (2.27)

9ξptq “ u, (2.28)

yptq “ cxptq ` dξptq, (2.29)

u “ ´ϕpyptqq, (2.30)

with ϕ P r0, bs, which means that the sector boundedness property of the nonlinear function

is further constrained and less flexible (Slotine and Li, 1991; Khalil, 2002). The Circle

criterion is a generalised theorem that only requires the nonlinearity to be bounded within

two lines as ϕ P ra, bs (Slotine and Li, 1991; Khalil, 2002). This makes the Circle criterion

much more applicable and broad in terms of types of nonlinearities. Such system expressions

are extremely convenient and are frequently used to express saturation nonlinearity in that

form, or the pendulum system can also be expressed in that form (Slotine and Li, 1991;

Khalil, 2002). Moreover, linear controllers and linear systems can be combined with a

memoryless nonlinear feedback gain, that can improve control performance and the stability

properties can be easily studied using the Circle and Popov criteria (Khalil, 2002; Rezaei

and Hashemzade, 2016; Son, Bin and Jin, 2021).

A well-established method of stability is using the Lure systems as a ground for formulating
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a nonlinear-based PID controller. This is to establish a nonlinear gain that is memoryless

and sector-bounded, as depicted in Figure 2.6, where the use of the Circle or Popov criteria

can establish a stability-proof method and improvements to performance criteria. Based on

these stability criteria there have been some nonlinear gains that were studied in their per-

formance improvements and robustness with the following gains studied (Maddi, Guessoum

and Berkani, 2014):

ϕpϵq “ k0pbqϵ, (2.31)

ϕpϵq “ k0
eαϵ ` e´αϵ

2
“ k0coshpαϵq, (2.32)

and

ϕpϵq “

$

’

&

’

%

k0e
αϵ , if ϵ ą ϵmax,

k0e
´αϵ , if ϵ ă ϵmax,

(2.33)

where ϵ is the feedback error, ϵmax is a designer-defined maximum error constant value,

and constants k0, α, b P R. Figure 2.6 shows a schematic diagram of the general nonlinear

PID control structure that can be transformed into the classic Lure System.

ϕp¨q PID Σ :
`rptq ϵptq uptq yptq

Measurement

´

Figure 2.6: A schematic of a Lure type nonlinear PID controller.

The nonlinear functions are sector-bounded memoryless gains, used in cascade with a lin-

ear PID controller for linear plant models (Maddi, Guessoum and Berkani, 2014). These

nonlinear gains were found to have robust stability and provide a strong foundation in

theory for the stability analysis of the feedback interconnection (Maddi, Guessoum and

Berkani, 2014). These gains were shown to provide improved performance with lower rise-

time and settling-time when compared against the linear PID control (Maddi, Guessoum

and Berkani, 2014). However, there were oscillatory behaviour and the stability criteria

provide a conservative analysis, where better tuning can be established without instability

(Maddi, Guessoum and Berkani, 2014).

The nonlinear function described by Eq.(2.32) has been used extensively as a cascaded gain

with a combination of different PID control structures due to its foundational method based

on established stability tools (Pathak, Bhati and Gaur, 2020; Shamseldin, 2023). Some of

these methods include but are not limited to:

1. A fractional order nonlinear PID (FONLPID) control structure has been used with the
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nonlinear gain applied to the integral action, which shows significant improvements in

performance and robustness of controlling a nonlinear wind energy system (Pathak,

Bhati and Gaur, 2020).

2. MIT adaptation rule, where the nonlinear PID controller has a set of nonlinear func-

tion gains, using the Eq.(2.32) in addition to a constant gain, which was applied for

tracking control of a nonlinear electric vehicle to minimise the energy consumption of

electric current and voltage (Shamseldin, 2023).

Both methods showed that they were able to significantly improve the energy efficiency of

the system, and improved the rise-time and settling-time of the tracking control problem

(Pathak, Bhati and Gaur, 2020; Shamseldin, 2023). However, they have a large number of

tuning parameters which makes them highly computationally expensive for tuning purposes

(Pathak, Bhati and Gaur, 2020; Shamseldin, 2023).

Another NLPID controller designed on the basis of the Circle criteria tools has been shown

in the literature, where the control algorithm is as follows (Son, Bin and Jin, 2021):

uptq “ kpϵptq ` ki

ż tf

0

ϵptqe

»

—

—

—

–

´

ϵptq2

2pδrq2

fi

ffi

ffi

ffi

fl

dt ` kd 9ϵptq, (2.34)

where δr is the change in set-point input, ϵptq is the feedback error, kp, ki, and kd are the

classic PID gains.

The nonlinear controller has been benchmarked against the linear PID controller using

various tuning methods for delay type systems (Son, Bin and Jin, 2021). The nonlinear

controller stability and robustness were shown for each delay system using a loop trans-

formation and the circle criteria (Son, Bin and Jin, 2021). The nonlinear controller showed

improved performance with lower rise-time and settling-time when compared against In-

ternal Model Control (IMC) PID and conventional PID methods (Son, Bin and Jin, 2021).

The controller also has a low number of tunable parameters, which makes it effective and

simple to tune (Son, Bin and Jin, 2021). This has also been shown in the literature where

simple tuning rules for FOPTD systems have been established using optimisation and in-

ternal mode control approaches for the nonlinear controller (Jin and Son, 2019). However,

the drawback of the controller is that it tends to have overshoot and oscillatory-type beha-

viour, where the control performance is not optimised.

Model-Based and Lyapunov Design Approach NLPID

Model-based approach design and the use of Lyapunov theory for establishing nonlinear

control has been used in the past as a combination with PID control (Hua et al., 2020;
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Pugazhenthi P, Selvaperumal and Vijayakumar, 2021). A nonlinear PID controller with an

auto-tuning mechanism using a learning approach has also been designed and used for the

control of highly nonlinear control of rotorcraft under aggressive manoeuvring (Hua et al.,

2020). This control approach has shown significant improvements in performance lowering

the settling-time and rise-time (Hua et al., 2020). It has also shown experimental results

where the control approach was implemented in the hardware of a rotorcraft (Hua et al.,

2020). The nonlinear controller was designed using Lyapunov-based analytical stability

analysis proving the asymptotic stability of the controller (Hua et al., 2020). Model-based

nonlinear PID control was also used for the control of a nonlinear CSTR system where

a modified artificial bee colony algorithm was used (Pugazhenthi P, Selvaperumal and

Vijayakumar, 2021). The derived NLPID parameters combined a model-based tuning ap-

proach with fuzzy logic fusion and local model PID (Pugazhenthi P, Selvaperumal and

Vijayakumar, 2021). The NLPID controller demonstrated improved servo and regulatory

control of the nonlinear CSTR system at various operating points (Pugazhenthi P, Selvaper-

umal and Vijayakumar, 2021). This has expanded the operational range when compared

to a linear PID controller and has shown improved results.

The advantage that these methods of control design provide is that they offer a rigorous

set of mathematical toolkits that help develop the control algorithm with guaranteed sta-

bility approaches (Mo and Farid, 2019; Hua et al., 2020; Pugazhenthi P, Selvaperumal

and Vijayakumar, 2021). However, the drawback is that they become complicated for the

implementation and design from an engineering point of view since they are model depend-

ent control algorithms and the extensive and rigorous mathematical background becomes

necessary for control engineers (Hua et al., 2020; Pugazhenthi P, Selvaperumal and Vi-

jayakumar, 2021). This may not be ideal for industrial applications and engineers, but

the model-based approach provides a robustness drawback due to modelling uncertainties

and inaccuracies (Mo and Farid, 2019; Hua et al., 2020; Cheng, L., 2021; Pugazhenthi P,

Selvaperumal and Vijayakumar, 2021).

Nonlinear Function Gains PID (NLPID)

Nonlinear PID controllers and nonlinear function gains PID controllers are separated in

name according to the nature of their design. The former utilises the inherent nonlinearities

from the model dynamics that are to be controlled as an aspect of the control system coupled

with a linear PID controller. Whereas the latter utilises nonlinear functions to compute

the gains of the PID controller in terms of either the feedback error or feedback error rate.

Figure 2.7 shows a typical design of a nonlinear gains PID controller where the gains become

a set of nonlinear functions which compute in real time the PID gains.
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ştf
0
ϵptqdt

d
dt

Kip¨q

Kpp¨q

Kdp¨q

` P psq
`rptq ϵptq uptq yptq

Measurement

´

Figure 2.7: A schematic of nonlinear function gains PID controller structure.

A nonlinear function gains PID controller has been compared against a Genetic Algorithm

(GA) tuned PID controller for a variety of linear systems (Korkmaz, Aydoğdu and Doğan,

2012). The structure of the nonlinear controller was proposed to be as follows (Korkmaz,

Aydoğdu and Doğan, 2012):

uptq “ Kppϵq `
Kipϵq

s
` Kdpϵqs, (2.35)

with the nonlinear gains formulated using the nonlinear functions as (Korkmaz, Aydoğdu

and Doğan, 2012):

Kp “ a1 ` fpϵqa2, (2.36)

Ki “ b1 ´ fpϵqb2, (2.37)

Kd “ c1 ` fpϵqc2, (2.38)

fpϵq “
2

?
π

ż ϵ

0

e´t2 dt. (2.39)

This nonlinear PID controller showed weakness in establishing strong performance improve-

ments, having a slow settling time and an oscillatory response (Korkmaz, Aydoğdu and

Doğan, 2012). The GA-tuned PID controller showed better performance and a comparison

against a Ziegler-Nichols tuned PID controller showed that for the benchmarked systems

the nonlinear PID controller showed improved performance against it (Korkmaz, Aydoğdu

and Doğan, 2012). However, it is well known in the literature that the Ziegler-Nichols

tuning procedure is not effective in establishing performance and it is limited to specific

systems (Åström and Hägglund, 1995; Åström and Hägglund, 2004; Somefun, Akingbade

and Dahunsi, 2021; Joseph et al., 2022). The number of control parameters is high and this

requires a larger computational time and effort for the tuning process. Moreover, stability

analysis of the nonlinear PID controller was also not established, which forms a limitation

in terms of understanding controller behaviour in the feedback loop.

The literature indicates that there is extensive use of nonlinear combinations of the PID
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parameters and nonlinear control utilising a sector-bounded gain function in cascade with

a PID controller to improve performance. However, these control methods do not minimise

overshoot and often have large settling and rise times. Another variant of nonlinear PID

controllers in the literature has utilised a unique set of nonlinear function gains, where the

controller had the following structure (So, 2019):

uptq “ Kppϵq `
Kipϵq

s
`

Kdpϵ, 9ϵqs

1 ` Tf pϵ, 9ϵqs
, (2.40)

with the proportional and integral nonlinear gain functions represented as (So, 2019):

Kppϵq “ kpp1 ´
1

ap ` pcpϵq6
q, (2.41)

Kipϵq “ kip
1

1 ` pciϵq6
q, (2.42)

where ap, cp, and kp are the tunable proportional parameters and ci and ki are the integral

tunable parameters. In addition, the nonlinear derivative gain is:

Kdpϵq “

$

’

&

’

%

kdp1 ´ 1
ad`pcdϵq6

q , if ϵ 9ϵ ą 0,

kdp1 ´ 1
ad

q , elsewhere ,

(2.43)

where the parameters ad, cd, and kd are the tunable derivative gain parameters. Finally,

the nonlinear function Tf is the nonlinear gain that filters derivative signals in a manner

similar to the linear PID control approach that utilises a low-pass filter. The function is

mathematically expressed as:

Tf pϵ, 9ϵq “
Kdpϵ, 9ϵq

NKppϵ, 9ϵq
, (2.44)

where N is a filtering parameter that is designed as appropriate and usually takes the value

of N “ 10.

This controller utilises the limitations of the PID controller performance and correspond-

ingly shapes the gains as to improve the performance, with a different shape for each action

(So, 2019). The NLPID controller was benchmarked against the nonlinear PID control-

ler Eq.(2.35) by Korkmaz and a linear PID controller for an FOPTD and a third order

systems (So, 2019). The system also included saturation in the system and the NLPID

controller was tuned for the saturated systems using an evolutionary algorithm optimizer

(So, 2019). The NLPID controller showed improved performance with faster rise-time and

settling-time (So, 2019). Moreover, there were improvements in robustness and noise rejec-

tion in the feedback system when compared to the conventional methods. The system also

included saturation in the system and the NLPID controller was tuned for the saturated

systems (So, 2019). The NLPID controller has also been used for the control of a nonlinear

CSTR system, where the NLPID controller was combined with the Tagaki-Sugeno fuzzy
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logic approach (So and Jin, 2018). The NLPID controller increased the operational range

of the linear PID controller for the nonlinear system (So and Jin, 2018). In addition, it

showed improved performance with no overshoot and disturbance rejection against input

and output disturbances (So and Jin, 2018). However, the drawback of this controller is

that it too has a large number of tunable parameters that complicate the tuning procedure

and increase computational time (So and Jin, 2018).

This controller circumvents the common limitations of the PID controller by adopting a

set of unique nonlinear gains according to the feedback error and error rate (So, 2019).

The nonlinear controller was tuned using an evolutionary optimisation algorithm and was

benchmarked against the nonlinear PID controller Eq.(2.35) proposed by Korkmaz (So,

2019). The systems simulated in the benchmarking were a First Order Plus Time Delay

(FOPTD) system and a third-order system, both including a saturation to the input signal

(So, 2019). The NLPID controller showed improved performance with faster rise-time

and settling-time (So, 2019). Moreover, there were improvements in robustness and noise

rejection in the feedback system when compared to the conventional methods (So, 2019).

The nonlinear controller has also been used to control a nonlinear CSTR system with the

addition of the Tagaki-Sugeno fuzzy logic approach (So and Jin, 2018). The fuzzy logic

implementation of the nonlinear controller showed an improvement in operational range

when compared against the conventional PID controller (So and Jin, 2018). In addition, it

showed improved performance with no overshoot and disturbance rejection against input

and output disturbances (So and Jin, 2018). However, the drawback of this controller is

that it has many tunable parameters that complicate the tuning procedure and increase

computational time (So and Jin, 2018).

2-DoF NLPID

The two-degree-of-freedom control structure has advantages over the single-degree-of-freedom

structure that provides simultaneous performance and disturbance rejection to feedback sys-

tems. This approach has also been combined with nonlinear function gains for optimizing

and improving its performance (Rakesh, Satheesh and Thirunavukkarasu, 2014; Chong et

al., 2021). A two-degree-of-freedom NLPID control structure has been utilised recently for

the control of highly nonlinear and inherently unstable dynamics of a magnetic levitation

system (Chong et al., 2021). The 2-DoF NLPID controller utilised nonlinear functions in

the feed-forward, a PI controller in the open loop and a PD controller in feedback as a dis-

turbance compensator combined with nonlinear function gains (Chong et al., 2021). The

2-DoF NLPID controller did not show a sufficient performance in the positioning response

of the magnetic levitation system (Chong et al., 2021). However, when the model-based

approach was used for the feed-forward solution the positioning response improved and
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reduced the overshoot (Chong et al., 2021). The disturbance compensator also lowers the

sensitivity of the system and improves the robustness (Chong et al., 2021).

2.9. Literature Gap and Research Impact

It is well known that PID controllers are implemented in more than 90% of industrial control

applications and they are important control algorithms that usually suffer in performance.

Improving the capabilities and the performance of the PID controllers can significantly

impact a large portion of industrial applications. This, in turn, can increase automation

in a time when automatic systems are on the rise. Nonlinear PID control is a simple and

robust adaptation method that does not rely on model identification methods and it can

be model-free control. Nonlinear systems are more accurate representations of systems and

can provide better longevity and performance. It is also easy to implement in hardware

making it an effective and efficient control algorithm that applies to industrial applications

and can provide a better alternative to the PID control. As a result, literature on the

advancements in the study of nonlinear control and the effectiveness of combining nonlin-

ear control strategies with PID were studied to identify the current ground in the field.

According to the studied literature and the extensive critical analysis of the materials the

gaps in the literature are identified as follows:

• Lack of simple model-free nonlinear control algorithms that can increase the opera-

tional region of PID for nonlinear systems.

• Lack of nonlinear PID control approaches addressing the common PID limitations in

simultaneous performance and robustness of nonlinear systems.

• Identifying a set of nonlinear functions that adapt the PID parameters to ameliorate

the trade-off in performance and robustness in both linear and nonlinear systems.

• Lack of nonlinear PID controllers that are practical in industry and offer a simple

tuning problem and the number of tunable parameters kept low.
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A Novel Nonlinear PID Controller and

a Tuning Algorithm

3.1. Introduction

The research literature shows that nonlinear PID controllers become complicated algorithms

that are time-consuming to design and difficult to implement in practice. These issues are

resolved in this chapter, to meet the research objectives 1-3. Firstly, a novel Nonlinear

PID (NLPID) controller is designed to accommodate for the common limitations of the

conventional PID controller. The proposed controller structure and the nonlinear functions

are shown. The proposed NLPID controller has fewer parameters to tune, which makes it

simple and less time-consuming to design. A tuning approach is also shown for the proposed

NLPID controller parameters. Moreover, the proposed NLPID controller has potential

practical advantages, due to the consideration of the effects of derivative estimation on

the controller and the simplicity needed for digital implementation, during design. Finally,

some demonstration examples are presented where the practical advantages of the proposed

controller when compared to conventional methods are shown.

3.2. Problem Statement

The problem considered in this chapter is the design of a novel NLPID controller and a

tuning method of the proposed NLPID gains to establish improved control performance of

nonlinear systems with minimal trade-offs in robustness. The proposed NLPID controller

has independently varying gains that adapt in terms of the feedback error and feedback

error rate. The proposed controller also has set-point adaptive gains that match the correct

feedback error interval for adaptation and work for all set-point inputs. In addition, it

shows potential for mitigating common implementation issues of a conventional PID con-

troller. The equation of the proposed NLPID controller follows a similar format to that

of a parallel linear PID controller, the difference being that the gains vary according to

nonlinear functions that depend on the feedback error and error rate. The time-domain

NLPID controller equation is given by:

uNLPIDpϵptq, 9ϵptq, rptqq “ kppϵptq, rptqqϵptq ` kipϵptq, rptqq

ż tf

0

ϵptqdt ` kdp 9ϵptq, rptqq 9ϵptq.

(3.1)
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Figure 3.1 shows the design architecture of the proposed NLPID controller with the separate

nonlinear function gains for each PID action.

ştf
0
ϵptqdt

d
dt

kipϵptq, rptqq

kppϵptq, rptqq

kdp 9ϵptq, rptqq

` Σ :
`rptq ϵptq uptq`

d1ptq d2ptq

` yptq

Measurement

´

Figure 3.1: A schematic of the proposed NLPID controller structure.

The key properties that these functions must hold and have in common are the following:

• The functions must be positive and semi-definite.

• The functions must be even and symmetric along the y-axis.

These two properties are requirements for gain to be applied to the magnitude of the error

regardless of the direction. In addition, the two properties are important for the feedback

stability that PID controllers require.

The proposed nonlinear parallel structure has been designed due to its flexibility and ability

to reduce derivative kicks and have a form of control between all parameters of the PID

controller. The nonlinear gains vary according to the feedback error and they scale according

to the set-point that enters into the feedback system so that the nonlinearities can act at the

time of transient response. The following section is an extensive discussion of the selected

nonlinear function gains, their uses, and their advantages.

3.3. Nonlinear function gains

The proposed NLPID controller is developed to generate fast set-point tracking with a low

overshoot and a fast disturbance rejection. Under these requirements, the conventional

PID gains, which most influence the overshoot negatively, are the proportional and integral

gains. To reduce the limitations of conventional PID, nonlinear functions are designed to

adjust the gains in terms of feedback error and error rate. The proportional gain must

be large to produce a fast response, but if it is maintained large during steady-state, then

overshoot can occur. As a result, the proportional gain is rapidly reduced near the steady-

state to minimise overshoot and maintain a fast response. In addition, a large integral gain

can reduce the steady-state errors if maintained large near the steady-state. However, the

integral gain can also increase oscillations and reduce the system performance. As a result,

the integral gain is low and is rapidly increased near the steady-state. This provides a
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tuning for fast response and corrects the steady-state errors.

The derivative gain takes a similar form to the integral. However, the derivative gain is in

terms of the error rate, so once the error rate becomes rapid, the derivative gain observes

the increase and reduces to zero. When the derivative gain reduces to zero, the large error

rates are cancelled by the gain to reduce the derivative kicks.

This behaviour of PID control is well known within the literature. As a result, the proposed

NLPID controller has been designed with a set of nonlinear functions that have these

properties. A nonlinear function that processes such design requirements can be represented

as the mollifier function that originates from distribution theory and has not been used in

the past in the NLPID control literature. The mollifier function is defined as follows.

Definition 3.3.1 (The Mollifier Function (Lawrence, 1998)). Define M P C8pRnq be the

mollifier function and expressed as

Mpxptqq :“

$

’

’

’

&

’

’

’

%

cexp

¨

˝

1

|xptq|2 ´ 1

˛

‚ if |xptq| ă 1,

0 if |xptq| ě 1,

(3.2)

with a constant c P R ą 0, selected such that
ş

Rn Mpxptqq dx “ 1.

The mollifier is a C8 continuous and differentiable function that does not possess any sin-

gularities or asymptotes (Showalter, 1994; Lawrence, 1998; Crespi, La Torre and Rocca,

2003). It is also a positive semi-definite even function (Showalter, 1994; Lawrence, 1998;

Crespi, La Torre and Rocca, 2003). The mollifier is also contained within low and upper

bounds of the interval 0 ď Mpxptqq ď cexpp´1q,@xptq P R, with time t ě 0 (Showalter,

1994; Lawrence, 1998; Crespi, La Torre and Rocca, 2003). These mathematical properties

of the mollifier function are desirable to make the nonlinear gains smooth functions, which

has the benefit that the functions and their derivatives are well-defined at all points. In

addition, it can be seen that the Mollifier function is mathematically similar to the normal

distribution, which can be a potential nonlinear function candidate as a replacement to the

Mollifier. However, normal distributions approach zero at infinity, which is a disadvantage

since the function is defined as a piecewise function, meaning that using a normal distri-

bution will cause a discontinuity. Hence, a piecwise normal distribution cannot be used

without having an undefined point at zero. Moreover, the mollifier function has smoothing

properties of input signals, which other functions do not possess. Finally, in this research,

the mollifier is adopted to define the nonlinear proportional gain to maximise the effect of

the nonlinearity for the minimization of overshoot. The adopted nonlinear gains for the

proposed NLPID controller are hence described and shown as follows.
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3.3.1 Nonlinear Proportional Function Gain

The proportional nonlinear gain is represented as the following function and shown in Figure

3.2:

kppϵptq, rptqq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ak0 ´ k0exp

¨

˝

1∣∣ ϵptq
rptq

∣∣2 ´ 1

˛

‚ if

∣∣∣∣ ϵptqrptq

∣∣∣∣ ă 1, rptq ‰ 0,

ak0 if

∣∣∣∣ ϵptqrptq

∣∣∣∣ ě 1, rptq ‰ 0,

ak0 ´ k0exp

¨

˝

1

|ϵptq|2 ´ 1

˛

‚ if |ϵptq| ă 1, rptq “ 0,

ak0 if |ϵptq| ě 1, rptq “ 0,

(3.3)

where k0 is the proportional constant gain, a is the mean or shift value of the nonlinear

function that, together with k0, places the higher gain bounds at either higher or lower

values directly related to a and k0. The function is also dependent on the set-point function

rptq, which enlarges and shrinks the non-linearity on a one-to-one so that the controller

behaves non-linearly in the appropriate error range. A potential change that can be made

by the designer is to define the scaling of rptq to be as desired by altering the right hand

side of the inequality and replacing the value of 1 with a tunable parameter. However,

as it will be seen later in the definition of the nonlinear derivative gain, this will have a

similar effect to the parameter k3, which means that small deviations in the value, will

have exponentially large deviations in the peak value of the nonlinear gain, making it in

certain systems a disadvantage. Therefore, the chosen approach in this thesis is to design

the proportional and integral nonlinear functions without changing this parameter. The

benefits to changing it in the nonlinear derivative gain are discussed further in the section.

Figure 3.2a shows the nonlinear proportional gain in terms of the feedback error. This

shows the large values of the proportional gains when the feedback error is also large, which

helps reduce the error rapidly. Once the system is near steady-state the proportional gain

is rapidly reduced. This then provides a fast response and maintains low overshoot. Figure

3.2b shows the effects of varying the gain parameters a and k0 on the proportional nonlinear

function gain. It can be seen that the top plots of Figure 3.2b show the effects of varying

a. It can be seen that the function purely shifts upwards, showing that it is a shifting

parameter. The bottom plots of the figure shows the effects of varying k0, in this case, it

can be seen that the function also widens as well as shifts upwards, since as k0 varies, so

does the product ak0.
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(a) The tuned nonlinear proportional gain shown for a step set-point
function rptq “ 1, for values a “ 1 and k0 “ 1.5.
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(b) Effects of tunable parameters on the proposed nonlinear proportional gain.

Figure 3.2: The proposed nonlinear proportional gain and the effects of its parameters on
the shape of the function.
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3.3.2 Nonlinear Integral Function Gain

The integral nonlinear gain is represented as the following function:

kipϵptq, rptqq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

k1exp

¨

˝

1∣∣ ϵptq
rptq

∣∣2 ´ 1

˛

‚ if

∣∣∣∣ ϵptqrptq

∣∣∣∣ ă 1, rptq ‰ 0,

0 if

∣∣∣∣ ϵptqrptq

∣∣∣∣ ě 1, rptq ‰ 0,

k1exp

¨

˝

1

|ϵptq|2 ´ 1

˛

‚ if |ϵptq| ă 1, rptq “ 0,

0 if |ϵptq| ě 1, rptq “ 0,

(3.4)

where k1 is the integral constant that determines the largest value of the integral nonlinear

gain. In this case, the set-point function rptq can also be seen which also enlarges and

shrinks the integral nonlinear gain on a scale of one-to-one so that the controller behaves

non-linearly in the appropriate error range. Similar to the proportional nonlinear gain a

potential change that can be made by the designer is to replace the value of 1 with a tunable

parameter to alter the scale by which rptq enlarges and shrinks the nonlinearity.

The integral gain, shown in Figure 3.3a, is designed so that it starts from a value of zero

and increases as the error approaches steady-state, approaching its maximal bounded value.

This allows for the integral to error-correct the system during steady state while keeping

a low integral value during the transient response, which helps maintain low overshoot.

Figure 3.3b shows the effects of varying the parameter k1 on the integral nonlinear function

gain. It can be seen that as k1 increases, the peak value of the function also increases,

directly affecting the overall ’height’ of the function.
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(a) The tuned nonlinear integral gain shown for a step set-point
function rptq “ 1, for value k1 “ 1.
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(b) Effects of tunable parameter k1 on the proposed nonlinear pro-
portional gain.

Figure 3.3: The proposed nonlinear integral gain and the effects of its parameters on the
shape of the function.

3.3.3 Nonlinear Derivative Function Gain

Finally, the derivative nonlinear gain is represented as the following function:

kdp 9ϵptq, rptqq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

k2exp

¨

˝

1∣∣ 9ϵptq
rptq

∣∣2 ´ k23

˛

‚ if

∣∣∣∣ 9ϵptq

rptq

∣∣∣∣ ă k3, rptq ‰ 0,

0 if

∣∣∣∣ 9ϵptq

rptq

∣∣∣∣ ě k3, rptq ‰ 0,

k2exp

¨

˝

1

| 9ϵptq|2 ´ k23

˛

‚ if | 9ϵptq| ă k3, rptq “ 0,

0 if | 9ϵptq| ě k3, rptq “ 0,

(3.5)
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where k2 is the derivative constant that increases the maximum derivative value, rptq, is the

set-point function which also enlarges and shrinks the nonlinearity accordingly in a similar

behaviour to the previous nonlinear gains, this way all nonlinearities work in synchronization

according to the input to maximize the effect of the nonlinearities during the steady-state.

The constant k3 is the filtering constant which is a design value determined by the designer

according to the amount of derivative the controller needs to control the system.

The derivative gain, shown in Figure 3.4, is similar to the integral gain, with the only

difference being the filtering design constant k3. This constant can be useful for the PID

limitations. In this case, the input to the nonlinear function is the error rate instead of

the feedback error. The nonlinear derivative gain function uses only the error rate as its

input because the nonlinear function tracks the changes of feedback error and acts as a

predictive function. The derivative of the error considers future actions, the nonlinear gain

considers those future actions to determine the value of the nonlinear derivative gain. This

helps the controller easily identify the point of steady-state, where the derivative gain is

maximized for increased damping, minimizing overshoot, while becoming zero at error rate

values higher than the filter constant k3. The constant k3 changes the range at which the

nonlinearity operates and defines the zero points of the nonlinear gains. That means that

the control designer can freely adjust the function and simultaneously eliminate derivative

kicks.
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Figure 3.4: The tuned nonlinear derivative gain shown for a step set-point function rptq “

1, for values k2 “ 1 and k3 “ 0.5.
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Figure 3.5 shows how variations in the parameters k2 and k3 affect the derivative nonlinear

function gain. Figure 3.5a shows the nonlinear function under variation of the parameter

k2, where it can be seen that the effect to the function is the same as the parameter k1

for the integral nonlinear function. It makes the function ’taller’, increasing its peak value

without changing the width. Figure 3.5b shows the effects on the function when varying

the parameter k3. The figure shows that the effects of parameter k3 are two-fold, it inreases

the peak, similar to k2 but at a much larger scale compared to the changes made in k3. In

addition, it widens the function, however, this effect is difficult to visually capture, since

small variations in k3 will exponentially increase the function height, while it will linearly

increase the function width.
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(a) Effects of the parameter k2, when k3 “ 0.5, on the proposed
nonlinear proportional gain.
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(b) Effects of the parameter k3, when k2 “ 1, on the proposed non-
linear proportional gain.

Figure 3.5: The proposed nonlinear derivative gain and the effects of its parameters on
the shape of the function.

43



Chapter 3. A Novel Nonlinear PID Controller and a Tuning Algorithm

3.3.4 Unique Features of the Proposed NLPID Gains

The proposed nonlinear derivative gain has been designed with the pre-meditated intent to

eliminate derivative kicks, as this is a well-known limitation of PIDs. This can be shown

via a simple mathematical example and an explicit simulation. Firstly, a mathematical

example is shown that captures this inherent property of the nonlinear derivative function

before proceeding to the simulation case.

Example 3.3.1. Assume a controller that can perfectly track a set-point input and assume

a unit step set-point input described in discrete form by the following function:

rptq :“

$

’

&

’

%

1 if t ě 1 ,

0 if 0 ď t ă 1.

(3.6)

The feedback error of a control system can be defined as:

ϵptq “ rptq ´ yptq (3.7)

Take the forward Euler discrete derivative as:

dϵptq

dt
“

ϵpt ` ∆tq ´ ϵptq

∆t
. (3.8)

This then drives the value of the PID derivative to be as follows:

kdp 9ϵptq, rptqq
ϵpt ` ∆tq ´ ϵptq

∆t
. (3.9)

Assuming a sampling frequency of 10 Hz, hence the time step is ∆t “ 0.1 the derivative of

the error at time t1 “ 1 ´ ∆t, which can then be computed by starting with the forward

Euler Eq.(3.8) and substituting the time value t1 “ 1 ´ ∆t that the derivative is computed

at, and proceeding as follows:

ϵpt1 ` ∆tq ´ ϵpt1q

∆t
“

ϵp1q ´ ϵp1 ´ ∆tq

∆t
(3.10)

At this moment of time, the output is equal to zero, since the time t1 is the moment that the

first non-zero input is inserted into the feedback system, hence, rp1´∆tq “ yp1´∆tq “ 0,

consequently, it continues as:
ϵp1q

∆t
“

1

0.1
“ 1 ˆ 10, (3.11)

which means that the derivative gain becomes kdp 9ϵptq, rptqq “ 0, since

∣∣∣∣ 9ϵptq

rptq

∣∣∣∣ “

∣∣∣∣1 ˆ 10

1

∣∣∣∣ ą k3

for any k3 ă 10. The value of k3 ă 10 is reasonable for practical examples, since the largest

practical value for k3 would be of unit value k3 “ 1 as it will be seen from examples in later
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chapters. This simple example shows how the proposed nonlinear derivative function gain

eliminates derivative kicks, when step set-point functions are introduced to the system. △

Then, an explicit simulation of this benefit has been conducted, where the derivative action

of the proposed NLPID controller and a constant gain PID are compared against each other

in a basic first order system:

P psq “
1

s ` 1
(3.12)

The tuning of the proposed NLPID and linear PID, without derivative filtering, are the

same in this example as that of the FOPTD system in Chapter 4, since the two systems are

similar. Figure 3.6 shows the derivative action comparison between the proposed nonlinear

derivative gain function and the constant derivative gain action, showing that the proposed

nonlinear function entirely eliminates the derivative kick.
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Figure 3.6: The derivative action comparison of the proposed nonlinear derivative function
gain compared against that of a constant derivative gain.

This advantage can in turn improve robustness of the proposed controller and reduce actu-

ator degradation from such large signals.

An additional advantage of the proposed nonlinear gains is that they are adapting according

to the set-point. The effect of a changing set-point to the NLPID gains is shown in Figure

3.7 where the larger the set-point becomes, the wider the nonlinearities are, preserving the

design constants, such as the maximum value of the gains, the minimum value of the gains,

and so that the nonlinearities are active within the range ´ϵmax ď ϵ ď ϵmax.
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Figure 3.7: The tuned nonlinear proportional gain as it adapts to a new step set-point
function of values rptq “ 1, 2, and 5.

3.3.5 Particle Swarm Optimization Algorithm Tuning the Pro-

posed NLPID Controller

The tuning of the proposed NLPID parameters k0, k1, k2, and a are conducted using the

objective function and optimization problem designed with the Integral Time Absolute

Error (ITAE) performance measure and the settling time of the system as:

minimize
k0, k1, k2, a

fpt, ϵptq, tsq “

ż tf

0

t|ϵptq|dt ` ts

subject to kmin ďk0, k1, k2 ď kmax,

amin ďa ď amax,

(3.13)

where ts is the settling time, ϵptq is the feedback error, and tf is the final time. The

objective function has been selected to prioritize the simultaneous minimization of the

overshoot and settling time. This is effective in improving transient response, however, it is

not very practical for disturbance rejection. The objective function also has the potential

to be adopted with weightings to give different priorities to the optimization algorithm.

In this case, it has been selected to give equal importance and hence has not been given

different weights. Moreover, other objective functions can work well without having the

trade-offs between performance and robustness, however, the goal of the selected function

is to show that due to the nonlinear gains, when optimally tuned for performance they also

show robustness. The parameter constraints specify the region of stable control and the

optimization algorithm has a smaller search space with less likelihood of trapping inside

local optima. The MATLAB function of the objective function is shown in Appendix B. The

PSO algorithm is programmed using MATLAB programming language, shown in Appendix

A and has the following process (Wang, D., Tan and Liu, L., 2018):
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Algorithm 1 Particle Swarm Optimization (PSO) pseudo-code

1: procedure PSO Algorithm

2: Generate n number of random position particle vector and q number of tuning

parameters in each particle vector qX
n
0 in the range rkmin, kmaxs and ramin, amaxs for

a

3: Assume initial velocity vector qV
n
0 “ 0

4:

5: for j=1 to n, do

6: Simulate model in Simulink

7: Compute fpt, ϵptq, tsq “
ştf
0
t|ϵptq|dt ` ts

8: find the minimum value of fpt, ϵptq, tsq

9: Initialise a random number rj1 in the range r0, 1s

10: Compute qV
j
1 “ |qV j

1 `q r
j
1c1pGbest1 ´q X

j
1q|

11: Compute qX
j
1 “ |qXj

1 `q V
j
1 |

12: end for

13:

14: for j=1 to n, do

15: for i=2 to m, do

16: if Xj
1 ě 2 then

17: Re-initialise a random number in range rkmin, kmaxs for k0, k1, k2

18: Re-initialise a random number in range ramin, amaxs for a

19: else

20: k0 “1 Xj
i´1, k1 “2 Xj

i´1, k2 “3 Xj
i´1

21: end if

22: if Xj
1 ě amax OR Xj

1 ď amin then

23: Re-initialise a random number in range ramin, amaxs for a

24: else

25: a “4 Xj
i´1

26: end if

27: Simulate model in Simulink

28: Compute fpt, ϵptq, tsq “
ştf
0
t|ϵptq|dt ` ts

29: find the minimum value of fpt, ϵptq, tsq

30: for q=1 to p, do

31: Initialise a random number rji in the range r0, 1s

32: Compute qV
j
i “ |qV j

i `q r
j
i cipGbesti ´q X

j
i q|

33: Compute qX
j
i “ |qXj

i `q V
j
i |

34: end for

35: end for

36: end for

37: end procedure
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where

• i is the iteration index, j is the particle index, and q is the particle vector element

index, n is the total number of particles generated,

• qX
j
i is the jth position particle, which is a vector that contains the tuning parameters

as elements with each qth parameter and each iteration i,

• qV
j
i is the velocity vector for each iteration i, jth particle, and qth parameter,

• qr
j
i is the stochastic variable that changes for every iteration and lies in the range

r0, 1s, and

• Gbest is the position particle with the minimum objective function evaluation across

the iterations.

If the new position qX
j
i`1 is outside the specified range of values, then these specific new

particles are re-initialized within the pre-specified range. The parameter c1 “ 1.3 is a tuning

parameter taken from research surveys on PSO tuning (Wang, D., Tan and Liu, L., 2018).

The Particle Swarm Optimization (PSO) algorithm is used to tune the proposed NLPID

controller. The PSO algorithm is well known to be an effective stochastic optimization

algorithm, with fast convergence, without using derivatives. However, the downside is that

it is easy for PSO to fall to a local minimum (Wang, D., Tan and Liu, L., 2018; Parsopoulos

and N.Varsatis, 2002; Clerc and Kennedy, 2002). To overcome this challenge, two steps

have been considered to lower the possibility of such an occurrence. Firstly, the particles

are limited within a range of specified values. Secondly, the personal best value of each

particle, also known as cognition, is not considered in this case. The global, also known as

social intelligence, is used, taking the social best objective value to make it more difficult

to fall at a local optimum.

This process is a modification of the original particle swarm optimization, which included

the history of the minimum objective value for each particle, in this case only the social

best values are considered.

3.4. Indicative Stability and Constraints Justification

To define the parameter constraints a stable control region study has also been conducted

to determine the feasible search regions. Simulations have been conducted for three linear

systems to determine the stability regions and the stable tunings for k0, k1, and k2. This

is to establish a simulation-based comparison between the theoretical stability results and

the results shown from the simulations. This indicates that the theoretical results are con-

servative compared to the stability region of the simulations, consequently, the theoretical

results can provide a guaranteed indicative stability analysis for the three linear systems.

The simulations have been conducted by changing only the parameters k0, k1, and k2 with
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the parameters a and k3 unchanged from the tuned values as shown in this chapter. The

initial approach employed a brute force grid-based method of conducting the simulations

by ranging both values of k0 and k1 or k0 and k2 for all possible points in a defined rectan-

gular grid. Due to brute force grid-based simulations, the simulation took a long time to

capture the stability regions, which could range between 40 to 55 minutes. As a result, the

grid-based computation approach is reduced by only ranging the value of k0 and using a bi-

section algorithm to determine the value of k1 and k2, which reduces the time taken for the

simulation to determine the stability region between 13 to 25 minutes. The simulations have

been conducted for the region defined by the PSO optimisation-based tuning constraints to

capture a comparison between the theoretical and simulation results in the tuning search

space. To speed up the simulations, the relative tolerance has been reduced to 10´4 with

the shape preservation and zero-crossing detection disabled, and fast-restart is enabled. In

addition, the simulations have been conducted for a longer simulation time of 150 seconds

to capture the full dynamics and have a more certain determination of instability. This

helps eliminate cases of pure instability and capture cases of marginal stability or large

overshoots, which take longer to settle to the reference point. To determine instability, the

Bounded-Input Bounded-Output definition is used and the system input and output are

detected with a threshold of ˘100 used to confirm the boundedness of the signals.

3.5. Concluding Remarks

The proposed NLPID controller extends the capabilities of PID control and mitigates its

common limitations by proposing a new set of nonlinear gains. The new set of nonlinear

gains shows flexibility, they can enlarge and shrink the range of nonlinearity, by taking into

consideration the set point. The proposed NLPID controller has fewer tunable parameters

that makes the tuning process simpler and less time consuming. The nonlinear derivative

function allowed for the elimination of any derivative kicks. This is a crucial advantage

since tuning can take the majority of the time of the designer.

The extensive simulation-based indicative stability analysis of the proposed NLPID con-

troller has also been shown for the feedback control of linearised dynamics. Moreover, the

indicative stability analysis provides a simulation-based constraints justification of the tun-

able parameters. This contributes to the support of the proposed NLPID controller design

and tuning.
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Chapter 4

Applications and Benchmarking of the

Proposed NLPID Controller

4.1. Introduction

This chapter is focused on the possible control applications of the proposed NLPID control-

ler and to benchmark its performance against conventional control algorithms. A control

application of the proposed NLPID controller is shown, using the dimensionless Nonlinear

Continuous Stirred Tank Reactor (NCSTR), a highly nonlinear system. The control per-

formance of the proposed NLPID controller is shown for all the operating regions under

actuation limits. In addition, the proposed NLPID controller is benchmarked using a set

of linear plant dynamics that are generally a common outcome of the linearization process

to most nonlinear models, namely, a First Order Plus Time Delay (FOPTD), the Negative

Gain Second Order Plus Time Delay (NG SOPTD), and the Non-minimum Phase SOPTD

(NmP SOPTD). The proposed NLPID controller is benchmarked against the conventional

PID, two-degree of freedom PID (2D PID), and Smith Predictor PID (SP PID) controllers

to show the effectiveness of the proposed NLPID controller in transient performance and

disturbance rejection. The tuning approach of the conventional controllers is presented in

this chapter explicitly to ensure a fair comparison. Finally, the system input energy of the

feedback system is shown as an indication of internal stability.

4.2. Problem Statement

This chapter is broken down into two main problem areas:

1. Application of the proposed controller to nonlinear systems, using the motivating

example as a case scenario.

2. Benchmarking of the proposed controller against conventional methods.

Consequently, in this section, the two main focus areas are defined as follows.
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Nonlinear Case Study

The motivating example of this thesis has been the NCSTR system, which has a set of

highly nonlinear dynamics commonly seen in chemical industries. The proposed NLPID

controller is designed and tuned for the NCSTR system to show the robustness of the

proposed controller at multiple operating regions of the system. The performance of the

proposed controller is analysed in simulation. The system model under consideration is

the dimensionless NCSTR model with the following mathematical form (Colantonio et al.,

1995; Harmon Ray, 1981; Sinha and Mishra, 2018; So and Jin, 2018):

9x1ptq “ ´x1ptq ` Dap1 ´ x1ptqqexp

¨

˝

x2ptq

1 ` x2ptq{γ

˛

‚` d1,

9x2ptq “ ´p1 ` βqx2ptq ` HDap1 ´ x1ptqqexp

¨

˝

x2ptq

1 ` x2ptq{γ

˛

‚` βsatpuptqq ` d2,

yptq “ x2ptq.

(4.1)

Analysis conducted within the literature of the dimensionless NCSTR model represented

in Eq.(4.1), showing that the system has three steady states xA “ r0.144, 0.886s, xB “

r0.447, 2.752s, and xC “ r0.765, 4.705s determined for the nominal parameters of the system

whereH “ 8, Da “ 0.072, γ “ 20, β “ 0.3 (Colantonio et al., 1995; Harmon Ray, 1981). An

open-loop analysis can show the stability properties of the system steady-states and expand

in more detail what is already known to the literature. Figure 4.1 shows the evolution of

the states of the NCSTR system, with initial conditions near the steady state xA. The

figure shows that the initial state converges towards the steady state xA showing that it is

a stable steady state.
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Figure 4.1: The open-loop study of the steady state point xA.
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Figure 4.2 shows the evolution of the system with initial conditions near the steady state

point xB . The figure shows that it tends towards the steady state xC and away from xB .

This shows that xB is an unstable point that the open-loop system cannot reach the state

xB .
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Figure 4.2: The open-loop study of the steady state point xB .

Figure 4.3 shows the evolution of the open-loop NCSTR system when it has initial conditions

near the state xC . The figure shows that the open-loop response converges towards the point

xC showing a stable steady state at xC .

0 5 10 15 20 25 30 35 40 45 50
4.7

4.702

4.704

4.706

0 5 10 15 20 25 30 35 40 45 50
0.764

0.7645

0.765

Figure 4.3: The open-loop study of the steady state point xC .

The analysis within the literature has also shown that xA and xC are stable steady states,

while xB is an unstable steady state (Colantonio et al., 1995; Harmon Ray, 1981).
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Benchmarking Case Studies

Industrial systems are highly nonlinear and possess a variety of subsystems, actuators, and

sensors that all contribute to the nonlinear behaviour. The proposed NLPID controller is

simulated for the NCSTR system to determine the effectiveness of the proposed controller

in a highly nonlinear scenario. However, conventional controllers are most commonly tuned

for linear plants. Consequently, benchmarking of the proposed controller against the con-

ventional methods is done for the linearised system under a desired operating condition.

The linearisation constrains the system within the operating condition and it is desirable

to design the control algorithm to be robust against uncertainties. Figure 4.4 shows a

block diagram of such an industrial control problem using a feedback system that contains

disturbances and sensor biases. The control objective is to design the controller Cpsq for

the plant P psq to achieve a desired performance and maintain stability for a large uncer-

tainty. The proposed NLPID controller is benchmarked against the conventional methods

by simulating common industrial case scenarios.

Cpsq P psq
`rptq ϵptq uptq `

d1

yptq `

d2

Measurement

´

Figure 4.4: The schematic block diagram of the control system with both the input and
output disturbances.

A general description of common linear model dynamics in industrial systems takes the

mathematical form of a Second Order Plus Time Delay (SOPTD) system, which is also

commonly seen in linearised dynamics of the NCSTR system (Krishna et al., 2012). The

transfer function description of a SOPTD system is as follows (Krishna et al., 2012):

P psq “
z1s ` z0

q2s2 ` q1s ` q0
e´τs. (4.2)

The linearised dynamics under investigation are:

1. The First Order Plus Time Delay (FOPTD) system,

2. The Negative Gain Second Order Plus Time Delay (NG SOPTD) model, and

3. The Non-minimum Phase Second Order Plus Time Delay (NmP SOPTD) model.

These commonly represent different NCSTR operating region linearisations. Moreover,

the dynamics possess various dynamical behaviours that are used to test the limits of the

proposed control algorithm. These include delays, first and second-order, negative gain,

and non-minimum phase dynamics that can also represent a large set of industrial systems
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not limited to NCSTR.

The controllers that are benchmarked against the proposed NLPID controller are the tra-

ditional PID, Two-degrees-of-freedom PID (2D PID), and Smith-Predictor PID (SP PID)

controllers. The following control design criteria are used for the benchmarking across all

three systems:

• Minimization of overshoot.

• Minimization of rise time and settling time.

• Fast disturbance rejection to input and output disturbances.

Using these control design criteria, the conventional control algorithms are tuned using the

tools and methods that are available to the practitioner described in what follows.

The L2 norm of the controller output is also computed for the nominal value of the system.

The bounded input bounded output signals can indicate internal stability of the system.

The L2 norm can compute the total system input energy produced and if the L2 is finite,

that means the system has a bounded output for every bounded input. This provides

satisfactory evidence of internal stability, as well as energy usage. The values below are

the computed L2 norms using the following equation for the system input signal before

applying the input disturbance.

L2puptqq “

d

ż tf

t0

puptq2q (4.3)

The mean squared error (MSE) is used to determine the signal variance of the benchmarked

controllers, showing a measure of how much the error signals vary across the simulation

time for each controller. This is a useful benchmarking measure as it provides information

as to how much the inputs vary, which is an important factor for actuator safety and overall

signal quality. The formula for computing the MSE measure is shown in Eq 4.4 as follows:

MSE “
1

n

ż tf

t0

ϵptq2 (4.4)

where n is the number of data points, which is dependent on the timestep and total simu-

lation time.

4.3. Simulation Execution Methodology

The computer that is used to conduct the research has a quadcore Intel i7-6700HQ processor

with 16GB RAM and a 250 GB SSD memory card. The operating system of the computer

is a 64-bit Windows 10. MATLAB/Simulink R2021a software version is installed under

the academic license and is used to conduct the simulations. A variable step-size solver is
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used so that it is automatically selected by the software as is best fit for the problem. In

the cases of the simulations, the (Runge-Kutta) ODE45 solver is selected with a relative

tolerance of 10´8. The solver used for the second order plus time delay systems is the

ODE23tb, which uses the trapezoidal rule + backward differentiation formula to solve stiff

differential equations. The solver relative tolerance used in those cases was also 10´8.

The solver reduced the execution time of the system simulations and was able to solve

the equations accurately. To speed up the process of the repetitive simulations during

tuning and parametric uncertainty response analysis, the ’Fast Restart’ approach was used

in Simulink to conduct repeated simulations without repeatedly compiling the same model.

4.4. Application of the Proposed NLPID Controller to the NCSTR

System

The system model under consideration is the dimensionless NCSTR model with the fol-

lowing mathematical form (Colantonio et al., 1995; Harmon Ray, 1981; Sinha and Mishra,

2018; So and Jin, 2018):

9x1ptq “ ´x1ptq ` Dap1 ´ x1ptqqexp

¨

˝

x2ptq

1 ` x2ptq{γ

˛

‚` d1,

9x2ptq “ ´p1 ` βqx2ptq ` HDap1 ´ x1ptqqexp

¨

˝

x2ptq

1 ` x2ptq{γ

˛

‚` βsatpuptqq ` d2,

yptq “ x2ptq.

(4.5)

The input saturation is used to represent a fully open and fully closed inlet to the NCSTR

system and pose limits to the system input for a realistic and practical representation.

satpuptqq :“

$

’

’

’

’

&

’

’

’

’

%

umin, if uptq ă umin,

uptq, if umin ď uptq ď umax,

umax, if uptq ą umax,

(4.6)

where umin “ ´5 and umax “ 5 adopted from (So and Jin, 2018).

The control problem of the NCSTR plant is to regulate the system while the output trans-

itions from the stable steady state yA “ 0.886 into the unstable steady state yB “ 2.752.

Then, regulate the system for the second transition from the unstable steady state yB to the

stable steady state yC “ 4.705. Hence, the desired output is 0.886 Ñ 2.752 Ñ 4.705. The

three steady states possess second order with minimum phase dynamics and different stabil-

ity properties (Colantonio et al., 1995). The simultaneous state disturbances d1 “ d2 “ 2%

of rptq are also implemented as constant step function disturbances. These values represent
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practical disturbances of constant values in the x1 and x2 states of the NCSTR to test the

robust regulation of the system. It must be noted that the state x2 is observable while the

state x1 is not observable. As a result, the disturbance d1 applied in the x1 state affects

the state x1 which in turn affects the observable state x2 negatively and by a large factor of

H “ 8. Hence, the value of 2% of rptq has been selected for this study as an arbitrarily large

disturbance to test the robustness of the controller without causing system instabilities due

to the large factor H.

Design and Tuning of the NLPID Controller

The Particle Swarm Optimization (PSO) tuning algorithm is used to design the NLPID

controller parameters. The filtering parameter is selected as k3 “ 1 to reduce derivative

kicks and reduce overshoot by increased derivative action. The search space boundaries

have been suggested by the authors for the NCSTR system. These constraints can be

changed by the designer based either on prior knowledge about the system, the controller,

or any other design preference related to the case at hand. The steady state yB is unstable

and it increases the sensitivity of the system. Hence, the constraints of the algorithm

are considered for high sensitivity to maintain stability. The search space boundaries are

defined as kmin “ 0, kmax “ 10, amin “ 0, and amax “ 2.

The PSO algorithm searched for the nonlinear gain parameters k0, k1, k2, and a. The tuned

values of the proposed NLPID controller are shown in Eq.(4.7).

k0 “ 7.4703, k1 “ 8.8245, k2 “ 4.0618, k3 “ 1, a “ 1.7382 (4.7)

NCSTR Control Performance Simulation Results

The nominal dynamics simulations are conducted to show the performance of the proposed

NLPID controller for the control of the NCSTR system. The simulations are conducted for

60 seconds to perform two consecutive transitions between the steady states yA Ñ yB Ñ yC .

The initial conditions of the system are the steady state values of the point xA. Then the

system is regulated for the transition to xB and then to xC . The first transition is conducted

from set-point yA Ñ yB at the 5 second time mark and the second transition from set-point

yB Ñ yC occurs at the 30 second time mark. The disturbances d1 “ d2 “ 2% of rptq

acting on the states are step functions implemented at the 15 and 40 second time marks,

respectively.

Fig. 4.5 shows the time variation of the nonlinear gains of the proposed NLPID controller

for the simulation of the NCSTR system for all operating regions. The figure shows the

adaptive ability of the proposed NLPID controller. Moreover, the figure indicates how the
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nonlinear proportional gain has a low initial value, increases with the step execution and

then rapidly decreases to reduce the overshoot. In addition, the nonlinear integral gain

is shown to have a high value, then drops as the step is executed and provides a rapid

increase near the steady state to eliminate the steady-state error. Finally, the nonlinear

derivative gain shows a high initial derivative action, which then suddenly drops during

the step changes to eliminate derivative kicks and increases during steady-state to improve

system performance.
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Figure 4.5: The time response of the proposed NLPID controller tuned gains to the
NCSTR system simulation.

Fig. 4.6 shows the regulation of the control system for the output transition of the NCSTR

system from yA to yB and from yB to yC . The output response, shown in Fig. 4.6a, indicates

that the proposed NLPID controller produces a fast response with an overshoot of 18.9%, a

rise time and settling time of 0.89 and 11.88 seconds, respectively. In addition, the transient

response from yB to yC produces an overshoot of 15.4% with a rise time and settling time

of 0.53 and 9.74 seconds, respectively. The output yB is unstable and it is shown that the

proposed NLPID controller regulates the system and manages to reject disturbances stably

for both output transitions and provide a fast transient response. Moreover, it can be seen
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that the disturbances generate an undershoot that the controller must regulate. According

to Eq. (4.5) the undershoot is introduced because of the disturbance d1 that impacts the

state x1, which reduces the output y “ x2 due to the negative sign. As a result, due to the

large factor H “ 8, the undershoot introduced by d1 is larger than the overshoot introduced

by d2 making the resultant effect an undershoot dominated by the impact of d1. Fig. 4.6b

shows the system input of the NCSTR. It can be seen that the proposed NLPID controller

momentarily reaches saturation to generate a fast performance in both output transition

cases. This indicates that the proposed NLPID controller can generate a fast response and

regulate the system behaviour under saturation limits without windup or instabilities.
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(a) The transient response of the NCSTR system using the proposed
NLPID controller to transition from operating point yA to yB then
to yC .
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(b) The saturated system input to the NCSTR model from the pro-
posed NLPID controller for the operating point transition from yA
to yB then to yC .

Figure 4.6: The servo and regulator performance of the proposed NLPID controller in the
NCSTR system for the operating point transition from yA to yB then to yC .
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The proposed NLPID controller has been simulated controlling an NCSTR plant with a

stable closed loop, where the plant model includes input saturation, which is commonly

seen in practice. The proposed controller shows applicability to practical problems that

commonly require linearisation and multiple design iterations, indicating future practical

potential. The advantage of the proposed controller that is demonstrated with this case

scenario is that it can handle multiple operating conditions using a single tuning, while

the conventional approach would require a multi-step process of linearisation, analysis,

and tuning for multiple models. Finally, although the proposed controller has not been

compared against gain scheduling in this scenario, the results demonstrate that nonlinear

function gains can be a simpler approach, requiring less tuning and analysis iterations for

the NCSTR system. Next, to further illustrate this advantage of the proposed controller,

benchmarking case scenarios are defined using common linearisations of the NCSTR system,

where the proposed controller is benchmarked against the conventional controllers.

4.5. Benchmarking Case-Studies

The applicability of the proposed controller to nonlinear systems has been shown using

the motivating example as a case scenario. The next problem area focuses on showing a

comparison of the proposed NLPID controller to provide fast control performance to linear

systems, using common model linearisations of the NCSTR model as case scenarios. To

indicate explicitly the fair comparison of the controllers, the tuning approach taken for this

problem is shown with the benchmarking results following there after for each linear plant.

4.5.1 Tuning Methodology for the Conventional Controllers

PID control research has the difficulty and unfortunate disadvantage that many control

comparisons are unfair and improved results can be achieved by spending more effort on

tuning (Åström and Hägglund, 1995; Atherton and Majhi, 1999; Åström, 2000; Åström and

Hägglund, 2001). To ensure a fair comparison the conventional control algorithms are tuned

using the tools available to the practitioner. MATLAB PID tuning algorithm has been used

for various problems by both researchers and practitioners, showing effective results with

ease of use (Reddy et al., 2011; Gahinet, Chen, R. and Eryilmaz, 2013; Gomes et al.,

2016; Scherlozer, Orsini and Patole, 2016; Wang, L., 2020). MATLAB tuner has also been

reported in research to provide an effective tuning method for diverse problems, including

nonlinear systems, systems with delays, systems with non-minimum phase dynamics, and

all the linear models (Reddy et al., 2011; Gahinet, Chen, R. and Eryilmaz, 2013; Gomes

et al., 2016; Scherlozer, Orsini and Patole, 2016; Wang, L., 2020).

MATLAB PID tuner is used to design the conventional control algorithms due to its re-
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ported ability to adequately tune the controller for various systems. Various tuning trials

have been conducted, some of which adequately fit the design criteria, with the design that

has minimum overshoot and fast response selected as the successful design candidate. This

explicitly shows the common design difficulties faced in the conventional control approaches

that are used by practitioners in industry and how the proposed NLPID controller provides

an improved alternative.

MATLAB PID Tuner

MATLAB PID tuning algorithm linearises the plant system at the operating point, then

tunes the PID controller according to the linearised model, at that operating point. This

algorithm works by parameterizing the controller based on the designer’s pre-specified value

of the cross-over frequency and the phase margin of the controller (Gahinet, Chen, R.

and Eryilmaz, 2013). The cross-over frequency is directly related to the open-loop system

bandwidth, which is directly related to the speed of the response and uses the phase margin

to design the robustness of the controller (Gahinet, Chen, R. and Eryilmaz, 2013).

The parameterization of the controller allows the designer to directly visualize the response

according to the set design criteria, which can be changed in real time. This makes MAT-

LAB tuner a simple, effective, and easy-to-learn tuning method. The parameterization of

the controller used by the algorithm can be written as (Gahinet, Chen, R. and Eryilmaz,

2013):

Cpsq “
ωc

s

ˆ

sinpϕzqs ` ωccospϕzq

ωc

˙ ˆ

sinpβqs ` ωccospβq

sinpαqs ` ωccospαq

˙

, (4.8)

where ωc is the frequency at which the magnitude of the open-loop response Y psq “

KPIDpsqP psq first crosses the 0 dB line, and angles ϕz, α, and β vary between 0 and 90

degrees, with a total phase shift provided by the PID controller at frequency ωc given by

(Gahinet, Chen, R. and Eryilmaz, 2013):

∆ϕ “ ϕz ` β ´ α. (4.9)

In addition, MATLAB tuning algorithm allows for prioritization in robustness, set-point

tracking, or a balance of both, which is adopted as the designer requires, and it is also

applicable for tuning the 2D PID control algorithm (Gahinet, Chen, R. and Eryilmaz,

2013; Wang, L., 2020).

Selection Criteria

The different tuning trials are conducted using MATLAB tuning algorithm. The tuning

trials are conducted via manual trial and error by varying the open loop phase margin,
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but also cutoff frequency to define the open-loop bandwidth. The selection criteria for the

conventional controllers is based on the tuning that produces the minimal overshoot, rise

time, and settling time. This in effect will also optimise for the objective function used to

tune the proposed NLPID controller. Hence, this way a fair approach to tuning is taken by

taking the same priorities for all of the controllers.

4.5.2 The FOPTD Case Study

An arbitrary FOPTD system is considered for the first benchmarking scenario to start with

a more fundamental model. It is mathematically shown in the form of a transfer function,

for the values z1 “ 0, z0 “ 1, q2 “ 0, q1 “ 1, and q0 “ 1 as follows:

P psq “
1

s ` 1
e´s, (4.10)

The conventional PID, 2D PID, and SP PID controllers are designed and tuned for the

FOPTD model. To ensure a fair comparison between the conventional control algorithms

and the proposed NLPID controller the design specifications are kept the same for all

controllers, and MATLAB PID tuning tool is used to ensure the specifications are met.

Design and Tuning of the NLPID Controller

The tuning of the proposed NLPID controller is conducted using the PSO algorithm with

the following objective function:

compute
k0,k1,k2,a

fpt, ϵptq, tsq “

ż tf

0

t|ϵptq|dt ` ts

subject to 0 ďk0, k1, k2ď 2

0.5 ďa ď 2,

(4.11)

where ts is the settling time, ϵptq is the feedback error, and tf is the final time.

The PSO algorithm searched for the nonlinear gain parameters k0, k1, k2, and a that reduce

settling time, overshoot, and transient response as per the design constraints. The algorithm

performs a randomised particle search, evaluating the objective function for each particle

in the search space, selecting the one with the least value. The objective function values

can potentially ’jump’ due to the gain parameters crossing the specified boundaries and

the parameters being randomly reset within their pre-specified range. The gain parameter

a must be tuned so that the overall proportional nonlinear gain is always positive for all

feedback error values. The lowest value that the nonlinear proportional gain can achieve

is when the system has reached steady state, hence ϵptq “ 0. This means that it is more
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efficient that the gain parameter a follows the rule:

kpp0, rptqq “ ak0 ´ k0expp´1q ě 0 ùñ a ě expp´1q “ 0.3679 (4.12)

Suppose the parameter does not follow that inequality. In that case, the search space is

inefficient, and the search algorithm may take longer to tune the controller, and as the

system will be unstable in the cases where a ď 0.3679, the objective function evaluations

will be extremely high, and hence, ignored. Therefore, the lowest bound of the parameter

a is 0.5 to include a small margin of difference. The upper bounds of the search space in

all parameters have been selected based on trial and error to improve tuning speed.

Table 4.3 shows the parameters of the nonlinear controller gains as determined by the

searching algorithm. The parameter k3 is simpler to tune since it has predictable changes

to the controller, effectively affecting only the amount of derivative action. Hence, it is

unnecessary to use the PSO algorithm for tuning this parameter. Instead, it is determined

by the designer after the rest of the controller parameters are tuned. The designer can

choose a value for k3 based on experience or based on the knowledge of the system. For

example inherently integral systems would require PD control and having a k3 of at least

1, would be beneficial. On the contrary, a low value of k3 “ 0.5 is used for systems where

PI control usually suffices. Consequently, since FOPTD systems are well-known to be

adequately controlled by a PI controller, since there is less need for a derivative action and

a value of k3 “ 0.5 would be appropriate.

Figure 4.7 shows how the nonlinear gains vary with the feedback error of the system. The

proportional gain starts from its maximum value where it then drops as it approaches the

steady state value, converging to a specific gain. The integral gain starts from zero and

increases rapidly during the transient response, settling to a converged value as the system

reaches a steady state, providing error correction. It can be seen that the derivative starts

from zero, eliminating any derivative kicks and noisy signals, while it increases as the system

approaches steady-state providing the necessary speed of the system to eliminate overshoot.
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Figure 4.7: The tuned nonlinear gain values response to the FOPTD system simulation.

The performance of the proposed NLPID controller is further examined by using the steady-

state values of the nonlinear function gains in a PID controller. The derivative filter of the

PID controller is known to be kd
N

1´ N
s

“ kd
Ns
s´N , which shows that the larger N is, the

larger derivative action produced. The smaller N is, the smaller the derivative action

produced. Consequently, the steady-state values of the proposed NLPID gains are directly

substituted into the PID controller, using a large derivative filter parameter value N “ 100

consistently for all of the systems. This tuning is provided in Table 4.1 as T2 PID and

the gains a, k0, k1, and, k2 are computed for all example cases and the FOPTD is uniquely

used as an example to show that explicitly. However, to reduce the length of the chapter

and avoid repetition it will not be shown explicitly in the other case studies. The design

methodology for the T2 PID is defined as follows:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

kp4 “ ak0 ´ k0expp 1
0´12 q “ ak0 ´ k0expp´1q “ 0.6965 ˆ 1.9344 ´ 1.9344 ˆ expp´1q

“ 0.6357

ki4 “ k1expp 1
0´12 q “ k1expp´1q “ 1.7142expp´1q “ 0.6306

kd4
“ k2expp 1

0´k2
3

q “ 1.2373expp ´1
0.52 q “ 0.0227

The tuned parameters are summarised in Table 4.1.

Table 4.1: The tuned control parameter values used for the FOPTD benchmarking simu-
lations.

Controller PSO Tuning Parameters

NLPID k0 “ 1.9344, k1 “ 1.7142, k2 “ 1.2373, k3 “ 0.5, a “ 0.6965

T2 PID kp4
“ 0.6357, ki4 “ 0.6306, kd4

“ 0.0227, N4 “ 100
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The constraints of the optimisation algorithm have been verified to be stable based on the

stability regions of each parameter, which has been established after extensive simulation

trials. In addition, the constraints allow for the optimisation algorithm to find the desired

performance tuning faster with less local optimal convergence.

Tuning and Design of the PID, 2D PID, and SP PID Controllers

The benchmarking uses the MATLAB PID and 2D PID controllers, including derivative

filtering, to reduce the derivative kick effects and improve control performance. MAT-

LAB 2D PID controller contains the set-point weighting parameters as a percentage of the

input that contributes to the proportional and derivative actions. The transfer function

expressions of MATLAB PID and 2D PID are, respectively, as follows:

KPIDpsq “ kp ` ki
1

s
`

kdN

1 ´ N
s

, (4.13)

K2D PIDpsq “ kppbr ´ yq ` ki
1

s
`

kdN

1 ´ N
s

pcr ´ yq, (4.14)

where kp, ki, and kd are the proportional, integral, and derivative gains respectively, N is

the filtering parameter, which represents the inverse of the time constant of the filter, and

in the case of 2-DoF control, b and c are set-point weightings. These are the respective

parameters to be tuned by the algorithm according to the performance criteria. As can

be seen, the PID controller has 4 parameters to be tuned, including the filter, whereas the

2D PID controller has 6 parameters, including the set-point weighting.

A sequence of tuning trials have been conducted for each of the conventional controllers with

4 tuning trials explicitly shown. The 4 trials that are shown have been selected to show the

common trade-off issues in the PID design when the goal is to minimise overshoot, settling

time, and rise time. One of the four trials is selected based on the three aforementioned

criteria, while also taking into consideration the inevitable trade-offs. The tuning trial that

is selected, it can be purely on the basis of the objective function evaluation, however, it

is not always clear that this is the best approach. Hence, it is beneficial to, in some cases,

decide based on scrutiny and experience. When the trade-offs are significant, the tuning is

selected based on minimising two of the criteria, while compromising the third. The two

that can be minimised can depend on the system dynamics and can be quite varied, which

is where experience can become useful.

The tuning trials conducted are shown in Figure 4.8. The PID and 2D PID controllers

can achieve a response containing 0.88% and 0% overshoot, respectively, a rise time of 2.36

and 2.01 seconds, and settling time of 5.42 and 5.07 seconds, respectively. If increased,

overshoot and oscillations are presented for both controllers.
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(a) MATLAB PID tuning trials for the FOPTD system.
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(b) MATLAB 2D PID tuning trials for the FOPTD system.

Figure 4.8: Different tuning trials for both the PID and 2D PID controllers using MAT-
LAB control system toolbox PID tuning algorithm.

An alternative method for controlling FOPTD systems is the Smith Predictor PID (SP PID)

controller. SP PID controllers provide an improvement to the PID controller specific to

delay systems, where the delay dynamics are predicted and then a PID controller is also

used and tuned. Research indicates that this method provides improved results as compared

to PID control in delay systems (Normey-Rico and Camacho, 2007; Zerong and Zhigang,

2017; Frank, 2018; Gnanamurugan and Senthilkumar, 2018; Normey-Rico, Santos et al.,

2022). This provides a fair comparison and extends the simulations to more complex and

industry-used control systems. With the use of the Smith predictor, one can achieve a faster

response with a minimal overshoot that can improve the PID controller with a time-delay
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prediction step. The transfer function that represents the SP PID controller is:

K
SP PID

psq “
KPIDpsq

1 ` KPIDpsqT psqp1 ´ Gppsqq
. (4.15)

The SP PID controller design is formulated using MATLAB PID controller as described by

Eq. (4.13) with the FOPTD plant model as described by Eq. (4.16).

P psq “ T psqe´τs, τ “ 1 seconds, (4.16)

T psq “
z

b1s ` 1
, k “ 1, tn “ 1 seconds,

where z is the open loop plant gain , b1 is the lag, and τ is the time delay.

The time delay e´τs is approximated by the second order Pade transfer function Gppsq for

the design of the SP PID controller. The general second-order Pade transfer function of

time delay is as follows:

Gppsq “
τ2s2 ´ 6τs ` 12

τ2s2 ` 6τs ` 12
. (4.17)

The different MATLAB tuning trials of the SP PID controller are shown in Figure 4.9.

The SP PID controller has a rise-time of 1.22 seconds, settling time of 6.24 seconds, and

an overshoot of about 3.4%, showing oscillatory response. The overshoot of the SP PID

controller can be reduced, however at the cost of also reducing rise time and settling time.

The SP PID controller produces a non-smooth rise time, which can negatively affect the

system input and may produce technical difficulties in practice.
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Figure 4.9: MATLAB SP PID tuning trials for the FOPTD system.

The tuning trials in this section show the adequacy of MATLAB tuning algorithm, but

also it indicates the limitations of the PID, 2D PID, and SP PID controllers at different

tuning paradigms for the FOPTD system. After extensive tuning trials, efforts were made
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to increase controller speed and reduce overshooting.

Table 4.2 shows the objective function evaluations at each tuning trial for the conventional

controllers to indicate on the selection criteria. Trial 4 has the lowest objective function

evaluation for the PID and 2D PID controllers, consequently they were chosen on the bases

of objective costs and the performance criteria that they have the lowest rise time and

settling time of all other tuning trials. Trial 4 of the SP PID controller does not have

the lowest objective function value, however, that is because it has the best compromise

between overshoot and settling time.

Table 4.2: The objective function evaluations for the individual tuning trials of the con-
ventional controllers for the FOPTD benchmarking simulations.

fpt, ϵptq, tsq

Controller Trial 1 Trial 2 Trial 3 Trial 4

PID 174.3512 118.5859 175.2632 88.0333

2D PID 551.1609 1.7733 ˆ 103 1.3580 ˆ 103 100.2722

SP PID 310.9030 362.1999 355.8497 317.6669

Table 4.3 shows the tuned parameters of each controller together with their respective

objective function evaluations. It can be seen that the proposed NLPID controller has a

similar objective function evaluation as the 2D PID controller. The PID controller shows

to have the lowest objective function value, while the SP PID and T2 PID controllers have

the largest objective function evaluations.

Table 4.3: The tuned control parameter values used for the FOPTD benchmarking simu-
lations.

Controller PSO Tuning Parameters fpt, ϵptq, tsq

NLPID k0 “ 1.9344, k1 “ 1.7142, k2 “ 1.2373, k3 “ 0.5, a “ 0.6965 107.75

MATLAB Tuning Parameters

PID kp1
“ 0.4458, ki1 “ 0.4422, kd1

“ 0, N “ 0 88.0333

2D PID kp2 “ 0.5308, ki2 “ 0.4743, kd2 “ 0, N2 “ 0, b “ 0.9400, c “ 0 100.2722

SP PID kp3
“ 1.4089, ki3 “ 2.1239, kd3

“ 0.4227, N3 “ 2.4471 317.6669

T2 PID kp4
“ 0.6357, ki4 “ 0.6306, kd4

“ 0.0227, N4 “ 100 595.47

In the next section, the benchmarking of the proposed controller against conventional con-

trol algorithms is shown, with the system input energy computed as a comparison for

benefits to actuation and for internal stability.
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Controller Benchmarking to Servo and Regulator Performance

It can be seen by Figure 4.10a that the proposed NLPID controller outperforms all the

conventional control methods and produces no overshoot with the fastest rise time and

settling time of 1.07 and 4.06 seconds, respectively. This outperforms both the PID and

2D PID. Figure 4.10a shows that the conventional controllers produce a response with

minimal overshoot, however, they have a significantly slower settling and rise time of up to

2.24 seconds difference. The proposed NLPID controller improves the transient response

speed while maintaining no overshoot. Figure 4.10b shows the system input to the plant

model for each of the benchmarked controllers. The NLPID controller shows bounded

signals, eliminating the derivative kicks. However, the SP PID controller shows a large

sharp input that deteriorates the controller performance and can degrade actuators. In

contrast, the PID and 2D PID controllers show a slow response with a smooth input to the

process model.
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(a) Output response benchmark of the proposed NLPID controller
against the conventional PID, 2D PID, and SP PID controllers.
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(b) System input signals of the benchmarked controllers.

Figure 4.10: Performance comparison of the proposed NLPID controller for step set-point
function against the conventional PID, 2D PID, and SP PID control of the FOPTD system.

Figure 4.11a shows that the T2 PID controller generates an overshoot of 13.6% with a

rise time and settling time of 1.34 and 6.42 seconds, respectively. This also indicates the

limitations of PID control where once the performance is optimized for fast disturbance

rejection it provides a fast transient response with an overshoot. Figure 4.11b shows the

system inputs for the proposed NLPID and T2 PID controllers. It can be seen that the

T2 PID controller produces a derivaive kick when the set-point is active. Both controllers

are internally stable and provide a smooth response.
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(a) Output response benchmark of the proposed NLPID controller
against the nonlinear gains steady-state values substitute PID tuning.
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(b) System input of the benchmark.

Figure 4.11: Performance comparison of the proposed NLPID controller against the non-
linear gains steady-state values substitute PID tuning for the FOPTD system.

The proposed NLPID controller has shown its ability to outperform the conventional con-

trol algorithms in the transient response of the FOPTD system. The benchmark testing

for disturbance rejection of the FOPTD system is conducted using the input and output

disturbances as 10% of the set-point value, applied to the system input at 12 seconds time

mark and in the system output at 22 seconds time mark, as shown by Figure 4.4.

Figure 4.12 shows the response to disturbance rejection by the benchmarked controllers.

Figure 4.12a indicates the deviation of the steady-state value produced by the disturbances.

The figure indicates that the proposed NLPID controller outperforms SP PID and T2 PID

producing a faster settling time for the output disturbance rejection and outperforms all

controllers for input disturbance rejection. Figure 4.12b indicates that the SP PID dis-
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turbance rejection comes with a cost of more vibratory system input, as compared to the

proposed NLPID control.
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(a) Output response of both input and output disturbance rejection
of the proposed NLPID controller benchmark against the conven-
tional PID, 2D PID, SP PID, and T2 PID controllers.
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(b) System input response of the benchmarked controllers to input
and output disturbance rejection.

Figure 4.12: Disturbance rejection benchmarking of the proposed NLPID controller
against the conventional PID, 2D PID, SP PID, and T2 PID controllers for the FOPTD
system.

Using Eq. (4.3) and Eq.(4.4), the control signal energy and feedback error variance are

computed, with the feedback measures and performance comparison summarised in the

table below as follows:
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Table 4.4: Performance comparison evaluation summary table for the FOPTD system.

FOPTD NLPID PID 2D PID SP PID T2 PID

%Os 0 0.88 0 3.37 13.63

trpsq 1.07 2.36 2.09 1.22 1.34

tspsq 4.06 5.42 5.07 6.24 6.42

L2 10.90 9.30 9.37 10.56 36.04

MSE 0.13 0.17 0.18 0.13 0.15

The proposed NLPID controller shows similar input energy to the SP PID controller while

showing significant improvements in both overshoot and settling time. The T2 PID con-

troller has a larger L2 norm evaluation because of the observable derivative kick. Moreover,

all controllers have a similar MSE measure, with the proposed NLPID and the SP PID

controllers having the lowest MSE measure when compared to the PID and 2D PID con-

trollers. This indicates that the error signal is smooth, without significant variations. Ex-

tensive benchmarking simulations conducted under various feedback conditions, which form

a Simulation-based Extensive Testing (SET) approach to performance and stability, the

proposed NLPID controller shows a finite L2 norm, indicating system internal stability.

The proposed NLPID controller has been compared against the conventional control meth-

ods in a FOPTD system linearisation case. The proposed NLPID controller shows perform-

ance improvements and maintains fast disturbance rejection with a comparable L2 energy

to conventional controllers. However, it can be seen that the control performance and the

input signal energy are competing requirements. This indicates that the advantage of the

proposed controller is that it improves the performance at very little added energy cost.

NCSTR models possess multiple dynamics, with the FOPTD being the most fundamental

element of its dynamics. However, it is a less accurate representation of the NCSTR linear-

ised dynamics. As a result, Second Order Plus Time Delay system models are compared

including negative gain, non-minimum phase zeros, and second-order dynamics. The next

case study is the Negative Gain SOPTD (NG SOPTD) system, which is a more accurate

linearisation of an NCSTR at an equilibrium point.

4.5.3 The Negative Gain SOPTD (NG SOPTD) Case Study

Reverse dynamics are a complex control problem that is frequently seen in industry and

can also represent linearisation of the NCSTR model that is common to chemical indus-

tries (Colantonio et al., 1995; Sinha and Mishra, 2018; Pugazhenthi P, Selvaperumal and

Vijayakumar, 2021). The proposed NLPID controller is benchmarked against conventional

control methods in this system to show improvements to transient behaviour and disturb-

ance rejection. The model example is a linearization of the NCSTR model at the point
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cA “ 0.0644rlbmol{ft3s, T “ 560.77R, Ti “ 539.67R. The model dynamics contain a neg-

ative gain, which makes the negative feedback loop into a positive feedback loop, which is

unstable. As a result, the control algorithm and the gains become negative, to establish

stability of the system and this takes a unique tuning approach for linear controllers. The

transfer function of this model is expressed as (Krishna et al., 2012):

P psq “
´0.8775s ´ 8.774

s2 ` 2.674s ` 10.97
e´108.72s. (4.18)

Design and Tuning of the NLPID Controller

The filtering parameter of the NLPID controller is k3 “ 1 to promote derivative action

to reduce the overshoot. The objective function and search algorithm constraints for the

tuning are the following:

compute
k0,k1,k2,a

fpt, ϵptq, tsq “

ż tf

0

t|ϵptq|dt ` ts

subject to 0 ďk0, k2ď 3

0 ďk1 ď 8

0.3 ďa ď 1,

(4.19)

where ts is the settling time, ϵptq is the feedback error, and tf is the final time.

The constraints have been defined based on the stability regions of each parameter, which

have been established after extensive simulation trials. In addition, the integrator gain has

a different constraint range because the system requires larger integral action to elimin-

ate steady-state errors, and the upper bound is derived via extensive trial and error. The

parameter bounds for k0, k2 have been defined to reduce the search region, effectively im-

proving tuning speed. Moreover, the lower bound of a has been defined according to the

rule of Eq.(4.12) with a lower value than the constraint because the NG SOPTD system

has improved performance when a is near the lowest possible bound. The lowest evaluation

is taken by the PSO algorithm and the respective tuning is used. This approach is an

automatic trial and error. The PSO algorithm determined the parameters for the nonlinear

controller gains, which are shown in Table 4.5.

Figure 4.13 shows the time variation of the nonlinear gain functions, and it can be seen that

the proposed nonlinear gain functions have been mirrored along the x-axis, using negative

gain parameters, as appropriate for the system. The nonlinear function gains start from

their steady-state values, as the initial error is 0. As the value of the error changes, the

nonlinear proportional gain rises to its maximum value and then drops into its steady state

value as the error reaches zero again. The nonlinear integral gain drops to zero and then
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rises to its maximum value at a steady state to correct for any steady-state error. Then,

the derivative gain shows a similar behaviour to the nonlinear integral gain, providing a

fast response and lowering the overshoot as the error tends towards a steady state. The

major observation to make in this case is the value of the nonlinear proportional gain at

the steady-state. It can be seen that the proportional gain reaches close to zero, whereas

the integral and derivative gains are much larger in magnitude in comparison.
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Figure 4.13: The tuned nonlinear gain values response to the NG SOPTD system simu-
lation.

The steady-state values of the nonlinear gains are used to tune a separate PID controller.

This tuning can then show whether the nonlinear functions are providing the suggested

improvement to the response. The new tuning values are shown in Table 4.5 as T2 PID.

Table 4.5: The tuned control parameter values used for the NG SOPTD benchmarking
simulations.

Controller PSO Tuning Parameters

NLPID k0 “ ´2.6119, k1 “ ´7.1640, k2 “ ´1.8336, k3 “ 1, a “ 0.3815

T2 PID kp4
“ ´0.0356, ki4 “ ´2.6355, kd4

“ ´0.6746, N4 “ 100

The NG SOPTD system has a large derivative gain when compared to the other systems,

as a result, there is a larger impact from derivative kicks that can cause instabilities. To

correct that, a large filtering value is used to reduce the likelihood of instability caused by

derivative side effects. Hence, the parameter N4 has been selected at a larger value than

k3 and it is also much larger than the filtering value of the T2 PID controllers used in the

FOPTD and NmP SOPTD system models. This is also in agreement with the MATLAB
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tuning algorithm that has tuned the PID, 2D PID, and SP PID controllers with a large

derivative gain kd and filtering constant N .

The stability regions of the tunable parameters of the proposed controller k0, k1, and k2 for

the NG SOPTD system have been verified to be stable for which the feedback interconnec-

tion of the proposed NLPID controller with an NG SOPTD system remains stable. This

also shows that the simulation confirms the optimisation constraints of the PSO algorithm

and justifies the search regions of the optimisation algorithm.

Tuning and Design of the PID, 2D PID, and SP PID Controllers

The conventional controllers are tuned using MATLAB tuning algorithm with their different

tuning trials shown in Figure 4.14. Figure 4.14a shows that the PID controller presents

a 12.49% overshoot with a rise time and settling time of 144 and 6.95 ˆ 103 seconds,

respectively. The 2D PID controller shows a lower overshoot of 3.46% with a rise time and

settling time of 1.06 ˆ 103 and 6.65 ˆ 103 seconds, respectively. Figure 4.14b shows that

the 2D PID controller can achieve a response that contains minimal overshoot and has a

similar settling time as the PID controller. However, the 2D PID controller indicates a

slower rise time that when increased, presents an overshoot.
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(a) MATLAB PID tuning trials for the NG SOPTD system.
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(b) MATLAB 2D PID tuning trials for the NG SOPTD system.

Figure 4.14: Different tuning trials for both the PID and 2D PID controllers using MAT-
LAB control system toolbox PID tuning algorithm.

An SP PID controller has also been designed for the NG SOPTD model. The transfer

function that represents the SP PID controller is:

K
SP PID

psq “
KPIDpsq

1 ` KPIDpsqT psqp1 ´ Gppsqq
. (4.20)

The SP PID controller design is formulated using MATLAB PID controller as described by

Eq. (4.13) with the FOPTD plant model as described by Eq. (4.21).

P psq “ T psqe´τs, τ “ 108.72 seconds, (4.21)

T psq “
z1s ` z0

q2s2 ` q1s ` q0
,

where z1 “ ´0.8775, z0 “ ´8.774, q2 “ 1, q1 “ 2.674, q0 “ 10.97. The time delay e´τs
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is approximated by the second order Pade transfer function Gppsq for the design of the

SP PID controller. The general second-order Pade transfer function of time delay is as

follows:

Gppsq “
τ2s2 ´ 6τs ` 12

τ2s2 ` 6τs ` 12
. (4.22)

MATLAB algorithm is used to tune the SP PID controller with its tuning trials shown

in Figure 4.15. It can be seen that the SP PID controller indicates a faster rise-time of

781.2 seconds with the presence of 3.73% overshoot and a slower settling time of 9.07ˆ 103

seconds compared to the PID and 2D PID controllers.
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Figure 4.15: MATLAB SP PID tuning trials for the NG SOPTD system.

Table 4.6 shows the objective function evaluations of every trial for each controller. It can

be seen that Trial 4 has the lowest objective function value for the PID controller, however,

that is not the case for the 2D PID and SP PID controllers. For the 2D PID controller,

Trial 4 was selected on the bases that it has the lowest settling time and rise time at a

very small cost of some additional overshoot. Finally, Trial 4 was selected for the SP PID

controller on the same basis that it has the lowest settling time and rise time when compared

to all other trials at a bare minimum additional cost and with minimal differences to the

other tunings.

Table 4.6: The objective function evaluations for the individual tuning trials of the con-
ventional controllers for the NG SOPTD benchmarking simulations.

fpt, ϵptq, tsq

Controller Trial 1 Trial 2 Trial 3 Trial 4

PID 1.3898 ˆ 103 746.7770 1.0200 ˆ 103 688.0489

2D PID 1.0126 ˆ 103 1.0164 ˆ 103 1.1735 ˆ 103 1.5059 ˆ 103

SP PID 2.4564 ˆ 103 2.4069 ˆ 103 2.1556 ˆ 103 2.2183 ˆ 103
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The values of the tuned parameters are shown in Table 4.7 for all the designed controllers

together with their respective objective function evaluations. It is worth noting that the

2D PID controller has the lowest objective function evaluation, also showing the lowest

settling time and with similar overshoot to the proposed NLPID controller. Moreover,

it can be seen that the objective function evaluations of the conventional controllers are

similar to the proposed NLPID controller. The T2 PID controller has the largest objective

function evaluation, showing that it provides a worsened response in this system.

Table 4.7: The tuned control parameter values used for the NG SOPTD benchmarking
simulations.

Controller PSO Tuning Parameters fpt, ϵptq, tsq

NLPID k0 “ ´2.6119, k1 “ ´7.1640, k2 “ ´1.8336, k3 “ 1, a “ 0.3815 1.8512 ˆ 103

Controller MATLAB Tuning Parameters

PID kp1 “ ´10.2457, ki1 “ ´25.8340, kd1 “ ´0.7797, N “ 23.0091 1.5185 ˆ 103

2D PID kp2
“ ´7.7668, ki2 “ ´12.8018, kd2

“ ´1.0504, N2 “ 48.1072,

b “ 0.9083, c “ 0.0301, 692.6310

SP PID kp3
“ ´3.9580, ki3 “ ´8.0589, kd3

“ ´0.3268, N3 “ 20.4265 2.2197 ˆ 103

T2 PID kp4 “ ´0.0356, ki4 “ ´2.6355, kd4 “ ´0.6746, N4 “ 100 2.4807 ˆ 103

In the following section, the simulations of the controllers to the NG SOPTD system are

shown for the set-point tracking and disturbance rejection, with the computation of the

signal energy for each controller to show internal stability and energy consumption.

Controller Benchmarking to Servo and Regulator Performance

Figure 4.16a shows that the proposed NLPID controller provides an overshoot of 1.03% and

a fast transient response with a rise time and settling time of 2.66ˆ103 seconds and 7.42ˆ103

seconds, respectively. This shows a balance in the transient response when compared to

the linear controllers. The proposed NLPID controller manages to reduce the overshoot

at the cost of a higher settling time than the PID and 2D PID controllers. However, it

provides an improved response when compared to the SP PID controller in terms of both

overshoot and settling time. Although the PID controller has the shortest rise time, it

provides a large overshoot of 12.49%, as expected. The advantages of 2DoF control are

presented in this example where the 2D PID controller significantly reduces the overshoot

to 3.46% with a similar settling time as PID. Although the proposed controller has higher

rise time and settling time when compared to the conventional controllers, its performance

can be improved by weighting the objective function, prioritizing the settling time rather

than the overshoot. This will then reduce the response speed at the sacrifice of some
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overshoot, which can then lead to performance closer to what is achieved by the conventional

controllers. Figure 4.16b shows the system input of all the controllers indicating that they

have internally stable control, with the NLPID controller providing the cheapest system

input.
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(a) Output response benchmark of the proposed NLPID controller
against the conventional PID, 2D PID, and SP PID controllers.

0   3.6 7.2 10.8 14.4 18  21.6 25.2 28.8 32.4 36  
-5

-4

-3

-2

-1

0

1

(b) System input signals of the benchmarked controllers.

Figure 4.16: Performance comparison of the proposed NLPID controller for step set-point
function against the conventional PID, 2D PID, and SP PID control of the NG SOPTD
system.

The second tuning approach to the PID controller, which uses the steady-state values is

benchmarked against the NLPID controller. This attempt is made to show that the pro-

posed performance improvement is dependent on the proposed nonlinear function gains.

Figure 4.17a shows the output response of the benchmarking, and it shows that the pro-

posed NLPID controller has a low overshoot with minimal oscillations when compared

against the PID controller, which shows an overshoot of 9.77% with rise and settling time
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of 5.47 ˆ 103 and 21.2 ˆ 103 seconds, respectively. In addition, this shows that the steady-

state values of the proposed NLPID controller are not necessarily providing adequate system

response. Figure 4.17b shows that the T2 PID controller produces larger system input sig-

nals, whereas the NLPID controller shows cheaper system input. This indicates that the

proposed nonlinear function gains play a key role in the proposed performance improve-

ments, so much so, that if constant gains are used the performance collapses and shows

significant deterioration.
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(a) Output response benchmark of the proposed NLPID controller
against the nonlinear gains steady-state values substitute PID tuning.
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(b) System input of the benchmark.

Figure 4.17: Performance comparison of the proposed NLPID controller against the non-
linear gains steady-state values substitute PID tuning for the NG SOPTD system.

To test the system’s internal stability and disturbance rejection, input and output disturb-

ances are applied simultaneously with 10% magnitude of the set-point, and they act after

settling time, with the input disturbance at 28.8ˆ 103 seconds and the output disturbance

at 43.2ˆ 103 seconds. Figure 4.18a shows that the proposed NLPID controller suffers from
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poor disturbance rejection in both input and output disturbances, showing the slowest and

most oscillatory response than all the conventional control methods. In addition, Figure

4.18b shows the system input signals and it shows that all the controllers are internally

stable and similarly the proposed NLPID controller shows the cheapest system input sig-

nal response. It indicates that the proposed NLPID controller improves set-point tracking,

whereas the disturbance rejection suffers from large oscillations and settling time.
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(a) Output response of both input and output disturbance rejection
of the proposed NLPID controller benchmark against the conven-
tional PID, 2D PID, SP PID, and T2 PID controllers.
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(b) System input response of the benchmarked controllers to input
and output disturbance rejection.

Figure 4.18: Disturbance rejection benchmarking of the proposed NLPID controller
against the conventional PID, 2D PID, SP PID, and T2 PID controllers for the NG SOPTD
system.

The disturbance rejection study shows that the objective function defined to tune the

proposed NLPID controller is not designed to produce an effective disturbance rejection and

81



Chapter 4. Applications and Benchmarking of the Proposed NLPID Controller

the proposed nonlinear function gains are also mostly focused on producing fast transient

response rather than disturbance rejection. There are two possible ways that this can be

mitigated, on one hand, the nonlinear integral function could increase rather than decrease

with increasing error, similar to the nonlinear proportional function, however, that would

result in responses that contain large overshoots. The other way, is to introduce a different

objective function such as the integral squared error, that could be more effective in finding

a tuning that is effective for disturbance rejection.

Table 4.8 shows the L2 gains of the system input signals for all the controllers together with

their performance comparison. The proposed NLPID controller has the cheapest response

with a significant difference against the PID and T2 PID controllers.

Table 4.8: Performance comparison evaluation summary table for the NG SOPTD system.

NG SOPTD NLPID PID 2D PID SP PID T2 PID

%Os 1.03 12.49 3.47 3.73 9.77

trphq 0.74 0.04 0.29 0.22 1.52

tsphq 2.07 1.94 1.85 2.52 5.88

L2 80.70 258.37 120.16 137.66 150.42

MSE 0.03 0.01 0.005 0.01 0.03

In the case of NG SOPTD systems, it is shown that the proposed NLPID controller can

provide minimal overshoot with improved performance when compared to the SP PID con-

troller with the cheapest system input energy. It can be seen that the proposed controller

provides significant improvements in overshoot at a cheaper energy consumption. How-

ever, the disturbance rejection of the proposed controller provides an oscillatory response

compared to the conventional control methods. Consequently, the main advantage of using

the proposed controller in negative gain systems is that it can reduce overshoot, effectively

reducing the degradation of actuators and improving smoothness in the transient response.

However, due to the disadvantage of reduced disturbance rejection, the controller should be

used in a controlled environment, such as a manufacturing plant, where disturbances are

far less likely to occur. The conventional controllers show improved disturbance rejection.

In addition, the PID and 2D PID controllers have the best rise-time and settling time with

low MSE measure also indicating smooth error signals. The PID controller can reduce the

rise time, however, it presents the worst overshoot. The benefits of the 2D PID controller

become apparent as it can reduce that overshoot significantly and maintain a similar rise

time and settling time as PID. Finally, the controllers have a similar MSE evaluation except

for the 2D PID controller, which has the lowest evaluation, indicating that it has a smooth

signal with low variation.
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4.5.4 The Non-minimum Phase SOPTD (NmP SOPTD) Case Study

The non-minimum phase dynamics pose a complex control problem that often suffers

from design trade-offs. The NmP SOPTD system is common to many industries and

causes difficulties in control tuning (O’Dwyer, 2009; Chen, J., Fang and Ishii, 2019). The

NmP SOPTD system is also common in NCSTR linearised system dynamics since the NC-

STR system is an inherently non-minimum phase and second order system (Colantonio et

al., 1995; Sinha and Mishra, 2018; Pugazhenthi P, Selvaperumal and Vijayakumar, 2021).

These plant dynamics are intrinsically complex and possess servo and regulator design

trade-offs for the PID controller since they contain multiple non-minimum phase zeros

(Alcántara, Vilanova and Pedret, 2013; Chen, J., Fang and Ishii, 2019). The NmP SOPTD

has second-order dynamics with unstable zeros and a measurement delay of 0.2 seconds.

The plant model transfer function is expressed as (Krishna et al., 2012):

P psq “
1 ´ 1.6s

s2 ` 2s ` 1
e´0.2s. (4.23)

Design and Tuning of the NLPID Controller

The design of the NLPID controller is accomplished using the PSO algorithm that is de-

scribed in Section 3.3.5. The derivative gain is not large enough to cause deteriorated

performance or instabilities. In addition, the derivative action is needed to reduce the

overshoot. Hence, the filtering parameter is selected as k3 “ 1 to reduce overshoot. The

objective function is the following:

compute
k0,k1,k2,a

fpt, ϵptq, tsq “

ż tf

0

t|ϵptq|dt ` ts

subject to 0 ďk0, k1, k2ď 1

0.5 ďa ď 1.4,

(4.24)

where ts is the settling time, ϵptq is the feedback error, and tf is the final time.

The constraints have been selected on the basis of extensive simulation trials and attempts

to tune the proposed NLPID controller. The optimisation constraints provide stable tuning

values and refine the region of parameter search space to reduce the chances of the PSO

algorithm getting trapped in local optima. The constraint boundaries are selected based on

extensive trial and error. It can be helpful to initially assume that k0, k1, and k2 share a

common boundary, however, this may not always be the case, and different cases have to be

tried. The general rule of thumb is that the search space boundaries can be refined to speed

up the search. The bounds can be shared among the three gain parameters k0, k1, and k2,

if the search bound is within the unit distance from the origin. There is no need for further
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refinement in such scenarios. The lower bound of a has been defined according to the rule

of Eq.(4.12) with a small margin of difference. The upper bound of parameter a have been

selected based on trial and error. Although the selected value of a might be within the unit

distance, it is often helpful for the random search algorithm to extend the search space,

as the random values are selected based on a normal distribution, it becomes less likely to

initialise random particles near the value of 1 when it is 3 standard deviations away from

the mean, hence it can at times miss better tuning. The following upper bound of 1.4

generates a mean of 0.95, meaning that the value of 1, is less than 1 standard deviation

away from the mean making it more likely for the random search to re-initialise particles

near that value.

The PSO algorithm manages to search for the best tuning value, with some tuning iterations

indicating a large objective function evaluation. These are caused by the algorithm re-

establishing the tuning after the parameter search has escaped the constraints. The PSO

algorithm shows a different behaviour to its tuning when compared to the other systems.

This is because the search space is much smaller and the system model is extremely sensitive

to the controller gains. Moreover, the non-minimum phase dynamics of the system can cause

instabilities when the constraints are surpassed and the optimisation algorithm readjusts

the parameters within the constraints.

Figure 4.19 shows the variation with the feedback error across the simulation time of the

proposed NLPID nonlinear gains. It can be seen that the proportional nonlinear gain starts

from a large proportional gain and produces a fast response, which then quickly drops to the

steady-state value. The integral gain starts from zero and rapidly increases to the steady-

state value. This increase causes the controller to eliminate any remaining steady-state error

while maintaining a low integral response at large errors to maintain a fast response. The

derivative gain shows large drops. This is caused by eliminating the derivative kicks when

the step functions are introduced. This improved the system performance and improved

the system-input signal energy. Finally, the derivative gain shows a rapid increase to a

steady state value, that reduces the system overshoot.
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Figure 4.19: The tuned nonlinear gain values response to the NmP SOPTD system sim-
ulation.

A second PID controller has been tuned using the steady-state values of the nonlinear gains.

This is done to accomplish the difference between the nonlinear functions and the tuning

at steady-state. This then isolates the improvements of the proposed NLPID controller to

the nonlinear functions selected to solve this trade-off in the response. Table 4.9 shows the

tuning values of all the conventional controllers, the proposed NLPID controller and the

second tuning of a PID controller T2 PID.

Table 4.9: The tuned control parameter values used for the NmP OPTD benchmarking
simulations.

Controller Tuning Parameters

NLPID k0 “ 0.9891, k1 “ 0.7376, k2 “ 0.4354, k3 “ 1, a “ 0.9060

T2 PID kp4
“ 0.5323, ki4 “ 0.2713, kd4

“ 0.1602, N4 “ 100

The stability regions for the tunable parameters of the proposed NLPID controller k0, k1, and k2

for the NmP SOPTD. This shows that the tunable parameters k0 and k1 for which the

feedback interconnection of the proposed NLPID controller with a NmP SOPTD system

remains stable. The simulations confirm the optimisation constraints and justify the search

region defined for the PSO algorithm.
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Tuning and Design of the PID, 2D PID, and SP PID Controllers

Figure 4.20a shows the performance of the different tuning trials of the PID and 2D PID

controllers. It can be seen from the figure that the PID controller suffers from slow transient

performance to avoid overshoots or a fast response with a large overshoot and undershoot.

A similar response is observed for the 2D PID, with slow transient dynamics. The PID

controller tuning trial 4 indicates an overshoot of 6.24% with a rise time and settling time

of 2.42 and 9.62 seconds, respectively. The 2D PID controller tuning trial 4 indicates an

overshoot of 0.32% with a rise time and settling time of 1.94 and 10.93 seconds, respectively.
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(a) MATLAB PID tuning trials for the NmP SOPTD system.
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(b) MATLAB 2D PID tuning trials for the NmP SOPTD system.

Figure 4.20: Different tuning trials for both the PID and 2D PID controllers using MAT-
LAB control system toolbox PID tuning algorithm.

A SP PID controller has also been designed for the NmP SOPTD model. The transfer
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function that represents the SP PID controller is:

K
SP PID

psq “
KPIDpsq

1 ` KPIDpsqT psqp1 ´ Gppsqq
. (4.25)

The SP PID controller design is formulated using MATLAB PID controller as described by

Eq. (4.13) with the FOPTD plant model as described by Eq. (4.26).

P psq “ T psqe´τs, τ “ 0.2 seconds, (4.26)

T psq “
z1s ` z0

q2s2 ` q1s ` q0
,

where z1 “ ´1.6, z0 “ 1, q2 “ 1, q1 “ 2, q0 “ 1.

The time delay e´τs is approximated by the second order Pade transfer function Gppsq for

the design of the SP PID controller. The general second-order Pade transfer function of

time delay is as follows:

Gppsq “
τ2s2 ´ 6τs ` 12

τ2s2 ` 6τs ` 12
. (4.27)

Then, MATLAB algorithm is used to tune the SP PID controller with its tuning trials

shown in Figure 4.21. It can be seen that the SP PID controller indicates a faster rise-time

of 2.21 seconds with the presence of a 9.57% overshoot and a slower settling time of 10.15

seconds when compared to the PID and 2D PID controllers.
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Figure 4.21: MATLAB SP PID tuning trials for the NmP SOPTD system.

The SP PID controller outperforms the PID and 2D PID controllers for the NmP SOPTD

system, showing improved performance with minimal overshoot and undershoot. It can

also be seen that it provides the fastest rise time and settling time using the same tuning

methodology as PID and 2D PID.

87



Chapter 4. Applications and Benchmarking of the Proposed NLPID Controller

Table 4.10 shows the objective function evaluations for every trial of each controller. Trial

4 of the PID and SP PID controllers clearly have the lowest objective function evaluation

and as a result they were selected. The 2D PID controller has a large objective function

evaluation for Trial 4, however, it was selected on the basis that it has the lowest overshoot

and lowest settling time when compared to the other trials. However, at the cost of a larger

undershoot.

Table 4.10: The objective function evaluations for the individual tuning trials of the
conventional controllers for the NG SOPTD benchmarking simulations.

fpt, ϵptq, tsq

Controller Trial 1 Trial 2 Trial 3 Trial 4

PID 2.8480 ˆ 103 3.2998 ˆ 103 4.2754 ˆ 103 2.7553 ˆ 103

2D PID 5.0559 ˆ 103 2.8396 ˆ 103 2.8662 ˆ 103 1.0362 ˆ 104

SP PID 7.1487 ˆ 103 1.0483 ˆ 104 7.1306 ˆ 103 5.9842 ˆ 103

Table 4.11 shows a summary of the tuning values of each controller together with their

respective objective function evaluations. It can be seen that the proposed NLPID controller

has the largest objective function evaluation, since it has the largest undershoot. The

2D PID controller has the lowest objective function evaluation, which also has the lowest

overshoot and undershoot, when compared to the other controllers. It is also worth noting

that the T2 PID controller has a lower objective function evaluation when compared to

the proposed controller, as it provides improved response with less settling time and less

undershoot.

Table 4.11: The tuned control parameter values used for the NmP SOPTD benchmarking
simulations.

Controller Tuning Parameters fpt, ϵptq, tsq

NLPID k0 “ 0.9891, k1 “ 0.7376, k2 “ 0.4354, k3 “ 1, a “ 0.9060 1.4143 ˆ 104

Controller MATLAB Tuning Parameters

PID kp1
“ 0.4128, ki1 “ 0.2477, kd1

“ 0, N “ 100 1.0406 ˆ 104

2D PID kp2 “ 0.8399, ki2 “ 0.3880, kd2 “ 0.2908, N2 “ 66.1754,

b “ 0.0154, c “ 6.3031 ˆ 10´5 2.7238 ˆ 103

SP PID kp3
“ 0.4100, ki3 “ 0.2803, kd3

“ 0, N3 “ 100 5.8092 ˆ 103

T2 PID kp4
“ 0.5323, ki4 “ 0.2713, kd4

“ 0.1602, N4 “ 100 5.9240 ˆ 103

In the following section, the controller benchmarking for the NmP SOPTD system is shown

against the proposed NLPID controller. The benchmarking is conducted for two problems.
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The servo problem and the regulator problem.

Controller Benchmarking to Servo and Regulator Performance

Figure 4.22a shows the performance of the proposed NLPID controller against the conven-

tional methods for the NmP SOPTD system. It can be seen that the proposed NLPID

controller provides a settling time of 8.61 seconds and rise time of 4.18 seconds with an

overshoot of 2.13%. However, it is shown that the proposed NLPID controller provides the

largest undershoot when compared to the conventional methods. In addition, it can be seen

that the proposed NLPID controller has a sharp change in response speed once it is above

63% of the output between the 3 and 4 seconds time mark, this can also be seen in the

Figure 4.19, where between 3 and 4 seconds time mark there is also a rapid change in the

nonlinear derivative gain. Near the steady state, the derivative function becomes constant

and the value of the derivative becomes zero. Consequently, it can be seen that at this point

the derivative action is low and reduces the speed of the response. The SP PID controller

provides the largest overshoot of 9.57% and has a large settling time of 10.15 seconds. The

2D PID controller has the shortest rise time of 1.94 seconds and simultaneously manages

to reduce the overshoot to a minimal 0.32%. Figure 4.22b shows the system input to the

NmP SOPTD plant. It can be seen that all controllers maintain a bounded signal and

controllers are internally stable.
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(a) Output response benchmark of the proposed NLPID controller
against the conventional PID, 2D PID, and SP PID controllers.
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(b) System input signals of the benchmarked controllers.

Figure 4.22: Performance comparison of the proposed NLPID controller for step set-point
function against the conventional PID, 2D PID, and SP PID control of the NmP SOPTD
system.

Figure 4.23 shows the response of the benchmarking comparison in the servo control problem

between the proposed NLPID controller and the T2 PID controller. Figure 4.23a shows that

the proposed NLPID controller has a low overshoot while having a larger undershoot. The

proposed controller also shows a larger rise time and settling time. The T2 PID controller

shows an overshoot of 0% and an undershoot of 38.9 % with a rise time and settling time of

2.37 and 6.24 seconds, respectively. Moreover, the figures show that the steady state values

of the proposed controller can equally improve the system performance, which means that

there are cases where there is little performance advantages in using the proposed nonlinear

function gains. Figure 4.23b shows the system input response of the proposed NLPID and

T2 PID controllers. It can be seen that they both maintain internal stability, producing
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bounded system input signals.
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(a) Output response benchmark of the proposed NLPID controller
against the nonlinear gains steady-state values substitute PID tuning.
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(b) System input of the benchmark.

Figure 4.23: Performance comparison of the proposed NLPID controller against the non-
linear gains steady-state values substitute PID tuning for the NmP SOPTD system.

Figure 4.24a shows the response of all the controllers against input and output disturbances.

It can be seen that the proposed NLPID controller has fast disturbance rejection that

is similar to that of the SP PID controller. The PID and 2D PID controllers show a

slow disturbance rejection, which shows that the proposed NLPID controller improves on

performance and robustness when compared to the conventional methods. Figure 4.24b

shows the system input to the plant after disturbances have been applied to the system. It

can be seen that all the controllers remain internally stable with a bounded system input.
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(a) Output response of both input and output disturbance rejection
of the proposed NLPID controller benchmark against the conven-
tional PID, 2D PID, SP PID, and T2 PID controllers.
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(b) System input response of the benchmarked controllers to input
and output disturbance rejection.

Figure 4.24: Disturbance rejection benchmarking of the proposed NLPID control-
ler against the conventional PID, 2D PID, SP PID, and T2 PID controllers for the
NmP SOPTD system.

Table 4.12 shows the L2 norm of the system input signals of all the benchmarked controllers

together with their performance comparison. All the controllers produce a similar system

input energy with the proposed NLPID controller showing the most expensive system input

response. It can be seen that the improvements shown in the performance and robustness of

the proposed NLPID controller are shown to produce a similar system-input energy as the

conventional control methods. This indicates that the proposed nonlinear gains improve

the performance and robustness with little to no expense in energy increase.
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Table 4.12: Performance comparison evaluation summary table for the NmP SOPTD
system.

NmP SOPTD NLPID PID 2D PID SP PID T2 PID

%Os 2.13 6.24 0.32 9.57 0

trpsq 4.18 2.42 1.94 2.21 2.37

tspsq 8.61 9.61 10.93 10.15 6.24

L2 63.75 60.81 58.41 61.68 73.33

MSE 0.37 0.44 0.41 0.40 0.36

In the case of NmP SOPTD systems, it is shown that the proposed NLPID controller has

a loss in performance and the competing requirements between performance and energy

consumption are worsened. This is expected by systems that contain non-minimum phase

dynamics and the proposed controller suffers from similar design limitations as any other

controller in such systems. However, the performance of the proposed controller could

be improved via improved tuning. From the results that are seen from this system, the

proposed NLPID controller shows no major improvements in L2 or MSE measures and no

major performance advantages when compared to the conventional methods, apart from

the improvement in overshoot when compared to the PID and SP PID controllers.

4.6. Summary

The proposed NLPID controller has been demonstrated to have practical potential for use

in nonlinear systems without requiring linearisation. The performance of the proposed

controller shown in the NCSTR case scenario can potentially be improved, however, it is

adequate to show that nonlinear gains can be applied as a simpler method to gain scheduling

in the demonstrated example, with the proposed nonlinear gains showing great performance

potential.

Application to Nonlinear Systems: The NCSTR Case Study

The NCSTR system has been utilised as a nonlinear case study to simulate the performance

and disturbance rejection of the proposed NLPID controller in a nonlinear setting. The

proposed NLPID controller has shown its ability to control the NCSTR system, which is

highly nonlinear. The proposed controller has been tested for various operating regions

possessing different dynamic and stability properties. This indicates that the proposed

NLPID controller is robust in nonlinear systems and maintains the performance with less

than 20% overshoot, fast rise-time and fast settling time. Finally, it is shown that the

NLPID controller produces a system input energy that is finite and low, showing a practical

control energy.
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Benchmarking

The proposed NLPID controller has been demonstrated for its performance and disturbance

rejection. The results were demonstrated by splitting the control into two problems, the

servo and the regulator. In both cases, the proposed controller was benchmarked against

the conventional control methods for practical feedback systems that include input and

output disturbances. The benchmarking has been established by tuning the conventional

controllers using the available tools to the practitioner, which in this case has been the

MATLAB PID Tuner Toolbox. The proposed NLPID controller was tuned using a Particle

Swarm Optimization algorithm. Extensive tuning has been shown for all the controllers to

ensure their fair comparison with the main design focus on reducing overshoot, rise time,

and settling time.

FOPTD Case Study

The proposed NLPID controller has been shown to improve simultaneous transient perform-

ance and disturbance rejection with minimal trade-offs under a single-control design. The

proposed controller has shown performance improvements against the conventional PID,

2D PID, and SP PID methods. In addition, the proposed controller managed to improve

the performance and robustness while maintaining similar system input energy to that of

the conventional control methods. This is an advantage for the proposed controller since

nonlinear controllers can generate large and energy-expensive input signals. Finally, the

proposed NLPID controller has been shown to remain internally and externally stable for

the FOPTD system.

NG SOPTD Case Study

The proposed NLPID controller has shown that it can provide improved transient perform-

ance for the NG SOPTD case study. However, it has shown that it is limited in disturbance

rejection, which means that it requires separate tuning to solve the regulator problem, re-

quiring a trade-off between performance and robustness. The proposed controller has been

shown to provide cheaper system input energy, when compared to the conventional control

methodologies and is capable of maintaining both internal and external stability of the

feedback interconnection.

NmP SOPTD Case Study

The proposed NLPID controller has shown no improvement in either performance or dis-

turbance rejection for the NmP SOPTD system. The proposed controller provides a similar

response when compared to the conventional controllers. However, it is shown that the un-

dershoot is maximal for the proposed controller, while the conventional controllers produce
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a lower undershoot. The proposed controller has shown internal stability with bounded

system input signals that have similar energy and MSE evaluation to the conventional

controllers.

4.7. Concluding Remarks

The benefits of utilising nonlinear control to design the proposed novel NLPID controller

has been shown through simulations for the highly nonlinear NCSTR system example. The

results have shown that the proposed NLPID controller is suitable for application in nonlin-

ear systems providing excellent performance for multiple operating regions. In addition, the

proposed NLPID controller has achieved the control performance under efficient actuation

with minimal reach of the saturation limits. In addition, the proposed NLPID controller

has been benchmarked against conventional control methods. This ascertains the suitab-

ility of the proposed NLPID controller for industrial and linear systems applications and

its performance comparison to the conventional control methods. The indicative analysis

of the linear systems has been shown. This justifies the design and tuning of the proposed

controller and provides further contribution when compared to the NLPID controllers in

the studied literature that lack such contribution. Finally, the proposed NLPID controller

has shown its capacity to maintain a similar or lower system input energy to the linear

control methods. This indicates the ability of the proposed NLPID controller to utilise

similar actuation requirements as linear control methodologies.
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NLPID Controller Robustness Against

Uncertainty

5.1. Introduction

In this chapter, the robustness of the proposed controller is shown under ˘5% paramet-

ric uncertainty in the NCSTR system model parameters. In addition, the robustness of

the proposed NLPID controller is shown for various types of uncertainties in the FOPTD,

NG SOPTD, and NmP SOPTD systems. Firstly, the structured parametric uncertainty

is conducted for the plant models, all of which are simulated for a ˘10% parametric un-

certainty. The parametric uncertainty of the three linear models is also supported with

stability analysis to further the results on the robustness of the controller. The controller

is also simulated for unstructured types of uncertainty, such as additive and multiplicative

uncertainties, which offer a larger encapsulation of modelling errors.

5.2. Problem Statement

Practical control systems possess uncertainty due to inaccuracies in the model that can come

from modelling errors and imprecision in the parameter estimations arising from sensor

measurements. These sources of error can influence the entire system’s behaviour, and if

they are large enough, they can also render the control system unstable, if it is not made

robust. The linear system models are assumed to possess inaccessible dynamics and hidden

modes due to the linearisation process. The modelling inaccuracies are mathematically

represented in three different formats, which are parametric, additive, and multiplicative

uncertainties. The performance and stability robustness of the proposed NLPID controller

are investigated for the three uncertainties in the linear systems. Figure 5.1 shows the

schematic of a classical feedback interconnection of the proposed NLPID controller for

different plant models. The tuning of the proposed NLPID controller is kept the same as

the tuning used in the benchmarking studies to investigate the performance variations when

compared to the nominal dynamics.
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NLPID P psq
`rptq ϵptq uptq yptq

Measurement

´

Figure 5.1: The schematic block diagram of the feedback interconnection of the proposed
NLPID controller and plant model containing uncertainty.

The robustness investigation of the proposed NLPID controller is conducted under pure

feedback, assuming perfect sensor measurements and no disturbances are introduced into

the system. This focuses mainly on the ability of the proposed NLPID controller to handle

uncertainties in modelling. The parametric uncertainty is applied in all the possible para-

meters of the system models, investigating the system sensitivity against parameter vari-

ations. Finally, the additive and multiplicative uncertainties are applied distinctly based

on the system models.

5.3. Parametric Uncertainty

The NCSTR Model

The uncertainty of the NCSTR mathematical model is represented by a parameter variation

of ˘5% in all its measurable parameters. This variation simulates the sensitivity of the

system to potential measurement errors and shows the capacity of the proposed NLPID

controller to mitigate the negative effects on performance. The parametric uncertainty of

the dimensionless NCSTR model is mathematically represented as follows Harmon Ray,

1981; Colantonio et al., 1995; So and Jin, 2018; Sinha and Mishra, 2018:

9x1ptq “ ´x1ptq ` Dap1 ´ x1ptqqe

»

—

—

—

–

x2ptq

1 ` x2ptq{γ

fi

ffi

ffi

ffi

fl

,

9x2ptq “ ´p1 ` βqx2ptq ` HDap1 ´ x1ptqqe

»

—

—

—

–

x2ptq

1 ` x2ptq{γ

fi

ffi

ffi

ffi

fl

` βsatpuptqq,

yptq “ x2ptq,

(5.1)

where 7.6 ď H ď 8.4 , 0.0684 ď Da ď 0.0756 , 19 ď γ ď 21, 0.285 ď β ď 0.315 which

represents ˘5% uncertainty in all parameters.

Fig. 5.2 shows the output and system input to the NCSTR system to transition from

yA to yB and then from yB to yC under parametric uncertainty. The output response,
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shown in Fig. 5.2a, indicates that the proposed NLPID controller keeps the NCSTR sys-

tem stable with fast performance. In addition, the output of the system, yB is unstable,

and the proposed NLPID controller can regulate the system under parametric uncertainty

for both output transitions with minimal impact on performance. It is also shown that the

parametric uncertainty does not disregulate the system and the proposed NLPID controller

maintains stability. Although the system performance has deteriorated due to the para-

metric uncertainty, it shows small deviations in performance, making stability the main

priority. Fig. 5.2b shows that the system input is bounded within the saturation limits for

all parametric uncertainties. The proposed NLPID controller generates large system inputs

for fast performance, which means that the system input reaches saturation for a period

of time. Although the system input saturates, the proposed NLPID controller manages to

stabilise the system and provide a fast response with no windup.
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(a) NCSTR output response to ˘5% parametric uncertainty.

(b) NCSTR system input due to ˘5% parametric uncertainty.

Figure 5.2: Output and system input responses to ˘5% parametric uncertainty in the
NCSTR parameters for the output transitions yA Ñ yB Ñ yC .

The FOPTD System

The parametric uncertainty of the nominal FOPTD plant is modelled using Eq. (5.2) in the

following transfer function format:

P psq “
zeτs

b1s ` 1
, (5.2)

where 0.9 ď z ď 1.1, 0.9 ď b1 ď 1.1, and 0.9 ď τ ď 1.1, which models a parameter change

of ˘10%.

Figure 5.3, shows the gain, lag, and delay parametric uncertainty output and system input
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plots. Figure 5.3a shows how the proposed NLPID controller responds to a large set of

˘10% variations in gain z, lag b1, and delay parameter τ . It can be seen that there

are no large variations of overshoot and no instabilities. In the case where the gain, lag,

and delay parameters are underestimated, the response shows a maximum overshoot of

approximately 10% and a larger settling time. The figure also shows no effect on stability,

providing evidence of robust performance and robust stability for the proposed NLPID

controller against gain, lag, and delay variations.
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(a) Output response to parametric uncertainty.
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(b) System input to parametric uncertainty.

Figure 5.3: NLPID controller response to ˘10% gain, lag, and delay parametric uncer-
tainty in FOPDT system, showing both output and system input responses.

According to the parametric uncertainty study, it can be seen that the proposed NLPID

controller shows resilience to parameter variations in a structured model uncertainty. The

uncertainty tests indicate that internal stability is maintained across different types of para-

meter variations with some changes in performance, showing slower settling time, extending
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from 4 seconds of the nominal plant, up to a maximum of 10 seconds for the extreme vari-

ations.

The NG SOPTD System

The parametric uncertainty of the NG-SOPTD model is introduced to show the robustness

of the proposed NLPID controller against changes in the value of the parameters. All the

parameters of the system are changed by a value of ˘10%. The parametric uncertainty

model is represented as (Krishna et al., 2012):

P psq “
z1s ` z0

q2s2 ` q1s ` q0
e´τs, (5.3)

where all the parameters ´0.79 ď z1 ď ´0.96,´7.89 ď z0 ď ´9.65, 0.9 ď q2 ď 1.1, 2.41 ď

q1 ď 2.94, 9.87 ď q0 ď 12.07, and 97.2 ď τ ď 118.8.

Figure 5.4a shows the output response of the parametric uncertainty of the NG SOPTD

model. According to the figure, it can be seen that the system remains stable and produces

a maximum overshoot of approximately 18% and has a deteriorated performance showing

longer rise time and settling time. Figure 5.4b shows the system input of the NLPID

controller into the NG SOPTD plant and it can be seen that the signals are bounded and

internally stable. The sharp signals observed in the figure are produced by the derivative

action due to the oscillatory responses.
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(a) Output response to parametric uncertainty.

(b) System input to parametric uncertainty.

Figure 5.4: NLPID controller response to ˘10% parametric uncertainty in all the
NG SOPTD system parameters, showing both output and system input responses.

The NmP SOPTD System

The parametric uncertainty of the NmP SOPTDmodel is introduced to show the robustness

of the proposed NLPID controller against changes in the value of the parameters. All the

parameters of the system are changed by a value of ˘10%. The parametric uncertainty

model is represented as (Krishna et al., 2012):

P psq “
z1s ` z0

q2s2 ` q1s ` q0
e´τs, (5.4)

where all the parameters ´1.44 ď z1 ď ´1.76, 0.9 ď z0 ď 1.1, 0.9 ď q2 ď 1.1, 1.8 ď q1 ď

2.2, 0.9 ď q0 ď 1.1, and 0.18 ď τ ď 0.22.
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Figure 5.5 shows the response of the feedback interconnection and the proposed NLPID

controller system input to the NmP SOPTD system against ˘10% uncertainty in all its

parameters. Figure 5.5a shows the output response of the feedback system, indicating that

the proposed NLPID controller is robust, maintaining stability and proximal performance

with small changes in its rise time, settling time, and overshoot. Figure 5.5b shows the

proposed NLPID controller system input under parametric uncertainty, indicating that the

system is internally stable, with bounded system input signals.

(a) Output response to parametric uncertainty.

(b) System input to parametric uncertainty.

Figure 5.5: NLPID controller response to ˘10% parametric uncertainty in all the
NmP SOPTD system parameters, showing both output and system input responses.

5.4. Additive Uncertainty

The proposed NLPID controller has shown its robustness against parametric uncertainty

which is a structured type of uncertainty. To extend these results the proposed NLPID
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controller is simulated against unstructured uncertainties that model additional dynamics.

This will further test the robustness of the proposed NLPID controller against additional

higher-order dynamics that are common in industrial systems. The tests begin with additive

uncertainty, which is modeled using Eq. (5.5). The uncertainty plant ∆psq is designed to be

additional lag dynamics into the plant model that may not be considered in the modelling

process for modelling simplification.

P psq “ P psq ` ∆psq (5.5)

The FOPTD system additive uncertainty is modelled under 50% unmodelled lag dynamics.

Assuming that ∆psq is any arbitrary transfer function, satisfying the condition ||∆psq||8 ď 1

then an arbitrarily large variation of uncertainty is chosen to be (Skogestad and Postleth-

waite, 2001):

∆psq “
1

tas ` 1
“

1

1.5s ` 1
. (5.6)

The simulation of the additive uncertainty is conducted using the system as a plant with a

minimal realization that can be expressed in the additive form. The worst-case scenario is

taken as the primary example for the simulation, depicting additional 50% lag dynamics.

The additive uncertainty of the linear NG SOPTD and NmP SOPTD is modelled as an

arbitrarily large second order dynamics of uncertainty as follows (Skogestad and Postleth-

waite, 2001):

∆psq “
0.1

s2 ` 0.1s ` 1
. (5.7)

The simulation of the additive uncertainty is conducted using the system as a plant with a

minimal realization that can be expressed in the additive form. The worst-case scenario is

taken as the primary example for the simulation, depicting arbitrarily large second-order

unmodelled dynamics.

The FOPTD System

Figure 5.6a shows that the proposed NLPID controller is robustly stable to the additional lag

dynamics, with a fast settling time of approximately 6 seconds. Performance deterioration

is observed as the plant damping is reduced. The performance of the proposed NLPID

indicates that even after an additive uncertainty in the system, the controller maintains

stability with a slightly reduced performance, observing an overshoot of approximately

10%. Figure 5.6b shows the system input due to the additive uncertainty. According to

the figure, it can be seen that the signal is bounded and hence internally stable.
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(a) NLPID output response due to unstructured additive uncertainty.
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(b) NLPID system input due to unstructured additive uncertainty

Figure 5.6: NLPID controller response to unstructured additive uncertainty in FOPTD
system, showing both output and system input responses.

The NG SOPTD System

Figure 5.7a shows the output response of the NG SOPTD model. The figure clearly indic-

ates that the uncertain dynamics have largely increased the settling time of the proposed

NLPID controller with the addition of the second order dynamics oscillatory behaviour.

Although the system remains stable there is a large deterioration in output performance

and the system takes a long time to track the set-point input, which is undesirable. Figure

5.7b shows the system input to the uncertain NG SOPTD model.
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(a) NLPID output response due to additive uncertainty.
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(b) NLPID system input due to the additive uncertainty

Figure 5.7: NLPID controller response to additive unstructured uncertainty in
NG SOPTD system.

The NmP SOPTD System

Figure 5.8 shows the output and system input response produced by the proposed NLPID

controller for the NmP SOPTD model under additive uncertainty. Figure 5.8a shows that

the proposed NLPID controller is stable under the influence of additive second-order dy-

namics. It can be seen that the response performance has deteriorated, where the settling

time is increased to approximately 55 seconds. The NmP SOPTD system is also showing

robust stability, however, the system shows a large settling time and an undershoot of more

than 40%, which shows a large deterioration in performance that is undesirable. Figure 5.8b

shows the system input to the plant model. It can be seen that the proposed controller

is internally stable with a bounded system input signal. This indicates that the proposed

controller is robustly stable for large uncertainty when introducing higher frequency higher

order dynamics.
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(a) NLPID output response due to additive uncertainty.
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(b) NLPID system input due to the additive uncertainty

Figure 5.8: NLPID controller response to additive unstructured uncertainty in
NmP SOPTD system.

5.5. Multiplicative Uncertainty

A more common uncertainty model used is multiplicative uncertainty. This uncertainty

model provides more information and analysis of the uncertainty dynamics and is com-

monly used to model delay and gain uncertainty (Skogestad and Postlethwaite, 2001). The

multiplicative uncertainty is modeled using Eq. (5.8) as follows:

P psq “ P psqr1 ` W psq∆psqs. (5.8)

where ∆psq being any arbitrary transfer function, satisfying the condition ||∆psq||8 ď 1.

The following inequality must hold true for any multiplicative uncertainty, indicating a circle

of radius equal to the magnitude of W psq that the system uncertainty must lie away from
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the ´1 ` 0j point of the Nyquist plot. The multiplicative uncertainty has been considered

to be an unstructured uncertainty of delay dynamics equivalent to 20% time delay from the

nominal plant. From the above condition, we can determine the weighting dynamics of the

uncertainty as follows:

∣∣∣∣∣P psq

P psq
´ 1

∣∣∣∣∣ “

∣∣∣∣∣
¨

˝

z1s ` z0

q2s2 ` q1s ` q0

˛

‚e´p1`λqs

¨

˝

z1s ` z0

q2s2 ` q1s ` q0

˛

‚e´s

´ 1

∣∣∣∣∣,

“

∣∣∣∣∣e
´p1`λqs

e´s
´ 1

∣∣∣∣∣,
“ |e´λs ´ 1| ď |W psq|,

for which when the maximum delay uncertainty of 20% occurs at the value of rλmin, λmaxs “

r0, 0.2s, that makes the equation into:

|e´0.2s ´ 1| ď |W psq|. (5.9)

The weighting function W psq is the transfer function that has been modelled to contain

the worst-case magnitude of the delay uncertainty magnitude. The weighting function

that is recommended to fit the uncertain lag dynamics to be modelled as (Skogestad and

Postlethwaite, 2001):

W psq “
λmaxs

λmax

2
s ` 1

“
0.2s

0.1s ` 1
. (5.10)

The magnitude plot can be shown by the red and blue plots, respectively, in Figure 5.9,

which shows W psq estimating the distribution of the worst-case delay uncertainty transfer

function magnitude. This forms a more generic unstructured delay uncertainty that can

be implemented in more complex controllers to show extensive robustness to a larger set

of uncertain dynamics. When compared to parametric uncertainty, which only includes a

certain range of values, the degree and structure of the plant dynamics are assumed to be

unknown. In this case, unstructured uncertainty allows some flexibility for ignorance in the

degree and structure of the dynamics.
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Figure 5.9: The bode magnitude response of the uncertainty weighting transfer function
and the maximum delay deviation transfer function.

The uncertainty ∆psq is chosen to be a transfer function that contains the same poles as

the nominal plant, the appropriate transfer function selection is modelled as (Skogestad

and Postlethwaite, 2001):

∆psq “
1

tms ` 1
. (5.11)

As a result, the total uncertainty dynamics in the multiplicative form can be represented

as:

W psq “
0.2s

0.1s ` 1
,∆psq “

1

s ` 1
. (5.12)

The uncertainty function ∆psq represents the uncertainty in the magnitude and phase dy-

namics and is implemented according to the weighting function W psq, where ||∆psq||8 ď 1,

satisfying the H8 condition.

The simulation of the multiplicative uncertainty is conducted under the developed uncer-

tainty. The system is represented as a plant with a minimal realisation that can be expressed

in the multiplicative form. The worst-case scenario is taken as the primary example for the

simulation, depicting the 20% unmodeled delay dynamics.

The FOPTD System

Figure 5.10a shows the output response of the proposed NLPID controller, indicating robust

stability within a large set of unstructured dynamics of the plant model. It also indicates

that the controller suffers from deteriorated performance with an overshoot of less than

10% and a settling time of approximately 8 seconds. Figure 5.10b shows the system input

from the proposed NLPID controller into the uncertain plant, indicating internal stability

to the uncertainty.
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(a) NLPID output response due to multiplicative uncertainty.
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(b) NLPID system input due to the multiplicative uncertainty

Figure 5.10: NLPID controller response to multiplicative unstructured uncertainty in
FOPTD system.

The NG SOPTD System

Figure 5.11a shows the output response of the multiplicative uncertainty. It is clearly seen

that the system has a larger settling time with a larger oscillatory response. Figure 5.11b

shows the system input signals and clearly shows that the system remains internally stable.
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(a) NLPID output response due to multiplicative uncertainty.
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(b) NLPID system input due to the multiplicative uncertainty

Figure 5.11: NLPID controller response to multiplicative unstructured uncertainty in
NG SOPTD system.

The NmP SOPTD System

Figure 5.12 shows the response of the proposed NLPID controller to multiplicative uncer-

tainty in the NmP SOPTD system model. Figure 5.12a shows the output response of the

proposed NLPID controller against multiplicative uncertainty. It can be seen that the pro-

posed NLPID controller produces a stable response and it can be seen that it maintains a

robust performance against multiplicative uncertainty. Figure 5.12b shows the system input

of the proposed NLPID controller. It can be seen that the proposed controller is internally

stable and maintains bounded system input signals to large multiplicative uncertainties.
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(a) NLPID output response due to multiplicative uncertainty.
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(b) NLPID system input due to the multiplicative uncertainty.

Figure 5.12: NLPID controller response to multiplicative unstructured uncertainty in
NmP SOPTD system.

5.6. Summary

The proposed NLPID controller has been tested under extensive simulation for various

types of uncertainty in nonlinear systems. The proposed NLPID controller shows excellent

performance and stability robustness for the various uncertainties.

The NCSTR System

The proposed NLPID controller has also been investigated for its ability to robustly control

nonlinear systems under the NCSTR system example case. A ˘5% parametric variation

has been simulated. The proposed NLPID controller has shown the capacity to maintain

fast performance with small variations in its performance measures. The proposed NLPID

controller also manages to maintain stability under the parameter uncertainty showing its
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ability to mitigate the effects of inaccurate models in sensitive nonlinear systems.

FOPTD Case Study

The proposed NLPID controller is robust under large uncertainty in various forms. The

proposed NLPID controller remains stable and maintains fast performance for ˘10% para-

meter variations. The proposed NLPID controller has also been tested for performance and

stability robustness under additive uncertainty for the FOPTD system. It has been shown

that the proposed controller is robust and its performance is slightly deteriorated under

higher-order dynamics in the additive uncertainty form. The proposed NLPID controller

was also tested under multiplicative uncertainty showing a 20% uncertain delay dynamics

of the FOPTD model. It has been shown that there is a slight performance deterioration

with increased rise-time and settling time. However, the proposed controller remains stable

under delay uncertainty in the multiplicative form.

Negative Gain SOPTD Case Study

The proposed NLPID controller has been shown to have robust performance and stability

for the NG-SOPTD system under various forms of uncertainty. A parametric uncertainty

of ˘10% variations in the parameters has been conducted and the proposed NLPID con-

troller has been shown to have robust performance and robustness with a shown increase

in rise-time and settling-time. The proposed NLPID controller has also been tested for the

NG SOPTD system under additive uncertainty form with second-order dynamics in the

additive form. The proposed NLPID controller has been shown to have robust stability,

where the performance deteriorates and has shown oscillatory behaviour with a larger set-

tling time. The controller was also simulated under multiplicative uncertainty depicting a

20% uncertainty in delay dynamics. The proposed NLPID controller has been shown to

have both robust stability and robust performance under multiplicative uncertainty.

Non-Minimum Phase Case Study

The proposed NLPID controller has also been tested for its robustness for the NmP SOPTD

dynamical system. It has been shown that the proposed NLPID controller is robust in both

the performance and stability under ˘10% parametric variations of the system. The system

has also been tested with additive uncertainty adding second-order dynamics to the plant

system. The performance of the proposed NLPID controller shows significant deterioration

in its performance, where oscillatory behaviour is observed with a significant increase in

settling time. However, the proposed NLPID controller remains stable, showing robust

stability. Finally, the proposed NLPID controller was also tested for the system under 20%

multiplicative uncertainty in delay dynamics. It has been shown that the proposed NLPID

controller has robust performance and robustness under multiplicative uncertainty.
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5.7. Concluding Remarks

The robustness of the proposed NLPID controller has been shown for linear systems under

a large variety of modelling uncertainties, which in most of the studied literature on NLPID

control methods, has not been previously provided. This further contributes to the results of

the suitability of the proposed NLPID controller to be applied in both industrial and linear

systems. Finally, the robustness tests expand the indicative stability analysis, indicating

further the stability margins of the proposed controller and providing further support on

the design and tuning justification basis of the proposed controller’s robustness against

parametric uncertainty.
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Chapter 6

Discussion, Conclusions, and FutureWork

6.1. Discussion on the Results

The control of the NCSTR system with input saturation has been simulated to evaluate the

performance of the proposed NLPID controller in nonlinear systems. The NCSTR system

possesses three steady states that have different stability properties; two are stable, and one

is unstable, which makes the control problem of moving from one to the next complicated for

linear controllers and requires separate tuning for each steady state. The proposed NLPID

controller has been tuned once and the controller can robustly control the system to all

three states. The controller shows a fast transient response with an 18.9% overshoot when

controlling the system from the stable equilibrium point yA to the unstable equilibrium

point yB . The proposed controller can also provide a fast transient response for the control

of the NCSTR system from the unstable equilibrium point yB to the stable equilibrium

point yC . The controller provides a low rise time and settling time, with an overshoot of

15.4%. In both cases, the controller can reject input disturbances to the system. Extensive

robustness tests have also been conducted for the NCSTR case with ˘5% variations in all

its parameters. The proposed controller shows robust performance and stability against

the parametric uncertainty, with minimal deterioration in transient performance for the

two control problems of yA Ñ yB and yB Ñ yC . Moreover, the proposed controller has

been for disturbance rejection performance to input disturbances, and it has been shown

that for the case of yA Ñ yB the controller can reject disturbance 55% the value of the

set-point input. For the control case of yB Ñ yC , the disturbances that the controller can

reject are up to 25% the set-point.

The proposed NLPID controller has also been benchmarked against the conventional con-

trol methods. In the case of the FOPTD system, the proposed controller shows stable

control with fast performance. The proposed NLPID controller can minimise rise-time and

settling time while maintaining minimal overshoot in the transient response. In contrast,

the PID and 2D PID controllers show lower rise-time and settling time of approximately

one second when compared to the proposed NLPID controller. The proposed NLPID con-

troller also outperforms the SP PID controller with a similar rise time but a settling time

of approximately 3 seconds lower. The proposed controller also shows similar system input

energy efficiency when compared to the conventional methods, which is an advantage when

considering the performance gains. The proposed NLPID controller has also been shown
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to be robust against ˘10% parametric variations, showing minimal performance deteriora-

tion. The controller has also been tested against additive and multiplicative uncertainties.

The controller managed to maintain stability against larger time constant dynamics in the

additive uncertainty form, however, deterioration in performance is observed. Finally, the

controller shows robust performance and robust stability against 20% time-delay uncer-

tainty in the multiplicative form.

The proposed controller has been benchmarked against conventional methods in the NG-

SOPTD system model. It has been shown that the proposed NLPID controller can control

the system with no overshoot, however, it has a lower rise time and settling time of approx-

imately 1 second against the PID, 2D PID, and SP PID controllers. It is also significantly

slower in disturbance rejection when compared to the conventional methods. The pro-

posed NLPID controller manages to control the system with no overshoot and the lowest

system-input energy when compared to the conventional methods. The proposed NLPID

controller has also been shown to be robust against ˘10% variations in all the system

parameters. However, the controller has a deterioration in performance with an increased

overshoot, rise-time, and settling-time. For extensive robustness testing, the controller has

also been simulated against additive and multiplicative uncertainties. The additive un-

certainty considered the inclusion of second-order dynamics into the nominal plant. The

proposed NLPID controller has been able to be robustly stable, however, there has been a

deterioration in its performance, showing oscillatory response and a larger settling time of

approximately 30 seconds. The proposed NLPID controller has also shown robustness in

performance and stability to 20% uncertainty of the multiplicative form in the time delay.

The final benchmarking of the proposed NLPID controller is the NmP-SOPTD system. The

proposed NLPID controller has shown no significant improvements in performance when

compared to the conventional methods. The proposed NLPID controller can have a similar

transient response with minimal overshoot, rise-time, and settling time when compared

to PID, 2D PID, and SP PID. However, the proposed NLPID controller has the largest

undershoot. The proposed NLPID controller shows excellent balance in input and output

disturbance rejection. The proposed NLPID controller outperforms the PID and has a

similar performance to the 2D PID controller. The SP PID controller outperforms all the

controllers to reject input disturbances. However, the proposed NLPID controller shows

similar performance to the SP PID controller in output disturbance rejection, and they

both outperform PID and 2D PID controllers. The proposed NLPID controller has similar

system input energy to the conventional methods. The proposed NLPID controller has

also been shown to be robust under ˘10% parametric uncertainty in all its parameters,

showing deterioration in performance with increased settling and rise time, but effectively

maintains a low overshoot. Moreover, the additive and multiplicative uncertainties have

been considered for the NmP-SOPTD system. The additive uncertainty also considered
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the inclusion of second-order dynamics. The proposed controller remains robustly stable at

the cost of deteriorated performance, showing an increase in oscillations and settling time.

The proposed NLPID controller shows robust performance and stability against the 20%

delay-uncertainty dynamics expressed in the multiplicative form.

In summary of the discussion points, a novel nonlinear PID controller has been proposed

for the improvement of performance and robustness in nonlinear systems. The proposed

controller has a unique set of functions that describe the gains in terms of the feedback

error for the proportional and integral actions, while the feedback error rate is used for the

derivative action. The proposed controller can eliminate step set-point derivative kicks, im-

proving the controller costs and performance. The controller has been benchmarked against

the conventional control methods for a large variety of linear systems. The benchmarking

of the proposed NLPID controller has been conducted against the conventional controllers

for linear systems only because it is common practice within industry to linearise nonlin-

ear models and apply a gain scheduled PID controller for the various linear plants. This

approach can become quite cumbersome, and it is difficult to ensure that the controller

maintains stability between two gains and that the controller can provide discontinuous

plant inputs, which is an ineffective behaviour. Consequently, it is common practice to

interpolate between different gain values of the scheduling procedure and define it as a

continuous look-up table. This is similar to the benchmarking methodology considered in

Chapter 4, however, the step of gain interpolation is avoided by simply considering indi-

vidual linear plants near their region of linearisation. The proposed NLPID controller can

extend the range of operating points of the NCSTR system when compared to conventional

PID without changing the tuning of the NLPID controller, which is not possible with other

linear control alternatives. It can provide good performance for various step set-point in-

puts, including inputs that the system’s behaviour is divergent near the steady state. This

indicates that the proposed NLPID control algorithm is robust, extends the operating re-

gion of the linear control alternatives, and provides good control performance. Moreover,

although the proposed NLPID controller has not been compared against gain scheduling

PID, it has been shown that it has the potential to be used in the NCSTR system as a

replacement to gain scheduling, requiring less time for design and analysis.

6.2. Advantages and Potential of the Proposed Controller

The proposed NLPID controller improves on the fundamental limitations of the PID con-

troller, such as:

1. The ability to eliminate derivative kicks from the step set-point action.

2. The ability to improve simultaneous performance and robustness in nonlinear systems.

3. It shows improved control performance of highly nonlinear systems, FOPTD systems,
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and SOPTD systems containing reverse dynamics with minimal to no overshoots.

Furthermore, the proposed NLPID controller may have some additional advantages over

other nonlinear PID controllers in the literature such as:

1. It has an easy to understand effect of the gain parameters to the performance and

stability.

2. It has fewer tunable parameters when compared to other nonlinear PID controllers.

3. It is a model-free control methodology and works for various nonlinear systems with

robustness and excellent performance.

4. It shows potential for a simple and easy-to-implement hardware control structure.

5. Maintains the same performance for any step set-point function.

6.3. Limitations of the Proposed Nonlinear Functions PID Con-

troller

The proposed NLPID controller has a lot of advantages that have been shown, and the

ability to improve performance, robustness, and operating range in the case of nonlinear

systems. It has been tested for a large variety of different models, however, it has some

limitations. The limitations that have been noticed are as follows:

1. The proposed NLPID controller is limited in its performance against the NG-SOPTD

system model, and it shows a slow and oscillatory disturbance rejection.

2. The proposed NLPID controller does not have rigorous stability proof. Consequently,

in this thesis, an extensive simulation approach has been utilised for the linearised

dynamics.

3. The proposed NLPID controller has not been tested for the dynamic input tracking of

systems; it has only been tested for various step set-point inputs. This is a limitation

since most set-point inputs are dynamic and change across time.

6.4. Difficulties Faced in Nonlinear Control

Nonlinear systems possess multiple equilibrium points and have many subsystems, actu-

ators, and multiple forms of nonlinearities that can restrict the control capabilities. In

addition, linearization is commonly required for linear controllers to control nonlinear sys-

tems adequately, using multiple operating conditions and designing multiple controllers.

This is a time-consuming process that requires continual re-design and analysis, where

linear controllers are mostly focused on robustness rather than performance. Nonlinear

control algorithms have consequently become more prominent because it is possible to use

the process model to determine a nonlinear controller that encompasses the key nonlin-

earities, essentially shaping a linear controller. However, this method requires adequate
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process knowledge and accurate modelling with low robustness capabilities. Moreover, ad-

aptive control algorithms can be computationally demanding and require the solution of

two problems, optimization and model identification. This increases the complexity of the

controller and requires larger hardware memory that may not be cost-effective to implement.

The most common problems that are faced in nonlinear control are as follows:

1. Nonlinear controllers usually rely heavily on the mathematical accuracy of the plant

models. This reduces the robustness and mostly under-performs.

2. Nonlinear controllers are more complex and face the difficulty of hardware imple-

mentation. This is particularly problematic when there is a lack of expertise, a lack

of funding, or a lack of intelligent hardware with enough memory space for the ap-

plication.

3. The ability of model-based nonlinear controllers to explicitly deal with saturation is

a complex problem, and many nonlinear controllers cannot resolve that issue.

4. Most nonlinear control algorithms also require a large number of parameters for their

design and tuning, making the tuning problem more complex and time-consuming.

5. Nonlinear PID controllers mostly do not have a stability theory to understand the

theoretical foundations of the control algorithm. This is particularly limiting since

linear controllers have a large theoretical toolset to help with the understanding of

the feedback system and its design.

6. The theoretical development of nonlinear PID controllers with a rigorous stability

analysis to help understand the dynamics and apply analytical tools to design the

nonlinear controllers.

6.5. Key Outcomes of This Study

The key research aim was to develop a nonlinear PID controller with improved performance

to nonlinear systems and robustness against uncertainty. This study has come to several

conclusions regarding nonlinear PID control and the proposed NLPID control methodology.

The study proceeded with simulating the proposed controller in various case scenarios,

which included both linear and nonlinear systems. The proposed controller has undergone

scrutiny to achieve its feasibility and comparison with contemporary methods. Firstly, the

controller has been simulated against a highly nonlinear system, namely the NCSTR sys-

tem. The nonlinear study showed in simulation that the proposed controller is tractable and

can be easy to implement in a nonlinear system. In addition, it shows that the proposed

controller is capable of regulating the NCSTR system in multiple steady states, includ-

ing uncertainty in the dynamics. Secondly, the proposed controller was also benchmarked

against a set of linearisation models of the NCSTR that are commonly seen in industry,

namely the FOPTD, NG SOPTD, and NmP SOPTD systems. The benchmarking study
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gave a comparison of the proposed algorithm against alternative solutions of the common

performance vs robustness trade-offs in PID and shows 8 the controller’s capacity to improve

upon the contemporary methods. The study showed that the proposed NLPID controller

has shown its ability to improve the performance and robustness of nonlinear systems, and

it was compared against the conventional methods such as PID, 2D PID, and SP PID. The

comparative analysis was done for various linear systems and the proposed NLPID control-

ler showed strength in the FOPTD system compared to the conventional methods. The

weakness of the proposed controller was seen in the NG-SOPTD system, which indicated

slow disturbance rejection. The proposed controller showed no significant improvements

when compared to conventional methods in the NmP SOPTD system. Thirdly, the design

of the proposed controller has been achieved via a heuristic search method using the PSO

algorithm and following with an indicative stability analysis to justify the design of the

search algorithm constraints that formed the search space for the PSO. The indicative sta-

bility analysis determined the stable regions of gain parameters k0, k1, and k2 that generate

a stabilisable NLPID controller for all three linearisations. Finally, the study also conduc-

ted an uncertainty analysis, and simulations were conducted to show the robustness of the

proposed controller in various types of model uncertainties. It was shown that the proposed

NLPID controller is robust against parametric, additive, and multiplicative uncertainties,

showing the resilience and ability of the proposed controller to regulate systems under

large variations. This also reflects the common approach of designing a linear controller

for a linearised system, which then undergoes extensive robustness analysis under various

uncertainties to ensure system stability.

6.6. Future Work

The proposed NLPID controller has shown in simulations its capacity to improve the per-

formance and robustness of conventional PID controllers for nonlinear systems. In this

project, there is still work to be done that is part of future work to showcase further the po-

tential of the proposed controller. Consequently, some suggested future work of this thesis

can be made in the following key uncovered areas.

1. Stability analysis of the feedback interconnection of the proposed NLPID controller

with a nonlinear plant model.

2. The hardware application of the proposed NLPID controller to compare its effective-

ness in practice against the simulation results.

3. Potential to combine the proposed NLPID controller with an observer design to im-

prove its robustness and disturbance rejection.

4. Benchmark the proposed NLPID controller against other nonlinear algorithms.

5. The parameter value of 1 in the nonlinear functions can be replaced by a tunable

parameter to give a different scaling effect to rptq.
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6. Provide weights to the objective function to prioritise the tuning for disturbance

rejection rather than elimination of overshoot.
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Systems - A Brief Overview of Historical and Recent Advances’. In: Nonlinear Engineering

6.4, pp. 301–312. issn: 21928010. doi: http://dx.doi.org/10.1515/nleng-2016-0077.

[Accessed: 16th Feb. 2021].

Isidori, A. (1995). Nonlinear Control Systems. 3rd. Springer Berlin Heidelberg. isbn: 3-540-

19916-0.

Jin, G.-G. and Son, Y.-D. (2019). ‘Design of a Nonlinear PID Controller and Tuning Rules

for First-Order Plus Time Delay Models’. In: STUD INFORM CONTROL 28.2. issn:

12201766, 1841429X. doi: 10.24846/v28i2y201904. [Accessed: 5th May 2023].

Joseph, S. B., Dada, E. G., Abidemi, A., Oyewola, D. O. and Khammas, B. M. (2022).

‘Metaheuristic Algorithms for PID Controller Parameters Tuning: Review, Approaches and

Open Problems’. In: Heliyon 8.5, e09399. issn: 2405-8440. doi: 10.1016/j.heliyon.2022.

e09399. [Accessed: 4th Aug. 2023].

Kapsalis, D., Sename, O., Milanés, V. and Martinez, J. J. (2020). ‘Gain-Scheduled Steering

Control for Autonomous Vehicles’. In: IET Control Theory & Applications 14.20, pp. 3451–

3460. issn: 1751-8652. doi: 10.1049/iet-cta.2020.0698. [Accessed: 24th Apr. 2021].

Kasim, I. and Riyadh, W. (2016). ‘On the Improved Nonlinear Tracking Differentiator

Based Nonlinear PID Controller Design’. In: ijacsa 7.10. issn: 21565570, 2158107X. doi:

10.14569/IJACSA.2016.071032. [Accessed: 12th Feb. 2021].

Khalil, H. K. (2002). Nonlinear Systems. third. United States of America: Prentice Hall.

isbn: 0-13-067389-7.

Konstantopoulos, G. C. and Baldivieso-Monasterios, P. R. (2020). ‘State-Limiting PID

Controller for a Class of Nonlinear Systems with Constant Uncertainties’. In: International

Journal of Robust and Nonlinear Control 30.5, pp. 1770–1787. issn: 1099-1239. doi: 10.

1002/rnc.4853. [Accessed: 24th Feb. 2021].
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Appendix A

MATLAB PSO Algorithm

%% PARTICLESWARMOPTIMIZATION ALGORITHMFOR SIMULINK SIMULATIONS

%%

c l c ;

c l e a r ;

c l e a r a l l ;

% I n i t i a l i z e S imulat ion Parameters

r = 1 ; % Set−Point

kp = 1 ; % Gain System Parameter

tp = 1 ; % Lag System Parameter

l = 0 ; % Delay Parametric Uncerta inty

k3 = 0 . 5 ;

% I n i t i a l i z e Optimizat ion procedure PSO Algorithm

t i c ; % Begin t imer

nvars = 4 ; % Number o f v a r i a b l e s to be opt imized

PN = 30 ; % Number o f P a r t i c l e s

MaxIterat ion = 90 ; % Maximum number o f i t e r a t i o n s

x = 2∗ abs ( rand (PN, nvars ) )+0∗(1−abs ( rand (PN, nvars ) ) ) ; % Begin random

p a r t i c l e s

X = s t r u c t ; % Build s t r u c tu r e

X. Pa r t i c l e = x ; % Embed random p a r t i c l e s that r ep r e s en t PID Gains in

s t r u c tu r e

% I n i t i a l i z a t i o n

% L i t e r a tu r e suggested parameters :%Parameters that are changeable .

c1 = 1 . 3 ;

% i t e r a t i o n step 1 : MaxIterat ion

V = s t r u c t ; % Def ine Ve loc i ty parameter Matrix

V. Pa r t i c l e = ze ro s (PN, nvars ) ; % Assign i n i t i a l v e l o c i t y matrix to zero

Pbest = ze ro s (PN, nvars ) ;

Gbest = ze ro s ( MaxIteration , nvars+1) ;

% Maximum/Minimum va lues o f the p a r t i c l e s

k0max = 2 ;

k1max = 2 ;

k2max = 2 ;

amax = 2 ;

amin = 0 . 5 ;

% I n i t i a l i z a t i o n o f i t e r a t i o n s 0 , 1 .
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%

fo r j = 1 :PN

i f abs (X(1) . P a r t i c l e ( j , 1 ) )>=k0max

X(1) . P a r t i c l e ( j , 1 )=k0max∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

k0 = X(1) . P a r t i c l e ( j , 1 ) ;

e l s e

k0 = X(1) . P a r t i c l e ( j , 1 ) ; % Propor t i ona l Gain

end

i f abs (X(1) . P a r t i c l e ( j , 2 ) )>=k1max

X(1) . P a r t i c l e ( j , 2 )= k1max∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

k1 = X(1) . P a r t i c l e ( j , 2 ) ;

e l s e

k1 = X(1) . P a r t i c l e ( j , 2 ) ; % In t e g r a l Gain

end

i f abs (X(1) . P a r t i c l e ( j , 3 ) )>=amax

X(1) . P a r t i c l e ( j , 3 )= amax∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

a = X(1) . P a r t i c l e ( j , 3 ) ;

e l s e

a = X(1) . P a r t i c l e ( j , 3 ) ; % Propor t i ona l Gain

end

i f abs (X(1) . P a r t i c l e ( j , 4 ) )>=k2max

X(1) . P a r t i c l e ( j , 4 ) = k2max∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

k2 = X(1) . P a r t i c l e ( j , 4 ) ;

e l s e

k2 = X(1) . P a r t i c l e ( j , 4 ) ; % Propor t i ona l Gain

end

% Simulate with Simulink

try

s = sim ( ' PerformanceTest . s l x ' , 'TimeOut ' , 10) ;

catch

end

% Extract e r r o r from s imul ink s imu la t i on ( t h i s uses the ”To

Worskspace” s t r u c tu r e in Simulink .

X( j ) . Error = s . e r r . Data ;

s t ep r e sp = s t e p i n f o ( s . output . Data , s . tout ) ;

s e t t ime = st ep r e sp . Sett l ingTime ;

Over = s t ep r e sp . Overshoot ;

% Evaluate ob j e c t i v e func t i on (Any ob j e c t i v e func t i on can be

de f ined )

X(1) . Object ive ( j ) = i s e (X( j ) . Error , s . t . Data , s e t t ime ) ;

[B, index ] = min ( nonzeros (X(1) . Object ive ) ) ;

g lobe (1 , 1 ) = index ;
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Gbest ( 1 , 1 : nvars ) = X(1) . P a r t i c l e ( index , : ) ;

Gbest (1 , end ) = B;

f o r k = 1 : nvars

r1 = rand (1 ) ;

phi1 = r1 ∗ c1 ;

V(2) . P a r t i c l e ( j , k ) = abs ( (V(1) . P a r t i c l e ( j , k )+phi1 ∗( Gbest (1 , k )−X

(1) . P a r t i c l e ( j , k ) ) ) ) ;

X(2) . P a r t i c l e ( j , k ) = abs (X(1) . P a r t i c l e ( j , k )+V(2) . P a r t i c l e ( j , k ) )

;

end

end

% Algorithm I t e r a t i o n Procedure

%

f o r i = 2 : MaxIterat ion

f o r j = 1 :PN

% Simulate f o r 1 up to Maximum i t e r a t i o n s

i f abs (X( i ) . P a r t i c l e ( j , 1 ) )>=k0max

X( i ) . P a r t i c l e ( j , 1 )=k0max∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

k0 = X( i ) . P a r t i c l e ( j , 1 ) ;

e l s e

k0 = X( i ) . P a r t i c l e ( j , 1 ) ; % Propor t i ona l Gain

end

i f abs (X( i ) . P a r t i c l e ( j , 2 ) )>=k1max

X( i ) . P a r t i c l e ( j , 2 )=k1max∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

k1 = X( i ) . P a r t i c l e ( j , 2 ) ;

e l s e

k1 = X( i ) . P a r t i c l e ( j , 2 ) ; % In t e g r a l Gain

end

i f abs (X( i ) . P a r t i c l e ( j , 3 ) )>=amax

X( i ) . P a r t i c l e ( j , 3 )=amax∗abs ( rand (1 ) )+amin∗(1−abs ( rand (1 ) ) ) ;

a = X( i ) . P a r t i c l e ( j , 3 ) ;

e l s e i f abs (X( i ) . P a r t i c l e ( j , 3 ) )<=amin

X( i ) . P a r t i c l e ( j , 3 )=amax∗abs ( rand (1 ) )+amin∗(1−abs ( rand (1 ) ) ) ;

a = X( i ) . P a r t i c l e ( j , 3 ) ;

e l s e

a = X( i ) . P a r t i c l e ( j , 3 ) ; % Propor t i ona l Gain

end

i f abs (X( i ) . P a r t i c l e ( j , 4 ) )>=k2max

X( i ) . P a r t i c l e ( j , 4 ) = k2max∗abs ( rand (1 ) )+0∗(1−abs ( rand (1 ) ) ) ;

k2 = X( i ) . P a r t i c l e ( j , 4 ) ;

e l s e

k2 = X( i ) . P a r t i c l e ( j , 4 ) ; % Propor t i ona l Gain
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end

% Simulate with Simulink

try

s = sim ( ' PerformanceTest . s l x ' , 'TimeOut ' , 10) ;

catch

end

% Extract e r r o r from s imul ink s imu la t i on

X( j ) . Error = s . e r r . Data ;

s t ep r e sp = s t e p i n f o ( s . output . Data , s . tout ) ;

s e t t ime = st ep r e sp . Sett l ingTime ;

Over = s t ep r e sp . Overshoot ;

% Evaluate ob j e c t i v e func t i on

X( i ) . Object ive ( j ) = i s e (X( j ) . Error , s . t . Data , s e t t ime ) ;

f o r p = 1 : i

L(p) = X(p) . Object ive ( j ) ;

end

end

% Find g l oba l bes t

[B, index ] = min ( nonzeros (X( i ) . Object ive ) ) ;

g lobe ( i , 1 ) = index ;

% Take a l l o b j e c t i v e s and f i nd the sma l l e s t

f o r p = 1 : i

CompareObjectives (p , 1 ) = X( i ) . Object ive ( g lobe (p , 1 ) ) ;

[ Smal l e s tObject ive , index ] = min ( CompareObjectives ) ;

end

i f X( i ) . Object ive ( g lobe ( index , 1 ) ) < Sma l l e s tObjec t i ve

Gbest ( i , 1 : nvars ) = X( i ) . P a r t i c l e ( g lobe ( index , 1 ) , : ) ;

Gbest ( i , nvars+1) = X( i ) . Object ive ( g lobe ( index , 1 ) ) ;

e l s e i f X( i ) . Object ive ( g lobe ( index , 1 ) ) >= Smal l e s tObjec t ive

Gbest ( i , 1 : nvars ) = X( i −1) . P a r t i c l e ( g lobe ( i −1) , : ) ;

Gbest ( i , nvars+1) = X( i ) . Object ive ( g lobe ( index , 1 ) ) ;

end

f o r j = 1 :PN

f o r k = 1 : nvars

r1 = rand (1 ) ;

phi1 = c1∗ r1 ;

V( i +1) . P a r t i c l e ( j , k ) = abs ( (V( i ) . P a r t i c l e ( j , k )+phi1 ∗( Gbest (

i , k )−X( i ) . P a r t i c l e ( j , k ) ) ) ) ;

X( i +1) . P a r t i c l e ( j , k ) = abs (X( i ) . P a r t i c l e ( j , k )+V( i +1) .

P a r t i c l e ( j , k ) ) ;

end

end
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end

% Extract the best va lue s in to the s imu la t i on

%

[ Val , m1] = min ( nonzeros (Gbest ( : , end ) ) ) ;

k0 = Gbest (m1, 1 ) ; % Propor t i ona l Gain

k1 = Gbest (m1, 2 ) ; % In t e g r a l Gain

k2 = Gbest (m1, 4 ) ; % Propor t i ona l Gain

a = Gbest (m1, 3 ) ; % Propor t i ona l Gain

s = sim ( ' PerformanceTest . s l x ' , 'TimeOut ' , 10) ;

t = toc ; % End timer
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Optimization Objective Function

The optimization problem was established to compute the ITAE performance measure as

the objective function as shown below.

minimize
k0, k1, k2, a

fpt, ϵptq, tsq “

ż tf

0

t|ϵptq|dt ` ts

subject to kmin ďk0, k1, k2 ď kmax,

amin ďaď amax

(B.1)

where ts is the settling time, ϵptq is the feedback error, and tf is the final time.

The following MATLAB code represents the above objective function evaluation, where the

constraints are implemented in the MATLAB PSO Code shown in Appendix A.

function [Ob] = ise(err ,t,st)

Ob = sum(t.*abs(err))+st;

end
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