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ARTICLE

CLASSIFICATION OF DINOSAUR FOOTPRINTS USING MACHINE LEARNING
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Horizonte, Minas Gerais, Brasil; 
3School of Biological and Environmental Sciences (BES), Faculty of Science, Liverpool John Moores University (LJMU), Liverpool 

L3 3AF, U.K.

ABSTRACT—Fossilized dinosaur footprints enable us to study the behavior of individual dinosaurs as well as interactions 
between dinosaurs of the same or different species. There are two principal groups of three-toed dinosaurs, ornithopods and 
theropods. Determining if a footprint is from an ornithopod or a theropod is a challenging problem. Based on a data set of 
over 300 dinosaur footprints we train several machine learning models for classifying footprints as either ornithopods or 
theropods. The data are provided in the form of 20 landmarks for representing each footprint which are derived from 
images. Variable selection using logistic forward regression demonstrates that the selected landmarks are at locations that 
are intuitively expected to be especially informative locations, such as the top or the bottom of a footprint. Most models 
show good accuracy but the recall of ornithopods, of which fewer samples were contained in the data set, was generally 
lower than the recall of theropods. The Multi-Layer Perceptron (MLP) stands out as the model which did best at dealing 
with the class imbalance. Finally, we investigate which footprints were misclassified by the majority of models. We find 
that some misclassified samples exhibit features that are characteristic of the other class or have a compromised shape, for 
example, a middle toe that points to the left or the right rather than straight ahead.

SUPPLEMENTARY FILES––Supplementary files are available for this article for free at www.tandfonline.com/UJVP.
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INTRODUCTION

Ornithopods and theropods are two groups of tridactyl (three- 
toed) dinosaurs. Whereas the herbivorous ornithopods went 
extinct at the end of the Cretaceous period, the primarily carni-
vorous theropods evolved into modern birds. Fossilized foot-
prints are a valuable data source that can provide insight into 
the speed at which a dinosaur moved as well as more general 
traits of their behavior. Throughout the literature they have pre-
dominantly been reported as photographic images and outline 
tracings, though this has changed in recent years via the acqui-
sition of 3D data (Falkingham et al., 2018). However, even 
when full 3D data are collected, these images are then often 
further simplified for statistical analysis by extracting morpho-
logical features such as lengths, widths, and angles. Throughout 

this article, when referring to tetrapod track data, we use the ter-
minology recently proposed by Lallensack et al. (2025).

Broadly, the shapes of ornithopod and theropod footprints 
differ in various characteristics. Ornithopod footprints are 
usually wider and more symmetric than theropod footprints. 
Also, their middle toes (digit III) are commonly shorter i.e., 
they do not extend as far beyond the other toes (digits II and 
IV) as in theropods. However, these observations are unsuitable 
for defining general rules for distinguishing ornithopods and 
theropods because the characteristics described above can be 
found in both groups. Moreover, as Falkingham (2014) shows, 
the shape of a footprint is not only determined by the anatomy 
of the foot but also by the properties of the substrate as well as 
the dynamics of the dinosaur as it left the footprint; they refer 
to the influence of these three dimensions as the morphospace. 
Thus, determining if a given footprint is from an ornithopod or 
a theropod remains a difficult problem.

A prime example of this difficulty lies with the large tridactyl 
prints of Lark Quarry, Australia (Thulborn & Wade, 1979). Orig-
inally described as theropod in origin (Thulborn & Wade, 1979, 
1984), the tracks were later reinterpreted by Romilio and Salis-
bury (2011) and Romilio et al. (2013) as having been made by 
an ornithopod. Key to this reinterpretation was Romilio et al.’s 
(2014) use of multivariate analysis techniques pioneered by Mor-
atalla et al. (1988). This was later critiqued by Thulborn (2013), 
whose critique was again then questioned by Romilio and Salis-
bury (2014). Falkingham et al. (2016) subsequently demonstrated 
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that even applying the ostensibly ‘objective’ multivariate analy-
sis resulted in highly subjective interpretations depending on 
where in the 3D geometry an ‘outline’ was picked, stressing 
that using a single outline in this way was flawed. Falkingham 
ultimately determined that the tracks were more theropod-like 
than ornithopod-like when considering the internal (deeper) out-
lines. These same tracks were revisited in Lallensack et al.’s 
(2022) first application of machine learning, where interpreted 
track-maker varied depending on which track, and whose 
outline was passed to the algorithm.

The aim of our study is to address this challenge by designing 
classifiers based on several machine learning methods. This has 
the additional benefit that the decision if a footprint is classified 
as an ornithopod or a theropod is based on statistical analysis of 
the data rather than on subjective decisions.

Several representative publications classify footprints by 
identifying clusters in scatter plots of various metrics (Casta-
nera et al., 2013; Demathieu, 1990; dePolo et al., 2020; Figueir-
edo et al., 2017; Mateus & Milaǹ, 2008; Piñuela et al., 2016; 
Romilio & Salisbury, 2011; Schulp & Al-Wosabi, 2012; Thul-
born, 2013), which relies on subjective decisions such as the 
selection of metrics to be considered as well as the definition 
of the cluster boundaries. The quantitative analysis of differ-
ences between ornithopods and theropods begins with the 
seminal study by Moratalla et al. (1988). The authors selected 
a sample of 66 tridactyl footprints from the Early Cretaceous 
period and originating from various geographic locations. 
They applied factor analysis (FA) and linear discriminant 
analysis (LDA) to features such as length and width of each 
digit with the aim to discriminate between theropods and 
ornithopods.

Lallensack et al. (2016) looked at three trackways from the 
Lower Cretaceous found in Münchehagen, Germany. The 
authors applied geometric morphometrics to footprint outlines 
and landmarks. They performed Principal Component Analysis 
(PCA) and found that asymmetry in the terminations of the 
digit impressions were a large distinguishing factor between the 
two groups. Lallensack (2019) extended this work by developing 
an algorithm that could automatically define the outline of a foot-
print. They tested this with a single theropod trackway from the 
same time period and geographic region as the trackways used by 
Lallensack et al. (2016). Lallensack et al. (2020) aimed to charac-
terize the variability of footprint shapes over time and between 
theropods and ornithopods. The authors took 303 footprints orig-
inating from the Late Triassic period, through the Jurassic all the 
way to the Late Cretaceous period from 134 publications. The 
full data set used in this study is available in the Supplementary 
Material of this article. Each footprint was described by 34 land-
marks and reference points and information such as the size was 
also recorded. They observed that ornithopod footprints are, on 
average, larger and wider than theropod footprints. Moreover, 
the features distinguishing theropods and ornithopods change 
with size, and the small ornithischian footprints are most 
similar in shape to large theropod footprints. Ornithischian foot-
prints increased in size over time from the Early Jurassic to the 
Late Cretaceous period indicating an increase in body size over 
that time period, which, interestingly, is not observed in theropod 
footprints.

The data by Lallensack et al. (2020) will be used in this study 
for developing classification algorithms that enable us to auto-
matically distinguish between ornithopod and theropod foot-
prints. Rather than representing the expert knowledge of an 
ichnologist, our goal is to use machine learning for classifi-
cation solely based on the geometric properties of the foot-
prints. Thus, we will not be able to rely on additional criteria 
to distinguish theropods from ornithopods such as evidence 
for four-legged locomotion. In principle, our machine learning 
methods might therefore misclassify footprints that would be 

“obvious” for a paleontologist, but our approach has the 
advantage that we can determine how well theropod and 
ornithopods can be distinguished when using only the shapes 
of the footprints.

Although we use a substantially smaller data set than Lallen-
sack et al. (2022), the Multi-Layer Perceptron (MLP), our best- 
performing method, demonstrates good performance on the test 
set with recall of ornithopods and theropods of 90.0% and 
89.5%, respectively, and an accuracy of 90%. Whilst the deep 
learning network proposed by Lallensack et al. (2022) is trained 
on black and white “silhouettes,” each footprint in our data set 
is represented by just 20 landmarks that are placed in meaningful 
locations of a footprint such as the tips of any of the three toes. 
This pre-processing of the data enables us to use computationally 
much less expensive models such as logistic regression, random 
forest or multilayer perceptron which require much smaller train-
ing data sets than complex neural network architectures.

MATERIALS AND METHODS

The classification methods developed in this study are based 
on a data set that represents the visual features of dinosaur 
footprints by a system of landmarks (Lallensack et al., 2020). 
Lallensack et al. (2020) collected images of 303 dinosaur foot-
prints from 134 different publications and represented the 
outline of each dinosaur footprint by 20 landmarks, see 
Figure 1. Two of the 303 footprints were not labeled as 
ornithopods or theropods, so these two samples were 
omitted. The remaining data set consists of 301 footprints, 
108 labeled ornithopods, 193 labeled theropods. Because the 
footprints originate from a wide range of sources and were 
classified by many different paleontologists it is unlikely that 
the classifications are influenced by a strong bias. The full 

FIGURE 1. Example for a footprint from the data set by Lallensack et al. 
(2020) whose outline has been represented by 20 landmarks. The three 
arrows provide examples of how the coordinates (x, y) of landmarks 
(here shown for the examples 4, 9, and 18) are converted to distances r 
from the center. The landmarks shown as filled circles were selected by 
variable selection via forward step logistic regression.
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data set is available in the Supplementary Material. As can be 
seen in Figure 1, each of the 20 landmarks is represented as a 
point (x, y) in a two-dimensional coordinate system. We sim-
plify the data set by transforming each landmark (x, y) to its 
distance r from the center (0, 0) as illustrated by the arrows 
in Figure 1:

(x, y) 7! r =
���������
x2 + y2


. (1)

Thus, the number of variables is reduced from 2 × 20 = 40 to 
20 variables. This transformed data set, see Figure 2, was then 
used for training models for classifying footprints as theropods 
or ornithopods, respectively. Please note that for the purposes 
of this visualization the sequence of distances from the center 
plotted in Figure 2 was changed, starting with landmark 4 on 
the left of the x-axis and then moving counter-clockwise along 
the boundary starting with landmark 4 and ending with landmark 
12 (Figs. 1, 2).

The algorithms included in our study were Logistic 
Regression (LR), Multi-Layer Perceptron (MLP), Random 
Forest (RF), Support Vector Machine (SVM), Multivariate 
Adaptive Regression Splines (MARS) and Linear Discrimi-
nant Analysis (LDA). More details on these well-known 
machine learning methods can be found in standard text-
books such as, for example, Hastie et al. (2009). The follow-
ing software implementations available as packages 
contained in the programming language R (R Core Team, 
2023) were used: stats (LR), MASS (LDA), nnet (MLP), 

randomForestSRC (RF), e1071 (SVM), mda (MARS). The 
R implementation is available in the Supplementary Material 
as an R Markdown (Rmd) source file and a PDF report gen-
erated from the Rmd.

RESULTS

All results reported in this article can be reproduced using the 
R Markdown (Rmd) file made available as Supplementary 
Material. The mean distances of each landmark for ornithopods 
and theropods shown in Figure 2A already give some insight into 
the differences between the two classes. When comparing the 
solid curve representing the ornithopods and the dashed curve 
showing the theropods, landmarks 1, 5, 6, 7 on the right of the 
footprint, see Figure 1, and landmarks 3, 10, 11, and 12 on the 
left of the footprint, see Figure 1, are, on average, further away 
from the center for ornithopod footprints than for theropod foot-
prints. These observations illustrate that ornithopod footprints 
are usually wider than theropod footprints. Carrying out a multi-
variate test that extends the two-sample t-test to multiple vari-
ables as described in Härdle and Simar (2014) it can be shown 
that the mean distances of the landmarks are significantly differ-
ent (a = 0.05) for ornithopods and theropods.

A slightly more subtle feature of Figure 2A relates to landmarks 
2, 17, and 20. Here, the distances of landmarks 17 and 20 are again 
shorter for theropods but landmark 2 is on average further away 
from the center than the same landmark in ornithopods. Combining 
these two observations illustrates another distinguishing feature of 
the two classes, namely that the middle toe of a theropod is usually 
longer than the middle toe of an ornithopod.

FIGURE 2. Visualization of the data set by Lal-
lensack et al. (2020) after transforming the two- 
dimensional coordinates to distances r from the 
origin (0, 0) according to equation (1). In the 
plots, also the sequence of the landmarks is 
changed, starting with landmark 4 on the left 
of the x axis and then moving counter-clockwise 
along the boundary of the footprint. In A, the 
means of the distances r is plotted for all 20 land-
marks for ornithopods (triangles) and theropods 
(circles). The distances r for all ornithopods are 
shown in B, theropods are shown in C.
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Altogether, the three panels of Figure 2 illustrate the shape 
of a three-toed footprint. From landmark 4 which marks the 
bottom of the footprint, the distance decreases along the 
right part of the footprint and along the right toe until a 
minimum is reached at the gap between the right and the 
middle toe (landmark 20). The distance then increases along 
the middle toe until the tip is reached (landmark 2). Left of 
landmark 2 the distance again decreases until the gap 
between the middle toe and the right toe is reached (landmark 
17). Finally, the distance increases again along the left toe and 
the left side of the footprint. As we can see for both ornitho-
pods (Figure 2B) and theropods (Figure 2C) the graphs for all 
footprints in the data set follow this pattern although they vary 
over a wide range. This is related to the footprint size, the dis-
tances increase with the footprint size.

In order to train the classifiers used in the study using Logistic 
Regression (LR), Multi-Layer Perceptron (MLP), Random 
Forest (RF), Support Vector Machine (SVM), Multivariate 
Adaptive Regression Splines (MARS), and Linear Discriminant 
Analysis (LDA), the data set, see Figure 2, was split into a train-
ing set that contained 211 samples (70% of the data) and a test 
set containing 90 samples (30% of the data) to be used for asses-
sing the performance of the machine learning models used in this 
study. Because samples were selected at random for each class, 

the proportion of ornithopods and theropods is similar in train-
ing and test data set.

For each model, the hyperparameters were optimized to 
obtain the best possible results. For Logistic Regression (LR), 
a forward stepwise method was implemented, using the function 
step implemented in R (Hastie & Pregibon, 1992). In Forward 
Stepwise Regression, landmarks are iteratively added as the per-
formance is assessed via the Akaike Information Criterion (AIC) 
(Akaike, 1974). The subset of 8 of the 20 landmarks selected in 
this way were 2, 4, 5, 9, 10, 15, 17, 20, see Figure 1.

For the MLP, the caret package was used to carry out a grid 
search of an MLP implemented in the nnet package. The 
number of neurons in the hidden layer were varied between 1 
and 19 and the weight decay parameter l was changed 
between 0 and 0.1. Both were optimized using Cohen’s k as 
the performance metric (Cohen, 1960), using a bootstrap resam-
pling approach (Efron & Tibshirani, 1997). The resulting model 
had 17 hidden neurons and a weight decay parameter of l = 0.1. 
For the Random Forest model, the number of randomly 
selected predictors was optimized using the caret package – 
the value reached was 4. The optimal SVM with a radial basis 
function kernel had parameters s = 0.010, C = 32. LDA and 
MARS have no tuneable hyperparameters but prior probabil-
ities for classifying a sample as an ornithopod or a theropod, 

TABLE 1. Performance of six classification methods that were trained on a training set of 211 samples of the data by Lallensack et al. (2020) 
determined by testing on the remaining 90 samples. For each method the first table shows confusion matrices as well as recall (the percentage of 
correctly classified samples) of ornithopods and theropods for the standard threshold of 0.5. The second table shows confusion matrices and recall 
values for an adjusted classification threshold obtained from the ROC curves shown in Figure 3. Finally, AUROC and classification accuracies 
before and after adjusting the thresholds are reported in the third table for each method. Plots of recall and accuracy for all methods before and 
after adjusting the thresholds are shown in Figure 4.

Forward Stepwise Logistic Regression (LR)

Ornithopods Theropods Ornithopods Theropods Accuracy

Ornithopods 25 10 Ornithopods 28 12 - before 80.0%
Theropods 8 47 Theropods 5 45 - after 81.1%
Recall 75.8% 82.5% Recall 84.8% 78.9% AUROC 0.902

Multi-Layer Perceptron (MLP)

Ornithopods Theropods Ornithopods Theropods Accuracy

Ornithopods 30 7 Ornithopods 30 6 - before 88.9%
Theropods 3 50 Theropods 3 51 - after 90%
Recall 90.9% 87.7% Recall 90.9% 89.5% AUROC 0.934

Linear Discriminant Analysis (LDA)

Ornithopods Theropods Ornithopods Theropods Accuracy

Ornithopods 23 5 Ornithopods 22 1 - before 83.3%
Theropods 10 52 Theropods 11 56 - after 86.7%
Recall 69.7% 91.2% Recall 66.7% 98.2% AUROC 0.901

Support Vector Machine (SVM)

Ornithopods Theropods Ornithopods Theropods Accuracy

Ornithopods 26 7 Ornithopods 28 9 - before 84.4%
Theropods 7 50 Theropods 5 48 - after 84.4%
Recall 78.8% 87.7% Recall 84.8% 84.2% AUROC 0.925

Random Forest (RF)

Ornithopods Theropods Ornithopods Theropods Accuracy

Ornithopods 25 7 Ornithopods 29 10 - before 83.3%
Theropods 8 50 Theropods 4 47 - after 84.4%
Recall 75.8% 87.7% Recall 87.9% 82.5% AUROC 0.888

Multivariate Adaptive Regression Splines (MARS)

Ornithopods Theropods Ornithopods Theropods Accuracy

Ornithopods 26 10 Ornithopods 29 10 - before 83.3%
Theropods 7 47 Theropods 4 47 - after 84.4%
Recall 78.8% 82.5% Recall 87.9% 82.5% AUROC 0.888
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respectively, have been set according to the proportions of each 
class.

After a model is fitted to the training set, its ability to correctly 
classify theropod and ornithopod footprints is assessed by the 
relative frequencies of correctly identified theropods (sensitivity) 
and ornithopods (specificity), respectively. Receiver Operating 
Characteristic (ROC) curves were generated for each model, 
see Figure 3. The ROC curve illustrates the trade-off of sensi-
tivity and specificity. Increasing the performance of a classifi-
cation method to identify theropods usually comes at the 
expense of its ability to recognize ornithopods and vice versa. 
By changing the threshold that determines which samples are 

classified as theropods versus ornithopods, sensitivity and speci-
ficity of a classification method can be varied. In Figure 3 we have 
indicated for each panel by a point on the ROC curve the sensi-
tivity and specificity that can be achieved for a given method by 
optimizing the threshold. A summary statistic for ROC curves is 
the area under the ROC curve (AUROC) which provides a 
metric of the overall performance of a classifier.

Table 1 shows confusion matrices and performance metrics, 
Figure 4 shows the recall and accuracy for all methods both 
before and after optimizing the threshold using the ROC curves. 
All models show good accuracy scores between 80% and 90%. 
However, all methods except MLP are notably worse at 

FIGURE 3. ROC curves for the machine learn-
ing methods used in this study. For each method, 
the Area under the Curve (AUC) has been cal-
culated. The points on the ROC curve show the 
recall of theropods (sensitivity) and ornithopods 
(specificity) achieved by the optimal threshold.
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accurately predicting the smaller class (i.e., ornithopods) before 
the threshold of the classifier is adjusted. After moving the 
threshold, most methods increase the recall of ornithopods 
whilst decreasing the recall of theropods. This is expected 
because there is a trade-off between both metrics, which is rep-
resented by the ROC curve. An exception to this pattern is 
LDA. Before adjusting the threshold, LDA has the best recall 
for theropods of any of the 6 methods (91.2%) whilst at the 
same time having the worst recall for ornithopods (69.7%). 
After adjusting the threshold, the recall of theropods increases 
whereas the recall of ornithopods decreases even further. As a 
result, LDA becomes an extreme case of a classifier that reaches 

a recall of 98.2% for theropods but at the expense of a very 
weak performance of classifying ornithopods, achieving a recall 
of only 66.7%. In contrast, even before adjusting the threshold, 
MLP’s recall of ornithopods is already 90.9%, which remains 
unchanged after moving the threshold whilst the recall of thero-
pods increases from 87.7% to 89.5%. Thus, MLP is not only the 
method that achieves the highest accuracy (90%) but also the 
highest recall for both classes. Because for this study performance 
should ideally be as high as possible for classifying both ornitho-
pods and theropods, the MLP is superior to the other models.

Because we already achieved good performance after adjust-
ing the thresholds of our models we did not attempt to address 

FIGURE 4. The plots show recall of ornitho-
pods (triangles, dotted lines) and theropods 
(circles, dashed lines) as well as accuracy 
(asterisks, solid lines) for all methods before 
and after adjusting the threshold of the classi-
fier. Recall quantifies the proportion of cor-
rectly classified samples of each type of 
dinosaur whereas accuracy is the overall per-
centage of correctly classified footprints.
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the class imbalance further using data augmentation techniques 
such as undersampling, oversampling, or SMOTE.

DISCUSSION

Six machine learning methods were applied to the problem of 
distinguishing theropods and ornithopods, two groups of dino-
saurs, based on footprints. Each footprint is represented by 20 
landmarks which are placed as explained by Lallensack et al. 
(2020). Of the six models, MLP emerges as clearly superior in 
comparison to the other methods, achieving a recall for both 
classes of about 90%. We regard the fact that our models 
achieve good performance on a relatively small data set of 
around 300 samples a strength of our approach, it indicates 
that the representation by landmarks extracts meaningful infor-
mation about the shape of the footprint and allows us to use com-
putationally much less expensive machine learning models than 
in the approach proposed by some of the co-authors of this 
study in Lallensack et al. (2022) which, however, relied on silhou-
ettes, black and white representations of footprint images. In the 
following we will discuss possible reasons for the benefits of redu-
cing footprints to landmarks.

The system of 20 landmarks proposed by Lallensack et al. 
(2020) is based on a set of points of interest located on the bound-
aries of the footprints, such as the tips of the three toes (land-
marks 1, 2, and 3) or the rear (landmark 4) of each footprint. 
One immediate advantage of using landmarks rather than 
working directly with image data is robustness to sources of 
error such as, for example, footprints that are located off- 
center or are rotated whilst, when determining the landmarks 
from images, distortions such as different orientations of a foot-
print with respect to the image frame are removed. As a result, 
using landmarks for building classifiers for distinguishing 
between theropods and ornithopods does not need to address 
the usual challenges faced in image processing applications. 
However, this suggests that the accuracy that can be achieved 
using machine learning models depend on how well the land-
marks reflect the shape of each footprint.

Instead of using the two-dimensional coordinates (x, y) that 
indicate the locations of each landmark, we instead work with 
the distances r =

���������
x2 + y2


of the landmarks from the center of 

the footprint. Thus, we reduce the number of variables from 
2 × 20 = 40 coordinates to 20 distances from the center. 
From Figure 2 it seems intuitively clear that not much infor-
mation is lost due to this transformation of the data set. This 
can be explained more rigorously by considering that rather 
than by two-dimensional cartesian coordinates (x, y), the 
locations of landmarks can equivalently be represented by 
polar coordinates (r, f) i.e., by the distance r from the origin 
and an angle f that indicates the direction where a point is 
located. Thus, our transformed data set can be described as a 
transformation to polar coordinates where the angular variable 
f is omitted. Each landmark lies in a particular direction from 
the center. Landmark 2, the tip of the middle toe, lies above 
the center, whereas landmark 4 is located below. Landmark 1 
is lateral (on the upper right), and landmark 2 is medial (on 
the upper left). Thus, because for different footprints each land-
mark is expected to be located in a similar direction from the 
center most of the information is contained in the distance r 
from the center and the angle f can be omitted.

In fact, replacing the cartesian coordinates (x, y) by distances r 
from the center is essential for obtaining a set of variables that is 
suitable for training machine learning methods. When attempt-
ing to train various machine learning methods on the original 
data set, the fact is that some coordinates are not informative. 
For example, the x coordinate of landmark 2 is close to zero 
whereas the y coordinates of landmarks 5, 8, 10, 13, 17, and 20 

are small, which causes problems and it is difficult to achieve 
convergence.

The number of variables can be reduced even further by vari-
able selection. This was implemented for Logistic Regression via 
Forward Step Regression. The landmarks selected by forward 
regression shown by the solid circles in Figure 1 were among 
those that would intuitively be expected to be in the subset of 
the most informative landmarks: landmarks 2 and 4 as the tip 
and rear of the footprint, which are related to the length of a foot-
print, 5 and 10 that are linked to the width of the footprint, 17 and 
20 that are halfway along the middle toe, and 9 at the beginning of 
the lateral (right) toe. Only landmark 15 seems slightly inconsist-
ent with this pattern because it is the landmark next to landmark 
2. Intuitively one might rather expect to find 14, the landmark 
opposite of 9, in the set of selected variables instead.

When fitting the other machine learning methods to the subset 
of variables selected by forward regression, the models obtained 
showed similar performance as when fitted to the full data set. 
Arguably that suggests that more parsimonious models could 
be obtained when reducing the modeling to the landmarks 
selected by forward selection. These results are presented in Sup-
plementary Material, see Section “Results using variables 
selected by forward LR” of the Rmd and the PDF file.

We have also evaluated the performance metrics of all six 
machine learning methods on the training set, see Table 2. The 
metrics decrease on the test set (compare Table 1 and Table 2) 
as expected for a relatively small data set but remain high on 
the test set.

Finally, it is interesting to investigate the footprints that were 
misclassified in order to explore possible limitations of the 
approach, see Table 3. The references of the misclassified 
samples are: Barco et al., 2021; Castanera et al., 2013; Dalman 
& Weems, 2013; Ellenberger, 1974; Gierlinśki et al., 2004; Gier-
linśki et al., 2009; Kim et al., 2018; Lallensack et al., 2016; Li 
et al., 2012; M. Lockley et al., 2008; Lockley & Meyer, 1998; 
Lockley et al., 1998; Lockley, 2010; M. G. Lockley et al., 2008; 
Lockley, Gierlinśki et al., 2014; Lockley, Honda et al., 2014; Mat-
sukawa et al., 2006; Olsen, 1980; Olsen & Rainforth, 2003; 
Pittman, 1989; Raath, 1972; L. Xing et al., 2016; Xing et al., 
2011; L. D. Xing et al., 2016; Xing, Lockley, Wand et al., 2014; 
Xing, Lockley, Zhang et al., 2014. Only two ornithopod and 
one theropod footprint were misclassified by all six machine 
learning models, see Figure 5A. The shapes of these three foot-
prints, published by Castanera et al. (2013), Li et al. (2012), and 
Xing, Lockley, Zhang et al. (2014), reveal why it might be challen-
ging to classify them correctly. For example, in all three figures the 
middle toe clearly points to the left or to the right, respectively, 
rather than straight ahead. Indeed, Castanera et al. (2013) 
argued that the tracks they described are challenging to refer to 
either group, and in this case the assignment to ornithopods 
could be made only because of the presence of manus tracks, 
though other works have attributed manus tracks to theropod 
trackmakers, e.g., Li et al. (2019) and Milner et al. (2009). The 
Li et al. (2012) track is referred to the ichnogenus Anomoepus, 
which is produced by small, basally branching ornithischians. In 
the absence of manus tracks, such tracks are generally difficult 
to assign to either theropods or ornithischians, and it is possible 
that the Li et al. (2012) track is a mis-identified theropod track.

The five footprints that have been misclassified by five out of 
six methods have been published in Castanera et al. (2013), 
Kim et al. (2018), Lockley (2010), Olsen and Rainforth (2003), 
and Xing et al. (2011). Looking at other misclassified footprints, 
for example, those shown in Figure 5C, it appears that the ther-
opod footprints that have been misclassified by four out of six 
machine learning methods show characteristics that are more 
common for ornithopods. For Dalman and Weems (2013), Gier-
linśki et al. (2009), Lallensack et al. (2016), Raath (1972), and 
Xing et al. (2014), the middle toe is relatively short and wide 
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rather than long and thin. Again, some theropod tracks are very 
ornithopod-like in appearance, see Milner et al. (2023) for a par-
ticularly deceiving example.

These observations illustrate that, in contrast to a paleontol-
ogist who classifies a footprint, our approach relies only on 
the shape of a footprint, represented in a highly simplified 
format via 20 landmarks. Thus, our method should not be 
seen as an attempt to represent expert knowledge as faithfully 
as possible but rather as an effort to extract from the 20 

landmarks the essential features of the geometry of an 
ornithopod footprint in contrast to a theropod footprint. 
The aim of our study was to answer the question if and 
how well ornithopod footprints can be distinguished from 
theropod footprints based on morphological features alone. 
We have demonstrated that despite deliberately restricting 
classification to geometric features whilst not accounting for cri-
teria such as evidence for four-legged locomotion which would 
provide unequivocal evidence for an ornithopod footprint, we 

TABLE 2. Six classification methods were trained on a training set of 211 samples of the data by Lallensack et al. (2020). Confusion matrices and 
recall (the percentage of correctly classified samples) were calculated for the same training set. Compare with the performance on the test set shown in 
Table 1.

Forward Stepwise Logistic Regression (LR) Multi-Layer Perceptron (MLP)

Ornithopods Theropods Ornithopods Theropods

Ornithopods 62 10 Ornithopods 71 2
Theropods 13 126 Theropods 4 134
Recall 82.7% 92.6% Recall 94.7% 98.5%

Linear Discriminant Analysis (LDA) Random Forest (RF)

Ornithopods Theropods Ornithopods Theropods

Ornithopods 52 4 Ornithopods 75 0
Theropods 23 132 Theropods 0 136
Recall 69.3% 97.1% Recall 100% 100%

Support Vector Machine (SVM) MARS

Ornithopods Theropods Ornithopods Theropods

Ornithopods 66 5 Ornithopods 63 7
Theropods 9 131 Theropods 12 129
Recall 88.0% 96.3% Recall 84.0% 94.9%

TABLE 3. Samples in the data set that have been misclassified by one or more of the methods after adjusting the threshold. Abbreviations: LDA, 
linear discriminant analysis; LR, forward stepwise logistic regression; MARS, multivariate adaptive regression splines; MLP, multi-layer perceptron; 
RF, random forest; SVM, support vector machine.

Source Ichnogenus Epoch Group LDA LR MLP RF SVM MARS n

Barco et al. (2021) Iberosauripus Cretaceous Early ✓ ✓ ✓ ✓ ✓ ✗ 1
Castanera et al. (2013) NA NA NA ✗ ✗ ✗ ✗ ✗ ✗ 6
Castanera et al. (2013) NA NA NA ✗ ✗ ✓ ✗ ✗ ✗ 5
Dalman and Weems (2013) Anomoepus Jurassic Early ✗ ✓ ✗ ✗ ✓ ✗ 4
Ellenberger (1974) Moyenisauropus Jurassic Early ✓ ✓ ✓ ✓ ✓ ✗ 1
Ellenberger (1974) Moyenisauropus Jurassic Early ✗ ✗ ✓ ✓ ✗ ✓ 3
Ellenberger (1974) Moyenisauropus Jurassic Early ✗ ✗ ✓ ✓ ✗ ✓ 3
Gierlinśki et al. (2004) Anomoepus Jurassic Early ✗ ✗ ✓ ✓ ✗ ✓ 3
Gierlinśki et al. (2009) Therangospodus Jurassic Middle ✓ ✗ ✓ ✓ ✗ ✓ 2
Gierlinśki et al. (2009) Carmelopodus Jurassic Middle ✓ ✓ ✗ ✗ ✗ ✗ 4
Li et al. (2012) Anomoepus Jurassic NA ✗ ✗ ✗ ✗ ✗ ✗ 6
Kim et al. (2018) Corpulentapus Cretaceous Early ✓ ✗ ✗ ✗ ✗ ✗ 5
Lallensack et al. (2016) NA Cretaceous Early ✓ ✗ ✗ ✓ ✗ ✗ 4
Lockley et al. (1998) Megalosauripus Jurassic Late ✓ ✓ ✓ ✗ ✓ ✗ 2
Lockley et al. (1998) Therangospodus Jurassic Late ✓ ✓ ✗ ✓ ✓ ✓ 1
M. G. Lockley et al. (2008) Hispanosauropus Jurassic Late ✓ ✓ ✓ ✗ ✓ ✓ 1
M. Lockley et al. (2008) Minisauripus Cretaceous Late ✗ ✗ ✓ ✓ ✗ ✓ 3
M. Lockley et al. (2008) Minisauripus Cretaceous Early ✓ ✗ ✓ ✓ ✗ ✓ 2
Lockley (2010) Dinehichnus Jurassic Early ✗ ✗ ✓ ✗ ✗ ✗ 5
Lockley (2010) Dinehichnus Jurassic Early ✗ ✓ ✓ ✓ ✗ ✓ 2
Lockley, Gierlinśki, et al. (2014) Irenesauripus Cretaceous NA ✓ ✓ ✓ ✗ ✓ ✓ 1
Lockley, Honda, et al. (2014) NA Cretaceous NA ✓ ✓ ✓ ✗ ✓ ✓ 1
Matsukawa et al. (2006) NA Cretaceous Early ✗ ✓ ✓ ✓ ✓ ✓ 1
Olsen (1980) Grallator Jurassic Early ✓ ✗ ✓ ✓ ✗ ✓ 2
Olsen and Rainforth (2003) Anomoepus Jurassic Early ✗ ✗ ✓ ✗ ✗ ✗ 5
Pittman (1989) NA Cretaceous Early ✓ ✓ ✓ ✓ ✓ ✗ 1
Raath (1972) NA NA NA ✗ ✗ ✓ ✓ ✗ ✗ 4
Xing et al. (2011) Kayentapus Cretaceous Early ✗ ✗ ✗ ✓ ✗ ✗ 5
Xing, Lockley, Zhang, et al. (2014) Paracorpulentapus Cretaceous Late ✗ ✗ ✗ ✗ ✗ ✗ 6
Xing, Lockley, Wand, et al. (2014) NA Jurassic Early ✓ ✓ ✗ ✗ ✗ ✗ 4
L. D. Xing et al. (2016) Anomoepus Jurassic Early ✓ ✓ ✓ ✗ ✓ ✓ 1
L. Xing et al. (2016) Minisauripus Cretaceous Early ✓ ✗ ✓ ✓ ✗ ✓ 2
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achieve high recall for both ornithopod and theropod footprints 
which demonstrates that indeed, essential differences of the 
classes can be determined from the shape of the footprints 
alone.

It remains an interesting question, which could be studied in 
future work, how the machine learning approach proposed 

here relates to the classification carried out by paleontologists 
who rely on more comprehensive information than contained 
in the footprints alone. In some cases, for example, in the pres-
ence of manus footprints indicating a quadrupedal dinosaur 
these additional data, not accounted for by our machine learning 
approach, even determine unambiguously which class a dinosaur 

FIGURE 5. Footprints that are misclassified by 
all 6, 5, or 4 of the methods applied in this study. 
Ornithopod footprints are shown as triangles, 
theropods as filled circles. Note that the foot-
prints shown here have different sizes. They 
are plotted on different scales to emphasize 
their shapes rather than their sizes.
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belongs to. One possibility would be to identify samples for 
which irrefutable evidence exists to which class a footprint 
belongs to, either based on additional evidence or clear geo-
metric features, and train the machine learning methods only 
on this part of the data. By determining the performance on foot-
prints that are more ambiguous it could be tested to which extent 
the geometric features extracted by the machine learning 
methods are obtained from samples which have been classified 
with high certainty. However, investigating this important ques-
tion would only be feasible by considerably augmenting the rela-
tively small data set of our study. Because this requires 
annotating a substantial number of additional footprints with 
landmarks this question will be investigated in a future study.

CONCLUSION

We developed a machine learning approach for classifying 
ornithopod and theropod footprints using a data set consisting 
of 20 landmarks that describe the shape of the footprints. We 
achieve accuracies of above 80% up to 90% for MLP, the best- 
performing method. MLP also shows a balanced performance 
for both classes, achieving recalls of approximately 90% for 
both ornithopods and theropods.
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