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Abstract

As camera traps have become more widely used, extracting information from

images at the pace they are acquired has become challenging, resulting in back-

logs that delay the communication of results and the use of data for conserva-

tion and management. To ameliorate this, artificial intelligence (AI),

crowdsourcing to citizen scientists and combined approaches have surfaced as

solutions. Using data from the UK mammal monitoring initiative Mammal-

Web, we assess the accuracies of classifications from registered citizen scientists,

anonymous participants and a convolutional neural network (CNN). The

engagement of anonymous volunteers was facilitated by the strategic placement

of MammalWeb interfaces in a natural history museum with high footfall

related to the ‘Dippy on Tour’ exhibition. The accuracy of anonymous volun-

teer classifications gathered through public interfaces has not been reported

previously, and here we consider this form of citizen science in the context of

alternative forms of data acquisition. While AI models have performed well at

species identification in bespoke settings, here we report model performance on

a dataset for which the model in question was not explicitly trained. We also

consider combining AI output with that of human volunteers to demonstrate

combined workflows that produce high accuracy predictions. We find the con-

sensus of registered users has greater overall accuracy (97%) than the consensus

from anonymous contributors (71%); AI accuracy lies in between (78%). A

combined approach between registered citizen scientists and AI output provides

an overall accuracy of 96%. Further, when the contributions of anonymous citi-

zen scientists are concordant with AI output, 98% accuracy can be achieved.

The generality of this last finding merits further investigation, given the poten-

tial to gather classifications much more rapidly if public displays are placed in

areas of high footfall. We suggest that combined approaches to image classifica-

tion are optimal when the minimisation of classification errors is desired.

Introduction

In the past 20 years, camera trapping has emerged as an

efficient, low-impact method for mammal monitoring

(Burton et al., 2015) that circumvents challenges of

observing cryptic and nocturnal mammal species. The

inferences that may be drawn from camera traps (CTs)

extend to abundance estimation for species with either
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recognizable (Karanth, 1995) or unrecognisable (Mason

et al., 2022; Rowcliffe et al., 2008) individuals, activity

pattern analysis (Ridout & Linkie, 2009; Vazquez

et al., 2019) and social network analysis (McCarthy

et al., 2019). Increasing uptake of CTs for mammal

research has been accompanied by advances in strategies

for processing the images they collect (Green et al., 2020).

One single trigger of a CT often yields a ‘sequence’ of

images, so that each capture event (trigger of the motion

sensor) represents a variable number of images generally

assumed to contain the same subject (Hsing et al., 2022).

While targeted surveys yield smaller datasets that can fea-

sibly be classified by researchers, relying on experts

restricts the geographic and temporal scope of monitor-

ing. To this end, recent decades have seen three key inno-

vations for processing images by (a) crowdsourcing to

citizen scientists, (b) automated classification by artificial

intelligence and (c) combined approaches of (a) and (b).

One breakthrough in image processing has been out-

sourcing the task to artificial intelligence (AI). Progress

has been rapid since initial attempts at this task produced

poor species recognition accuracy of around 38% (Chen

et al., 2014). Subsequent innovations in AI, such as

including a degree of manual image processing prior to

automated processing by the AI model itself, have seen

accuracy rise to 88% (Gomez Villa et al., 2017). More

recently, an AI model trained for all species in the Snap-

shot Serengeti dataset achieved human-level accuracy

(96.6%) for over 99% of the data (Norouzzadeh

et al., 2018). AI models have performed with accuracy

exceeding 95% for data from the United States and

Europe, accompanied by advances in out-of-sample accu-

racy (i.e., accuracy on sites not included in the training

data) (Böhner et al., 2023; Rigoudy et al., 2023; Tabak

et al., 2020; Whytock et al., 2021). Despite the past

decade of research advancing this field, AI outputs are

not widely applied in ecological analyses or monitoring

schemes. While the performance of models within sites

they are trained on has evolved to produce accuracies of

over 90% for North America, Central Africa and Europe

(Fergus et al., 2024; Norouzzadeh et al., 2018; Rigoudy

et al., 2023; Tabak et al., 2019; Whytock et al., 2021), per-

formance is negatively affected when models are applied

to new sites (Beery et al., 2018). Although some advances

have been made in this regard (Rigoudy et al., 2023;

Tabak et al., 2019; Whytock et al., 2021), it has so far not

been possible for models to maintain their accuracy when

applied to new sites, limiting their transferability and con-

straining the automation of image processing. Conse-

quently, researchers typically still review AI predictions

(Vélez et al., 2023).

Rather than striving for entirely automated approaches,

many researchers recognize that maximizing time savings

as well as accuracy might best be achieved by integrating

the outputs of AI models with those of human classifiers

(Adam et al., 2021; Green et al., 2020; Norouzzadeh

et al., 2018; Whytock et al., 2021; Willi et al., 2019). For

ecological monitoring, the integration of AI and citizen

science offers fast-tracked data processing to accelerate

positive conservation outcomes (McClure et al., 2020). It

has been suggested that highly accurate human consensus

could be used to train AI models and save experts the job

of labelling training data (Willi et al., 2019), or that AI

could reduce manual processing time by screening data-

sets for images devoid of animals or containing humans

(Loos et al., 2018; McShea et al., 2016; Norouzzadeh

et al., 2018; Willi et al., 2019). Combined approaches

have also been reported to improve accuracy beyond what

is possible from either individual method (Norouzzadeh

et al., 2018; Trouille et al., 2019; Willi et al., 2019).

Parallel to the development of automated image pro-

cessing, crowdsourcing has grown in its potential to be

applied to CT data. In only 3 days, the Snapshot Serengeti

project based in Tanzania achieved over 10.8 million

online classifications from volunteers for over 1 million

image sequences (Swanson et al., 2015). On average, each

sequence received 27 classifications, and when aggregated,

the species assignment matched expert labels with 98%

accuracy, albeit with variation between species (Swanson

et al., 2016). Through a similar UK-based platform,

MammalWeb, it has been demonstrated that c. 9 concor-

dant species classifications produce a consensus in which

researchers can have 99% confidence (Hsing et al., 2018).

Similarly, a US-based project found the agreement of 7

volunteers conveyed a classification deemed accurate 98%

of the time (Rivera et al., 2024). For ecosystems where

volunteers can expect to see highly charismatic species, as

in Snapshot Serengeti, consensus classifications can be

reached swiftly. However, recruitment is relatively more

challenging in locations with less charismatic fauna, such

as the UK. It is therefore desirable to identify species-and

location-specific workflows that represent the most eco-

nomical and accurate approach where fewer volunteers

are available (Hsing et al., 2018). Further, the type of

habitat surveyed and the camera settings used can influ-

ence the accuracy of human classifiers; volunteers have

proven more accurate when three images are included per

camera trigger compared with a single image and when

videos are used instead of still images, and are more likely

to provide false classifications in open-grassy habitats

(Egna et al., 2020; Green et al., 2023).

MammalWeb is a network in which citizen scientists

can become involved in both the deployment of CTs

(‘Trappers’) as well as the classification of the images they

produce (‘Spotters’) (Hsing et al., 2022). Since its incep-

tion in 2015, engagement with MammalWeb has
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expanded its geographic scope from the north-east of

England to a national initiative. Typically, to contribute

data, volunteers must register for an online account that

ties their classifications to a traceable user ID. Registra-

tion potentially represents a barrier to participation for

those who do not have access to computers or internet

connection, as well as younger participants. Equally, it

could deter first time users who would like to try the

activity or people who do not wish to spend time setting

up an account or share their contact details. Considering

this, MammalWeb trialled the provision of public ‘Mobile

MammalWeb’ terminals where individuals can contribute

without the need for registration, potentially accelerating

data acquisition (Hsing et al., 2022); however, there are

legitimate concerns about the data quality, owing to the

unknown motivations and expertise of short-term,

low-engagement volunteers. Anonymous participation

offers the easiest way for people to get involved and not

only contribute data that can help to reach more rapid

consensus classifications, but also widens access to

engagement benefits of citizen science that can catalyse

environmentally beneficial social change (Hesley

et al., 2023; Jansen et al., 2024).

Here, we take advantage of the opportunity to compare

the accuracies of classifications from different sources

across a set of image sequences that have received classifi-

cations from registered citizen scientists, anonymous par-

ticipants and an AI model, using a subset of

MammalWeb images available via public Mobile Mam-

malWeb terminals. Previous research suggests there is no

difference in the accuracies of citizen scientists depending

on whether they were logged in or contributing anony-

mously (through personal devices) to a particle physics

project hosted on Zooniverse (Jackson et al., 2018). We

test anonymous contributions in a different context; con-

tributors were not actively seeking out the classification

page, provided classifications through a public terminal

rather than a personal device, and nor do we have evi-

dence regarding their appreciation of the purpose of the

task. This, therefore, represents a novel low-investment

and short-term form of citizen science. In addition to

comparing the classification accuracies of anonymous par-

ticipants, registered citizen scientists and an AI model

over an identical set of image sequences, we design two

classification workflows that rely on input from either

anonymous participants or registered citizen scientists,

respectively, combined with output from the AI model.

We predict that registered citizen scientists provide more

accurate classifications than anonymous individuals due

to a higher degree of engagement with the project. Fur-

ther, we predict that combining both forms of citizen sci-

ence with AI output will improve the predictive accuracy

of outsourced classifications.

Materials and Methods

Timed to coincide with hosting the Natural History

Museum’s famous cast of a Diplodocus fossil between 18

May and 6 October 2019, the Great North Museum: Han-

cock in Newcastle, UK, installed several new exhibits.

Among these, were five Mobile MammalWeb terminals

located in different habitat sections of the Natural North-

umbria gallery. Each screen was associated with one of

the focal habitats in the gallery (lowlands, uplands, wood-

lands, coasts and urban). The screens hosted a modified

MammalWeb interface, through which users could classify

images from MammalWeb. The images, in turn, were

contributed to MammalWeb by schools participating in

the ‘Dippy Schools Programme’. Fifty participating

schools were each provided with a CT and, within a

broader programme of continuing professional develop-

ment, teachers attended a session on how and why to

deploy CTs. Based on their locations, the schools were

each allocated to one of the five major habitats, and it

was the images uploaded from the relevant schools that

appeared on each of the five touch-screen units. Upland

habitats were under-represented, so images for that screen

were augmented by those obtained from upland habitats

during a simultaneous survey of County Durham (Mason

et al., 2022). This set-up represents a method of increas-

ing participation by eliminating the requirement for a

personal device to contribute data. Camera settings and

deployment characteristics are known to influence classifi-

cation accuracy of the public (Egna et al., 2020), but we

don’t expect variation in these features identical camera

models were used at each site. Further, teachers were

given comprehensive guidance on the settings to use and

how to deploy cameras in the field.

Starting with the image sequences that had been made

available through terminals placed in the Great North

Museum: Hancock, we identified a subset of sequences

that had been classified by anonymous users, users regis-

tered through the MammalWeb platform, and the AI

model to which the MammalWeb platform is linked (see

‘AI Classifications’, below). Some sequences on Mammal-

Web already had ‘expert classifications’, provided by affili-

ated researchers (Hsing et al., 2018). This was the case for

most sequences in our focal subset. C. Sharpe (lead

author) provided expert classifications for the small num-

ber of sequences missing expert labels. Although the

potential for expert classifications to be biased is acknowl-

edged, these labels are taken as the gold standard here, as

has been protocol in similar analyses (Torney

et al., 2019). C.S. also reviewed a small number of

sequences for which there were multiple expert species

labels to discern whether there were truly multiple species

present, or whether there was a need for resolution of
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disagreement between experts. For sequences with multi-

ple species present, all labels were preserved in the gold

standard dataset. Images were programmed to appear

randomly on Mobile MammalWeb units, and since we

had no prior knowledge of the likely uptake or accuracy

of anonymous classifiers, they were not set to retire after

a given number of classifications as is protocol with

image classification, due to our uncertainty regarding

what would constitute a number of classifications that

was both achievable and adequate.

Assessing accuracy

In the fields of machine learning and CT image classifica-

tion, commonly reported metrics of accuracy are overall

accuracy (overall proportion of predictions that were cor-

rect), as well as class-specific metrics of precision (pro-

portion of positive identifications per class that are

correct), recall (proportion of actual positives per class

identified by the classifier) and F1 score (metric that

describes harmonic mean of precision and recall). Overall

accuracy is heavily influenced by the most popular classes

(Norman et al., 2023) so here, class-specific precision is

also reported to provide a more detailed picture of per-

formance. For the purposes of biodiversity monitoring,

researchers should strive for classification sources with

high precision across species since precision reflects how

often, when a user identifies species X, that species X is

present (Rigoudy et al., 2023). The precision metric was

deemed an appropriate measure to report in this investi-

gation since it provides an intuitive measure of how con-

fident researchers can be that a label provided by any

classification approach is correct:

Precision=
True positives

True positivesþ False positives

All analyses were conducted in R version 4.4.1 (R Core

Team, 2024). Precision values and overall accuracy values

were obtained using a multi-class confusion matrix in R,

treating expert as ground truth and registered, anony-

mous and AI classifications as predicted labels, respec-

tively, using the R package ‘ConfusionTableR’

(Hutson, 2021). Since the primary focus of the camera

trapping is mammals, species-level bird classifications

were condensed into one all-encompassing ‘Bird’ cate-

gory. In addition to investigating the precision of classi-

fiers, we include results characterizing the types of errors

made by each group in the supplementary material. The

following sections and Table 1 describe the acquisition of

classifications from each source considered in this

analysis.

Registered users

The classifications of registered users can be traced to

their unique numerical identifiers. For this group, the

analysis was conducted on three levels. First, every indi-

vidual classification for each sequence in the data was

compared with the gold standard to calculate class-

specific precision scores that reflect the average precision

of individual classifiers (individual level). Second, moti-

vated by the high accuracy of previous records of aggre-

gated volunteer input (Hsing et al., 2018; Swanson

et al., 2016), individual classifications were aggregated

into a single consensus species for each sequence that had

been classified by multiple users (Hsing et al., 2018;

Swanson et al., 2016). The consensus is defined as the

species with the most common classification (consensus

level). For sequences that had equal votes for more than

one species, the most recent classification was excluded to

break the tie. This left a very small number of sequences

that were still tied (with more than two species included

Table 1. Features of the sources of image classification considered in this analysis.

Source Approach Image label compared with expert

Registered First Earliest classification per sequence

Individual All individual user classifications considered, and average accuracy and precision reported

Consensus Single consensus species defined per sequence

Anonymous Individual All classifications considered, and average accuracy and precision reported

Consensus Single consensus species defined per sequence

AI Maximum probability Species with single highest probability value across all images in each sequence

Highest summed probability Species with highest summed probability value across all images in each sequence

Combined

algorithm

1. First registered user=maximum

probability AI

For sequences where the first registered user and maximum probability AI classification

match, this label compared with expert

2. Registered consensus=maximum

probability AI

For sequences where the registered consensus and maximum probability AI classification

match, this label compared with expert

3. Anonymous consensus=maximum

probability AI

For sequences where anonymous consensus and maximum probability AI classification

match, this label compared with expert
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in a tie). These were excluded, and any sequences with

only one classification were excluded. The number of

sequences excluded according to these criteria is reported

in the results (Fig. 4). Third, the earliest classification

provided for each sequence was isolated and compared

with the gold standard (first user level).

Anonymous users

Classifications received via Mobile MammalWeb terminals

cannot be attributed to unique users, as the user ID cor-

responds to the terminal rather than the human that pro-

vided the classification. Classifications from these users

were considered in two ways. First, each individual classi-

fication for each sequence in the data was compared with

the gold standard to produce a precision score that

reflects the average precision of individual classifications

(average classification precision). Second, individual clas-

sifications were aggregated into a consensus per sequence

and compared with the gold standard to determine preci-

sion (consensus precision). For sequences where more

than one species was tied for the consensus, the most

recent classification for either of the tied species was

excluded. Those that remained tied (since more than two

species had the maximum number of votes) were

excluded. Additionally, any sequences with only one vote

were excluded. Again, as with the registered consensus

approach, the number of sequences excluded according to

these criteria is reported in the results (Fig. 4).

AI classifications

For image data uploaded to MammalWeb, species identi-

fications are provided by passing images through Conser-

vation AI’s ‘UK Mammals’ model (www.conservationai.

co.uk; a deep convolutional neural network based on Fas-

ter RCNN Resnet 10; Vélez et al., 2023; Fergus

et al., 2024). The model classifies every image, in contrast

to human classifiers, who provide classifications at the

level of an image sequence. To compare the AI’s output

to the gold standard, the classifications were aggregated

to a sequence level prediction either by selecting the spe-

cies with the single highest assigned probability across all

predictions for that sequence, or by selecting the species

with the highest summed probability across the sequence.

The AI model is not trained to recognize certain species

identified by experts in our data, including brown (Euro-

pean) hare, horse, stoat, small rodent (unknown species),

or brown rat, so it was not possible to assess AI accuracy

for these species. Only predictions with a probability over

0.55 are returned by Conservation AI. Although it is com-

mon to report accuracy for the top-1 and top-5 classes

predicted by AI models (Gomez Villa et al., 2017;

Norman et al., 2023; Norouzzadeh et al., 2018; Tabak

et al., 2020; Whytock et al., 2021), we do not report these

metrics owing to the low number of species reported per

sequence. Instead, the class-specific precisions for the AI’s

highest probability predictions are considered.

Combining AI and citizen science

We also considered the performance of three algorithms

designed to integrate the inputs of citizen science and AI.

Combination rule 1 considers concordance between the

first registered user classification and the AI model, while

combination rule 2 uses the consensus of registered users

in agreement with the AI model. Combination rule 3

considers the anonymous user consensus in agreement

with the AI. In all cases, the AI’s sequence level prediction

was taken to be the maximum probability AI species,

since this classification resulted in higher precision for the

most classes.

Combined workflows are intended to increase both the

efficiency and accuracy of image classifications (Green

et al., 2020), and due to differences between the accura-

cies of registered or anonymous users, our workflows dif-

fered depending on who provided the human

classification (Table 1). While the consensus from either

registered or anonymous users was considered in combi-

nation with AI in rules 2 and 3, for registered users, the

finding that the first registered user to classify a sequence

is typically highly accurate (Fig. 1; Hsing et al., 2018) led

us to test a workflow that relied only upon one human

classification in combination with AI (rule 1). While reg-

istered user consensus is proven to be highly accurate

without the input of AI (Fig. 1), combined rule 1 repre-

sents a method of increasing efficiency relative to combi-

nation rule 2 by eliminating the requirement to wait for a

citizen science consensus before sequences can be retired

with high confidence.

Results

For registered and anonymous participants as well as the

AI model, accuracy was assessed over 4849 sequences that

had been classified by all groups. Expert classifications

indicated that only 0.49% (24) of sequences contained

more than one species. A mean of 6.67 registered users

(95% CI= 6.54, 6.81) had classified each sequence, iden-

tifying a mean of 1.35 species per sequence (95%

CI= 1.33, 1.37). By comparison, a mean of 8.08 anony-

mous users (95% CI= 7.75, 8.42) had classified the same

sequences, identifying more than twice as many species

per sequence (3.14, 95% CI= 3.07–3.21). Therefore, the
classifications of anonymous users include more incorrect

classifications per sequence. An average of 1.25 (95%
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CI= 1.23, 1.27) different species were identified per

sequence by the AI model.

Registered users

At the individual level, the overall accuracy of registered

users was 0.94, but average precision varied across classes

(Fig. 1). Considering only the prediction of the first

registered user to classify a sequence, the overall accuracy

was 0.95 with similar variation in cross-class precision,

but generally improved precision scores. Consensus classi-

fications had an overall accuracy of 0.97, with only the

classes ‘Nothing’ and ‘Horse’ having consensus precision

below 0.95. The number of votes for the consensus was

significantly positively associated with the classification

being correct (OR= 1.16; 95% CI= 1.11, 1.21;

Figure 1. Class-specific precision values for registered users across 4849 sequences considering classifications at three levels: average individual

precision—average precision of individual classifications provided by registered users, consensus precision—species with the greatest number of

votes from registered users per sequence used to calculate precision, first user precision—only the earliest registered classification per sequence

used to calculate precision. Vertical red line indicates 0.95 precision value.
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P\ 0.001). For each additional vote, a given consensus

had 16% improved odds of being correct. Once a consen-

sus has 6 votes, the probability of it being correct was

greater than 0.95.

Anonymous users

Overall accuracy averaged across all anonymous classifica-

tions for all sequences was 0.55, markedly lower than that

of registered users. Average precision was below 0.5 for

most classes (Fig. 2). Using the consensus approach

improves the overall accuracy to 0.71, and the precision

improves for every class except stoat, brown rat and bird.

For each additional vote in favour, a given consensus

classification had 36.8% greater odds of being correct

(OR= 1.37; 95% CI= 1.32, 1.42; P\ 0.001). To exceed

0.95 probability of any given anonymous consensus classi-

fication being correct, 12 votes were required. After

Figure 2. Class-specific precision values for anonymous users across 4849 sequences considering classifications at two levels: average

classification precision—average precision of individual classifications provided via Mobile MammalWeb units, consensus precision—species with

the greatest number of votes from anonymous classifications per sequence used to calculate precision. Vertical red line indicates 0.95 precision

value.
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adjusting for the number of votes per sequence, there was

a significant difference between registered and anonymous

users. An anonymous consensus had 85.8% lower odds of

being correct than a registered consensus with the same

number of votes (AOR= 0.14; 95% CI= 0.12, 0.17;

P\ 0.001).

AI classifications

Using the species classification with the maximum

probability per sequence resulted in an overall accuracy

of 0.78, although precision varied across species, and

only the Bird category had precision above 0.95. The

highest summed probability species showed similar

results with an overall accuracy of 0.78 and similar

between-species variation in precision, again with only

the Bird category exceeding 0.95 precision. There was

no significant difference in the odds of either the maxi-

mum probability species or highest summed probability

species being correct (OR= 0.998, 95% CIs= 0.90, 1.10,

P= 0.97).

Combining AI and citizen science

For combination rule 1, 3676 out of 4849 sequences had

a classification from the first registered user that agreed

with the maximum probability AI species per sequence.

The overall accuracy compared with expert review across

these sequences was 0.96 and the precision for every ani-

mal class exceeded 0.95 (Fig. 3), so for all sequences

where the presence of an animal is agreed upon by the

first registered user and the maximum probability AI pre-

diction, the species assignment could be accepted with

95% confidence. Only the ‘Nothing’ class did not meet

the 0.95 value for precision. Using this rule, 2230 labels

could be accepted with 95% confidence.

Using combined rule 2, the registered consensus agreed

with the maximum probability AI species per sequence for

Figure 3. Comparison of precision scores for combination rules 1 (first registered user species= AI max probability species), 2 (registered

consensus species= AI max probability species) and 3 (anonymous consensus species= AI maximum probability species).
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3321 sequences. The overall accuracy was 0.97 and the preci-

sion was 0.95 or higher for every animal class (Fig. 3), and

only below 0.95 for Nothing, meaning that—as for combina-

tion rule 1—every animal classification can be accepted with

at least 95% confidence in its accuracy (2141 sequences).

From combination rule 3, the terminal consensus

matched the AI output for 1713 sequences. The overall

accuracy was 0.98, and most classes had precision scores

over 0.95, except for red fox and Nothing (Fig. 3).

Despite the high accuracy, only 1567 sequences can be

retired with this rule compared with 2230 and 2141 by

rules 1 and 2, respectively, resulting in a greater propor-

tion with conflicting classifications that require manual

review (Fig. 4).

Discussion

Motivated by the pressing requirement for efficient methods

of processing mounting volumes of CT data, we provide

insight into the accuracies of different approaches to image

classification. Here, we considered the accuracies of registered

users, anonymous users and an AI model, along with two

combined workflows, in classifying images from a UK mam-

mal monitoring project. The accuracy of registered users was

far greater than that of either anonymous citizen scientists or

AI, particularly when individual labels were aggregated into a

consensus. However, combined approaches yielded predic-

tions of greater accuracy than is possible from any individual

source. We discuss our results in relation to how the relative

engagement of citizen scientists influences the accuracy of

their classifications, the benefits of AI both as a standalone

approach or a tool for enhancing citizen science, and finally,

the potential for anonymous contributors to provide scientif-

ically valuable data.

Influence of engagement on human
accuracy

A clear outcome of our analysis was that the greater

investment or interest of volunteers that register for a

Figure 4. Status of 4849 sequences considered in this analysis by each method of acquiring classifications. Correct—label matches expert label,

excluded—sequences excluded because they did not meet classification criteria to be analysed (see Methods), conflicting classification—AI and

human labels are incongruous, false nothing—‘nothing’ identified but expert identified animal, incorrect species—animal identified that does not

match expert label.
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MammalWeb account prior to providing their classifica-

tions translates into superior predictive accuracy com-

pared with anonymous users. These results echo previous

findings that registered citizen scientists are highly accu-

rate via MammalWeb and other projects, particularly

when their contributions are aggregated into a consensus

(Hsing et al., 2018; Swanson et al., 2016). It has previ-

ously been reported, in research concerned with user

experience, that the predictive accuracy of anonymous cit-

izen scientists did not differ from those who were logged

in through the Zooniverse website (Jackson et al., 2018).

However, these participants actively sought out the classi-

fication task to which they contributed, whereas the

anonymous MammalWeb participants were not specifi-

cally seeking to engage with the project and are likely to

have had a relatively low degree of engagement. This

could account for the difference observed here that was

not observed via Zooniverse. Nevertheless, our results

may prompt future consideration of the variation between

forms of citizen science that, in the case of MammalWeb,

at least, must be treated differently.

Relatively lower precision results for small body-sized

mammals from both anonymous and registered citizen

scientists likely reflect the reduced ability of conventional

CTs to capture small mammals. This is well-established in

CT research and has fuelled a separate strand of research

optimizing CTs for small mammals (Glen et al., 2013; Lit-

tlewood et al., 2021; McCleery et al., 2014).

Value of AI as standalone and combined
approach

Our finding that Conservation AI’s UK Mammal model

performed with an overall accuracy of 78% represents a

slightly lower accuracy than expected since the model has

been reported to operate with a mean average precision

of 0.976 (Fergus et al., 2024), although it is acknowledged

that the model is sensitive to variation in image quality.

The deviation from expected accuracy is likely attributable

to features of the images that come from a high diversity

of sites that are not included in the training data for this

model. The inability of AI models to transfer to new sites

and maintain their accuracy (Shepley et al., 2021) remains

a major obstacle to the introduction of large-scale auto-

mated monitoring. One suggestion has been to use higher

resolution, publicly available imagery from sites such as

FlickR and iNaturalist to train AI models, only later

supplementing their training with CT data (Shepley

et al., 2021). Attempts at supplementing training data

with imagery such as that from iNaturalist have produced

impressively accurate AI models for camera-trap data

(Schneider et al., 2024), demonstrating promise in this

approach. Using publicly available images for training can

also provide a solution where species are not commonly

captured by CTs, such as birds, which consequently do

not have easily accessible training datasets (Chalmers

et al., 2023). Improvements to the performance of AI

models more generally could also be accessed by includ-

ing metadata with training images, such as temperature,

location and time (Tøn et al., 2024).

There is great potential in applying AI in combination

with human classifications (Green et al., 2020). Combined

approaches have enjoyed great success in other realms

through the platforms eBird (Kelling et al., 2013) and

iNaturalist (Ceccaroni et al., 2019). Additionally, the posi-

tive benefits of citizen science stretch beyond the scientific

enterprise into social life (Eichholtzer et al., 2023),

highlighting the wider value of reserving a space for citi-

zen science in image classification workflows. A pervasive

concern expressed in recent publications is that there is a

fine line to tread in balancing the implementation of AI

with the maintenance of a role for volunteers to provide

citizen science outcomes that benefit science and society

(Fortson et al., 2024; Pankiv & Kloetzer, 2024; Sharma

et al., 2024). Rather than using AI to reduce the role of

humans, we have demonstrated here that AI models can

facilitate the use of contributions from low-expertise vol-

unteers in monitoring schemes. We found that for most

sequences where the species label was concordant between

the anonymous consensus and the AI prediction, preci-

sion exceeded 0.95 (Fig. 4, combined rule 3). This sup-

ports the finding that although involving humans

increases the time taken to obtain classifications, doing so

reduces errors (Huebner et al., 2024). In addition, we

demonstrated a workflow where accurate image labels can

be gathered rapidly by relying on only a single classifica-

tion from a registered MammalWeb user. Where the first

registered MammalWeb Spotter identifies a species, and

that species is also identified by the AI model, that label

can be accepted with over 0.95 precision regardless of

species. This result bolsters previous reports that only one

or two human classifications that accord with AI can

reduce processing time (Willi et al., 2019).

Considering classifications from registered Mammal-

Web classifiers, the first registered user yields a slightly

greater proportion of sequences with correct classifica-

tions than the registered consensus, but the proportion of

sequences with false nothing or incorrect species classifi-

cations is reduced when the consensus is used. Given the

much greater speed of acquiring a single classification

than waiting for a consensus, there is clearly a trade-off

between speed and accuracy. Combined rules 1 and 2 that

utilize input from the first registered user and registered

consensus, respectively, yield a proportion of sequences

with conflicting classifications between humans and AI

that would require subsequent manual review but,
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crucially, they result in a reduction of incorrect species

and false nothing classifications relative to the individual

methods in isolation. Again, this points to a trade-off

between speed and minimization of errors. A similar

effect results from combined rule 3, which markedly

lowers the proportion of incorrect species classifications

compared with the anonymous consensus but leaves a

high proportion of sequences unclassified either with no

human consensus species or with conflicting labels

between AI and humans (Fig. 4).

Although the precision of each combined method is

even across species and consistently high (Fig. 3) different

benefits are gained from the different approaches. Our

recommendations regarding the best approach depend on

what users stand to gain, or what projects aim to achieve.

If the intention is to include contributions of anonymous

users from public terminals in wildlife monitoring, the

best approach would be to use the anonymous consensus

in combination with AI, and sequences with conflicting

classifications or no consensus species could be redirected

to registered users for classification. If the first registered

user classification is consistent with the AI prediction, the

sequence can be retired, or else a registered consensus

should be sought. Contrastingly, if the objective is to

determine correct image labels as quickly as possible,

retiring sequences after one registered user classification

accords with the maximum probability AI prediction

(Fig. 3, combined rule 1) offers the quickest approach,

and sequences with conflicting classifications from this

approach could also be redirected to registered users until

a consensus is reached. However, there are circumstances

where instead of prioritizing time savings, researchers

may wish to minimize errors when aiming to detect indi-

vidual species; for instance, if they are of conservation

priority. The hedgehog Erinaceus europaeus, for example,

is currently receiving focused monitoring effort with CTs

due to alarming declines (Evans et al., 2024). In this

instance, a combined approach would be favourable due

to the lower proportion of incorrect species and false

nothing classifications for this species (Supporting

Information).

A consistent result is that precision for the Nothing

and Horse classes never exceeded 0.95 by any classifica-

tion approach. It has previously been noted that achieving

a high precision for ‘Nothing’ sequences in MammalWeb

takes large numbers of concordant votes (Hsing

et al., 2018). This is because false-positives (i.e. suggesting

that an animal is present when the sequence is in fact

devoid of animals) are extremely rare. Consequently, a

single vote for any species can undermine conviction in

large numbers of votes for ‘nothing’. By contrast, volun-

teers frequently make ‘false nothing’ classifications—per-

haps because, in images where there is only a partial or

blurred view of an animal, classifiers prefer to classify the

image as ‘Nothing’ than guess the species identity (Swan-

son et al., 2016). Relatively low confidence in ‘nothing’

classifications represents a significant barrier to efficient

workflows, and limits the generality of consensus algo-

rithms by necessitating an alternative approach for retir-

ing images alleged to contain nothing. One suggestion has

been to ask those who upload data to screen their own

images for blanks prior to upload to reduce room for

error (Hsing et al., 2018), or to invest in AI models that

can complete this task with high accuracy (Norouzzadeh

et al., 2018); this supports the recent integration of Mega-

Detector (Beery et al., 2019) into the MammalWeb work-

flow. In previous analyses the agreement of nine or 10

volunteers has produced higher confidence in nothing

classifications (Hsing et al., 2018; Swanson et al., 2016).

Here, the consensus of registered or anonymous users was

based on a median of six or four classifications, so further

classifications for consensus ‘Nothing’ sequences could

improve precision for this class of images. Regarding

horses, assessment of sequences to produce the gold stan-

dard suggested that domestic horses were often visible in

the background of images with other wild animals in the

foreground that were clearly responsible for the trigger. In

these instances, we suggest that volunteers have classified

the animal that has more obviously triggered the camera,

disregarding domestic horses. This is not a matter of huge

concern, since domestic horses are not of particular inter-

est in the context of monitoring wild animals.

Role of anonymous terminals in scientific
engagement

Although the focus of this analysis is the accuracy of out-

sourced classifications, it is also important to consider

how mobile MammalWeb units facilitate greater engage-

ment with science. Interacting with MammalWeb has pre-

viously been demonstrated to have positive impacts on

school students by improving knowledge of local wildlife

and providing the satisfaction of contributing to science

(Hsing et al., 2020). Out with the MammalWeb project,

there is broader evidence that participating in citizen sci-

ence increases participants knowledge base (Masters

et al., 2016), inspires advocacy for nature (Forrester

et al., 2017) and provides enjoyment to those who take

part (Jansen et al., 2024), as well as providing experiences

with nature that are becoming less accessible (Schuttler

et al., 2018). By placing units in a public place, engage-

ment with MammalWeb is extended beyond those who

have access to a personal device and to those who would

not otherwise be aware of the project. During the period

that MammalWeb units were installed in the Great North

Museum: Hancock, S.G. completed surveys with
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participants that indicated participants had enjoyed taking

part and frequently had no previous experience of an

equivalent task, evidencing the ability of the scheme to

engage new audiences and generate further engagement.

This contributes to a more diverse set of users and

increases the accessibility of citizen science and its

benefits.

To date, the accuracy of anonymous contributors has

not been explored. The lower degree of investment and

engagement of anonymous contributors appears to trans-

late to lower accuracy. There is, thus, a challenge to be

overcome in providing a level of instruction that increases

accuracy without undermining the ease of use associated

with a public terminal. Despite this, we demonstrated that

an accurate signal could be extracted from anonymously

contributed data by relying on concordance with the

maximum probability AI classification. � 32% of the

4849 sequences considered here could be retired with over

0.95 precision using this workflow, although a greater

proportion had correct labels when registered user contri-

butions were used (Fig. 4). Since the probability of an

anonymous consensus classification being correct

increases by 36.8% with each additional vote in agree-

ment, it would be possible for the accuracy of anonymous

contributions to be shifted closer to that of registered

users if the number of classifications gathered can be

increased. The importance of placing anonymous devices

in areas of high throughput is therefore paramount in

extracting an accurate signal. Overall, there is scientific

value to be gained from the contributions of anonymous

citizen scientists, in addition to the societal benefits of

public engagement, encouraging future use of similar

devices at appropriate locations such as natural history

museums and science fairs. Public interfaces such as the

Mobile MammalWeb units described here are not widely

used, despite their ability to engage a wider group of vol-

unteers, and we suggest that they could be used to scale

the engagement of anonymous participants in camera-

trap image classification. Aside from locations in urban

centres such as museums and science centres that could

host Mobile MammalWeb units, there are alternative

locations that could host units such as nature reserve visi-

tor centres, bird hides, community hubs, libraries, or local

fairs. To this end, representatives from MammalWeb have

been in discussion with several national NGOs that have

widespread visitor centres, which seems a promising ave-

nue to scale public terminal engagement, especially if visi-

tors to those locations can assist with classifying data

from the locations they are visiting. Alternatively, Mobile

MammalWeb units, or tablets, could be loaned to schools

where teachers could perhaps integrate a MammalWeb

lesson into the curriculum (Hsing et al., 2020) in which

the tablet screen could be projected to the class and

images collaboratively classified with students to teach

identification of UK mammal species.

Rather than discarding data owing to concerns regard-

ing the accuracy of anonymous participants, we have

demonstrated that highly precise image classifications can

be redeemed when anonymous contributions are consid-

ered in tandem with AI output, encouraging further ini-

tiatives that engage anonymous volunteers in science. In

the grander scheme of CT image processing, the findings

reported here should provide assurance that outsourcing

to citizen science and AI networks can alleviate classifica-

tion bottlenecks with trustworthy classifications, particu-

larly when combined workflows are implemented.
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Whytock, R.C., Świeżewski, J., Zwerts, J.A., Bara-Słupski, T.,

Koumba Pambo, A.F., Rogala, M. et al. (2021) Robust

ecological analysis of camera trap data labelled by a machine

learning model. Methods in Ecology and Evolution, 12(6),

1080–1092. https://doi.org/10.1111/2041-210X.13576
Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson,

A., Boyer, A. et al. (2019) Identifying animal species in

camera trap images using deep learning and citizen science.

Methods in Ecology and Evolution, 10(1), 80–91. https://doi.
org/10.1111/2041-210X.13099

Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Data S1.

ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 15

C. R. Sharpe et al. Crowdsourcing and AI for camera-trap data

https://doi.org/10.1049/cvi2.12294
https://doi.org/10.1049/cvi2.12294
https://doi.org/10.1002/fee.1826
https://doi.org/10.1002/fee.1826
https://doi.org/10.5334/cstp.735
https://doi.org/10.5334/cstp.735
https://doi.org/10.1002/ece3.7344
https://doi.org/10.1002/ece3.7344
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1002/ece3.6692
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1016/j.ecoinf.2024.102805
https://doi.org/10.1111/2041-210X.13165
https://doi.org/10.1111/2041-210X.13165
https://doi.org/10.1111/2041-210X.13165
https://doi.org/10.1073/pnas.1807190116
https://doi.org/10.1111/2041-210X.13290
https://doi.org/10.1111/2041-210X.13290
https://doi.org/10.1111/2041-210X.13290
https://doi.org/10.1111/2041-210X.14044
https://doi.org/10.1111/2041-210X.14044
https://doi.org/10.1111/2041-210X.14044
https://doi.org/10.1111/2041-210X.13576
https://doi.org/10.1111/2041-210X.13576
https://doi.org/10.1111/2041-210X.13576
https://doi.org/10.1111/2041-210X.13099
https://doi.org/10.1111/2041-210X.13099
https://doi.org/10.1111/2041-210X.13099
https://doi.org/10.1111/2041-210X.13099

	Outline placeholder
	 Abstract
	 Introduction
	 Materials and Methods
	 Assessing accuracy
	 Registered users
	 Anonymous users
	 AI classifications
	 Combining AI and citizen science

	 Results
	 Registered users
	 Anonymous users
	 AI classifications
	 Combining AI and citizen science

	 Discussion
	 Influence of engagement on human accuracy
	 Value of AI as standalone and combined approach
	 Role of anonymous terminals in scientific engagement

	 Acknowledgements
	 Author Contributions
	 Disclosure
	 Data Availability Statement
	 References
	Supporting Information


