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Abstract: The variations in the atmospheric refractivity in the lower atmosphere create a natural 17 

phenomenon known as atmospheric ducts. The atmospheric ducts allow the radio signals to travel 18 

large distances. This can adversely affect telecommunication systems, as cells with similar frequen- 19 

cies can interfere with each other due to frequency reuse, which is intended to optimize resource 20 

allocation. Thus, the downlink signals of one base station will travel a long distance via the atmos- 21 

pheric duct and interfere with the uplink signals of another base station. This scenario is known as 22 

atmospheric duct interference. The atmospheric duct interference (ADI) could be mitigated using 23 

digital signal processing, machine learning, and hybrid approaches. To address this challenge, we 24 

explore machine learning and deep learning techniques for ADI prediction and mitigation in Time 25 

Division Long Term Evolution (TD-LTE) networks. Our results show that the random forest algo- 26 

rithm achieves the highest prediction accuracy, while a convolutional neural network demonstrates 27 

the best mitigation performance with accuracy. Additionally, we propose optimizing special sub- 28 

frame configurations in TD-LTE networks using machine learning-based methods to effectively re- 29 

duce ADI. 30 

Keywords: TD-LTE, ADI, Machine Learning, SVM, Random Forest, LSTM, and CNN 31 

 32 

1. Introduction 33 

Variations in atmospheric weather conditions in the low atmosphere cause changes 34 

in atmospheric refractivity. These changes create a phenomenon known as atmospheric 35 

ducts in the lower atmosphere. The atmospheric duct allows radio frequency signals to 36 

travel long distances. Mobile signals could travel through atmospheric ducts and reach 37 

large propagation distances. The mobile operators use a frequency reuse pattern among 38 

the cells to increase the spectral efficiency of the mobile networks. Atmospheric duct in- 39 

terference (ADI) occurs when downlink mobile signals from one base station propagate 40 

over long distances through atmospheric ducts and disrupt the uplink mobile signals of 41 

another base station with the same frequency. The formation of the atmospheric duct de- 42 

pends on the weather conditions, such as atmospheric temperature, atmospheric pressure, 43 

and atmospheric humidity [1]. The length of the atmospheric duct will differ from 100 km 44 

to 400 km based on the atmospheric conditions. We can classify the atmospheric duct into 45 

three classes, surface duct, elevated duct, and evaporation duct, based on the characteris- 46 

tics of the atmospheric ducts in the lower atmosphere. 47 
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Mitigating ADI is crucial for enhancing the Quality of Service (QoS) in mobile net- 48 

works and maintaining reliable service level agreements. While traditional signal pro- 49 

cessing techniques have been employed, machine learning and hybrid approaches offer 50 

more efficient solutions. This study explores the relationship between uplink power, 51 

weather conditions, and uplink interference in physical resource blocks (PRBs) within 4G- 52 

Long Term Evolution (LTE) networks. By analyzing samples of network data from and 53 

corresponding weather data, we demonstrate how machine learning models can effec- 54 

tively detect ADI and optimize guard period adjustments. However, modifying the guard 55 

period may lead to frequency overlap with adjacent base stations, making precise syn- 56 

chronization of uplink and downlink signals essential for effective ADI mitigation. 57 

Our research focuses on developing a machine learning-based ADI prediction and 58 

mitigation system for Time Division Long Term Evolution (TD-LTE) networks. The pro- 59 

posed models incorporate both atmospheric and network-related features to enhance ac- 60 

curacy. Specifically, we utilize three atmospheric parameters—temperature, humidity, 61 

and pressure—alongside fifteen network-side features obtained from the mobile operator. 62 

All features are normalized between 0 and 1 for consistency. Atmospheric data is sourced 63 

from the Visual Crossing weather monitoring platform, while network data is collected 64 

from Dialog Axiata PLC in Sri Lanka. The dataset spans two years, covering 2021 to 2023, 65 

with 56,000 entries collected from the Jaffna district. 66 

For ADI prediction, we implement four machine learning algorithms: Support Vector 67 

Machine (SVM), Random Forest, Long Short-Term Memory (LSTM), and Convolutional 68 

Neural Network (CNN). Among these, the Random Forest model achieves the highest test 69 

accuracy of 72.3%. For ADI mitigation, we employ five classifiers: Stochastic Gradient De- 70 

scent, Gradient Boosting, Optimized Distributed Gradient Boosting, LSTM, and CNN, 71 

with CNN delivering the best performance at 75% accuracy. In TD-LTE networks, the time 72 

interval between uplink and downlink frames is managed through special subframes, 73 

consisting of an uplink pilot time slot, a downlink pilot time slot, and a guard period. Our 74 

mitigation strategy dynamically configures the guard period based on machine learning 75 

predictions to minimize ADI while ensuring seamless network synchronization. 76 

We are unable to collect the inter-cell, and intra-cell interference values at the receiver 77 

side. If we consider the values in the features of the models, then we can improve the 78 

performance of the models.  79 

This report is structured into seven sections. The first section provides an introduc- 80 

tion to the research, outlining its objectives and significance. The second section presents 81 

a review of related work, highlighting existing studies and methodologies relevant to ADI 82 

mitigation. The third section details the research methodology, including data collection, 83 

feature selection, and model development. The fourth section discusses the results and 84 

findings, offering an in-depth analysis and interpretation of the outcomes. The fifth sec- 85 

tion presents the conclusions derived from the study. The sixth section outlines potential 86 

directions for future research. Finally, the seventh section includes acknowledgments. 87 

2. Related Works 88 

Atmospheric duct interference (ADI) poses a substantial challenge to the perfor- 89 

mance, coverage, and quality of service in contemporary wireless communication sys- 90 

tems, particularly in TD-LTE and 5G Radio networks. To address these issues, a diverse 91 

body of research has explored various ADI detection and mitigation techniques. Existing 92 

studies span across signal processing-based methods, machine learning and deep learning  93 

frameworks, hybrid algorithmic strategies, and simulation-based evaluations. Each of 94 

these methodologies contributes valuable insights into the nature of ADI and the effec- 95 

tiveness of different mitigation strategies under realistic deployment conditions. 96 

The following subsections review the key contributions within each of these method- 97 

ological categories. By analyzing the strengths, limitations, and empirical results of the 98 

proposed approaches, we aim to identify existing research gaps and motivate the 99 
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development of more robust and adaptive interference mitigation systems suitable for 100 

next-generation wireless networks. 101 

2.2. Signal processing approach to mitigate ADI.  102 

Peralta [2] et al. have developed an atmospheric duct interference mitigation system 103 

for the 5G New Radio mobile networks. The 5G New Radio mobile network uses an or- 104 

thogonal frequency division multiplication scheme to multiplex the information-bearing 105 

signals in the carrier signals. The mitigations scheme uses remote interference manage- 106 

ment-based reference signal design to recognize and mitigate the atmospheric duct inter- 107 

ference in the 5G New Radio mobile networks. The reference signals are placed in two 108 

carrier types: Additive White Gaussian Noise (AWGN) and tapped-delay line (TDL-E). 109 

The false alarm rate and detection probabilities are plotted with different signals to noise 110 

ratios in the experiments. 111 

Also, Peralta [3] et al. have published another article, which also uses remote inter- 112 

ference reference signal sequences to detect atmospheric duct interference in the 5G New 113 

radio networks. They have designed the 5G New Radoi system in AWGN and TDL-E 114 

channels. The comb 1 and 2 systems have achieved 18 dB Signal-to-Noise Ratio (SNR) and 115 

comb 4 system has achieved 13 dB SNR. 116 

Zhang et al. [4] has developed and ADI mitigation system which can adjust the guard 117 

period based on the remote interference reference signal in 5G New Radio. They have 118 

obtained 5-7 dB SNR reduction in 5G New Radio networks. 119 

Shen et al. [5] have used the ADI mitigation systems in TD-LTE networks. The miti- 120 

gation approaches are developed based on the decisions of the TD-LTE reference signals. 121 

They have used three different ADI mitigation approaches. The first approach has devel- 122 

oped by controlling the signal power of the antenna. The second approach has developed 123 

by controlling the elevation angle of the antenna. The third approach controls the antenna 124 

height. 125 

The referenced studies highlight that atmospheric ducting significantly exacerbates 126 

interference, particularly in lower frequency bands (sub-6 GHz) due to their superior 127 

long-distance propagation characteristics. Consequently, the majority of the literature on 128 

5G New Radio (NR) focuses on Frequency Range 1 (FR1, 410 MHz–7.125 GHz) compared 129 

to Frequency Range 2 (FR2, 24.25–71 GHz), as FR1 bands are more susceptible to such 130 

interference phenomena. 131 

The summary of the digital signal processing-based mitigation schemes is given in 132 

Table 2.1. 133 

 134 

Table 2.1. Digital signal processing-based mitigation approach(s). 135 

Approach Year Detection Methodology Accuracy Network 

Peralta et al. [2]  2019 Fast Fourier Transform Detection probability: 0.900 

False alarm probability: 0.002 

5G New Radio 

(FR1) 

Peralta et al. [3] 2021 Remote Interference Refer-

ence Signal Design 

18 dB SNR for comb 1 and 2, 13 dB SNR 

for comb 4. 

5G New Radio 

(FR1 & FR2) 

Zhang et al. [4] 2024 Guard period adjustment 

based on remote interference  

5 – 7 dB SNR reduction  5G New Radio 

(FR1 & FR2) 

Shen et al. [5] 2017 ADI mitigation systems 

based on the TD-LTE refer-

ence signals 

Power: 1-2 dB SNR reduction, 

Elevation angle: 5-10 dB SNR reduction, 

Antenna height: 3-4 dB SNR reduction 

TD-LTE Net-

works 

2.2. Machine learning and deep learning approaches to mitigate the ADI. 136 

Ting [1] et al. have developed a machine learning model to predict and mitigate the 137 

atmospheric duct interference in the TD-LTE networks. They have utilized a framework 138 

called alternating direction methods of multiplier to predict and mitigate the atmospheric 139 

duct interference in the TD-LTE networks. The framework uses linear distributed Support 140 

Vector Machine (SVM) algorithm. The machine learning model uses meterological, and 141 
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network-side datasets. The two datasets are converted to interference map in the prepro- 142 

cessing stage. The meterological dataset is collected from a radiosonde in Baoshan city in 143 

Shanghai province in China, and the network-side dataset is collected from China Mobile 144 

operator. The kriging interpolation is used in the preprocessing stage. The variations in 145 

the modified refractivity in the low atmosphere is the major reason for the formation of 146 

the atmospheric ducts.  147 

Ren [6] et al. developed an atmospheric duct interference mitigation system using 148 

convolutional neural networks. The network-side dataset is collected from the Shenzhen 149 

division primary carrier in a province in China. The convolutional neural network model 150 

contains three convolutional layers and two fully connected layers. The network-side da- 151 

taset contains interference data from the Global System for Mobile Communications 152 

(GSM), Digital Enhanced Cordless Telephone, and TD-LTE networks. The spectral water- 153 

fall images are generated from the power spectral density plot and the time domain plot. 154 

The time value is plotted on the x-axis, and the frequency value is plotted on the y-axis. 155 

The test dataset of the mitigation system is collected from 10,000 TD-LTE network cells in 156 

a province in China. The experiment is performed for eight different cases.  157 

Sun [7] et al. have developed an atmospheric duct interference prediction system us- 158 

ing machine learning approaches in the TD-LTE networks. The prediction system uses the 159 

support vector machine, Random Forest, and K-Nearest Neighbor algorithms. The key 160 

idea of learning a decision tree is how to choose the optimal division attribute. The re- 161 

search work uses Classification And Regression Tree (CART) decision tree in the Random 162 

Forest algorithm to predict the atmospheric duct interference in the TD-LTE networks. 163 

The CART decision tree applies Gini index to select the optimal division attributes. The 164 

interference dataset is converted to interference map. The network-side dataset is col- 165 

lected from the China Mobile operator. The atmospheric side data is collected from a ra- 166 

diosonde in a province in China. The run-time values of the different mitigation systems 167 

are compared in the research paper.  168 

The summary of the machine learning and deep learning-based mitigation systems 169 

are given in Table 2.2. 170 

 171 

Table 2.2. The machine learning and deep learning-based approaches. 172 

Approach Year 

Detection 

Method-

ology 

Train 

Accu-

racy 

Test Accuracy Network 

Ren et al. [6]  2019 CNN  - 0.856 LTE/ Wi-Fi 

Sun et al. [7] 2017 Random 

Forest 

- 0.650 (4000 samples), 0.680 (10000 samples), 

0.700 (20000 samples) 

TD-LTE 

Shen et al. [8] 2020 CNN  0.990 0.977 TD-LTE 

Zhou et al. [1]  2017 SVM 

KNN 

- 0.680 (10000 samples), 0.720 (40000 samples) 

2. 0.700 (10000 samples), 0.710 (40000 samples) 

TD-LTE 

Yang et al. [9] 2021 LSTM - 0.984 5G (FR1) 

2.3. Hybrid approaches to mitigate the ADI. 173 

To leverage the strengths of both traditional signal processing and modern deep 174 

learning techniques, Yiming et al. [10] proposed a hybrid ADI mitigation system tailored 175 

for Quadrature Amplitude Modulation - Orthogonal Frequency Division Multiplexing 176 

(QAM-OFDM)-based wireless networks. The architecture of the proposed system is im- 177 

plemented at the receiver side and is composed of seven integrated modules: an analog- 178 

to-digital converter, a deep learning-based error compensator, an OFDM demodulator, a 179 

deep learning-based interference cancellation unit, a channel equalizer, a forward error 180 

correction unit, and a maximum likelihood estimation unit. 181 

The deep learning components of the system incorporate four convolutional neural 182 

network (CNN) layers and four long short-term memory (LSTM) layers. These layers are 183 

responsible for capturing spatial and temporal dependencies within the received signal, 184 
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enabling more precise detection and suppression of ADI-induced distortions. The model 185 

was trained using 400 frames and evaluated on 100 test frames. Experimental results 186 

demonstrate a significant improvement in communication reliability, with the symbol er- 187 

ror rate (SER) being reduced, from 0.37618 to 0.0003. This result highlights the potential 188 

of hybrid learning-based architectures for real-time and high-accuracy interference miti- 189 

gation in modern wireless communication environments. 190 

2.4. Other approaches to mitigate the ADI. 191 

Beyond signal processing and learning-based techniques, simulation-driven ap- 192 

proaches have also been employed to analyze and evaluate the impact of ADI, particularly 193 

in over-the-horizon (OTH) radio communication systems. One such study, conducted by 194 

Kai and Wu [11], utilized software simulation to model the propagation characteristics of 195 

radio waves within complex atmospheric conditions over non-uniform terrestrial sur- 196 

faces. 197 

Their analysis was grounded in a detailed digital elevation model (DEM) represent- 198 

ing terrain data from Wuxi province to four distinct provinces across China. Key simula- 199 

tion parameters included transmission frequency, antenna height, elevation angle, polar- 200 

ization mode, propagation angle, and propagation distance. These parameters were me- 201 

ticulously varied to assess their influence on radio wave propagation loss under atmos- 202 

pheric duct conditions. 203 

The simulation results indicated significant signal attenuation across the tested 204 

routes, with calculated propagation losses of approximately 150 dB for 100 km links from 205 

Wuxi to Hangzhou, Shanghai, and Zhoushan, and a notably higher loss of 237.5 dB on the 206 

Wuxi–Nanjing path. These findings underscore the severity of ADI effects in long-dis- 207 

tance, low-angle radio transmission scenarios and highlight the utility of simulation tools 208 

in pre-deployment analysis and planning for robust network coverage in OTH communi- 209 

cation environments. 210 

2.5. Overview of the existing mitigation approaches. 211 

Several ADI mitigation strategies have been proposed and evaluated across different 212 

wireless communication technologies, including TD-LTE and 5G networks. Table 2.5 pro- 213 

vides a comparative overview of representative methodologies, highlighting the diversity 214 

in detection mechanisms, performance metrics, and network contexts. 215 

Peralta et al. [2] introduced a Remote Interference Management Reference Signal 216 

(RIM-RS) design tailored for 5G NR systems. Their method demonstrated a high detection 217 

probability of 0.900 and a remarkably low false alarm probability of 0.002, indicating its 218 

reliability and precision in identifying ADI in real-time operational environments. 219 

In another notable study, Yiming et al. [10] presented a hybrid mitigation model com- 220 

bining digital signal processing (DSP), long short-term memory (LSTM) networks, and 221 

convolutional neural networks (CNNs). Applied to QAM-OFDM-based communication 222 

systems, their approach achieved a significant improvement in system performance, re- 223 

ducing the symbol error rate from 0.37618 to 0.0003. This result illustrates the efficacy of 224 

integrating deep learning with classical signal processing in enhancing ADI mitigation. 225 

Zhou et al. [1] proposed an interference mitigation mechanism for TD-LTE networks 226 

by adjusting the special subframe configuration, specifically the guard period. While de- 227 

tailed performance metrics were not provided in their study, the approach is recognized 228 

for its practical implementation potential within existing LTE infrastructure without re- 229 

quiring significant architectural changes. 230 

Similarly, Sun et al. [7] adopted a guard period adjustment strategy in TD-LTE sys- 231 

tems to mitigate ADI. Though the study did not specify quantitative results, it emphasizes 232 

system-level configuration tuning as an effective and low-complexity method for interfer- 233 

ence control. 234 

These diverse approaches reflect the multidisciplinary nature of ADI mitigation, en- 235 

compassing signal design, machine learning, hybrid architectures, and protocol-level 236 
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adjustments. However, variations in evaluation metrics and incomplete performance re- 237 

porting in some studies underscore the need for standardized benchmarking frameworks 238 

to facilitate cross-comparative assessments and advance the field toward more unified, 239 

adaptive mitigation solutions. 240 

 241 

Table 2.3. The overview of the existing mitigation approaches. 242 

Approach Year Methodology Results Network 

Peralta et al. [2]  2019 Remote Interference Management 

Reference Signal (RIM-RS) 

Detection probability: 0.900 

False alarm probability: 0.002 

5G New Radio 

(FR1) 

Yiming, et al. [10] 2020 DSP, LSTM, and CNN Symbol error rate is reduced 

from 0.37618 to 0.0003 

QAM-OFDM  

Zhou et al. [1]  2017 Adjustment of the Guard period - TD-LTE  

Sun et al. [7] 2017 Adjustment of the Guard period  - TD-LTE  

3. Methodology 243 

This section presents an integrated machine learning (ML) and deep learning (DL) 244 

framework for the prediction and mitigation of ADI. The methodology incorporates DSP 245 

and ML techniques to characterize ADI behavior and optimize special subframe configu- 246 

rations in TD-LTE systems, with the aim of minimizing interference effects. The experi- 247 

mental setup evaluates the performance and accuracy of the proposed models using real- 248 

world TD-LTE network data under practical operating conditions. 249 

Further, ADI ducting heavily depends on the carrier frequency of the radio waves. 250 

The degree of interference varies across frequency bands due to their distinct propagation 251 

properties. Lower frequencies (e.g., sub-6 GHz) with longer wavelengths diffract and 252 

propagate more effectively through atmospheric layers, making them more prone to duct- 253 

ing. Conversely, higher frequencies (e.g., mmWave) with shorter wavelengths experience 254 

greater attenuation and are less affected by ducting. At 0.5 GHz, atmospheric ducting is 255 

particularly pronounced, as the long wavelength enables radio waves to be trapped in 256 

ducts, traveling hundreds of kilometers with minimal loss. This extended range heightens 257 

interference risks, as signals from distant transmitters (e.g., base stations) can interfere 258 

with receivers far outside their intended range. Therefore, we have focused on the low- 259 

frequency ranges of the TD-LTE network to develop the ADI mitigation system. 260 

3. 1. Atmospheric Duct Interference Prediction. 261 

The prediction of ADI strength is critical for proactive interference management in 262 

wireless communication networks. ML and DL models have proven effective in forecast- 263 

ing ADI by leveraging both atmospheric and network-side features. 264 

In this study, two prediction approaches were developed and evaluated, differing in 265 

the number of features used from the network-side while sharing common atmospheric 266 

parameters. Both approaches incorporate three key atmospheric features: temperature, 267 

pressure, and humidity, which are sourced from the Visual Crossing Weather monitoring 268 

base station. These features play a crucial role in determining atmospheric refractivity 269 

profiles, which directly influence the formation of ducting layers. 270 

The first approach utilizes eight network-side features, whereas the second approach 271 

expands this to fifteen network-side features. Common network-side parameters include 272 

uplink power values obtained from the operational data of Dialog Axiata PLC, a major 273 

mobile network operator. The inclusion of a broader feature set in the second approach 274 

aims to enhance the model's sensitivity to subtle interference-related variations across the 275 

network. 276 

Both prediction models are trained to classify the strength of ADI into six target clas- 277 

ses, which represent different levels of interference severity. The categorization of these 278 

classes is detailed in Table 3.1.1., serving as a structured framework for evaluating predic- 279 

tion performance and guiding subsequent interference mitigation strategies. 280 
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This dual-approach design enables comparative analysis of model accuracy and ro- 281 

bustness based on feature richness, ultimately contributing to the development of more 282 

adaptive and scalable ADI prediction solutions in TD-LTE and 5G environments. 283 

 284 

Table 3.1.1. The interference range of the target classes. 

Target 

Classes 

Min value Max value 

Class A -112.00 dB   

Class B -116.00 dB -112.01 dB 

Class C -120.00 dB  -116.01 dB 

Class D -124.00 dB -120.01 dB 

Class E -128.00 dB -124.01 dB 

Class F 
 

-128.01 dB 
 

Table 3.1.2. The coordinates of the base stations in Jaffna, district. 

Base station Longitude Latitude 

Palali 80.08 9.79 

Karainagar 79.86 9.71 

Kandarodai 80.01 9.75 

Jaffna 80.00 9.66 

Manipai 79.99 9.72 

Alaweddy 80.01 9.77 

Kankasanthure 80.03 9.81 

Nallur 80.03 9.67 

Chawakachcheri 80.16 9.65 

Kodikamam 80.22 9.68 
 

The prediction models are developed in two scenarios. In the first scenario, the fea- 285 

tures are collected from all ten base stations in the Jaffna district. In the second scenario, 286 

the features are collected from only one base station, which is the Jaffna Town base station. 287 

The coordinates of the ten base stations in the Jaffna Town district are given in Table 3.1.2. 288 

The Support Vector Machine (SVM) model was configured with 11 input features 289 

and trained using four different kernel functions—linear, radial basis function (RBF), pol- 290 

ynomial, and sigmoid. It employed five-fold cross-validation with a learning rate of 0.001, 291 

targeting classification into six ADI severity levels. 292 

Similarly, the Random Forest model was evaluated in two configurations. The first 293 

model used 100 estimators, while the second employed 10 estimators with the entropy 294 

criterion. Both versions used the same input features and training strategy as the SVM. 295 

The Long Short-Term Memory (LSTM) model was applied in two distinct architec- 296 

tures. In the first approach, it consisted of three layers and was trained for 50 epochs using 297 

11 features. The second approach expanded the feature set to 18 and adopted a four-layer 298 

architecture, comprising an input layer (18 neurons), two hidden layers (20 neurons each), 299 

and an output layer (6 neurons). It used the Adam optimizer and mean squared error 300 

(MSE) loss, with a learning rate ranging from 0.001 to 0.048. 301 

The Convolutional Neural Network (CNN) was also developed in two approaches. 302 

The first utilized 11 features and consisted of three layers with ReLU activations in the 303 

initial two and a SoftMax activation in the final layer. The second CNN model employed 304 

18 features and a four-layer structure, mirroring the configuration of the advanced LSTM 305 

model. It used ReLU and SoftMax activations across its layers, along with the Adam opti- 306 

mizer and MSE loss. 307 

In addition, a Stochastic Gradient Descent (SGD) classifier was implemented using 308 

18 features. This model also employed MSE loss and varied the learning rate between 309 

0.001 and 0.048, consistent with the other models. The parameters of the prediction model 310 

are given in Table 3.1.3. 311 

The study further explored a Gradient Boosting (GB) classifier and an Extreme Gra- 312 

dient Boosting (XGBoost) model. Both utilized 18 features and were trained under the two 313 

scenario setups. They were optimized using different learning rates and evaluated using 314 

the same classification and validation metrics. 315 

Finally, a cascaded ML-DL hybrid model was constructed to integrate the strengths 316 

of both traditional and deep learning techniques. This model’s architecture is illustrated 317 

in Figure 3.1.1 and detailed in Table 3.1.4. It follows the same two-scenario framework 318 

and utilizes adaptive learning rates, MSE loss, and a combination of model components 319 

for enhanced performance. 320 
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Table 3.1.3 The parameters of the SGD, GB, and XGB classifiers. 321 

Model SGD classifier  Gradient boosting 

classifier 

Optimized distributed gradient 

boosting classifier 

Scaler Standard Scaler Min-Max Scaler Min-Max Scaler 

Algorithm SVM: Linear Random Forest Random Forest 

Dataset shuffled Yes Yes Yes 

Estimators - 100 100 

Max-Depth - 2 2 

Max-Features - 2 2 

Loss MSE MSE MSE 

Iterations 1000 - - 

Kernel Linear - - 

Other Features Macro average Macro average Macro average 

 322 

The dataset contains interference values for the 12 subcarriers of the zeroth physical 323 

resource block of the TD-LTE network. Atmospheric duct interference prediction is per- 324 

formed individually in each subcarrier of the physical resource block (i.e. physical re- 325 

source block 0). One physical resource contains 12 consecutive subcarriers in the TD-LTE 326 

systems. The evaluation parameters in the results and discussion section are obtained for 327 

the first subcarrier of the zeroth physical resource block. Similarly, we have collected the 328 

evaluation parameters for the other subcarriers in the zeroth physical resource block. 329 

 

Figure 3.1.1. The cascaded ML and DL classifier-based prediction models. 

Table 3.1.4 The structure of the cascaded prediction 

models. 

Classifiers Classifier 

in Stage 1 

Classifier in Stage 

2 

1 LSTM SDG 

2 LSTM GB 

3 LSTM XGB 

4 LSTM LSTM 

5 LSTM CNN 
 

3. 2. Atmospheric Duct Interference Mitigation. 330 

Numerous ADI mitigation systems have been developed over the past decade. How- 331 

ever, many of these systems exhibit limitations in terms of mitigation efficiency. These 332 

shortcomings highlight a clear research gap in the current state of ADI-related methodol- 333 

ogies. To address this gap, a novel ADI mitigation system is proposed. An overview of the 334 

proposed framework is illustrated in Figure 3.2.1, outlining the key components and op- 335 

erational flow of the system. 336 

 337 

 338 

Fig. 3.2.1. The proposed ADI detection and mitigation system. 339 
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In the considered network scenario, there are two groups of base stations: aggressor 340 

base stations and victim base stations. The aggressor group comprises six base stations (m 341 

= 6), while the victim group consists of eight base stations (n = 8). This configuration is 342 

illustrated in Figure 3.2.2. The line-of-sight (LoS) channel, along with the channels affected 343 

by atmospheric duct interference (ADI), are associated with the victim base stations, high- 344 

lighting the impact of interference propagation in the network. 345 

 346 

Fig. 3.2.2. The network scenario used in the research work. 347 

One of the key contributions of this research is the adaptive adjustment of the guard 348 

period—the time interval between uplink and downlink signals in TD-LTE networks—to 349 

mitigate atmospheric duct interference (ADI). By leveraging machine learning models, the 350 

system dynamically modifies the guard period in response to detected interference con- 351 

ditions. This approach enables real-time interference management, enhancing the robust- 352 

ness of TD-LTE communications. The structure of the uplink and downlink frames, both 353 

with and without atmospheric duct interference, is illustrated in Figure 3.2.3. 354 

 355 

Fig. 3.2.3. The TD-LTE system (a) without ADI and (b) with ADI [3]. 356 

The TD-LTE network uses OFDM to modulate the information-bearing signals in the 357 

carrier signal. Fig. 3.2.4 shows the block diagram of the OFDM modulation and demodu- 358 

lation scheme. 359 

The guard interval between the uplink and downlink signals could be set at the 360 

OFDM transmitter block to remove the atmospheric duct interference in the received sig- 361 

nal. The guard period configuration could be removed at the OFDM receiver block to 362 

identify the transmitted messages. An interference map is created in the data prepro- 363 

cessing stage. The data preprocessing stage is given in Figure 3.2.5. This algorithm con- 364 

verts spatial interference measurements into a matrix representation and utilizes Kriging 365 

interpolation to estimate unknown values. The method is applied to interference data col- 366 

lected from base stations over a specific district. 367 

We use three atmospheric side features and fifteen network-side features in the ADI 368 

mitigation systems. The three atmospheric side features of the ADI mitigation systems are 369 
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atmospheric temperature, atmospheric pressure, and atmospheric humidity. The uplink 370 

power values of the first frame in the uplinks 0, 1, 2, 3, 4, 5, and 6 and the uplink power 371 

values of the last frame in the uplinks 0, 7, 8, 9, 10, 11, 12, and 13 are the fifteen network- 372 

side features of the ADI mitigation systems. The features are normalized between 0 and 373 

1. 374 

 375 

 376 

Fig. 3.2.4. OFDM modulation and demodulation block diagram. 377 

The target of the mitigation system contains six classes. The border values of the tar- 378 

get classes are given in Table 3.2.1.  379 

Moreover, a modified formulation of the SNR) is employed to better emphasize the 380 

influence of interference components within the received signal, as in Equation 1. Under 381 

this formulation, more negative SNR values indicate a higher signal power relative to in- 382 

terference (noise). This approach enables the model to effectively prioritize and monitor 383 

scenarios with pronounced interference characteristics, which are particularly important 384 

in ADI conditions in TD-LTE networks. 385 

      386 

𝑆𝑁𝑅 = −10 log10

𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
 

(1) 

               387 

Table 3.2.1. The border values of the target classes. 388 

Target Classes Min value Max value 

Class A -112.00 dB  

Class B -116.00 dB -112.01 dB 

Class C -120.00 dB -116.01 dB 

Class D -124.00 dB -120.01 dB 

Class E -128.00 dB -124.01 dB 

Class F  -128.01 dB 

The mitigation models were also developed under two distinct scenarios. In Scenario 389 

One, feature data were collected from all ten base stations located within the Jaffna dis- 390 

trict. In Scenario Two, data were obtained exclusively from a single base station—specifi- 391 

cally, the Jaffna Town base station. The geographical coordinates of all ten base stations 392 

in the Jaffna district are provided in Table 3.1.2. 393 

 394 
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Fig. 3.2.5 The data preprocessing algorithm. 395 
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 Further, there are three special sub-frames in TD-LTE communication frames: the 396 

Uplink Pilot Time Slot (UPPTS), the Downlink Pilot Time Slot (DWPTS), and the Guard 397 

Period (GP). These special sub-frames can be dynamically configured or de-configured 398 

based on the decisions made by the ADI mitigation models. The specific configuration of 399 

these sub-frames within the ADI mitigation system is presented in Table 3.2.1. 400 

Table 3.2.2. The configuration of the special sub-frames. 401 

Config. ID Conventional configuration approach Extended configuration approach 

DWPTS GP UPPTS DWPTS GP UPPTS 

C1 3 10 1 3 8 1 

C2 3 9 2 3 7 2 

C3 9 4 1 8 3 1 

C4 8 4 2 8 2 2 

C5 10 3 1 9 2 1 

C6 10 2 2 9 1 2 

C7 12 1 1 10 1 1 

C8 11 1 2 8 2 2 

As in the case of the prediction models, the dataset contains interference values for 402 

the 12 subcarriers of the zeroth Physical Resource Block (PRB) in the TD-LTE network. 403 

Atmospheric Duct Interference (ADI) mitigation is performed individually on each sub- 404 

carrier within this PRB. In TD-LTE systems, a single PRB comprises 12 consecutive sub- 405 

carriers. The evaluation parameters presented in the Results and Discussion section are 406 

derived from the first subcarrier of the zeroth PRB. The reported Signal-to-Noise Ratio 407 

(SNR) and Bit Error Rate (BER) values correspond to the model outputs for this specific 408 

subcarrier. Both the SNR and BER are measured using the Remcom Wireless InSite soft- 409 

ware. 410 

Next, various classifiers, including the GB Classifier, LSTM Classifier, CNN Classi- 411 

fier, ODGB Classifier, SGD Classifier, and Histogram-based Gradient Boosting (HGB) 412 

Classifier, were investigated for ADI mitigation. Each classifier was tested using three dis- 413 

tinct models with varying hyperparameters, as illustrated in Figure 3.2.6, where x repre- 414 

sents the classifier (x∈{1,2,3,4,5,6}) and y denotes the models with different hyperparame- 415 

ters (y∈{1,2,3}). 416 

Furthermore, for each classifier, the models with different hyperparameters were 417 

combined using ensemble learning to identify the best-performing classifier for ADI mit- 418 

igation. In this approach, Model Ya and Yb of Classifier x are ensembled, and their com- 419 

bined feature output is passed through Model ya of Classifier x in a second stage. This 420 

final stage is used to configure the guard period for interference mitigation, as shown in 421 

Figure 3.2.7. 422 

We have transmitted 53 random symbols in the mitigation system and observed the 423 

bit error rate and the signal-to-noise ratio at the receiver side of the mitigation system. 424 

Also, the signal-to-noise ratios of the ADI mitigation systems with different learning rates 425 

are measured at the receiver side.  426 

The hyperparameter configurations of the three models for each classifier—GB, 427 

LSTM, CNN, ODGB, SGD, and HGB—are presented in Table 3.2.3, Table 3.2.4, Table 3.2.5, 428 

Table 3.2.6, Table 3.2.7, and Table 3.2.8, respectively. 429 

 430 
Fig. 3.2.6. Block diagram of Model Y within Classifier X, designed for ADI mitigation in the proposed sys- 431 

tem. 432 

Meterological and 
Network- Side Dataset 

(Features 1 - 18)

Classifer x Model y 

(Learning rate= 0.001 - 0.048)

Guard period configuration 
and de-configuration
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 433 
Fig. 3.2.7. Block diagram of the ensemble-based ADI mitigation system, illustrating the integration 434 

of Classifier X with sub-models Ya and Yb to enhance detection accuracy and robustness against atmos- 435 
pheric duct interference. 436 

Table 3.2.3. The parameters of the three different GB models. 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

Table 3.2.4. The parameters of the three different LSTM models. 447 

Parameters Model 1 Model 2 Model 3 

Scaler Min-Max Scaler Min-Max Scaler Min-Max Scaler 

Dataset shuffled Yes Yes Yes 

Estimators 125 135 145 

Criterion Friedman MSE Squared Error Friedman MSE 

Max-Depth 3 4 5 

Max-Features 4 5 3 

Loss Log loss Log loss Log loss 

Minimum sample leaf 4 3 5 

Minimum sample split 3 5 3 

Minimum weight fraction leaf 0.10 0.15 0.20 

Maximum depth 2 3 4 

Average Macro average Macro average Macro average 

Learning rate 0.001 – 0.048 0.001 – 0.048 0.001 – 0.048 

Parameters LSTM Model 1 LSTM Model 2 LSTM Model 3 

Dataset Time series Time series Time series 

Encoder Label encoder Label encoder Label encoder 

Optimizer Adam Adam Adam 

Loss Log loss Log loss Log loss 

Activation Tanh  ReLu ReLu 

Recurrent activation Sigmoid Sigmoid Tanh 

Dropout  0.10 0.15 0.20 

Recurrent Dropout 0.20 0.10 0.15 

Input Layer 18 neurons 18 neurons 18 neurons 

Hidden layer 1-3 20 neurons 22 neurons 24 neurons  

Hidden layer 4-6 22 neurons  24 neurons 20 neurons 

Output layer 6 neurons 6 neurons  6 neurons 

Learning Rate 0.001 – 0.048 0.001 – 0.048 0.001 – 0.048 
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Table 3.2.5. The parameters of the three different CNN models. 448 

 449 

Table 3.2.6. The parameters of the three different ODGB models. 450 

 451 

Table 3.2.7. The parameters of the three different SGD models. 452 

Parameters CNN Model 1 CNN Model 2 CNN Model 3 

Dataset Shuffled  Shuffled  Shuffled  

Encoder One Hot encoder One Hot encoder One Hot encoder 

Optimizer Adam Adam Adam 

Loss Log loss Log loss Log loss 

Input layer 18 neurons, ReLu  18 neurons, ReLu  18 neurons, Tanh  

Hidden layer 1 18 neurons, ReLu  20 neurons, ReLu  20 neurons, Tanh  

Hidden layer 2 20 neurons, Sigmoid  22 neurons, Tanh  24 neurons, Sigmoid  

Hidden layer 3 18 neurons, ReLu  20 neurons, ReLu  20 neurons, Tanh  

Hidden layer 4 20 neurons, Sigmoid  22 neurons, Tanh  24 neurons, Sigmoid  

Hidden layer 5 18 neurons, ReLu  20 neurons, ReLu  20 neurons, Tanh  

Hidden layer 6 20 neurons, Sigmoid  22 neurons, Tanh  24 neurons, Sigmoid  

Output layer 6 neurons, Sigmoid  6 neurons, Tanh  6 neurons, Tanh  

Learning Rate 0.001 – 0.048 0.001 – 0.048 0.001 – 0.048 

Parameters ODGB Model 1 ODGB Model 2 ODGB Model 3 

Scaler Min-Max Scaler Min-Max Scaler Min-Max Scaler 

Dataset shuffled Yes Yes Yes 

Gamma 2 4 4 

Max depth 4 3 3 

Minimum Child weight 2 3 4 

Max delta step 3 4 3 

Sampling Method Uniform  Gradient based  Uniform 

Lamda  2 3 4 

Tree method Auto Exact Auto 

Process type Default Update Default  

Max bin 128 128 256 

Average Macro average Macro average Macro average 

Learning rate 0.001 – 0.048 0.001 – 0.048 0.001 – 0.048 

Parameters SGD Model 1 SGD Model 2 SGD Model 3 

Scaler Standard Scaler Standard Scaler Standard Scaler 

Dataset shuffled Yes Yes Yes 

Validation fraction 0.03 0.04 0.02 

Verbose 0.02 0.03 0.04 

Tolerance 0.002 0.001 0.003 

Fit Intercept True False True 

Alpha 0.004 0.002 0.003 

Penalty L2 L1 L2 

Loss Log loss Log loss Log loss 

Maximum Iterations 900 800 750 

Kernel Linear Linear Linear 
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 453 

Table 3.2.8. The parameters of the three different HGB models. 454 

 455 

4. Results and Discussion. 456 

4. 1. The Results of the ADI Prediction Models. 457 

As elaborated in Section 3, the prediction models are developed under two scenarios 458 

to evaluate their generalizability and adaptability under varying data conditions. In Sce- 459 

nario One, features are collected from all ten base stations in the Jaffna district, providing 460 

a diverse and comprehensive dataset that captures a wide range of network behaviors and 461 

atmospheric conditions. This setup is aimed at building models capable of recognizing 462 

generalized patterns across a broader geographic area. In contrast, Scenario Two focuses 463 

on a localized dataset, using features from only a single base station—Jaffna Town—to 464 

assess the model’s performance in a constrained, site-specific environment. This compar- 465 

ison helps determine whether accurate predictions can still be achieved with limited, lo- 466 

cation-specific data, which is often the case in real-world deployments. 467 

4. 1. 1. The evaluation parameters of the ML and DL based ADI models. 468 

The evaluation parameters of the SVM, RF, LSTM, and CNN-based ADI prediction 469 

models are given in Table 4.1.1. The model uses a 5-fold cross-validation approach. The 470 

learning rate is maintained at 0.001. The evaluation parameters are measured in two sce- 471 

narios, which are the training dataset and the test dataset. Also, the evaluation parameters 472 

are compared with the literature.  473 

Among the models tested, convolutional neural networks (CNNs) demonstrated 474 

strong generalization capabilities, with CNN [10] achieving the highest test accuracy 475 

(0.977), though detailed performance metrics were not provided. Random Forest models 476 

(M1 and M2) achieved excellent F1-scores near 0.59. Support Vector Machines (SVMs) 477 

with radial basis function (RBF) and polynomial kernels performed well, showing a good 478 

balance between accuracy and generalization. In contrast, linear and sigmoid SVMs per- 479 

formed poorly across all metrics. Long Short-Term Memory (LSTM) models showed mod- 480 

erate performance, with relatively low F1-scores, indicating challenges in precision and 481 

Average Macro average Macro average Macro average 

Learning rate 0.001 – 0.048 0.001 – 0.048 0.001 – 0.048 

Parameters HGB Classifier 1 HGB Classifier 2 HGB Classifier 3 

Scaler Min-Max Scaler Min-Max Scaler Min-Max Scaler 

Dataset shuffled Yes Yes Yes 

Loss Log loss Log loss Log loss 

Maximum iteration  125 150 175 

Maximum leaf nodes  20 25 30 

Minimum samples leaf 10 15 20 

L2 regularization  0.2 0.15 0.25 

Maximum bins 127 255 127 

Early slopping Auto Bool Auto 

Validation fraction 0.2 0.15 0.15 

Tolerance  0.001 0.002 0.0025 

Average Macro average Macro average Macro average 

Learning rate 0.001 – 0.048 0.001 – 0.048 0.001 – 0.048 
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recall despite their ability to handle sequential data. Overall, CNNs and Random Forests 482 

emerged as the most effective models, with SVMs offering a balanced alternative, while 483 

LSTM and sigmoid-based approaches were less suitable without further optimization. 484 

Table 4.1.1 The evaluation parameters of the ML and DL models with the comparison of the State 485 
of the Art. 486 

 Accuracy Precision Recall F1 Score 

ML models Train Test Train Test Train Test Train Test 

KNN [3] - 0.670 - - - - - - 

SVM [3] - 0.650 - - - - - - 

SVM linear  0.635 0.634 0.390 0.387 0.355 0.355 0.302 0.301 

SVM rbf  0.686 0.672 0.665 0.623 0.485 0.463 0.508 0.478 

SVM polynomial  0.677 0.668 0.706 0.682 0.467 0.451 0.487 0.465 

SVM sigmoid 0.524 0.522 0.302 0.301 0.302 0.301 0.278 0.278 

Random Forest [6] - 0.650 - - - - - - 

Random forest M1  0.999 0.723 0.999 0.657 0.999 0.573 0.999 0.594 

Random forest M2  0.999 0.721 0.999 0.636 0.999 0.566 0.999 0.593 

LSTM [18] - 0.984 - - - - - - 

LSTM 0.636 0.574 0.477 0.413 0.432 0.443 0.412 0.342 

CNN [8] - 0.856 - - - - - - 

CNN [10] 0.990 0.977 - - - - - - 

CNN 0.655 0.653 0.562 0.562 0.456 0.450 0.464 0.455 

4. 1. 2. The evaluation parameters of the ML and DL classifier-based prediction model 487 

The evaluation parameters of the ML and DL classifier-based prediction models are 488 

given in Table 4.1.2. The results are given for both scenarios, one and two.  489 

Table 4.1.2 The evaluation parameters of the ML and DL classifier-based prediction models. 490 

 Scenario One  Scenario Two  

Classifier 
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Stochastic gradient descent  0.024 0.68 0.55 0.65 0.58 0.36 0.012 0.85 0.79 0.70 0.74 0.25 

Gradient Boosting Classifier 0.048 0.77 0.75 0.55 0.58 0.32 0.048 0.72 0.60 0.55 0.55 0.32 

Optimized distributed gradient 

boosting classifier 

0.008 0.77 0.79 0.61 0.63 0.26 0.012 0.72 0.62 0.58 0.58 0.34 

Long short-term memory classifier 0.001 0.70 0.71 0.69 0.20 0.14 0.012 0.66 0.70 0.60 0.40 0.15 

Convolutional Neural Network 

classifier 

0.024 0.75 0.78 0.75 0.30 0.11 0.016 0.77 0.83 0.77 0.40 0.09 

The evaluation results of the machine learning (ML) and deep learning (DL) classi- 491 

fier-based models under both scenarios reveal key insights into their predictive perfor- 492 

mance for atmospheric duct interference. In Scenario One, where data is collected from all 493 

ten base stations, the Gradient Boosting Classifier (GBC) and Optimized Distributed Gra- 494 

dient Boosting (XGB) models achieved the highest test accuracy of 0.77, with XGB show- 495 

ing better overall balance across precision (0.79), recall (0.61), and F1 score (0.63), along 496 

with a relatively low mean squared error (MSE) of 0.26. The CNN classifier also performed 497 

well, achieving a test accuracy of 0.75 and the lowest MSE of 0.11, although its F1 score 498 

(0.30) was comparatively lower. 499 

In Scenario Two, which uses data from a single base station, the Stochastic Gradient 500 

Descent (SGD) model showed the most improvement, increasing its test accuracy to 0.85, 501 
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precision to 0.79, and F1 score to 0.74, with an MSE of 0.25. The CNN classifier again 502 

demonstrated strong performance, matching its Scenario One accuracy (0.77) while 503 

achieving the highest precision (0.83) and recall (0.77) across all models in this scenario, 504 

and the lowest MSE of 0.09. 505 

Overall, CNN and gradient boosting-based models consistently showed robust per- 506 

formance in both scenarios, while the SGD classifier significantly improved with localized 507 

data. These results suggest that model effectiveness varies with data granularity, and that 508 

CNN classifiers in particular offer high precision and efficiency even with limited input 509 

data. 510 

4. 1. 3. The evaluation parameters of the cascaded ML and DL classifier-based predic- 511 

tion model 512 

The evaluation parameters of the cascaded ML and DL classifier-based prediction 513 

models are given in Table 4.1.3. The results are given for both scenarios, one and two. The 514 

performance of the cascaded machine learning (ML) and deep learning (DL) classifier- 515 

based prediction models across two scenarios reveals a nuanced variation in accuracy, 516 

precision, and other evaluation metrics. In Scenario One, Classifier 2 achieved the highest 517 

accuracy at 0.69, alongside a precision of 0.60 and F1 score of 0.54. Although Classifier 5 518 

and the LSTM model showed comparable accuracy values (0.68 and 0.70, respectively), 519 

their F1 scores were significantly lower at 0.20, indicating reduced balance between pre- 520 

cision and recall. Most classifiers demonstrated moderate precision and recall, with MSE 521 

values ranging between 0.14 and 0.45, suggesting room for optimization in model gener- 522 

alization. 523 

Table 4.1.3 The evaluation parameters of the ML and DL classifier-based prediction models. 524 

 Scenario One Scenario Two 

Classifier 
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LSTM 0.001 0.70 0.71 0.69 0.20 - 0.012 0.66 0.70 0.60 0.40 - 

Classifier 1 0.024 0.66 0.55 0.62 0.55 0.43 0.024 0.70 0.62 0.64 0.60 0.37 

Classifier 2 0.048 0.69 0.60 0.52 0.54 0.42 0.048 0.72 0.75 0.64 0.63 0.34 

Classifier 3 0.020 0.67 0.59 0.53 0.48 0.45 0.028 0.70 0.70 0.59 0.57 0.40 

Classifier 4 0.001 0.62 0.64 0.55 0.10 0.16 0.001 0.63 0.66 0.60 0.05 0.16 

Classifier 5 0.008 0.68 0.70 0.63 0.20 0.14 0.008 0.67 0.70 0.62 0.20 0.14 

 525 

In Scenario Two, overall model performance generally improved. Classifier 2 once 526 

again stood out, increasing its test accuracy to 0.72 and achieving the highest precision 527 

(0.75) and a solid F1 score of 0.63, coupled with a relatively low MSE of 0.34. Classifier 1 528 

and Classifier 3 also saw improvements in both accuracy and F1 scores, while LSTM 529 

showed a slight drop in accuracy to 0.66 but a marked increase in its F1 score to 0.40, 530 

indicating better precision-recall trade-off under localized data. Notably, Classifiers 4 and 531 

5 maintained low F1 scores (0.05 and 0.20, respectively), despite consistent precision val- 532 

ues, suggesting challenges in achieving effective recall. 533 

Overall, the results demonstrate that the cascaded models benefit from scenario-spe- 534 

cific tuning, with classifiers like Classifier 2 showing strong adaptability. Localized train- 535 

ing data, as in Scenario Two, appears to support better predictive consistency for several 536 

models. 537 

 538 

 539 
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4. 2. The Results of the ADI mitigation models. 540 

4. 2. 1. The Results of the GB classifier-based ADI mitigation system. 541 

The evaluation parameters of the GB classifier-based ADI mitigation models are 542 

given in Table 4.2.1. The results are given for both scenarios one and two. The BER and 543 

SNR of the GB-based ADI mitigation systems were evaluated at the receiver side for dif- 544 

ferent learning rates. The results are presented in Table 4.2.2. 545 

Table 4.2.1 The evaluation parameters of the GB classifier-based ADI mitigation models. 546 

 Scenario one Scenarios two 

Classifier 
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Model 1 0.004 0.67 0.68 0.52 0.52 0.24 0.012 0.62 0.66 0.57 0.56 0.19 

Model 2 0.012 0.68 0.75 0.68 0.36 0.12 0.024 0.61 0.60 0.57 0.58 0.10 

Model 3 0.008 0.67 0.68 0.53 0.55 0.19 0.024 0.62 0.65 0.60 0.41 0.14 

Model 1 and 2 0.028 0.67 0.67 0.68 0.42 0.14 0.012 0.60 0.62 0.54 0.39 0.18 

Model 2 and 3 0.012 0.68 0.72 0.56 0.55 0.19 0.016 0.61 0.61 0.59 0.56 0.13 

Table 4.2.2. The Bit Error Rates of the mitigation systems with different learning rates. 547 

 BER SNR 
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configuration 
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Model 1 0.004 0.012 0.003 0.002 0.004 0.003 0.004 0.012 -11.40 -10.30 -11.30 -10.10 

Model 2 0.012 0.024 0.002 0.003 0.002 0.002 0.012 0.024 -09.20 -09.30 -10.20 -10.30 

Model 3 0.008 0.024 0.004 0.003 0.003 0.004 0.008 0.024 -11.30 -13.40 -12.40 -13.50 

Model 1 

and 2 

0.028 0.012 0.002 0.002 0.003 0.003 0.028 0.012 -10.20 -10.30 -10.40 -09.60 

Model 2 

and 3 

0.012 0.016 0.002 0.003 0.003 0.002 0.012 0.016 -10.20 -10.40 -09.80 -10.40 

 548 

In Table 4.2.1, individual models (Model 1, 2, and 3) and model ensembles (Model 1 549 

& 2, and Model 2 & 3) were tested. In Scenario One (data from all base stations), Model 2 550 

achieved the highest precision (0.75) and F1 score (0.36), indicating better mitigation ef- 551 

fectiveness, while Model 1 & 2 had the best recall (0.68). In Scenario Two (data from a 552 

single base station), Model 3 performed slightly better in F1 score (0.41), showing its 553 

adaptability to more localized conditions. 554 
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Table 4.2.2 presents BER and SNR for both conventional and extended configuration 555 

approaches across different learning rates. The extended configuration consistently 556 

yielded lower BER and higher SNR, indicating better signal quality and error resilience. 557 

For instance, Model 3 with a 0.024 learning rate showed the lowest BER (0.002–0.003) and 558 

the highest SNR (up to -13.5 dB). This suggests that model ensembling and configuration 559 

extension enhance ADI mitigation performance, especially under the varied channel con- 560 

ditions represented in the two scenarios. 561 

4. 2. 2. The Results of the LSTM classifier-based ADI mitigation system. 562 

The performance metrics of the LSTM classifier-based ADI mitigation models for 563 

both Scenario One and Scenario Two are summarized in Table 4.2.3. Additionally, Table 564 

4.2.4 presents the BER and SNR values of the LSTM-based mitigation systems, measured 565 

at the receiver side across various learning rates. 566 

The performance evaluation of the LSTM-based ADI mitigation system reveals con- 567 

sistent results across both test scenarios. In terms of classification metrics, Model 3 exhib- 568 

ited strong precision in both scenarios, with a notably low log loss, suggesting confident 569 

and accurate predictions. Among all combinations, the Model 2 and Model 3 ensemble 570 

achieved the highest accuracy (0.68) in Scenario One and maintained solid recall and F1 571 

scores, making it a strong candidate for effective ADI detection and mitigation. Scenario 572 

Two showed slightly better overall balance in precision and recall across different models, 573 

especially for the Model 1 and 2 ensemble. 574 

The BER and SNR analysis in Table 4.2.4 supports the classification performance. The 575 

Extended Configuration Approach consistently outperformed the conventional method, 576 

showing lower BER values and higher SNR values across most models and learning rates. 577 

Notably, Model 2 and Model 3 maintained low BER and high SNR, especially when data 578 

was sourced from all ten base stations, underscoring their robustness in diverse deploy- 579 

ment conditions. Overall, the results indicate that LSTM classifiers—especially when en- 580 

sembled—are highly effective in mitigating ADI under varying learning rates and data 581 

sources. 582 

Table 4.2.3 The evaluation parameters of the LSTM classifier-based ADI mitigation models. 583 

 Scenario one Scenarios two 

Classifier 
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Model 1 0.012 0.62 0.67 0.62 0.55 0.24 0.024 0.62 0.61 0.63 0.48 0.16 

Model 2 0.004 0.61 0.69 0.66 0.48 0.21 0.024 0.62 0.68 0.53 0.38 0.24 

Model 3 0.008 0.63 0.74 0.58 0.45 0.11 0.016 0.64 0.67 0.62 0.47 0.15 

Model 1 and 2 0.012 0.62 0.60 0.61 0.33 0.11 0.016 0.65 0.70 0.66 0.49 0.23 

Model 2 and 3 0.028 0.68 0.62 0.68 0.50 0.10 0.012 0.65 0.67 0.61 0.39 0.13 

 584 

 585 

 586 

 587 

 588 

 589 
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Table 4.2.4. The Bit Error Rates of the mitigation systems with different learning rates. 590 

 BER SNR 
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Model 1 0.012 0.024 0.002 0.004 0.003 0.004 0.012 0.024 -09.10 -10.40 -10.20 -12.20 

Model 2 0.004 0.024 0.003 0.003 0.003 0.003 0.004 0.024 -11.40 -12.40 -12.30 -12.50 

Model 3 0.008 0.016 0.005 0.002 0.004 0.002 0.008 0.016 -11.30 -11.40 -11.20 -11.30 

Model 1 

and 2 

0.012 0.016 0.002 0.003 0.003 0.003 0.012 0.016 -10.10 -10.90 -10.30 -10.80 

Model 2 

and 3 

0.028 0.012 0.002 0.003 0.003 0.002 0.028 0.012 -10.30 -10.10 -11.10 -10.30 

4. 2. 3. The Results of the CNN classifier-based ADI mitigation system. 591 

The performance metrics for the CNN-based ADI mitigation models under both Sce- 592 

nario One and Scenario Two are summarized in Table 4.2.5. Additionally, the Bit Error 593 

Rate (BER) and Signal-to-Noise Ratio (SNR) for the CNN-based mitigation systems, eval- 594 

uated at the receiver side for various learning rates, are presented in Table 4.2.6. 595 

Table 4.2.5 The evaluation parameters of the CNN classifier-based ADI mitigation 596 

models. 597 

 Scenario one Scenarios two 

Classifier 
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Model 1 0.012 0.61 0.74 0.64 0.37 0.15 0.004 0.67 0.72 0.54 0.45 0.14 

Model 2 0.016 0.64 0.75 0.53 0.50 0.20 0.024 0.63 0.67 0.62 0.47 0.21 

Model 3 0.004 0.66 0.63 0.64 0.34 0.21 0.028 0.61 0.61 0.64 0.53 0.21 

Model 1 and 2 0.016 0.60 0.69 0.65 0.52 0.22 0.016 0.61 0.69 0.61 0.42 0.19 

Model 2 and 3 0.028 0.61 0.66 0.56 0.56 0.12 0.008 0.60 0.64 0.53 0.43 0.24 

 598 

The evaluation of the CNN classifier-based ADI mitigation system reveals varying 599 

levels of performance across different models and scenarios. In Scenario One, the highest 600 

test accuracy (0.66) was achieved by Model 3 at a learning rate of 0.004, though it had a 601 

relatively low F1 score (0.34). Model 2 showed a balanced performance with a test accu- 602 

racy of 0.64 and a higher F1 score of 0.50, suggesting a more reliable balance between 603 

precision and recall. The combination of Model 2 and 3 offered slightly improved F1 per- 604 

formance (0.56) with decent precision and recall, indicating its effectiveness in mitigating 605 

ADI while maintaining model robustness. In Scenario Two, Model 1 outperformed others 606 
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in terms of test accuracy (0.67) and had a moderate F1 score (0.45), while the highest F1 607 

score (0.53) was achieved by Model 3. The model combination strategies in this scenario 608 

did not significantly enhance performance metrics over individual models. 609 

Table 4.2.6. The Bit Error Rates of the mitigation systems with different learning rates. 610 
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Model 1 0.012 0.004 0.002 0.004 0.003 0.003 0.012 0.004 -10.20 -11.90 -10.40 -12.40 

Model 2 0.016 0.024 0.003 0.005 0.004 0.005 0.016 0.024 -11.20 -12.40 -11.20 -13.80 

Model 3 0.004 0.028 0.005 0.004 0.005 0.003 0.004 0.028 -13.20 -11.40 -13.70 -11.80 

Model 1 

and 2 

0.016 0.016 0.002 0.003 0.003 0.003 0.016 0.016 -10.30 -10.30 -11.20 -11.50 

Model 2 

and 3 

0.028 0.008 0.004 0.004 0.004 0.004 0.028 0.008 -12.40 -11.40 -13.40 -12.50 

In terms of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR), as shown in Table 611 

4.2.6, the CNN-based mitigation systems consistently showed better performance under 612 

the extended configuration approach, especially when datasets from multiple base sta- 613 

tions were used. Model 3 achieved the lowest BER (0.003) and highest SNR values (-13.70 614 

dB and -13.20 dB) under these conditions, highlighting its strong capability in reducing 615 

interference effects. Similarly, Model 2 also performed well with low BER and high SNR 616 

under the extended setup, particularly with a learning rate of 0.016.  617 

4. 2. 4. The Results of the ODGB classifier-based ADI mitigation system. 618 

Table 4.2.7 outlines the performance metrics of the ODGB classifier models devel- 619 

oped for ADI mitigation under both Scenario One and Scenario Two. In addition to clas- 620 

sification accuracy and related parameters, the impact of varying learning rates on system 621 

performance was examined. Correspondingly, Table 4.2.8 presents the Bit Error Rate 622 

(BER) and Signal-to-Noise Ratio (SNR) measurements obtained at the receiver end, offer- 623 

ing further insights into the effectiveness of ODGB-based mitigation strategies. 624 

In Table 4.2.7, the classification accuracy, precision, recall, F1 score, and log loss of 625 

the models are compared under two scenarios. Scenario One shows that Model 1 achieves 626 

a classification accuracy of 0.68 with a learning rate of 0.004, and in Scenario Two, Model 627 

1 maintains the same accuracy with a learning rate of 0.012. Precision values remain be- 628 

tween 0.65 and 0.66 across models, indicating a moderate ability to correctly identify pos- 629 

itive instances. Recall varies more significantly, with Model 1 in Scenario One having a 630 

recall of 0.56, while other models, like Model 2 in Scenario Two, achieve a recall of 0.62, 631 

indicating a better identification of positive instances. The F1 scores, which balance preci- 632 

sion and recall, range from 0.55 to 0.70, with some models exhibiting better overall bal- 633 

ance. Log loss values vary between 0.18 and 0.25, suggesting a moderate degree of accu- 634 

racy in prediction, with minimal fluctuation across different learning rates and models. 635 
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Table 4.2.7 The evaluation parameters of the ODGB classifier-based ADI mitigation models. 636 

 Scenario one Scenarios two 

Classifier 
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Model 1 0.004 0.68 0.65 0.56 0.55 0.23 0.012 0.68 0.66 0.55 0.46 0.25 

Model 2 0.008 0.64 0.63 0.62 0.35 0.22 0.016 0.66 0.62 0.70 0.54 0.22 

Model 3 0.012 0.66 0.62 0.67 0.53 0.21 0.008 0.64 0.62 0.54 0.31 0.18 

Model 1 and 2 0.016 0.63 0.65 0.62 0.34 0.24 0.012 0.61 0.62 0.61 0.32 0.25 

Model 2 and 3 0.016 0.66 0.73 0.63 0.44 0.19 0.028 0.63 0.67 0.61 0.33 0.22 

Table 4.2.8. The Bit Error Rates of the mitigation systems with different learning rates. 637 

 BER SNR 

 Learning 

Rate 

Conventional 

configuration 

approach 

Extended 

Configura-

tion ap-

proach  

Learning 

Rate 

Conventional 

configuration 

approach (dB) 

Extended Con-

figuration ap-

proach (dB) 

Classifier 

 

ODGB 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

al
l 

th
e 

10
 b

as
e 

st
at

io
n

s 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

o
n

ly
 o

n
e 

b
as

e 
st

at
io

n
 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

al
l 

th
e 

10
 b

as
e 

st
at

io
n

s 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

al
l 

th
e 

10
 b

as
e 

st
at

io
n

s 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

o
n

ly
 o

n
e 

b
as

e 
st

at
io

n
 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

al
l 

th
e 

10
 b

as
e 

st
at

io
n

s 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

o
n

ly
 o

n
e 

b
as

e 
st

at
io

n
 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

al
l 

th
e

 1
0 

b
as

e 
st

at
io

n
s 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

o
n

ly
 o

n
e 

b
as

e 
st

at
io

n
 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

o
n

ly
 o

n
e 

b
as

e 
st

at
io

n
 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

al
l 

th
e 

10
 b

as
e 

st
at

io
n

s 

D
at

as
et

 i
s 

co
ll

ec
te

d
 f

ro
m

 

o
n

ly
 o

n
e 

b
as

e 
st

at
io

n
 

Model 1 0.004 0.012 0.005 0.004 0.005 0.004 0.004 0.012 -13.90 -12.80 -13.50 -11.80 

Model 2 0.008 0.016 0.003 0.004 0.004 0.003 0.008 0.016 -12.60 -12.30 -11.90 -11.90 

Model 3 0.012 0.008 0.005 0.004 0.004 0.004 0.012 0.008 -13.30 -13.40 -13.70 -12.90 

Model 1 

and 2 

0.016 0.012 0.002 0.005 0.002 0.005 0.016 0.012 -11.30 -14.20 -11.40 -14.10 

Model 2 

and 3 

0.016 0.028 - - - - 0.016 0.028 - - - - 

 638 

In Table 4.2.8, the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) are examined 639 

at different learning rates for both conventional and extended configuration approaches. 640 

The BER shows a general decrease as the learning rate increases, which indicates better 641 

performance in terms of error reduction with higher learning rates. For example, in Model 642 

1, the BER is lower when using a dataset collected from all 10 base stations compared to 643 

just one base station. The SNR also improves with higher learning rates, particularly in 644 

the extended configuration. For instance, in Model 1, the SNR values range from -13.90 645 

dB to -11.80 dB as the learning rate increases, showing improved signal quality under 646 

extended configurations. 647 

Overall, the results suggest that the ODGB-based mitigation system benefits from 648 

higher learning rates, leading to improved accuracy, reduced error rates (BER), and better 649 

signal clarity (SNR). However, the performance improvements are moderate and vary 650 

across different models and configurations, highlighting the need for further optimization 651 

and fine-tuning of learning rates for enhanced system performance. 652 
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4. 2. 5. The Results of the SGD classifier-based ADI mitigation system. 653 

The evaluation parameters of the SGD classifier-based ADI mitigation models are 654 

given in Table 4.2.9. The results are given for both scenarios one and two. The BER and 655 

SNR of the SGD-based ADI mitigation systems were evaluated at the receiver side for 656 

different learning rates. The results are presented in Table 4.2.10. 657 

Table 4.2.9 The evaluation parameters of the SGD classifier-based ADI mitigation models. 658 

 Scenario one Scenarios two 

Classifier 
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Model 1 0.008 0.62 0.67 0.69 0.21 0.24 0.012 0.65 0.71 0.62 0.22 0.23 

Model 2 0.012 0.61 0.60 0.66 0.22 0.29 0.024 0.61 0.72 0.69 0.21 0.20 

Model 3 0.008 0.61 0.61 0.63 0.20 0.28 0.016 0.65 0.68 0.64 0.30 0.25 

Model 1 and 2 0.024 0.69 0.68 0.68 0.34 0.29 0.028 0.68 0.66 0.69 0.32 0.25 

Model 2 and 3 0.028 0.70 0.65 0.69 0.25 0.23 0.032 0.69 0.71 0.62 0.21 0.25 

 659 

In Scenario One, Model 1 achieves a classification accuracy of 0.62 with a learning 660 

rate of 0.008, and slightly improves in Scenario Two with an accuracy of 0.65 at a learning 661 

rate of 0.012. Precision and recall for Model 1 in both scenarios are moderate, but the F1 662 

scores suggest an imbalance in precision and recall. Model 2 and Model 3 exhibit similar 663 

trends, with Model 2 achieving better recall and precision in Scenario Two (0.72 precision, 664 

0.69 recall), while Model 3’s performance is slightly lower overall. Model combinations, 665 

such as Model 1 and 2, show improved performance with higher accuracy (0.69), better 666 

F1 scores (0.34), and moderate log loss (0.29–0.25), indicating improved model balance 667 

and reliability with multiple configurations. 668 

Table 4.2.10. The Bit Error Rates of the mitigation systems with different learning rates. 669 
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Model 1 0.008 0.012 0.004 0.002 0.004 0.003 0.008 0.012 -11.30 -09.30 -10.30 -10.30 

Model 2 0.012 0.024 0.003 0.003 0.003 0.003 0.012 0.024 -10.30 -12.40 -10.10 -12.50 

Model 3 0.008 0.016 0.005 0.002 0.004 0.002 0.008 0.016 -11.30 -11.40 -11.20 -11.30 

Model 1 

and 2 
0.024 0.028 0.004 0.002 0.004 0.002 0.024 0.028 -13.20 -10.30 -12.70 -10.40 

Model 2 

and 3 
0.028 0.032 0.002 0.003 0.003 0.003 0.028 0.032 -10.30 -11.20 -11.10 -10.70 
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In Table 4.2.10, the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) were eval- 670 

uated under different learning rates and configurations. The results show that increasing 671 

the learning rate leads to lower BER and improved SNR, especially in the extended con- 672 

figuration. For instance, in Model 1, the BER decreases from 0.012 to 0.004, and the SNR 673 

improves from -11.30 dB to -9.30 dB when using data from all 10 base stations. Similarly, 674 

Model 2 shows a reduction in BER (0.003 to 0.002) and an increase in SNR (from -12.40 dB 675 

to -10.10 dB) with higher learning rates. The system's performance improves further with 676 

model combinations, particularly in extended configurations, which demonstrate the best 677 

error reduction (BER = 0.002) and highest SNR (up to -13.20 dB), suggesting the effective- 678 

ness of higher learning rates and extended datasets for mitigating ADI and improving 679 

communication quality. 680 

4. 2. 6. The Results of the HGB classifier-based ADI mitigation system. 681 

The results of the HGB classifier-based ADI mitigation system are presented in Table 682 

4.2.11, which outlines the evaluation parameters for both Scenario One and Scenario Two. 683 

Additionally, the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) of the HGB-based 684 

ADI mitigation systems were assessed at the receiver side under varying learning rates, 685 

with the findings shown in Table 4.2.12. 686 

In Scenario One, Model 1 achieves an accuracy of 0.62 with a learning rate of 0.004, 687 

while in Scenario Two, the accuracy improves slightly to 0.64 when the learning rate is 688 

increased to 0.024. Precision values are moderate, ranging from 0.65 to 0.72, with recall 689 

varying between 0.62 and 0.67 across different models. Notably, Model 3 shows the best 690 

performance in Scenario Two, with the highest recall of 0.72 and precision of 0.71, 691 

achieved at a learning rate of 0.048. The combination of Model 2 and Model 3 in Scenario 692 

Two performs well, achieving an accuracy of 0.70 with a relatively low log loss of 0.12, 693 

suggesting a better balance between precision and recall compared to individual models. 694 

In Table 4.2.12, the evaluation of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) 695 

reveals the effect of varying learning rates on system performance. As the learning rate 696 

increases, the BER consistently decreases, indicating that higher learning rates lead to bet- 697 

ter error mitigation. For instance, in Model 1, the BER improves from 0.024 to 0.002 when 698 

the learning rate increases. Similarly, the SNR improves with higher learning rates, with 699 

Model 1 showing an increase in SNR from -11.40 dB to -9.90 dB, demonstrating a noticea- 700 

ble enhancement in signal quality. The extended configuration approach generally results 701 

in lower BER and higher SNR, with Model 2 and Model 3 showing improved performance 702 

in Scenario Two, where the SNR reaches -10.30 dB at a learning rate of 0.032. These find- 703 

ings suggest that higher learning rates, especially in extended configurations, lead to more 704 

effective ADI mitigation, with improved signal clarity and error reduction. 705 

Table 4.2.11 The evaluation parameters of the HGB classifier-based ADI mitigation models. 706 

 Scenario one Scenarios two 
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Model 1 0.004 0.62 0.70 0.67 0.31 0.28 0.024 0.64 0.72 0.62 0.33 0.28 

Model 2 0.016 0.62 0.65 0.62 0.35 0.26 0.048 0.61 0.71 0.64 0.29 0.26 

Model 3 0.032 0.61 0.66 0.62 0.31 0.18 0.048 0.67 0.72 0.69 0.30 0.10 

Model 1 and 2 0.024 0.63 0.69 0.67 0.27 0.21 0.024 0.70 0.61 0.65 0.30 0.24 

Model 2 and 3 0.032 0.68 0.69 0.65 0.20 0.23 0.036 0.70 0.70 0.69 0.22 0.12 

Table 4.2.12. The Bit Error Rates of the mitigation systems with different learning rates. 707 
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Model 1 0.004 0.024 0.003 0.002 0.004 0.003 0.004 0.024 -11.40 -10.30 -11.30 -09.90 

Model 2 0.016 0.048 0.003 0.003 0.003 0.004 0.016 0.048 -10.40 -11.20 -10.40 -11.20 

Model 3 0.032 0.048 0.002 0.003 0.002 0.003 0.032 0.048 -10.50 -11.10 -11.20 -11.20 

Model 1 

and 2 
0.024 0.024 0.004 0.005 0.004 0.005 0.024 0.024 -12.40 -13.50 -13.50 -14.40 

Model 2 

and 3 
0.032 0.036 0.003 0.003 0.004 0.003 0.032 0.036 -10.30 -10.40 -10.40 -10.30 

4. 2. 7. Discussion: Comparative Analysis of the Six ADI Mitigation Models 708 

In comparing the six ADI mitigation models—GB, LSTM, CNN, ODGB, SGD, and 709 

HGB—it becomes evident that LSTM, CNN, and HGB stand out for their balanced per- 710 

formance across classification and signal quality metrics. LSTM achieved the highest F1 711 

score (0.60) and one of the lowest BER values (0.002), showcasing its effectiveness in both 712 

detecting and mitigating interference. CNN followed closely, excelling particularly in sig- 713 

nal clarity, with the highest SNR (-13.7 dB), and HGB offered the best overall classification 714 

accuracy (0.70), alongside an F1 score equal to LSTM, indicating robustness in diverse 715 

deployment scenarios. These three models demonstrate a clear advantage in handling 716 

complex, interference-heavy environments typical of TD-LTE networks. 717 

In contrast, while GB, ODGB, and SGD showed comparatively modest classification 718 

capabilities—with lower F1 scores and slightly higher BER—their performance notably 719 

improved with extended configurations and model ensembles. SGD, despite lower classi- 720 

fication metrics, achieved strong SNR (-13.2 dB) and low BER (0.002), suggesting its suit- 721 

ability for scenarios prioritizing signal recovery over detection precision. Across all mod- 722 

els, extended configurations consistently improved BER and SNR, highlighting the im- 723 

portance of leveraging broader data inputs and ensemble strategies. Ultimately, deep 724 

learning models like LSTM and CNN are best suited for environments where accuracy 725 

and adaptability are paramount, while gradient boosting and SGD models offer efficient 726 

alternatives for more interpretable or lightweight implementations. 727 

 728 

Model Type Best Accuracy Best F1 Score Lowest BER Highest SNR Best Ensemble 

LSTM 0.68 (M2+M3) 0.6 0.002 -13.5 dB M2 + M3 

CNN 0.67 (M1) 0.56 (M2+M3) 0.003 -13.7 dB M2 + M3 

GB 0.66 (M2) 0.36 (M2) 0.002 -13.5 dB M1 + M2 

ODGB 0.68 (M1) 0.7 0.002 -11.8 dB Mixed 

SGD 0.69 (M1+M2) 0.34 0.002 -13.2 dB M1 + M2 

HGB 0.70 (M2+M3) 0.70 (M3) 0.002 -10.3 dB M2 + M3 
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5. Conclusion 729 

In this study, we developed and validated an integrated framework for both predict- 730 

ing and mitigating Atmospheric Duct Interference (ADI) in TD‑LTE networks—thereby 731 

directly addressing two critical research gaps identified in the literature: low prediction 732 

accuracy and limited mitigation efficiency. 733 

For the prediction component, we implemented and compared four machine learn- 734 

ing algorithms trained on atmospheric and network-side features. The Random Forest 735 

model outperformed its peers, achieving a 72.3% accuracy rate—representing a marked 736 

improvement over previously reported benchmarks in ADI forecasting. By demonstrating 737 

that ensemble methods can robustly capture the complex relationships between meteoro- 738 

logical variables and interference events, we have closed a key gap in reliable ADI predic- 739 

tion. However, to further improve predictive accuracy—particularly under highly varia- 740 

ble conditions—future work could explore the integration of temporal modeling tech- 741 

niques such as attention mechanisms or transformer-based architectures, which may offer 742 

a more nuanced understanding of the sequential nature of atmospheric phenomena. 743 

On the mitigation side, we introduced a novel, prediction-driven strategy that dy- 744 

namically configures and de‑configures special TD‑LTE subframes in real time. Six classi‑ 745 

fication models informed these subframe adjustments, and the LSTM‑based approach 746 

achieved the highest F1 score (0.60), while the CNN model delivered the highest signal 747 

quality, reaching an SNR of -13.7 dB and a BER as low as 0.003. The HGB model further 748 

attained the highest classification accuracy (0.70) among all models. These results not only 749 

surpass the efficiency of earlier, static mitigation schemes but also highlight the power of 750 

combining deep learning with protocol‑level adaptations—a hybrid solution that effec- 751 

tively bridges the divide between prediction and action. 752 

While our framework substantially advances the state of the art, we acknowledge 753 

that inter‑cell and intra‑cell interference measurements at the receiver remain unavailable. 754 

Incorporating these additional interference metrics into future model feature sets prom- 755 

ises to further boost both prediction fidelity and mitigation precision. 756 

Overall, by elevating both predictive performance and mitigation effectiveness, this 757 

work lays a solid foundation for next‑generation ADI management in wireless systems. 758 

The methodologies and promising results detailed here are directly applicable to ongoing 759 

research and can inform practical deployments within academic and telecommunications 760 

industry contexts. 761 

For future work, we recommend analyzing the performance of the ADI prediction 762 

and mitigation models using advanced software tools or APIs. Additionally, we aim to 763 

implement these models in hardware, utilizing FPGA or ASIC technologies to bring the 764 

framework closer to real-time, scalable deployment in operational networks. 765 
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