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Abstract: The variations in the atmospheric refractivity in the lower atmosphere create a nat-
ural phenomenon known as atmospheric ducts. The atmospheric ducts allow radio signals
to travel long distances. This can adversely affect telecommunication systems, as cells with
similar frequencies can interfere with each other due to frequency reuse, which is intended
to optimize resource allocation. Thus, the downlink signals of one base station will travel
a long distance via the atmospheric duct and interfere with the uplink signals of another
base station. This scenario is known as atmospheric duct interference (ADI). ADI could be
mitigated using digital signal processing, machine learning, and hybrid approaches. To
address this challenge, we explore machine learning and deep learning techniques for ADI
prediction and mitigation in Time-Division Long-Term Evolution (TD-LTE) networks. Our
results show that the Random Forest algorithm achieves the highest prediction accuracy,
while a convolutional neural network demonstrates the best mitigation performance with
accuracy. Additionally, we propose optimizing special subframe configurations in TD-LTE
networks using machine learning-based methods to effectively reduce ADI.

Keywords: TD-LTE; ADI; machine learning; SVM; random forest; LSTM; CNN

1. Introduction
Variations in atmospheric weather conditions in the low atmosphere cause changes in

atmospheric refractivity. These changes create a phenomenon known as atmospheric ducts
in the lower atmosphere. The atmospheric duct allows radio frequency signals to travel
long distances. Mobile signals could travel through atmospheric ducts and reach large
propagation distances. The mobile operators use a frequency reuse pattern among the cells
to increase the spectral efficiency of the mobile networks. Atmospheric duct interference
(ADI) occurs when downlink mobile signals from one base station propagate over long
distances through atmospheric ducts and disrupt the uplink mobile signals of another base
station with the same frequency [1,2]. The formation of the atmospheric duct depends
on the weather conditions, such as atmospheric temperature, atmospheric pressure, and
atmospheric humidity [3]. The length of the atmospheric duct will vary from 100 km
to 400 km, depending on the atmospheric conditions. We can classify the atmospheric
duct into three classes, surface duct, elevated duct, and evaporation duct, based on the
characteristics of the atmospheric ducts in the lower atmosphere [4,5].
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Mitigating ADI is crucial for enhancing the quality of service (QoS) in mobile networks
and maintaining reliable service level agreements. While traditional signal processing
techniques have been employed, machine learning and hybrid approaches offer more
efficient solutions. This study explores the relationship between uplink power, weather
conditions, and uplink interference in physical resource blocks (PRBs) within 4G Long-
Term Evolution (LTE) networks. By analyzing samples of network data and corresponding
weather data, we demonstrate how machine learning models can effectively detect ADI
and help optimize guard period adjustments. However, modifying the guard period may
lead to frequency overlap with adjacent base stations, making precise synchronization of
uplink and downlink signals essential for effective ADI mitigation [2,6].

Our research focuses on developing a machine learning-based ADI prediction and
mitigation system for Time-Division Long-Term Evolution (TD-LTE) networks. The pro-
posed models incorporate both atmospheric and network-related features to enhance
accuracy. Specifically, we utilize three atmospheric parameters—temperature, humidity,
and pressure—alongside fifteen network-side features obtained from the mobile operator.
All features are normalized between 0 and 1 for consistency. Atmospheric data are sourced
from the Visual Crossing weather monitoring platform, while network data are collected
from Dialog Axiata PLC in Sri Lanka [7]. The dataset spans two years, covering 2021 to
2023, with 56,000 entries collected from the Jaffna district.

For ADI prediction, we implement four machine learning algorithms: Support Vector
Machine (SVM), Random Forest, Long Short-Term Memory (LSTM), and a convolutional
neural network (CNN). Among these, the Random Forest model achieves the highest test
accuracy of 72.3%. For ADI mitigation, we employ five classifiers: Stochastic Gradient
Descent, Gradient Boosting, Optimized Distributed Gradient Boosting, LSTM, and a CNN,
with the CNN delivering the best performance at 75% accuracy. In TD-LTE networks, the
time interval between uplink and downlink frames is managed through special subframes,
consisting of an uplink pilot time slot, a downlink pilot time slot, and a guard period. Our
mitigation strategy dynamically configures the guard period based on machine learning
predictions to minimize ADI while ensuring seamless network synchronization [8,9].

We are unable to collect the inter-cell and intra-cell interference values at the receiver
side. If we consider the values in the features of the models, then we can improve the
performance of the models.

This paper is structured into seven sections. The first section provides an introduction
to the research, outlining its objectives and significance. The second section presents a
review of related work, highlighting existing studies and methodologies relevant to ADI
mitigation. The third section details the research methodology, including data collection,
feature selection, and model development. The fourth section discusses the results and
findings, offering an in-depth analysis and interpretation of the outcomes. The fifth section
presents the conclusions derived from this study. The sixth section outlines potential
directions for future research. Finally, the seventh section includes acknowledgments.

2. Related Works
Atmospheric duct interference (ADI) poses a substantial challenge to the performance,

coverage, and quality of service in contemporary wireless communication systems, par-
ticularly in TD-LTE and 5G Radio networks. To address these issues, a diverse body of
research has explored various ADI detection and mitigation techniques. Existing stud-
ies have analyzed signal processing-based methods, machine learning and deep learning
frameworks, hybrid algorithmic strategies, and simulation-based evaluations. Each of these
methodologies contributes valuable insights into the nature of ADI and the effectiveness of
different mitigation strategies under realistic deployment conditions.
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The following subsections review the key contributions within each of these method-
ological categories. By analyzing the strengths, limitations, and empirical results of the pro-
posed approaches, we aim to identify existing research gaps and motivate the development
of more robust and adaptive interference mitigation systems suitable for next-generation
wireless networks.

2.1. Signal Processing Approach to Mitigate ADI

Peralta et al. [10] have developed an atmospheric duct interference mitigation system
for the 5G New Radio mobile networks. The 5G New Radio mobile network uses an orthog-
onal frequency division multiplication scheme to multiplex the information-bearing signals
in the carrier signals. The mitigation scheme uses remote interference management-based
reference signal design to recognize and mitigate the atmospheric duct interference in 5G
New Radio mobile networks. The reference signals are placed in two carrier types: Additive
White Gaussian Noise (AWGN) and tapped-delay line (TDL-E). The false alarm rate and
detection probabilities are plotted with different Signal-to-Noise ratios in the experiments.

Also, Peralta et al. [8] published another article, which also used remote interference
reference signal sequences to detect atmospheric duct interference in the 5G New Radio
networks. They designed the 5G New Radio system in AWGN and TDL-E channels. The
comb 1 and 2 systems achieved an 18 dB Signal-to-Noise Ratio (SNR), and the comb 4
system achieved a 13 dB SNR.

Guo et al. [11] developed an ADI mitigation system that can adjust the guard period
based on the remote interference reference signal in 5G New Radio. They have obtained a
5–7 dB SNR reduction in 5G New Radio networks.

Shen et al. [12] used the ADI mitigation systems in TD-LTE networks. The mitigation
approaches were developed based on the decisions of the TD-LTE reference signals. They
used three different ADI mitigation approaches. The first approach was developed by con-
trolling the signal power of the antenna. The second approach was developed by controlling
the elevation angle of the antenna. The third approach controlled the antenna height.

The referenced studies highlight that atmospheric ducting significantly exacerbates
interference, particularly in lower frequency bands (sub-6 GHz) due to their superior
long-distance propagation characteristics. Consequently, the majority of the literature on
5G New Radio (NR) focuses on Frequency Range 1 (FR1, 410 MHz–7.125 GHz) compared
to Frequency Range 2 (FR2, 24.25–71 GHz), as FR1 bands are more susceptible to such
interference phenomena.

A summary of the digital signal processing-based mitigation schemes is given in
Table 1.

Table 1. Digital signal processing-based mitigation approaches.

Approach Year Detection Methodology Accuracy Network

Peralta et al. [10] 2019 Fast Fourier transform Detection probability: 0.900
False alarm probability: 0.002 5G New Radio (FR1)

Peralta et al. [8] 2021 Remote interference
reference signal design

18 dB SNR for comb 1 and 2, 13 dB
SNR for comb 4.

5G New Radio (FR1
and FR2)

Guo et al. [11] 2024
Guard period

adjustment based on
remote interference

5–7 dB SNR reduction 5G New Radio
(FR1 and FR2)

Shen et al. [12] 2017
ADI mitigation systems

based on the TD-LTE
reference signals

Power: 1–2 dB SNR reduction,
Elevation angle: 5–10 dB

SNR reduction,
Antenna height: 3–4 dB SNR reduction

TD-LTE Networks
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2.2. Machine Learning and Deep Learning Approaches to Mitigate ADI

Zhou et al. [3] developed a machine learning model to predict and mitigate the
atmospheric duct interference in the TD-LTE networks. They utilized a framework called
alternating direction methods of multiplier to predict and mitigate the atmospheric duct
interference in the TD-LTE networks. The framework uses a linear distributed Support
Vector Machine (SVM) algorithm. The machine learning model uses meteorological and
network-side datasets. The two datasets are converted to an interference map in the
preprocessing stage. The meteorological dataset is collected from a radiosonde in Baoshan
city in Shanghai province in China, and the network-side dataset is collected from the China
Mobile operator. Kriging interpolation is used in the preprocessing stage. The variations in
the modified refractivity in the low atmosphere are the major reason for the formation of
the atmospheric ducts.

Ren et al. [13] developed an atmospheric duct interference mitigation system using
convolutional neural networks. The network-side dataset is collected from the Shenzhen
division primary carrier in a province in China. The convolutional neural network model
contains three convolutional layers and two fully connected layers. The network-side
dataset contains interference data from the Global System for Mobile Communications
(GSM), Digital Enhanced Cordless Telephone, and TD-LTE networks. The spectral waterfall
images are generated from the power spectral density plot and the time domain plot. The
time value is plotted on the x-axis, and the frequency value is plotted on the y-axis. The
test dataset of the mitigation system is collected from 10,000 TD-LTE network cells in a
province in China. The experiment is performed for eight different cases.

Sun et al. [14] developed an atmospheric duct interference prediction system using
machine learning approaches in the TD-LTE networks. The prediction system uses the
Support Vector Machine, Random Forest, and K-Nearest Neighbor algorithms. The key idea
of learning a decision tree is how to choose the optimal division attribute. This study used
a Classification and Regression Tree (CART) decision tree in the Random Forest algorithm
to predict the atmospheric duct interference in the TD-LTE networks. The CART decision
tree applies the Gini index to select the optimal division attributes. The interference dataset
is converted to an interference map. The network-side dataset is collected from the China
Mobile operator. The atmospheric side data are collected from a radiosonde in a province
in China. The run-time values of the different mitigation systems are compared in this
research paper.

A summary of the machine learning- and deep learning-based mitigation systems is
given in Table 2.

Table 2. The machine learning- and deep learning-based approaches.

Approach Year Detection
Methodology

Train
Accuracy Test Accuracy Network

Ren et al. [13] 2019 CNN - 0.856 LTE/Wi-Fi

Sun et al. [14] 2017 Random
Forest -

0.650 (4000 samples), 0.680
(10,000 samples),

0.700 (20,000 samples)
TD-LTE

Shen et al. [15] 2020 CNN 0.990 0.977 TD-LTE

Zhou et al. [3] 2017 SVM
KNN -

0.680 (10,000 samples), 0.720
(40,000 samples)

2. 0.700 (10,000 samples), 0.710
(40,000 samples)

TD-LTE

Yang et al. [16] 2021 LSTM - 0.984 5G (FR1)
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2.3. Hybrid Approaches to Mitigate ADI

To leverage the strengths of both traditional signal processing and modern deep learn-
ing techniques, Zhou et al. [17] proposed a hybrid ADI mitigation system tailored for
Quadrature Amplitude Modulation–Orthogonal Frequency Division Multiplexing (QAM-
OFDM)-based wireless networks. The architecture of the proposed system is implemented
at the receiver side and is composed of seven integrated modules: an analog-to-digital con-
verter, a deep learning-based error compensator, an OFDM demodulator, a deep learning-
based interference cancelation unit, a channel equalizer, a forward error correction unit,
and a maximum likelihood estimation unit.

The deep learning components of the system incorporate four convolutional neural
network (CNN) layers and four Long Short-Term Memory (LSTM) layers. These layers are
responsible for capturing spatial and temporal dependencies within the received signal,
enabling more precise detection and suppression of ADI-induced distortions. The model
was trained using 400 frames and evaluated on 100 test frames. The experimental results
demonstrate a significant improvement in communication reliability, with the symbol error
rate (SER) being reduced from 0.37618 to 0.0003. This result highlights the potential of
hybrid learning-based architectures for real-time and high-accuracy interference mitigation
in modern wireless communication environments.

2.4. Other Approaches to Mitigate ADI

Beyond signal processing and learning-based techniques, simulation-driven ap-
proaches have also been employed to analyze and evaluate the impact of ADI, particularly
in over-the-horizon (OTH) radio communication systems. One such study, conducted by
Kai and Wu [18], utilized software simulation to model the propagation characteristics of
radio waves within complex atmospheric conditions over non-uniform terrestrial surfaces.

Their analysis was grounded in a detailed digital elevation model (DEM) representing
terrain data from Wuxi province to four distinct provinces across China. Key simulation
parameters included the transmission frequency, antenna height, elevation angle, polarization
mode, propagation angle, and propagation distance. These parameters were meticulously varied
to assess their influence on radio wave propagation loss under atmospheric duct conditions.

The simulation results indicated significant signal attenuation across the tested routes,
with calculated propagation losses of approximately 150 dB for 100 km links from Wuxi
to Hangzhou, Shanghai, and Zhoushan, and a notably higher loss of 237.5 dB on the Wuxi–
Nanjing path. These findings underscore the severity of ADI effects in long-distance, low-angle
radio transmission scenarios and highlight the utility of simulation tools in pre-deployment
analysis and planning for robust network coverage in OTH communication environments.

2.5. Overview of Existing Mitigation Approaches

Several ADI mitigation strategies have been proposed and evaluated across different
wireless communication technologies, including TD-LTE and 5G networks. Table 3 provides
a comparative overview of representative methodologies, highlighting the diversity in
detection mechanisms, performance metrics, and network contexts.

Peralta et al. [10] introduced a Remote Interference Management Reference Signal
(RIM-RS) design tailored for 5G NR systems. Their method demonstrated a high detection
probability of 0.900 and a remarkably low false alarm probability of 0.002, indicating its
reliability and precision in identifying ADI in real-time operational environments.

In another notable study, Zhou et al. [17] presented a hybrid mitigation model com-
bining digital signal processing (DSP), Long Short-Term Memory (LSTM) networks, and
convolutional neural networks (CNNs). Applied to QAM-OFDM-based communication
systems, their approach achieved a significant improvement in system performance, re-
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ducing the symbol error rate from 0.37618 to 0.0003. This result illustrates the efficacy of
integrating deep learning with classical signal processing in enhancing ADI mitigation.

Table 3. An overview of the existing mitigation approaches.

Approach Year Methodology Results Network

Peralta et al. [10] 2019 Remote Interference Management
Reference Signal (RIM-RS)

Detection probability: 0.900
False alarm probability: 0.002

5G New Radio
(FR1)

Zhou et al. [17] 2020 DSP, LSTM, and CNN Symbol error rate is reduced
from 0.37618 to 0.0003 QAM-OFDM

Zhou et al. [3] 2017 Adjustment of the Guard period - TD-LTE

Sun et al. [14] 2017 Adjustment of the Guard period - TD-LTE

Zhou et al. [3] proposed an interference mitigation mechanism for TD-LTE networks by
adjusting the special subframe configuration, specifically the guard period. While detailed
performance metrics were not provided in their study, this approach is recognized for its
practical implementation potential within existing LTE infrastructure without requiring
significant architectural changes.

Similarly, Sun et al. [14] adopted a guard period adjustment strategy in TD-LTE
systems to mitigate ADI. Though this study did not specify quantitative results, it empha-
sizes system-level configuration tuning as an effective and low-complexity method for
interference control.

As summarized in Table 3, these diverse approaches reflect the multidisciplinary na-
ture of ADI mitigation, encompassing signal design, machine learning, hybrid architectures,
and protocol-level adjustments. However, variations in evaluation metrics and incomplete
performance reporting in some studies underscore the need for standardized benchmarking
frameworks to facilitate cross-comparative assessments and advance the field toward more
unified, adaptive mitigation solutions.

3. Methodology
This section presents an integrated machine learning (ML) and deep learning (DL)

framework for the prediction and mitigation of ADI. The methodology incorporates DSP
and ML techniques to characterize ADI behavior and optimize special subframe configura-
tions in TD-LTE systems, with the aim of minimizing interference effects. The experimental
setup evaluates the performance and accuracy of the proposed models using real-world
TD-LTE network data under practical operating conditions.

Further, ADI ducting heavily depends on the carrier frequency of the radio waves.
The degree of interference varies across frequency bands due to their distinct propagation
properties. Lower frequencies (e.g., sub-6 GHz) with longer wavelengths diffract and
propagate more effectively through atmospheric layers, making them more prone to duct-
ing. Conversely, higher frequencies (e.g., mmWave) with shorter wavelengths experience
greater attenuation and are less affected by ducting. At 0.5 GHz, atmospheric ducting is
particularly pronounced, as the long wavelength enables radio waves to be trapped in
ducts, traveling hundreds of kilometers with minimal loss. This extended range heightens
interference risks, as signals from distant transmitters (e.g., base stations) can interfere with
receivers far outside their intended range. Therefore, we focused on the low-frequency
ranges of the TD-LTE network to develop the ADI mitigation system.
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3.1. Atmospheric Duct Interference Prediction

The prediction of ADI strength is critical for proactive interference management in
wireless communication networks. ML and DL models have proven effective in forecasting
ADI by leveraging both atmospheric and network-side features.

In this study, two prediction approaches were developed and evaluated, differing in
the number of features used from the network side while sharing common atmospheric
parameters. Both approaches incorporate three key atmospheric features: temperature,
pressure, and humidity, which are sourced from the Visual Crossing weather monitoring
base station. These features play a crucial role in determining atmospheric refractivity
profiles, which directly influence the formation of ducting layers.

The first approach utilizes eight network-side features, whereas the second approach
expands this to fifteen network-side features. Common network-side parameters include
uplink power values obtained from the operational data of Dialog Axiata PLC, a major
mobile network operator in Sri Lanka [7]. The inclusion of a broader feature set in the
second approach aims to enhance the model’s sensitivity to subtle interference-related
variations across the network.

Both prediction models are trained to classify the strength of ADI into six target
classes, which represent different levels of interference severity. The categorization of these
classes is detailed in Table 4, serving as a structured framework for evaluating prediction
performance and guiding subsequent interference mitigation strategies.

Table 4. The interference range of the target classes.

Target Classes Min Value Max Value

Class A −112.00 dB

Class B −116.00 dB −112.01 dB

Class C −120.00 dB −116.01 dB

Class D −124.00 dB −120.01 dB

Class E −128.00 dB −124.01 dB

Class F −128.01 dB

This dual-approach design enables comparative analysis of model accuracy and ro-
bustness based on feature richness, ultimately contributing to the development of more
adaptive and scalable ADI prediction solutions in TD-LTE and 5G environments.

The prediction models are developed in two scenarios. In the first scenario, the features
are collected from all ten base stations in the Jaffna district. In the second scenario, the
features are collected from only one base station, which is the Jaffna Town base station. The
coordinates of the ten base stations in the Jaffna Town district are given in Table 5.

The Support Vector Machine (SVM) model was configured with 11 input features
and trained using four different kernel functions—linear, radial basis function (RBF),
polynomial, and sigmoid. It employed five-fold cross-validation with a learning rate of
0.001, targeting classification into six ADI severity levels.

Similarly, the Random Forest model was evaluated in two configurations. The first
model used 100 estimators, while the second employed 10 estimators with the entropy
criterion. Both versions used the same input features and training strategy as the SVM.

The Long Short-Term Memory (LSTM) model was applied in two distinct architectures.
In the first approach, it consisted of three layers and was trained for 50 epochs using
11 features. The second approach expanded the feature set to 18 and adopted a four-layer
architecture, comprising an input layer (18 neurons), two hidden layers (20 neurons each),
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and an output layer (6 neurons). It used the Adam optimizer and mean squared error
(MSE) loss, with a learning rate ranging from 0.001 to 0.048.

Table 5. The coordinates of the base stations in the Jaffna district [7].

Base Station Longitude Latitude

Palali 80.08 9.79

Karainagar 79.86 9.71

Kandarodai 80.01 9.75

Jaffna 80.00 9.66

Manipai 79.99 9.72

Alaweddy 80.01 9.77

Kankasanthure 80.03 9.81

Nallur 80.03 9.67

Chawakachcheri 80.16 9.65

Kodikamam 80.22 9.68

The convolutional neural network (CNN) was also developed in two approaches. The
first model utilized 11 features and consisted of three layers with ReLU activations in the
initial two and a SoftMax activation in the final layer. The second CNN model employed
18 features and a four-layer structure, mirroring the configuration of the advanced LSTM
model. It used ReLU and SoftMax activations across its layers, along with the Adam
optimizer and MSE loss.

In addition, a Stochastic Gradient Descent (SGD) classifier was implemented using 18
features. This model also employed MSE loss and varied the learning rate between 0.001
and 0.048, consistent with the other models. The parameters of the prediction model are
given in Table 6.

Table 6. The parameters of the SGD, GB, and XGB classifiers.

Model SGD Classifier Gradient Boosting
Classifier

Optimized
Distributed Gradient

Boosting Classifier

Scaler Standard Scaler Min-Max Scaler Min-Max Scaler

Algorithm SVM: Linear Random Forest Random Forest

Dataset shuffled Yes Yes Yes

Estimators - 100 100

Max-Depth - 2 2

Max-Features - 2 2

Loss MSE MSE MSE

Iterations 1000 - -

Kernel Linear - -

Other features Macro-average Macro-average Macro-average

This study further explored a Gradient Boosting (GB) classifier and an Extreme Gradi-
ent Boosting (XGBoost) model. Both utilized 18 features and were trained under the two
scenario setups. They were optimized using different learning rates and evaluated using
the same classification and validation metrics.
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Finally, a cascaded ML-DL hybrid model was constructed to integrate the strengths
of both traditional and deep learning techniques. This model’s architecture is illustrated
in Figure 1 and detailed in Table 7. It follows the same two-scenario framework and
utilizes adaptive learning rates, MSE loss, and a combination of model components for
enhanced performance.

 

Figure 1. The cascaded ML and DL classifier-based prediction models.

Table 7. The structure of the cascaded prediction models.

Classifiers Classifier in Stage 1 Classifier in Stage 2

1 LSTM SDG

2 LSTM GB

3 LSTM XGB

4 LSTM LSTM

5 LSTM CNN

The dataset contains interference values for the 12 subcarriers of the zeroth physical
resource block of the TD-LTE network. Atmospheric duct interference prediction is per-
formed individually in each subcarrier of the physical resource block (i.e., physical resource
block 0). One physical resource contains 12 consecutive subcarriers in the TD-LTE systems.
The evaluation parameters in the Results and Discussion Section are obtained for the first
subcarrier of the zeroth physical resource block. Similarly, we have collected the evaluation
parameters for the other subcarriers in the zeroth physical resource block.

3.2. Atmospheric Duct Interference Mitigation

Numerous ADI mitigation systems have been developed over the past decade. How-
ever, many of these systems exhibit limitations in terms of mitigation efficiency. These
shortcomings highlight a clear research gap in the current state of ADI-related method-
ologies. To address this gap, a novel ADI mitigation system is proposed. An overview
of the proposed framework is illustrated in Figure 2, outlining the key components and
operational flow of the system [19,20].
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Figure 2. The proposed ADI detection and mitigation system.

In the considered network scenario, there are two groups of base stations: aggressor
base stations and victim base stations. The aggressor group comprises six base stations
(m = 6), while the victim group consists of eight base stations (n = 8). This configura-
tion is illustrated in Figure 3. The line-of-sight (LoS) channel, along with the channels
affected by atmospheric duct interference (ADI), are associated with the victim base stations,
highlighting the impact of interference propagation in the network [21,22].

Figure 3. Network setup with six aggressor and eight victim base stations.

One of the key contributions of this research is the adaptive adjustment of the guard
period—the time interval between uplink and downlink signals in TD-LTE networks—to
mitigate atmospheric duct interference (ADI). By leveraging machine learning models,
the system dynamically modifies the guard period in response to detected interference
conditions. This approach enables real-time interference management, enhancing the
robustness of TD-LTE communications. The structure of the uplink and downlink frames,
both with and without atmospheric duct interference, is illustrated in Figure 4 [21,23].

Figure 4. The TD-LTE system (a) without ADI and (b) with ADI [8].

The TD-LTE network uses OFDM to modulate the information-bearing signals in the carrier
signal. Figure 5 shows the block diagram of the OFDM modulation and demodulation scheme.



Future Internet 2025, 17, 237 11 of 29

Figure 5. OFDM modulation and demodulation block diagram.

The guard interval between the uplink and downlink signals could be set at the OFDM
transmitter block to remove the atmospheric duct interference in the received signal. The
guard period configuration could be removed at the OFDM receiver block to identify the
transmitted messages. An interference map is created in the data preprocessing stage. The
data preprocessing stage is given in Figure 6. This algorithm converts spatial interference
measurements into a matrix representation and utilizes Kriging interpolation to estimate
unknown values. The method is applied to interference data collected from base stations
over a specific district [24,25].

We use three atmospheric side features and fifteen network-side features in the ADI
mitigation systems. The three atmospheric side features of the ADI mitigation systems
are atmospheric temperature, atmospheric pressure, and atmospheric humidity. The
uplink power values of the first frame in the uplinks 0, 1, 2, 3, 4, 5, and 6 and the uplink
power values of the last frame in the uplinks 0, 7, 8, 9, 10, 11, 12, and 13 are the fifteen
network-side features of the ADI mitigation systems. The features are normalized between
0 and 1 [26,27].

The target of the mitigation system contains six classes. The border values of the target
classes are given in Table 8.

Table 8. The border values of the target classes.

Target Classes Min Value Max Value

Class A −112.00 dB

Class B −116.00 dB −112.01 dB

Class C −120.00 dB −116.01 dB

Class D −124.00 dB −120.01 dB

Class E −128.00 dB −124.01 dB

Class F −128.01 dB
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Figure 6. The data preprocessing algorithm [12,28].

Moreover, a modified formulation of the SNR is employed to better emphasize the
influence of interference components within the received signal, as in Equation (1). Under
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this formulation, more negative SNR values indicate a higher signal power relative to
interference (noise). This approach enables the model to effectively prioritize and monitor
scenarios with pronounced interference characteristics, which are particularly important in
ADI conditions in TD-LTE networks.

SNR = −10log10
Signal Power
Noise Power

(1)

The mitigation models were also developed under two distinct scenarios. In Scenario
One, feature data were collected from all ten base stations located within the Jaffna district.
In Scenario Two, data were obtained exclusively from a single base station—specifically,
the Jaffna Town base station. The geographical coordinates of all ten base stations in the
Jaffna district are provided in Table 5.

Further, there are three special subframes in TD-LTE communication frames: the
uplink pilot time slot (UPPTS), the downlink pilot time slot (DWPTS), and the guard period
(GP). These special subframes can be dynamically configured or de-configured based on
the decisions made by the ADI mitigation models. The specific configuration of these
subframes within the ADI mitigation system is presented in Table 9 [29].

Table 9. The configuration of the special subframes.

Config. ID
Conventional Configuration Approach Extended Configuration Approach

DWPTS GP UPPTS DWPTS GP UPPTS
C1 3 10 1 3 8 1

C2 3 9 2 3 7 2

C3 9 4 1 8 3 1

C4 8 4 2 8 2 2

C5 10 3 1 9 2 1

C6 10 2 2 9 1 2

C7 12 1 1 10 1 1

C8 11 1 2 8 2 2

As in the case of the prediction models, the dataset contains interference values for the
12 subcarriers of the zeroth physical resource block (PRB) in the TD-LTE network. Atmo-
spheric duct interference (ADI) mitigation is performed individually on each subcarrier
within this PRB. In TD-LTE systems, a single PRB comprises 12 consecutive subcarriers.
The evaluation parameters presented in the Results and Discussion Section are derived
from the first subcarrier of the zeroth PRB. The reported Signal-to-Noise Ratio (SNR) and
Bit Error Rate (BER) values correspond to the model outputs for this specific subcarrier.
Both the SNR and BER are measured using the Remcom wireless Insite MIMO version
(2022 release).

Next, various classifiers, including the GB classifier, LSTM classifier, CNN classifier,
ODGB classifier, SGD classifier, and Histogram-based Gradient Boosting (HGB) classifier,
were investigated for ADI mitigation. Each classifier was tested using three distinct models
with varying hyperparameters, as illustrated in Figure 7, where x represents the classifier
(x ∈ {1, 2, 3, 4, 5, 6}) and y denotes the models with different hyperparameters (y ∈ {1, 2, 3}).

Furthermore, for each classifier, the models with different hyperparameters were com-
bined using ensemble learning to identify the best-performing classifier for ADI mitigation.
In this approach, Model Ya and Yb of Classifier x are ensembled, and their combined feature
output is passed through Model Ya of Classifier x in a second stage. This final stage is used
to configure the guard period for interference mitigation, as shown in Figure 8.
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Meterological and 
Network-Side Dataset 

(Features 1–18)

Classifier x Model y 
(Learning rate= 0.001–0.048)

Guard period configuration 
and de-configuration

Figure 7. Block diagram of Model Y within Classifier X, designed for ADI mitigation in the proposed
system.

Figure 8. Block diagram of the ensemble-based ADI mitigation system, illustrating the integration
of Classifier X with sub-models Ya and Yb to enhance detection accuracy and robustness against
atmospheric duct interference.

We transmitted 53 random symbols in the mitigation system and observed the Bit
Error Rate and the Signal-to-Noise Ratio at the receiver side of the mitigation system. Also,
the Signal-to-Noise Ratios of the ADI mitigation systems with different learning rates are
measured at the receiver side.

The hyperparameter configurations of the three models for each classifier—GB, LSTM,
CNN, ODGB, SGD, and HGB—are presented in Table 10, Table 11, Table 12, Table 13,
Table 14, and Table 15, respectively.

Table 10. The parameters of the three different GB models.

Parameters Model 1 Model 2 Model 3

Scaler Min-Max Scaler Min-Max Scaler Min-Max Scaler

Dataset shuffled Yes Yes Yes

Estimators 125 135 145

Criterion Friedman MSE Squared Error Friedman MSE

Max-Depth 3 4 5

Max-Features 4 5 3

Loss Log loss Log loss Log loss

Minimum sample leaf 4 3 5

Minimum sample split 3 5 3

Minimum weight fraction leaf 0.10 0.15 0.20

Maximum depth 2 3 4

Average Macro-average Macro-average Macro-average

Learning rate 0.001–0.048 0.001–0.048 0.001–0.048
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Table 11. The parameters of the three different LSTM models.

Parameters LSTM Model 1 LSTM Model 2 LSTM Model 3
Dataset Time series Time series Time series

Encoder Label encoder Label encoder Label encoder

Optimizer Adam Adam Adam

Loss Log loss Log loss Log loss

Activation Tanh ReLu ReLu

Recurrent activation Sigmoid Sigmoid Tanh

Dropout 0.10 0.15 0.20

Recurrent dropout 0.20 0.10 0.15

Input layer 18 neurons 18 neurons 18 neurons

Hidden layer 1–3 20 neurons 22 neurons 24 neurons

Hidden layer 4–6 22 neurons 24 neurons 20 neurons

Output layer 6 neurons 6 neurons 6 neurons

Learning rate 0.001–0.048 0.001–0.048 0.001–0.048

Table 12. The parameters of the three different CNN models.

Parameters CNN Model 1 CNN Model 2 CNN Model 3

Dataset Shuffled Shuffled Shuffled

Encoder One Hot encoder One Hot encoder One Hot encoder

Optimizer Adam Adam Adam

Loss Log loss Log loss Log loss

Input layer 18 neurons, ReLu 18 neurons, ReLu 18 neurons, Tanh

Hidden layer 1 18 neurons, ReLu 20 neurons, ReLu 20 neurons, Tanh

Hidden layer 2 20 neurons, Sigmoid 22 neurons, Tanh 24 neurons, Sigmoid

Hidden layer 3 18 neurons, ReLu 20 neurons, ReLu 20 neurons, Tanh

Hidden layer 4 20 neurons, Sigmoid 22 neurons, Tanh 24 neurons, Sigmoid

Hidden layer 5 18 neurons, ReLu 20 neurons, ReLu 20 neurons, Tanh

Hidden layer 6 20 neurons, Sigmoid 22 neurons, Tanh 24 neurons, Sigmoid

Output layer 6 neurons, Sigmoid 6 neurons, Tanh 6 neurons, Tanh

Learning rate 0.001–0.048 0.001–0.048 0.001–0.048

Table 13. The parameters of the three different ODGB models.

Parameters ODGB Model 1 ODGB Model 2 ODGB Model 3

Scaler Min-Max Scaler Min-Max Scaler Min-Max Scaler

Dataset shuffled Yes Yes Yes

Gamma 2 4 4

Max depth 4 3 3

Minimum child weight 2 3 4

Max delta step 3 4 3

Sampling method Uniform Gradient-based Uniform

Lamda 2 3 4

Tree method Auto Exact Auto

Process type Default Update Default

Max bin 128 128 256

Average Macro-average Macro-average Macro-average

Learning rate 0.001–0.048 0.001–0.048 0.001–0.048
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Table 14. The parameters of the three different SGD models.

Parameters SGD Model 1 SGD Model 2 SGD Model 3

Scaler Standard Scaler Standard Scaler Standard Scaler

Dataset shuffled Yes Yes Yes

Validation fraction 0.03 0.04 0.02

Verbose 0.02 0.03 0.04

Tolerance 0.002 0.001 0.003

Fit Intercept True False True

Alpha 0.004 0.002 0.003

Penalty L2 L1 L2

Loss Log loss Log loss Log loss

Maximum iterations 900 800 750

Kernel Linear Linear Linear

Average Macro-average Macro-average Macro-average

Learning rate 0.001–0.048 0.001–0.048 0.001–0.048

Table 15. The parameters of the three different HGB models.

Parameters HGB Classifier 1 HGB Classifier 2 HGB Classifier 3

Scaler Min-Max Scaler Min-Max Scaler Min-Max Scaler

Dataset shuffled Yes Yes Yes

Loss Log loss Log loss Log loss

Maximum iteration 125 150 175

Maximum leaf nodes 20 25 30

Minimum sample leaf 10 15 20

L2 regularization 0.2 0.15 0.25

Maximum bins 127 255 127

Early slopping Auto Bool Auto

Validation fraction 0.2 0.15 0.15

Tolerance 0.001 0.002 0.0025

Average Macro-average Macro-average Macro-average

Learning rate 0.001–0.048 0.001–0.048 0.001–0.048

4. Results and Discussion
4.1. The Results of the ADI Prediction Models

As elaborated in Section 3, the prediction models are developed under two scenarios to
evaluate their generalizability and adaptability under varying data conditions. In Scenario
One, features are collected from all ten base stations in the Jaffna district, providing a
diverse and comprehensive dataset that captures a wide range of network behaviors and
atmospheric conditions. This setup is aimed at building models capable of recognizing
generalized patterns across a broader geographic area. In contrast, Scenario Two focuses on
a localized dataset, using features from only a single base station—Jaffna Town—to assess
the model’s performance in a constrained, site-specific environment. This comparison helps
determine whether accurate predictions can still be achieved with limited, location-specific
data, which is often the case in real-world deployments.

4.1.1. The Evaluation Parameters of the ML- and DL-Based ADI Models

The evaluation parameters of the SVM-, RF-, LSTM-, and CNN-based ADI prediction
models are given in Table 16. The model uses a 5-fold cross-validation approach. The learn-
ing rate is maintained at 0.001. The evaluation parameters are measured in two scenarios,
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which are the training dataset and the test dataset. Also, the evaluation parameters are
compared with the literature.

Table 16. The evaluation parameters of the ML and DL models, with a comparison of the state of
the art.

Accuracy Precision Recall F1 Score

ML models Train Test Train Test Train Test Train Test

KNN [8] - 0.670 - - - - - -

SVM [8] - 0.650 - - - - - -

SVM linear 0.635 0.634 0.390 0.387 0.355 0.355 0.302 0.301

SVM rbf 0.686 0.672 0.665 0.623 0.485 0.463 0.508 0.478

SVM polynomial 0.677 0.668 0.706 0.682 0.467 0.451 0.487 0.465

SVM sigmoid 0.524 0.522 0.302 0.301 0.302 0.301 0.278 0.278

Random forest [13] - 0.650 - - - - - -

Random forest M1 0.999 0.723 0.999 0.657 0.999 0.573 0.999 0.594

Random forest M2 0.999 0.721 0.999 0.636 0.999 0.566 0.999 0.593

LSTM [26] - 0.984 - - - - - -

LSTM 0.636 0.574 0.477 0.413 0.432 0.443 0.412 0.342

CNN [15] - 0.856 - - - - - -

CNN [17] 0.990 0.977 - - - - - -

CNN 0.655 0.653 0.562 0.562 0.456 0.450 0.464 0.455

Among the models tested, convolutional neural networks (CNNs) demonstrated
strong generalization capabilities, with the CNN [17] achieving the highest test accuracy
(0.977), though detailed performance metrics were not provided. Random Forest models
(M1 and M2) achieved excellent F1 scores near 0.59. Support Vector Machines (SVMs) with
radial basis function (RBF) and polynomial kernels performed well, showing a good balance
between accuracy and generalization. In contrast, linear and sigmoid SVMs performed
poorly across all metrics. Long Short-Term Memory (LSTM) models showed moderate
performance, with relatively low F1 scores, indicating challenges in precision and recall
despite their ability to handle sequential data. Overall, CNNs and Random Forests emerged
as the most effective models, with SVMs offering a balanced alternative, while LSTM and
sigmoid-based approaches were less suitable without further optimization.

4.1.2. The Evaluation Parameters of the ML and DL Classifier-Based Prediction Model

The evaluation parameters of the ML and DL classifier-based prediction models are
given in Table 17. The results are given for both Scenario One and Scenario Two.

The evaluation results of the machine learning (ML) and deep learning (DL) classifier-
based models under both scenarios reveal key insights into their predictive performance
for atmospheric duct interference. In Scenario One, where data are collected from all ten
base stations, the Gradient Boosting Classifier (GBC) and Optimized Distributed Gradient
Boosting (XGB) models achieved the highest test accuracy of 0.77, with XGB showing
better overall balance across precision (0.79), recall (0.61), and F1 score (0.63), along with a
relatively low mean squared error (MSE) of 0.26. The CNN classifier also performed well,
achieving a test accuracy of 0.75 and the lowest MSE of 0.11, although its F1 score (0.30)
was comparatively lower.

In Scenario Two, which uses data from a single base station, the Stochastic Gradient
Descent (SGD) model showed the most improvement, increasing its test accuracy to 0.85,
precision to 0.79, and F1 score to 0.74, with an MSE of 0.25. The CNN classifier again
demonstrated strong performance, matching its Scenario One accuracy (0.77), while achiev-
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ing the highest precision (0.83) and recall (0.77) across all models in this scenario and the
lowest MSE of 0.09.

Table 17. The evaluation parameters of the ML and DL classifier-based prediction models.
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Stochastic gradient descent 0.024 0.68 0.55 0.65 0.58 0.36 0.012 0.85 0.79 0.70 0.74 0.25

Gradient boosting classifier 0.048 0.77 0.75 0.55 0.58 0.32 0.048 0.72 0.60 0.55 0.55 0.32

Optimized distributed gradient
boosting classifier 0.008 0.77 0.79 0.61 0.63 0.26 0.012 0.72 0.62 0.58 0.58 0.34

Long short-term memory classifier 0.001 0.70 0.71 0.69 0.20 0.14 0.012 0.66 0.70 0.60 0.40 0.15

Convolutional neural network classifier 0.024 0.75 0.78 0.75 0.30 0.11 0.016 0.77 0.83 0.77 0.40 0.09

Overall, CNN and Gradient Boosting-based models consistently showed robust per-
formance in both scenarios, while the SGD classifier significantly improved with localized
data. These results suggest that model effectiveness varies with data granularity, and
that CNN classifiers in particular offer high precision and efficiency even with limited
input data.

4.1.3. The Evaluation Parameters of the Cascaded ML and DL Classifier-Based
Prediction Model

The evaluation parameters of the cascaded ML and DL classifier-based prediction
models are given in Table 18. The results are given for both Scenarios One and Scenario
Two. The performance of the cascaded machine learning (ML) and deep learning (DL)
classifier-based prediction models across two scenarios reveals a nuanced variation in
accuracy, precision, and other evaluation metrics. In Scenario One, Classifier 2 achieved
the highest accuracy at 0.69, alongside a precision of 0.60 and an F1 score of 0.54. Although
Classifier 5 and the LSTM model showed comparable accuracy values (0.68 and 0.70,
respectively), their F1 scores were significantly lower at 0.20, indicating a reduced balance
between precision and recall. Most classifiers demonstrated moderate precision and recall,
with MSE values ranging between 0.14 and 0.45, suggesting room for optimization in
model generalization.

Table 18. The evaluation parameters of the ML and DL cascaded -based prediction models.
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LSTM 0.001 0.70 0.71 0.69 0.20 - 0.012 0.66 0.70 0.60 0.40 -

Classifier 1 0.024 0.66 0.55 0.62 0.55 0.43 0.024 0.70 0.62 0.64 0.60 0.37

Classifier 2 0.048 0.69 0.60 0.52 0.54 0.42 0.048 0.72 0.75 0.64 0.63 0.34

Classifier 3 0.020 0.67 0.59 0.53 0.48 0.45 0.028 0.70 0.70 0.59 0.57 0.40

Classifier 4 0.001 0.62 0.64 0.55 0.10 0.16 0.001 0.63 0.66 0.60 0.05 0.16

Classifier 5 0.008 0.68 0.70 0.63 0.20 0.14 0.008 0.67 0.70 0.62 0.20 0.14
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In Scenario Two, the overall model performance generally improved. Classifier 2 once
again stood out, increasing its test accuracy to 0.72 and achieving the highest precision
(0.75) and a solid F1 score of 0.63, coupled with a relatively low MSE of 0.34. Classifier 1 and
Classifier 3 also saw improvements in both accuracy and F1 scores, while LSTM showed a
slight drop in accuracy to 0.66 but a marked increase in its F1 score to 0.40, indicating better
precision–recall trade-off under localized data. Notably, Classifiers 4 and 5 maintained
low F1 scores (0.05 and 0.20, respectively), despite consistent precision values, suggesting
challenges in achieving effective recall.

Overall, the results demonstrate that the cascaded models benefit from scenario-
specific tuning, with classifiers like Classifier 2 showing strong adaptability. Localized
training data, as in Scenario Two, appears to support better predictive consistency for
several models.

4.2. The Results of the ADI Mitigation Models
4.2.1. The Results of the GB Classifier-Based ADI Mitigation System

The evaluation parameters of the GB classifier-based ADI mitigation models are given
in Table 19. The results are given for both scenarios one and two. The BER and SNR of the
GB-based ADI mitigation systems were evaluated at the receiver side for different learning
rates. The results are presented in Table 20.

Table 19. The evaluation parameters of the GB classifier-based ADI mitigation models.

Scenario One Scenarios Two
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Model 1 0.004 0.67 0.68 0.52 0.52 0.24 0.012 0.62 0.66 0.57 0.56 0.19

Model 2 0.012 0.68 0.75 0.68 0.36 0.12 0.024 0.61 0.60 0.57 0.58 0.10

Model 3 0.008 0.67 0.68 0.53 0.55 0.19 0.024 0.62 0.65 0.60 0.41 0.14

Model 1 and 2 0.028 0.67 0.67 0.68 0.42 0.14 0.012 0.60 0.62 0.54 0.39 0.18

Model 2 and 3 0.012 0.68 0.72 0.56 0.55 0.19 0.016 0.61 0.61 0.59 0.56 0.13

Table 20. The Bit Error Rates of the GB classifier-based mitigation systems with different learning rates.
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Model 1 0.004 0.012 0.003 0.002 0.004 0.003 0.004 0.012 −11.40 −10.30 −11.30 −10.10

Model 2 0.012 0.024 0.002 0.003 0.002 0.002 0.012 0.024 −09.20 −09.30 −10.20 −10.30

Model 3 0.008 0.024 0.004 0.003 0.003 0.004 0.008 0.024 −11.30 −13.40 −12.40 −13.50

Model 1 and 2 0.028 0.012 0.002 0.002 0.003 0.003 0.028 0.012 −10.20 −10.30 −10.40 −09.60

Model 2 and 3 0.012 0.016 0.002 0.003 0.003 0.002 0.012 0.016 −10.20 −10.40 −09.80 −10.40
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In Table 19, individual models (Model 1, 2, and 3) and model ensembles (Model 1 and 2,
and Model 2 and 3) were tested. In Scenario One (data from all base stations), Model 2
achieved the highest precision (0.75) and F1 score (0.36), indicating better mitigation
effectiveness, while Model 1 and Model 2 had the best recall (0.68). In Scenario Two (data
from a single base station), Model 3 performed slightly better in F1 score (0.41), showing its
adaptability to more localized conditions.

Table 20 presents the BER and SNR for both conventional and extended configuration
approaches across different learning rates. The extended configuration consistently yielded
lower BER and higher SNR, indicating better signal quality and error resilience. For instance,
Model 3 with a 0.024 learning rate showed the lowest BER (0.002–0.003) and the highest
SNR (up to −13.5 dB). This suggests that model ensembling and configuration extension
enhance ADI mitigation performance, especially under the varied channel conditions
represented in the two scenarios.

4.2.2. The Results of the LSTM Classifier-Based ADI Mitigation System

The performance metrics of the LSTM classifier-based ADI mitigation models for both
Scenario One and Scenario Two are summarized in Table 21. Additionally, Table 22 presents
the BER and SNR values of the LSTM-based mitigation systems, measured at the receiver
side across various learning rates.

Table 21. The evaluation parameters of the LSTM classifier-based ADI mitigation models.

Scenario One Scenario Two
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Model 1 0.012 0.62 0.67 0.62 0.55 0.24 0.024 0.62 0.61 0.63 0.48 0.16

Model 2 0.004 0.61 0.69 0.66 0.48 0.21 0.024 0.62 0.68 0.53 0.38 0.24

Model 3 0.008 0.63 0.74 0.58 0.45 0.11 0.016 0.64 0.67 0.62 0.47 0.15

Model 1 and 2 0.012 0.62 0.60 0.61 0.33 0.11 0.016 0.65 0.70 0.66 0.49 0.23

Model 2 and 3 0.028 0.68 0.62 0.68 0.50 0.10 0.012 0.65 0.67 0.61 0.39 0.13

Table 22. The Bit Error Rates of the LSTM classifier-based mitigation systems with different learning rates.
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Model 1 0.012 0.024 0.002 0.004 0.003 0.004 0.012 0.024 −09.10 −10.40 −10.20 −12.20

Model 2 0.004 0.024 0.003 0.003 0.003 0.003 0.004 0.024 −11.40 −12.40 −12.30 −12.50

Model 3 0.008 0.016 0.005 0.002 0.004 0.002 0.008 0.016 −11.30 −11.40 −11.20 −11.30

Model 1 and 2 0.012 0.016 0.002 0.003 0.003 0.003 0.012 0.016 −10.10 −10.90 −10.30 −10.80

Model 2 and 3 0.028 0.012 0.002 0.003 0.003 0.002 0.028 0.012 −10.30 −10.10 −11.10 −10.30
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The performance evaluation of the LSTM-based ADI mitigation system reveals consis-
tent results across both test scenarios. In terms of classification metrics, Model 3 exhibited
substantial precision in both scenarios, with a notably low log loss, suggesting confident
and accurate predictions. Among all combinations, the Model 2 and Model 3 ensemble
achieved the highest accuracy (0.68) in Scenario One and maintained solid recall and F1
scores, making it a strong candidate for effective ADI detection and mitigation. Scenario
Two showed slightly better overall balance in precision and recall across different models,
especially for the Model 1 and 2 ensemble.

The BER and SNR analysis in Table 22 supports the classification performance. The
extended configuration approach consistently outperformed the conventional method,
showing lower BER values and higher SNR values across most models and learning
rates. Notably, Model 2 and Model 3 maintained low BER and high SNR, especially when
data were sourced from all ten base stations, underscoring their robustness in diverse
deployment conditions. Overall, the results indicate that LSTM classifiers—especially
when ensembled—are highly effective in mitigating ADI under varying learning rates and
data sources.

4.2.3. The Results of the CNN Classifier-Based ADI Mitigation System

The performance metrics for the CNN-based ADI mitigation models under both
Scenario One and Scenario Two are summarized in Table 23. Additionally, the Bit Error Rate
(BER) and Signal-to-Noise Ratio (SNR) for the CNN-based mitigation systems, evaluated
at the receiver side for various learning rates, are presented in Table 24.

Table 23. The evaluation parameters of the CNN classifier-based ADI mitigation models.

Scenario One Scenarios Two
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Model 1 0.012 0.61 0.74 0.64 0.37 0.15 0.004 0.67 0.72 0.54 0.45 0.14

Model 2 0.016 0.64 0.75 0.53 0.50 0.20 0.024 0.63 0.67 0.62 0.47 0.21

Model 3 0.004 0.66 0.63 0.64 0.34 0.21 0.028 0.61 0.61 0.64 0.53 0.21

Model 1 and 2 0.016 0.60 0.69 0.65 0.52 0.22 0.016 0.61 0.69 0.61 0.42 0.19

Model 2 and 3 0.028 0.61 0.66 0.56 0.56 0.12 0.008 0.60 0.64 0.53 0.43 0.24

The evaluation of the CNN classifier-based ADI mitigation system reveals varying
levels of performance across different models and scenarios. In Scenario One, the highest
test accuracy (0.66) was achieved by Model 3 at a learning rate of 0.004, though it had a
relatively low F1 score (0.34). Model 2 showed a balanced performance with a test accuracy
of 0.64 and a higher F1 score of 0.50, suggesting a more reliable balance between precision
and recall. The combination of Model 2 and 3 offered slightly improved F1 performance
(0.56) with decent precision and recall, indicating its effectiveness in mitigating ADI while
maintaining model robustness. In Scenario Two, Model 1 outperformed others in terms of
test accuracy (0.67) and had a moderate F1 score (0.45), while the highest F1 score (0.53)
was achieved by Model 3. The model combination strategies in this scenario did not
significantly enhance performance metrics over individual models.

In terms of the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR), as shown in
Table 24, the CNN-based mitigation systems consistently showed better performance under
the extended configuration approach, especially when datasets from multiple base stations
were used. Model 3 achieved the lowest BER (0.003) and highest SNR values (−13.70 dB
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and −13.20 dB) under these conditions, highlighting its strong capability in reducing
interference effects. Similarly, Model 2 also performed well with a low BER and a high SNR
under the extended setup, particularly with a learning rate of 0.016.

Table 24. The Bit Error Rates of the CNN classifier-based mitigation systems with different learning rates.
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Model 1 0.012 0.004 0.002 0.004 0.003 0.003 0.012 0.004 −10.20 −11.90 −10.40 −12.40

Model 2 0.016 0.024 0.003 0.005 0.004 0.005 0.016 0.024 −11.20 −12.40 −11.20 −13.80

Model 3 0.004 0.028 0.005 0.004 0.005 0.003 0.004 0.028 −13.20 −11.40 −13.70 −11.80

Model 1 and 2 0.016 0.016 0.002 0.003 0.003 0.003 0.016 0.016 −10.30 −10.30 −11.20 −11.50

Model 2 and 3 0.028 0.008 0.004 0.004 0.004 0.004 0.028 0.008 −12.40 −11.40 −13.40 −12.50

4.2.4. The Results of the ODGB Classifier-Based ADI Mitigation System

Table 25 outlines the performance metrics of the ODGB classifier models developed
for ADI mitigation under both Scenario One and Scenario Two. In addition to classification
accuracy and related parameters, the impact of varying learning rates on system perfor-
mance was examined. Correspondingly, Table 26 presents the Bit Error Rate (BER) and
Signal-to-Noise Ratio (SNR) measurements obtained at the receiver end, offering further
insights into the effectiveness of ODGB-based mitigation strategies.

Table 25. The evaluation parameters of the ODGB classifier-based ADI mitigation models.

Scenario One Scenarios Two
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ODGB
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Model 1 0.004 0.68 0.65 0.56 0.55 0.23 0.012 0.68 0.66 0.55 0.46 0.25

Model 2 0.008 0.64 0.63 0.62 0.35 0.22 0.016 0.66 0.62 0.70 0.54 0.22

Model 3 0.012 0.66 0.62 0.67 0.53 0.21 0.008 0.64 0.62 0.54 0.31 0.18

Model 1 and 2 0.016 0.63 0.65 0.62 0.34 0.24 0.012 0.61 0.62 0.61 0.32 0.25

Model 2 and 3 0.016 0.66 0.73 0.63 0.44 0.19 0.028 0.63 0.67 0.61 0.33 0.22

In Table 25, the classification accuracy, precision, recall, F1 score, and log loss of the
models are compared under two scenarios. Scenario One shows that Model 1 achieves a
classification accuracy of 0.68 with a learning rate of 0.004, and in Scenario Two, Model 1
maintains the same accuracy with a learning rate of 0.012. Precision values remain between
0.65 and 0.66 across models, indicating a moderate ability to correctly identify positive
instances. Recall varies more significantly, with Model 1 in Scenario One having a recall of
0.56, while other models, like Model 2 in Scenario Two, achieve a recall of 0.62, indicating a
better identification of positive instances. The F1 scores, which balance precision and recall,
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range from 0.55 to 0.70, with some models exhibiting better overall balance. Log loss values
vary between 0.18 and 0.25, suggesting a moderate degree of accuracy in prediction, with
minimal fluctuation across different learning rates and models.

Table 26. The Bit Error Rates of the ODGB classifier-based mitigation systems with different learning rates.
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Learning Rate
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Model 1 0.004 0.012 0.005 0.004 0.005 0.004 0.004 0.012 −13.90 −12.80 −13.50 −11.80

Model 2 0.008 0.016 0.003 0.004 0.004 0.003 0.008 0.016 −12.60 −12.30 −11.90 −11.90

Model 3 0.012 0.008 0.005 0.004 0.004 0.004 0.012 0.008 −13.30 −13.40 −13.70 −12.90

Model 1 and 2 0.016 0.012 0.002 0.005 0.002 0.005 0.016 0.012 −11.30 −14.20 −11.40 −14.10

Model 2 and 3 0.016 0.028 - - - - 0.016 0.028 - - - -

In Table 26, the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) are examined
at different learning rates for both conventional and extended configuration approaches.
The BER shows a general decrease as the learning rate increases, which indicates better
performance in terms of error reduction with higher learning rates. For example, in Model
1, the BER is lower when using a dataset collected from all ten base stations compared
to just one base station. The SNR also improves with higher learning rates, particularly
in the extended configuration. For instance, in Model 1, the SNR values range from
−13.90 dB to −11.80 dB as the learning rate increases, showing improved signal quality
under extended configurations.

Overall, the results suggest that the ODGB-based mitigation system benefits from
higher learning rates, leading to improved accuracy, reduced error rates (BER), and better
signal clarity (SNR). However, the performance improvements are moderate and vary
across different models and configurations, highlighting the need for further optimization
and fine-tuning of learning rates for enhanced system performance.

4.2.5. The Results of the SGD Classifier-Based ADI Mitigation System

The evaluation parameters of the SGD classifier-based ADI mitigation models are
given in Table 27. The results are given for both scenarios one and two. The BER and SNR
of the SGD-based ADI mitigation systems were evaluated at the receiver side for different
learning rates. The results are presented in Table 28.

In Scenario One, Model 1 achieves a classification accuracy of 0.62 with a learning
rate of 0.008, and slightly improves in Scenario Two with an accuracy of 0.65 at a learning
rate of 0.012. Precision and recall for Model 1 in both scenarios are moderate, but the F1
scores suggest an imbalance in precision and recall. Model 2 and Model 3 exhibit similar
trends, with Model 2 achieving better recall and precision in Scenario Two (0.72 precision,
0.69 recall), while Model 3’s performance is slightly lower overall. Model combinations,
such as Models 1 and 2, show improved performance with higher accuracy (0.69), better F1
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scores (0.34), and moderate log loss (0.29–0.25), indicating improved model balance and
reliability with multiple configurations.

Table 27. The evaluation parameters of the SGD classifier-based ADI mitigation models.

Scenario One Scenarios Two
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Model 1 0.008 0.62 0.67 0.69 0.21 0.24 0.012 0.65 0.71 0.62 0.22 0.23

Model 2 0.012 0.61 0.60 0.66 0.22 0.29 0.024 0.61 0.72 0.69 0.21 0.20

Model 3 0.008 0.61 0.61 0.63 0.20 0.28 0.016 0.65 0.68 0.64 0.30 0.25

Model 1 and 2 0.024 0.69 0.68 0.68 0.34 0.29 0.028 0.68 0.66 0.69 0.32 0.25

Model 2 and 3 0.028 0.70 0.65 0.69 0.25 0.23 0.032 0.69 0.71 0.62 0.21 0.25

Table 28. The Bit Error Rates of the SGD classifier-based mitigation systems with different learning rates.
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Learning Rate

Conventional
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Model 1 0.008 0.012 0.004 0.002 0.004 0.003 0.008 0.012 −11.30 −09.30 −10.30 −10.30

Model 2 0.012 0.024 0.003 0.003 0.003 0.003 0.012 0.024 −10.30 −12.40 −10.10 −12.50

Model 3 0.008 0.016 0.005 0.002 0.004 0.002 0.008 0.016 −11.30 −11.40 −11.20 −11.30

Model 1 and 2 0.024 0.028 0.004 0.002 0.004 0.002 0.024 0.028 −13.20 −10.30 −12.70 −10.40

Model 2 and 3 0.028 0.032 0.002 0.003 0.003 0.003 0.028 0.032 −10.30 −11.20 −11.10 −10.70

In Table 28, the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) were evaluated
under different learning rates and configurations. The results show that increasing the
learning rate leads to a lower BER and an improved SNR, especially in the extended
configuration. For instance, in Model 1, the BER decreases from 0.012 to 0.004, and the SNR
improves from −11.30 dB to −9.30 dB when using data from all 10 base stations. Similarly,
Model 2 shows a reduction in BER (0.003 to 0.002) and an increase in SNR (from −12.40 dB
to −10.10 dB) with higher learning rates. The system’s performance improves further
with model combinations, particularly in extended configurations, which demonstrate
the best error reduction (BER = 0.002) and highest SNR (up to −13.20 dB), suggesting
the effectiveness of higher learning rates and extended datasets for mitigating ADI and
improving communication quality.
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4.2.6. The Results of the HGB Classifier-Based ADI Mitigation System

The results of the HGB classifier-based ADI mitigation system are presented in
Table 29, which outlines the evaluation parameters for both Scenario One and Scenario Two.
Additionally, the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) of the HGB-based
ADI mitigation systems were assessed at the receiver side under varying learning rates,
with the findings shown in Table 30.

Table 29. The evaluation parameters of the HGB classifier-based ADI mitigation models.

Scenario One Scenarios Two
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Model 1 0.004 0.62 0.70 0.67 0.31 0.28 0.024 0.64 0.72 0.62 0.33 0.28

Model 2 0.016 0.62 0.65 0.62 0.35 0.26 0.048 0.61 0.71 0.64 0.29 0.26

Model 3 0.032 0.61 0.66 0.62 0.31 0.18 0.048 0.67 0.72 0.69 0.30 0.10

Model 1 and 2 0.024 0.63 0.69 0.67 0.27 0.21 0.024 0.70 0.61 0.65 0.30 0.24

Model 2 and 3 0.032 0.68 0.69 0.65 0.20 0.23 0.036 0.70 0.70 0.69 0.22 0.12

Table 30. The Bit Error Rates of the HGB classifier-based mitigation systems with different learning rates.
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Model 1 0.004 0.024 0.003 0.002 0.004 0.003 0.004 0.024 −11.40 −10.30 −11.30 −09.90

Model 2 0.016 0.048 0.003 0.003 0.003 0.004 0.016 0.048 −10.40 −11.20 −10.40 −11.20

Model 3 0.032 0.048 0.002 0.003 0.002 0.003 0.032 0.048 −10.50 −11.10 −11.20 −11.20

Model 1 and 2 0.024 0.024 0.004 0.005 0.004 0.005 0.024 0.024 −12.40 −13.50 −13.50 −14.40

Model 2 and 3 0.032 0.036 0.003 0.003 0.004 0.003 0.032 0.036 −10.30 −10.40 −10.40 −10.30

In Scenario One, Model 1 achieves an accuracy of 0.62 with a learning rate of 0.004,
while in Scenario Two, the accuracy improves slightly to 0.64 when the learning rate is
increased to 0.024. Precision values are moderate, ranging from 0.65 to 0.72, with recall
varying between 0.62 and 0.67 across different models. Notably, Model 3 shows the
best performance in Scenario Two, with the highest recall of 0.72 and precision of 0.71,
achieved at a learning rate of 0.048. The combination of Model 2 and Model 3 in Scenario
Two performs well, achieving an accuracy of 0.70 with a relatively low log loss of 0.12,
suggesting a better balance between precision and recall compared to individual models.

In Table 30, the evaluation of the Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR)
reveals the effect of varying learning rates on system performance. As the learning rate
increases, the BER consistently decreases, indicating that higher learning rates lead to better
error mitigation. For instance, in Model 1, the BER improves from 0.024 to 0.002 when
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the learning rate increases. Similarly, the SNR improves with higher learning rates, with
Model 1 showing an increase in the SNR from −11.40 dB to −9.90 dB, demonstrating a
noticeable enhancement in signal quality. The extended configuration approach generally
results in a lower BER and a higher SNR, with Model 2 and Model 3 showing improved
performance in Scenario Two, where the SNR reaches −10.30 dB at a learning rate of 0.032.
These findings suggest that higher learning rates, especially in extended configurations,
lead to more effective ADI mitigation, with improved signal clarity and error reduction.

4.2.7. Discussion: Comparative Analysis of the Six ADI Mitigation Models

In comparing the six ADI mitigation models—GB, LSTM, CNN, ODGB, SGD, and
HGB as in Table 31—it becomes evident that LSTM, the CNN, and HGB stand out for their
balanced performance across classification and signal quality metrics. LSTM achieved the
highest F1 score (0.60) and one of the lowest BER values (0.002), showcasing its effectiveness
in both detecting and mitigating interference. The CNN followed closely, excelling particu-
larly in signal clarity, with the highest SNR (−13.7 dB), and HGB offered the best overall
classification accuracy (0.70), alongside an F1 score equal to that of LSTM, indicating robust-
ness in diverse deployment scenarios. These three models demonstrate a clear advantage
in handling complex, interference-heavy environments typical of TD-LTE networks.

Table 31. The comparative analysis of the ADI mitigation models.

Model Type Best Accuracy Best F1 Score Lowest BER Highest SNR Best Ensemble

LSTM 0.68 (M2 + M3) 0.6 0.002 −13.5 dB M2 + M3

CNN 0.67 (M1) 0.56 (M2 + M3) 0.003 −13.7 dB M2 + M3

GB 0.66 (M2) 0.36 (M2) 0.002 −13.5 dB M1 + M2

ODGB 0.68 (M1) 0.7 0.002 −11.8 dB Mixed

SGD 0.69 (M1 + M2) 0.34 0.002 −13.2 dB M1 + M2

HGB 0.70 (M2 + M3) 0.70 (M3) 0.002 −10.3 dB M2 + M3

In contrast, while GB, ODGB, and SGD showed comparatively modest classification
capabilities—with lower F1 scores and a slightly higher BER—their performance notably
improved with extended configurations and model ensembles. SGD, despite lower classi-
fication metrics, achieved a strong SNR (−13.2 dB) and a low BER (0.002), suggesting its
suitability for scenarios prioritizing signal recovery over detection precision. Across all
models, extended configurations consistently improved the BER and SNR, highlighting the
importance of leveraging broader data inputs and ensemble strategies. Ultimately, deep
learning models like LSTM and the CNN are best suited for environments where accuracy
and adaptability are paramount, while Gradient Boosting and SGD models offer efficient
alternatives for more interpretable or lightweight implementations.

5. Conclusions
In this study, we developed and validated an integrated framework for both predicting

and mitigating atmospheric duct interference (ADI) in TD-LTE networks—thereby directly
addressing two critical research gaps identified in the literature: low prediction accuracy
and limited mitigation efficiency.

For the prediction component, we implemented and compared four machine learning
algorithms trained on atmospheric and network-side features. The Random Forest model
outperformed its peers, achieving a 72.3% accuracy rate—representing a marked improve-
ment over previously reported benchmarks in ADI forecasting. By demonstrating that
ensemble methods can robustly capture the complex relationships between meteorological
variables and interference events, we have closed a key gap in reliable ADI prediction.



Future Internet 2025, 17, 237 27 of 29

However, to further improve predictive accuracy—particularly under highly variable
conditions—future work could explore the integration of temporal modeling techniques
such as attention mechanisms or transformer-based architectures, which may offer a more
nuanced understanding of the sequential nature of atmospheric phenomena.

On the mitigation side, we introduced a novel, prediction-driven strategy that dynam-
ically configures and de-configures special TD-LTE subframes in real time. Six classification
models informed these subframe adjustments, and the LSTM-based approach achieved the
highest F1 score (0.60), while the CNN model delivered the highest signal quality, reaching
an SNR of −13.7 dB and a BER as low as 0.003. The HGB model further attained the
highest classification accuracy (0.70) among all models. These results not only surpass the
efficiency of earlier, static mitigation schemes but also highlight the power of combining
deep learning with protocol-level adaptations—a hybrid solution that effectively bridges
the divide between prediction and action.

While our framework substantially advances the state of the art, we acknowledge
that inter-cell and intra-cell interference measurements at the receiver remain unavailable.
Incorporating these additional interference metrics into future model feature sets promises
to further boost both prediction fidelity and mitigation precision.

Overall, by elevating both predictive performance and mitigation effectiveness, this
work lays a solid foundation for next-generation ADI management in wireless systems.
The methodologies and promising results detailed here are directly applicable to ongoing
research and can inform practical deployments within academic and telecommunications
industry contexts.

For future work, we recommend analyzing the performance of the ADI prediction
and mitigation models using advanced software tools or APIs. Additionally, we aim to
implement these models in hardware, utilizing FPGA or ASIC technologies to bring the
framework closer to real-time, scalable deployment in operational networks.
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