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Abstract
Background: Association mapping approaches are dependent upon discovery and validation of
single nucleotide polymorphisms (SNPs). To further association studies in Anopheles gambiae we
conducted a major resequencing programme, primarily targeting regions within or close to
candidate genes for insecticide resistance.

Results: Using two pools of mosquito template DNA we sequenced over 300 kbp across 660
distinct amplicons of the An. gambiae genome. Comparison of SNPs identified from pooled
templates with those from individual sequences revealed a very low false positive rate. False
negative rates were much higher and mostly resulted from SNPs with a low minor allele frequency.
Pooled-template sequencing also provided good estimates of SNP allele frequencies. Allele
frequency estimation success, along with false positive and negative call rates, improved significantly
when using a qualitative measure of SNP call quality. We identified a total of 7062 polymorphic
features comprising 6995 SNPs and 67 indels, with, on average, a SNP every 34 bp; a high rate of
polymorphism that is comparable to other studies of mosquitoes. SNPs were significantly more
frequent in members of the cytochrome p450 mono-oxygenases and carboxy/cholinesterase gene-
families than in glutathione-S-transferases, other detoxification genes, and control genomic regions.
Polymorphic sites showed a significantly clustered distribution, but the degree of SNP clustering
(independent of SNP frequency) did not vary among gene families, suggesting that clustering of
polymorphisms is a general property of the An. gambiae genome.

Conclusion: The high frequency and clustering of SNPs has important ramifications for the design
of high-throughput genotyping assays based on allele specific primer extension or probe
hybridisation. We illustrate these issues in the context of the design of Illumina GoldenGate assays.

Background
Mapping of loci controlling traits of interest in the malaria
vector mosquito Anopheles gambiae is dependent upon the
availability of suitable genomic markers. Quantitative

trait locus (QTL) mapping analyses in An. gambiae have
successfully employed polymorphic microsatellites [1] –
the utility of which can be readily predicted and verified –
to study insecticide resistance [2,3], Plasmodium refractori-
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ness and encapsulation [4-6] or hybrid sterility [7,8].
However, microsatellites occur too infrequently in most
genomes to permit fine scale mapping. By contrast, single
nucleotide polymorphisms (SNPs) are usually abundant;
but extensive discovery and validation work is required
before their application. This has represented a major
obstacle to the development of association mapping
approaches in An. gambiae.

The release of the complete genome sequence of the PEST
strain of An. gambiae in 2002 [9] provided significant
information on polymorphism, with nearly 450,000
SNPs reported. However, the PEST strain is a cross
between two molecular forms (considered incipient spe-
cies in An. gambiae): a long-term M-form laboratory strain
originating from Nigeria and field-collected S-forms from
Western Kenya, crossed with additional Kenyan S-forms.
As such, the SNPs identified in the PEST sequence are
expected to be biased towards those that segregate
between the M and S molecular forms, rather than SNPs
likely to be polymorphic within and among natural pop-
ulations. In addition, SNPs are at relatively low frequency
in the PEST genome (approximately 1 segregating site
every 620 bp) and have an uneven distribution across the
genome, resulting in a paucity of SNPs in many chromo-
somal divisions (Fig. 3 in [9]). To date, published rese-
quencing studies in An. gambiae have validated some of
the PEST genome SNPs, uncovered additional SNPs, and
provided additional information on polymorphism lev-
els, but have been of small scale and/or focussed primarily
on genes involved in immunity [10-12].

We are interested in the factors controlling resistance to
insecticides in An. gambiae. Gene expression studies using
the An. gambiae Detox-chip [13] – a microarray for the
study of genes putatively involved in insecticide metabo-
lism – have identified loci overexpressed in insecticide
resistant strains [14-16]. However, gene expression stud-
ies are unable to detect resistance arising from allelic vari-
ants, or to locate the regulatory elements underpinning
gene expression. Association mapping has the power to
detect such variants and therefore represents a powerful
complementary approach. In its current form (version 3)
the An. gambiae Detox chip [13] has probes for 254 genes
including cytochrome p450 monooxygenases, glutath-
ione-S-transferases and carboxy/cholinesterases, plus
members of other gene families potentially involved in
detoxification processes (peroxidases, reductases, super-
oxide dismutases, ATP-binding cassettes), and housekeep-
ing loci which serve as controls.

The primary aim of our study was to resequence the suite
of genes present on the Detox chip microarray to provide
data for development of a highly multiplexed SNP array
for association mapping of insecticide resistance in An.

gambiae. Our resequencing used pooled genomic DNA
(gDNA) as template, and we also evaluate the perform-
ance of the pooling technique with respect to accuracy in
allele frequency detection and Type I and II error rates for
SNP discovery. SNPs to be screened in highly multiplexed
approaches, such as the Illumina GoldenGate assay [17]
and Affymetrix Genechip assay [18], must not only be
identified, validated and exhibit suitable levels of poly-
morphism, but must also be flanked by sequences free of
additional polymorphisms that may interfere with the
assay. Therefore, the other major aim of our study was to
gain insight into the distribution of SNPs in the An. gam-
biae genome, and how this impacts the design of highly-
multiplexed arrays. Information on all SNPs discovered in
the present study are freely available in public access data-
bases.

Methods
Samples
In order to incorporate high diversity and reduce sequenc-
ing time and costs, two pools of gDNAs were created from
An. gambiae M- and S-forms of diverse geographical ori-
gin. The M pool consisted of samples from Odumasy,
coastal Ghana (N = 3), Bonia, northern Ghana (N = 3)
and Koubri, southern Burkina Faso (N = 4) and the S pool
consisted of samples from Odumasy, Ghana (N = 3),
Mampong, central Ghana (N = 2), Asembo Bay, Kenya (N
= 2) and Thyolo, Malawi (N = 3). DNA from each sample
was extracted using the Ballinger-Crabtree method [19]
and molecular form (M/S) determined with the method
of Fanello et al. [20]. The 2La+/2La inversion kayotype was
determined using the PCR diagnostic developed by White
et al. 2007 [21]. Frequencies in the pools were M-pool:
0.05/0.95 2La+/2La; and S-pool: 0.65/0.35 2La+/2La. Fol-
lowing determination of DNA concentrations using
PicoGreen [22], pools containing equimolar amounts of
DNA from each contributing sample were created and
used for PCR.

PCR and sequencing of pooled samples
Target loci were primarily selected to be coincident with
the genes on the An. gambiae detox chip [13] with addi-
tional loci sequenced to cover the paracentric inversion
polymorphisms on chromosomes 2L and 2R [23], which
might aid future identification of inversion karyotypes
from the linkage disequilibrium in these regions. Details
of genes studied are given in Additional File 1. Primers
were designed to generate amplicons of approximately
600 bp using Primer3 [24] and checked for unique bind-
ing to the Vectorbase-Ensembl AgamP3 genome sequence
using BLAST. Our strategy was to amplify genic regions
plus flanking regions approximately 5 kbp up- and down-
stream in an attempt to capture variation potentially asso-
ciated with nearby cis regulatory elements. Where genes
were > 5 kbp in length, primers were designed to amplify
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regions approximately every 5 kbp. In total, 973 primer
pairs were designed (including redesigned primer pairs to
replace those which could not be optimised). Reactions
were optimised to yield a single product, which was
sequenced in both forward and reverse directions, using
the amplicon-specific primers, by Macrogen (Macrogen
Inc., Seoul, South Korea).

Sequence traces were aligned with CodonCode Aligner
(CodonCode Corporation, Dedham, MA.) Traces, or por-
tions thereof, with low Phred quality scores were automat-
ically discarded. Nucleotide positions exhibiting
polymorphism within or between template DNA pools,
were identified with the aid of the mutation detection tool
in CodonCode Aligner, and through manual inspection
of all sequencing traces. We assigned a confidence score to
each SNP identified: 1 = a SNP is identified with full con-
fidence, being clearly apparent in both forward and
reverse sequencing traces; 2 = a SNP is identified with con-
fidence but with the caveat that only unidirectional
sequence is available; 3 = a SNP is observed but with some
cause for doubt, e.g. only unidirectional sequence with a
relatively high background signal is available. Since
sequencing was undertaken on PCR products of pooled
DNAs, estimates of SNP frequency were based on a visual
estimate of relative peak height in ambiguous positions.

All SNPs have been submitted to dbSNP (see Additional
file 1 for SS numbers; rs numbers are scheduled to be
available in build 129 or 130 of dbSNP).

Validation of the pooling approach
Sequencing of the individual samples used to make up the
pooled DNA was undertaken for thirteen amplicons
(CYP6R1, COE18026, CYP4G17, COEjhe1F,
COEB21998, CYP325A3, COEjhe4F, CYP325C1,
CYP9K1-up, CYP6M4, CYP6M1_1 (2 overlapping ampli-
cons), CYP6M1_2). Although some of these loci were
chosen on the basis of biological interest, the only other
criterion was that primers generated single, strong PCR
amplicons. Thus, the loci should comprise a representa-
tive sample of our pooled sequences. Individual DNA
samples were amplified using the identical primers to
those used on pooled DNA templates. As before, individ-
ual sequences were aligned with CodonCode Aligner and
mutations identified using the CodonCode Aligner muta-
tion detection tool, with all calls checked by manual
inspection. SNP frequency from individual DNAs was cal-
culated and compared to the SNP frequency estimates
obtained via sequencing of pooled DNA samples. In addi-
tion, to investigate how polymorphism in the mixed-tem-
plate pools corresponded with polymorphism in natural
populations, we also sequenced two pools (N = 5 each) of
field collected specimens from a single southern Ghana-
ian population (Dodowa, Greater Accra region, all S form,

2La+/2La = 0.5/0.5) and two pools (N = 5 each) from
Cameroon (Ngousso, Yaoundé, all M form, 2La+/2La =
1.0/0) using the same 13 primer pairs. Data from the two
pools of N = 5 were combined for analysis.

Data Analysis
Variability was calculated as the number of segregating
sites (S) and the nucleotide diversity (π). Although allele
frequencies were determined through pooling, π can be
estimated [25] following Li [26]. We adjusted our segre-
gating site frequency (S) and nucleotide diversity figures
to account for the false positive (FPR) and false negative
rates (FNR) identified through comparison of individual
and pooled sequences (S = Sestimated/1(1-FNR+FPR); π =
πestimated/(1-FNR+FPR)). Variability was determined
across the total dataset, and was also analysed following
subdivision into five categories of loci: cytochrome p450
mono-oxygenases; glutathione-S-transferases; carboxy/
cholinesterases; other detoxification loci; and other loci
with no known detoxification function. Bootstrapped
confidence limits of S were calculated using the Poptools
add-in for Microsoft Excel [27]. In order to estimate
whether SNPs were distributed evenly across the regions
sequenced, gap distances (distance in base pairs between
adjacent SNPs) were calculated for 5653 SNPs (following
omission of sequences with only a single SNP and also the
first and final SNP in each sequence). Each value (within
a sequence) was then compared to the average gap dis-
tance for the whole sequence, yielding a count of gaps
lower and higher than the average in each sequence; meas-
ures which are independent of SNP frequency. The null
hypothesis of symmetry in the distribution of gaps around
the average of each sequence was examined using a sign
test in SPSS 14 (SPSS Inc.), performed across all
sequences.

Design of Illumina GoldenGate assay
All SNPs identified were submitted to the Illumina Assay
Design Tool (ADT) to determine their suitability for gen-
otyping with the GoldenGate assay. The ADT assesses
whether an Illumina assay can be used to interrogate the
SNP, checking for duplicated regions, SNPs in flanking
sequence, and whether probe melting temperatures are
within assay limits.

Results
Evaluation of the pooling approach
Overall, there was a good correlation between SNP fre-
quencies estimated from pooled and individual data (Fig-
ure 1). The rate of false positives, i.e. SNPs identified
through sequencing of pooled templates that were not
confirmed by sequencing of individual samples, was low
at 4.1%. Sequencing of pooled DNA generated a high rate
of false negatives, with 30% of SNPs identified by individ-
ual template sequencing missed, but the median fre-
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quency of these SNPs was low (0.10; where x-axis = 0 in
Figure 1). Across sequences the majority of correlations
between individual and pooled allele frequency estimates
were consistently high and well predicted by confidence
scores (Figure 2). However, several relatively poor correla-
tions are evident (labelled in Figure 2), which were either
impacted by high indel frequencies (COEB21998,
CYP325A3 M-pool – no indels present in S-pool) or were
of marginal sequence quality (COE18026). Similarly,
mean confidence scores showed significant predictive
value for false negative rates (Figure 3). Perhaps most
strikingly, false positive rates differed dramatically among
confidence score classes with a 2.1% rate for confidence
score 1 (37% of SNPs) and a 7.8% rate for confidence
score 2 (47.5% of SNPs) but a 32.1% false positive rate for
confidence score 3 (15.5% of SNPs). Clearly, therefore,
SNPs assigned a confidence score of 3 should be avoided
as target markers unless additional evidence of polymor-
phism is available.

Relationship between polymorphism in M and S pools and 
single population samples
Allele frequencies estimated from the diverse S-form pool
correlated well with those in pools of samples from a sin-
gle population collection of S-form samples from Ghana
(median Pearson correlation across sequenced amplicons
r = 0.80) and moderately well with those in a pool of M-
form samples collected from a single population in Cam-
eroon (median r = 0.51). Allele frequencies in the diverse

M-form pool were moderately correlated with those in the
Cameroon single population pool (r = 0.42), and only
weakly related to those in the Ghanaian single population
pool (r = 0.21). Correlations between the allele frequen-
cies obtained from sequencing individuals comprising the

Relationship between SNP frequencies estimated from sequencing of individual DNA templates and sequencing of pooled templatesFigure 1
Relationship between SNP frequencies estimated 
from sequencing of individual DNA templates and 
sequencing of pooled templates. R2 = 0.61, P < 0.001. 
False positives are arrayed along the x axis (y = 0) and false 
negatives are arrayed along the y axis (x = 0).

Correlation between individual and pooled allele frequency estimates for M- and S-form pools plotted against confidence score (lower = more confident)Figure 2
Correlation between individual and pooled allele fre-
quency estimates for M- and S-form pools plotted 
against confidence score (lower = more confident). R2 

= 0.27, P < 0.01. Points are labelled where sequence quality is 
poor and/or indel-affected.

False negative rates in pooled template SNP discovery for M- and S-form pools plotted against confidence score (lower = more confident – see text for definition)Figure 3
False negative rates in pooled template SNP discov-
ery for M- and S-form pools plotted against confi-
dence score (lower = more confident – see text for 
definition). R2 = 0.25, P < 0.05.
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M and S-pools and the Cameroon and Ghanaian pools
were similar to those obtained when comparing pooled
estimates. Thus SNPs identified in the diverse S-form pool
could be of greater general utility than those in the diverse
M-form pool, though those present in both M- and S-form
pools are likely to be of most widespread value.

Properties and frequency of segregating sites
In total, sequencing was undertaken successfully on 660
loci (see supplementary material), comprising 323,114
bp. Other PCR reactions failed to optimise, gave unusable
sequence or were affected by multiple indel events which
prevented analysis. Sequencing of geographically diverse
pools of M (N = 10) and S (N = 10) individuals revealed
a total of 7062 polymorphic features. Sixty-seven (0.95%)
were indels, of which we could not determine the exact
position for 36. Additional indels were inferred from
rapid reductions in quality of sequencing traces, but nei-
ther the causative polymorphism nor its exact position
could be determined. These are not included in the poly-
morphic feature count and thus we will have underesti-
mated the true indel frequency. The remaining 6995
polymorphic features were SNPs. 702 of the 7026 features
(10%) already have dbSNP numbers from sequencing of
the PEST strain, whereas 6324 are novel. Sixty-seven trial-
lelic and three tetrallelic SNPs were identified directly
from sequencing traces. An additional 15 SNPs were
inferred to be triallelic through discrepancies between the
nucleotide variation we identified and that identified at
the same SNP position via sequencing of the PEST strain.
Thus, we estimate that approximately 1% of all SNPs are
multiallelic.

A polymorphic feature was found approximately every 34
bp (after correction), although lower frequencies of segre-
gating sites were observed on the X chromosome and
around centromeres (Figure 4). Nucleotide diversity was
similar in the M (π = 0.0079) and S pools (π = 0.0082) but
there was significant variation among gene classes
(ANOVA F4,655 = 13.2, P << 0.001) with the cytochrome
P450s and carboxylesterases much more polymorphic
than other classes (Figure 5). Of the 7062 polymor-
phisms, 191 (or 2.7%) were found to differentiate the M
and S- form pools. Whilst it would be unwise to regard
these as fixed M- vs S-form differences because of the
small sample sizes involved, it is interesting to note that
many of these SNPs are located within the 'islands of spe-
ciation' [28] on chromosomes 2L, X and 2R.

SNP distribution
By comparing the distribution of gap lengths (distances
between features) to the average for each sequence we
found that 60% of gap sizes fell below the average, with
little variation among the locus classes (p450s, GSTs,
COEs, other detoxification, control loci: range 59%–

61%). The distribution of gap widths was significantly less
symmetric about the averages than expected by chance
(Sign test z = -12.854; P << 0.001), indicating significant
clustering of SNPs, with many exhibiting very small gap
distances (Figure 6). Thus, SNPs are clustered but not in a
locus-type specific way, suggesting that, in contrast to SNP
frequency, SNP clustering is a general feature of the
genome, rather than being confined to certain gene fami-
lies.

Illumina GoldenGate Assay design
To determine if the SNPs could be used for association
mapping studies on the Illumina Goldengate platform we
used Illumina's assay design tool (ADT) algorithm (Addi-
tional file 1). Results are summarised in Figure 7. Only 4%
of all SNPs met the highest quality criteria for design rec-
ommended by Illumina: well validated (represented by
our confidence score 1) and an ADT score of ≥ 0.8. How-
ever, 23% of SNPs were considered suitable for assay
design with ADT scores ≥ 0.6 and confidence scores of 1
or 2, since false positive rates for confidence score 2 are
reasonably low (see above). ADT scores between 0.4 and
0.6 were less favoured but such SNPs may be used for
design (SNPs with an ADT score < 0.4 are not recom-
mended): 38% of SNPs with a confidence score 1 or 2 had
an ADT score of ≥ 0.4. Illumina recommends that SNPs to
be targeted in the Goldengate assay should have a mini-
mum of 50 bases of flanking sequence free of polymor-
phism on each side: the high and clustered nature of
polymorphisms meant that only 5% of our SNPs fulfilled
this criterion. Nevertheless, it is interesting to note that,
some flexibility in placement of one of the probes (the so-
called locus-specific oligonucleotide) in the assay design
clearly permits many more acceptable assays to be
designed than predicted by this strict 50 bp per flank cri-
terion.

Discussion
The development and application of high-throughput
genotyping methodologies for the malaria mosquito
Anopheles gambiae depends upon the identification of SNP
markers. We have resequenced approximately 0.12% of
the An. gambiae genome in geographically diverse pools of
An. gambiae M- and S-forms, identifying 6,995 SNPs and
31 indels that could be mapped, and 36 indels that could
not be precisely mapped (additional indels were inferred
but could not be precisely identified or positioned due to
their effect on sequence quality). Of the SNPs we identi-
fied, only 10% had been identified previously from
sequencing of the PEST strain genome. This suggests that
the sequencing of this strain has dramatically underesti-
mated the true SNP frequency in An. gambiae. Similarly,
Morlais et al., in sequencing of 3 lab strains (Yaoundé,
L35, 4arr), found 324 SNPs in 26 loci (total 17 kbp) [11].
Only 39% of these SNPs had been predicted by Ensembl
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Nucleotide diversity plotted against chromosome division in An. gambiae (average of M- and S-form pools); with bars showing the number of loci sequenced in each chromosome divisionFigure 4
Nucleotide diversity plotted against chromosome division in An. gambiae (average of M- and S-form pools); 
with bars showing the number of loci sequenced in each chromosome division. Approximate positions of centro-
meres are marked by arrows. Note the upper plot is scaled to reflect the lower effective population size (3/4) of the X chro-
mosome.
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(although Ensembl records an additional 42 not observed
by Morlais et al. [11])

By sequencing the gDNA of pooled individuals we sub-
stantially reduced the cost of the resequencing pro-
gramme. Through comparison of allele frequencies
estimated from pooled DNAs with those obtained from

sequencing of individual templates it is apparent that
pooling of template DNAs yields relatively accurate allele
frequency estimates and a very low rate of false positives.
Many low frequency SNPs that were identified through
sequencing of individual DNA samples were missed in the
sequencing of pooled templates. However, since low fre-
quency SNPs perform poorly in detection of linkage dise-
quilibrium [29] this is unlikely to be problematical when
identifying SNPs suitable for use in association mapping
studies. Though essentially qualitative, our SNP confi-
dence scores proved valuable predictors of false positive
rates, and should be considered when choosing from the
SNPs we have identified, noting that SNPs with category 3
confidence scores are much less likely to be truly polymor-
phic than those with confidence scores 1 and 2. In sum-
mary, pooling of gDNA templates provided a useful
technique in permitting analysis of polymorphism at a
large number of genes in a total of 20 individuals (as two
pools of 10 each), at one tenth of the cost of individual
sequencing. If cost-reduction is not a major consideration
and/or if detection of low frequency polymorphisms is a
primary concern, sequencing of individual templates or
the use of a next generation technology, such as 454 pyro-
sequencing (454 Life Sciences), with pooled PCR products
would be a preferred approach.

Nucleotide diversity estimates in our study are compara-
ble to those obtained in other studies of An. gambiae
[10,11,30,31] or other mosquitoes [32] (Table 1), partic-
ularly those employing similar sample sizes [10,11].

Frequency of segregating sites (S) in A. gambiae by gene class – cytochrome p450s (p450), glutathione-S-transferases (GST), carboxy/cholinesterases (COE), other detoxification loci (other detox) and control non-detoxification related loci (other)Figure 5
Frequency of segregating sites (S) in A. gambiae by 
gene class – cytochrome p450s (p450), glutathione-S-
transferases (GST), carboxy/cholinesterases (COE), 
other detoxification loci (other detox) and control 
non-detoxification related loci (other). Error bars are 
2.5% and 97.5% confidence limits, generated by bootstrap-
ping.

Distribution of gap distances between adjacent SNPsFigure 6
Distribution of gap distances between adjacent SNPs. The dashed line indicates the overall mean gap width.
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Indeed, the only study recording much lower diversity
[30] involves either extremely low sample sizes or loci in
a known area of low recombination (Table 1). It is inter-
esting to note that we observed the same pattern as
Cohuet et al. [11] with respect to X-chromosome diver-
sity: even allowing for smaller effective population size
(3/4) of the X chromosome than the autosomes, nucle-
otide diversity is low. However, we did not observe the
dramatically lower diversity in X chromosome divisions 5

and 6, than divisions 1–4 reported by Stump et al. [30].
We suspect that the greater degree of mixing of distinct
populations in our study might reconcile these findings,
since slowly recombining regions will tend toward loss of
diversity within, and increased differentiation among,
populations. Mixing of populations will thus have a pro-
portionately greater impact in such a genomic area since
differentiation will inflate measures of diversity.

Polymorphism estimates based upon nucleotide diversity
are less informative than the frequency of segregating sites
for the design of high-throughput assays where variable
bases close to the SNP of interest can affect assay design
and therefore should be avoided. On average we find a
segregating site every 34 bp, a figure which compares
favourably with previous estimates from mosquitoes.
Apart from the aforementioned exceptional figures associ-
ated with centromeres or a small sample, the range of esti-
mates for segregating site frequency for the studies cited in
Table 1 are 1 SNP per 29 to 1 SNP per 48 bases. The prob-
lems for assay design resulting from this high SNP fre-
quency will frequently be exacerbated because SNPs show
a clustered distribution. Unrecognised non-target SNPs in
probe-binding sites can appear as null alleles in Illumina
analyses [33,34]. Whilst their effects on the use of Affyme-
trix Genechips for genotyping are unknown, non-target
SNPs are detrimental to gene expression profiling on this
platform [35,36]; it is reasonable to assume they may also
negatively affect genotyping accuracy. In addition to the
impact of high SNP density, the effect of multiallelic SNPs
must also be recognised for probe design. Multiallelic
SNPs will also pose difficulties for genotyping with multi-
plex genotyping platforms as null alleles will be scored.
Although null alleles can be recognised with some plat-

Classification of SNPs according to Illumina's assay design tool (ADT) algorithm, which predicts suitability in the Illu-mina Goldengate assay, and SNP confidence scores (lower = more confident)Figure 7
Classification of SNPs according to Illumina's assay 
design tool (ADT) algorithm, which predicts suitabil-
ity in the Illumina Goldengate assay, and SNP confi-
dence scores (lower = more confident). SNPs with 
higher ADT scores are predicted to have a better chance of 
success.

Table 1: Estimates of nucleotide diversity in mosquitoes ( ), obtained from different source populations, numbers of loci sequenced 

(N loci) and sample sizes (N).

Species Source of sequenced samples N loci N Study

An. gambiae ss mixed wild population (M) 8 203 0.0208 [30]
mixed wild population (M) 142 203 0.0043 [30]
single wild population (M) 109 8 0.0076 [10]
mixed wild populations (M) 660 104 0.0079 Present study
3 lab strains (M) 35 7–9 0.0091 [11]
mixed wild populations (S) 8 223 0.0191 [30]
mixed wild populations (S) 142 223 0.0043 [30]
mixed wild population (S) 109 9 0.0092 [10]
mixed wild populations (S) 660 104 0.0082 Present study

An. arabiensis single wild population 22 23 0.0040 [30]
lab population1 109 8 0.0064 [10]

An. funestus single wild population 50 21 0.0079 [31]
Ae. aegypti 3 lab strains 25 n/a 0.0122 [32]

1recently colonised from field without dramatic bottleneck [10]; 2centromeric X-chromosome loci; 3average N across loci; 4single pool of DNA:  
corrected for elevated Type II error rate.

p

p

p
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forms, and controlled for [33,34], they could be problem-
atical where not anticipated.

GoldenGate assays have, to date, been successfully
applied to a variety of species, including humans, honey
bee [37], cattle [38], spruce [39], soybean [40] and barley
[41]. Conversion rates of assays have been consistently
high for these species, indicating that secondary polymor-
phisms or unrecognised multiallelic SNPs have not had a
major impact on study success. However, all of these spe-
cies either exhibit low polymorphism or studies were
undertaken on inbred lines. For example, in the human
genome, SNPs occur on average at 250 bp intervals
(Ensembl 50 human genome statistics). Therefore, the
high SNP frequency in Anopheles, and the coincident effect
on Goldengate assay design, is a far more significant prob-
lem than for previous studies. Indeed, according to Illu-
mina's assay design tool, the majority of SNPs were
unsuitable for Goldengate assay probe design.

The Anopheles/Plasmodium Affymetrix Genechip, which
was designed for gene expression studies, rather than as a
genotyping tool, has been used to study the degree of dif-
ferentiation between the M and S forms [28]. Since the
probe length for this assay is shorter (25 bp) than in the
Illumina GoldenGate assay, the high SNP frequency may
be less problematical. However, since the array was not
designed specifically for genotyping it is difficult to assess
the inherent difficulties posed by the high diversity and
clustering in Anopheles for this assay. Although quantita-
tive extrapolation of our array design experience with Illu-
mina to other platforms is difficult, it seems clear that for
Anopheles, and probably other mosquitoes or species with
high rates of genomic diversity, high throughput SNP-typ-
ing will be negatively impacted, through loss of SNPs at
the design stage and/or loss of data due to null alleles at
the analysis stage. Whilst somewhat speculative, it also
seems likely that confident assembly of short-read frag-
ments into contigs or onto the template of an existing
genome assembly in massively parallel sequencing runs
[42] will be rendered difficult if multiple SNPs are present
in many fragments. Hopefully, a more comprehensive
database of segregating sites in An. gambiae might amelio-
rate this problem.

In the present dataset, SNP frequencies varied both phys-
ically and according to their location within or near gene
classes. As reported elsewhere [30] and predicted by low-
ered recombination rates within the regions, diversity was
lower toward the centromeres of autosomes and on the X
chromosome. Diversity was significantly elevated in loci
of the cytochrome p450 mono-oxygenase and carboxy/
cholinesterase (COE) families than in the glutathione-S-
transferases and control loci, with a segregating site every
26 bp in the p450s and COEs compared with every 34 bp

overall. This higher SNP frequency is likely to exacerbate
the problems for assay design in these gene families, espe-
cially given the significant SNP clustering in this genome.
High rates of variability in human p450s have been
reported [43] but higher rates of polymorphism in mos-
quito p450s or COEs have not been previously identified.

A higher rate of insertion of transposable elements in
xenobiotic-metabolising p450s of Drosophila (in contrast
to those p450s involved in ecdysone biosynthesis and
developmental regulation) result in high rates of mutabil-
ity of p450s [44] indicating that the function of such
p450s is more tolerant of polymorphism. Also in Dro-
sophila, enzymes involved in xenobiotic metabolism
exhibit a higher nonsynonymous: synonymous (dN/dS)
ratio than the average over the dataset (ω = 0.05 compared
with ω = 0.045 overall, P = 0.011 [45]). The higher levels
of dN/dS for xenobiotic enzymes may indicate that the
higher polymorphism levels seen in p450s and COEs
reflects less stringent selection at these loci than others,
perhaps because of flexibility in function among closely-
related gene family members.

The high diversity in An. gambiae is likely related to large
effective population size (Ne). Nucleotide diversity is a
product of mutation rate and Ne and the highest recorded
levels of polymorphism, for the urochordate Ciona
savignyi, are thought to be due to its high Ne [46]. The esti-
mates of Ne available for An. gambiae suggest levels of Ne
equal to a few thousand [47,48]. However, Ne is notori-
ously difficult to estimate accurately, particularly for spe-
cies exhibiting often limited genetic population structure
over wide geographic scales, such as An. gambiae.
Improved Ne estimates would help elucidate the role of
Ne in explaining the high nucleotide diversity that we, and
other authors, have observed.

In Drosophila spp. recombination rates are positively cor-
related with nucleotide diversity [49-51], especially at a
fine-scale [51], although the relative roles of selection and
mutation generated by recombination in underpinning
the pattern are controversial [49-51]. In An. gambiae, the
first major study to estimate recombination rate indicated
a small recombination map length of 215 cM over the 278
Mb genome, or 0.78 cM/Mb [1]. This is lower than typical
average figures of 1–4 cM/Mb for most organisms and far
less than the 19 cM/Mb recorded in the honey bee [52].
Thus, broad-scale recombination estimates in An. gambiae
do not support a relationship between diversity and
recombination rate. However, more recently, a survey of
recombination rate along the X-chromosome, recorded
an overall average recombination rate of 1 cM/Mb, but
with dramatic variation in local rates between 0.2 and 7
cM/Mb [53] dependent on chromosome position. Thus a
link between sporadically high recombination rates – per-
Page 9 of 11
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haps involving recombination hotspots – and high, clus-
tered diversity could apply in An. gambiae. Fine-scale
estimates of recombination rate are now required to per-
mit investigation of how the interplay between recombi-
nation and selection determines diversity.

Conclusion
By sequencing pooled template DNA, we have identified
nearly 7000 SNPs in Anopheles gambiae, primarily in or
around detoxification-related genes. SNP frequencies var-
ied among gene families, being particularly high in mem-
bers of the P450 monooxygenase and carboxyl/
cholinesterase enzyme superfamilies. The SNPs identified
represent a valuable resource for mapping studies, but a
high SNP frequency and clustered distribution in An. gam-
biae, which may be general features of mosquito genomes,
present a significant challenge for the design of genotyp-
ing arrays.
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