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Abstract 
Additive manufacturing is a renowned technology for producing three-dimensional objects, based on ceramic, metal, and plastic materials for 
different applications. This review examines and provides a perspective on using nanomaterials along with biopolymeric matrices for 3D printing 
(3DP) with potential applications in pharmaceutical dosage forms. Many 3DP methods have been developed for the formulation of drug delivery 
systems, including stereolithography, fused deposition modelling (FDM), selective laser sintering, and bioprinting through droplet- or extrusion-
assisted techniques. Polymeric drug-loaded nanocapsules regulated the drug release profiles from 3D-printed tablets with faster drug release 
from 50% infill tablets. Also, incorporating nanomaterials/micro-ribbons significantly changed the mechanical and flow properties of polymers 
used in 3DP. For example, the addition of 1% w/w chitosan micro-ribbons to poly-vinyl alcohol powder improved filament mechanical properties 
for FDM 3DP in terms of flexibility and stiffness, with enhanced disintegration time of 3D-printed oral films. Berberine nanoparticles were inte-
grated into a biodegradable and biocompatible 3D-printed pill, which facilitated sustained drug release and improved gastrointestinal absorption. 
Furthermore, nanocrystals enhanced the solubility of 3D-printed oral films. In conclusion, nanocomposites improved 3D-printed drug delivery 
systems in different aspects such as mechanical strength, solubility, and drug release profiles.
Keywords: 3D printing; nanoparticles; pharmaceutical dosage forms; mechanical properties; nano-fibres; fused deposition modelling

Introduction
There is potential for the introduction of three-dimensional 
printing (3DP) technology into the pharmaceutical sector 
to lead to a paradigm shift in the process of designing, 
formulating, and manufacturing medicines, as well as their 
utilization by the end user [1, 2]. It has also become a focus of 
research and development in numerous fields [3, 4] including 
biology and biomedicine, as it could construct any desired 3D 
model quickly and accurately [5–7]. As a rapid prototyping 
(RP) technology, one can conceptually define the term 3DP as 
a direct digital manufacturing method that allows the crea-
tion of a broad range of object geometries (including internal 
channels) using a wide variety of materials [8, 9]. Various 
methods have been introduced for additive manufacturing 
(AM), such as fused deposition modelling (FDM), stereoli-
thography (SLA), inkjet printing, and selective laser sintering 
(SLS) [10]. Among these, the most popular and most cost- 
effective is FDM [11].

The most direct factors affecting 3DP quality are the various 
printing strategies and dimensional scales [12]. For example, 
the FDM 3DP method operates based on the principle of ma-
terial extrusion, as illustrated in Fig. 1A. In this technique, a 
thermoplastic polymer undergoes melting (a key requirement) 

and is subsequently extruded through a nozzle onto a build 
platform. The nozzle’s movement is dictated by the program 
(g-code) generated by slicing software tailored to a specific de-
sign. The melted polymer is deposited layer by layer, forming 
a three-dimensional (3D) object [13]. Common materials 
employed in this method include poly(lactic acid) (PLA), ac-
rylonitrile butadiene styrene (ABS), thermoplastic polyure-
thane (TPU), polypropylene (PP), nylon, polycarbonate, and 
polyether ether ketone (PEEK) [14]. Key advantages of this 
method encompass its capability to process a diverse range 
of materials, low maintenance costs, absence of toxic chem-
icals, rapid production of thin objects, an overall tolerance 
of 0.1 mm, and ease of material change. However, notable 
disadvantages include surface roughness, a relatively slow 
process, dimensional constraints, the occurrence of voids, and 
lower mechanical properties [15].

Nanotechnology offers new opportunities in the develop-
ment of more advanced 3D-printed medical devices and drug 
delivery systems that have the potential to significantly in-
fluence and improve therapeutic effects [16]. Nanomaterials 
include nanoclusters, nanoparticles (NPs), nanocrystals, nano-
fibres, nanotubes, nanorods, nanowires, and nanofilms [17]. 
It has been proven that the use of nanomaterials is favourable 
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987The potential applications of nanocomposites in 3D-printed drug delivery systems

in the fields of in vitro diagnostics, drug delivery, and in 
vivo imaging, as well as for the development of implants, 
biomaterials, and coatings. Nanofillers are more advanta-
geous than macrofillers, since they have a high aspect ratio 
and an extremely high surface-to-volume ratio. Furthermore, 
uniform dispersion of these nanofillers into the host matrix 

allows them to offer a large interfacial area per volume, which 
in turn improves the polymers’ mechanical properties [18]. 
To date, the combination of nanotechnology and 3DP has 
led to a new age of conductive tissue engineering scaffolds 
that possess multifunctionality and optimized properties [19]. 
The interaction between device- (biomaterial-) and cell has 

Figure 1. (A) Schematic diagram of fused deposition modelling using composite filament for the 3DP process. (B) Schematic diagram of the 
incorporation of nanomaterials in three different 3DP methods.
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988 Algellay et al.

promoted broad applications of different nanomaterials in 
biomedicine and biology [20], such as SiO2-gold nanoshells 
[21], water-soluble polymers [22], hydrogels [23], starch-
based powders [24], and fibrin gels [25]. Utilization of these 
biomaterials has been seen in the fabrication of various med-
ical devices, such as neurone-adhesive patterns [26], collagen 
scaffolds [27], synthetic biodegradable scaffolds [28–30], as 
well as fibrin channels [23, 31]. Based on all the 3D nano-
scale fabrication methods, there is greater adoption of 3DP 
due to its speed in fabrication and precision in dimensions 
and geometric shapes [32]. To date, various nanofabrication 
techniques, including electro-spinning, phase separation, 
self-assembly processes, thin film deposition, chemical vapour 
deposition, chemical etching, nano-imprinting, photolithog-
raphy, and electron beam or nanosphere lithographies, have 
been developed to create nanomaterials with both ordered 
and random nanotopographies [33].

Nanoparticles have begun to be employed in the 3DP of 
pharmaceutical dosage forms with improved mechanical [34] 
and drug release properties [35]. This review paper inspects 
and provides a perspective on using nanomaterials along with 
biopolymeric matrices for 3DP with potential applications 
in pharmaceutical dosage forms. The ongoing efforts and 
trends specific to the formulation of nanocomposites have 
been investigated and summarized concerning additive 
manufacturing.

Nanomaterials for 3D-printed polymeric 
composites
When materials are reduced to the nanoscale, there is a sub-
stantial increase in the ratio of surface roughness and surface 
area to volume. This change can lead to heightened surface re-
activity and enhanced physicochemical properties, including 
electrical, mechanical, optical, magnetic, and catalytic char-
acteristics [36]. The advanced properties of nanobiomaterials 
have given them the excellent potential for numerous biomed-
ical applications, such as utilization in advanced tissue/organ 
regeneration [37]. Kaynak and Varsavas [38] investigated the 
mechanical characteristics of three types of composites: neat 
PLA, glass fibre (GF)-reinforced PLA, and TPU-blended PLA. 
Both injection moulding and 3DP methods were employed 
in the study. Using twin-screw extruders, composite filaments 
were produced for 3DP, containing 10 %w/w TPU and 15% 
w/w GF in a PLA matrix. Subsequently, dog-bone specimens 
were 3D printed from these filaments, and their performance 
was compared with dog-bone samples obtained through injec-
tion moulding. Upon conducting tensile and flexural tests, the 
researchers did not observe significant differences in strength 
between the specimens from the two manufacturing methods. 
However, they did note a slight increase in the elastic modulus 
values of the 3D printed specimens compared to the injection 
moulded ones. This difference was attributed to the stiffening 
effect caused by the slightly textured structure formed during 
the 3DP process.

Both solid and liquid polymers have been used as feedstock 
for 3DP. Even though 3D printed polymer scaffolds possess 
customized geometric complexities, the absence of bioaffinity 
and mechanical integrity still creates hurdles for their use in 
clinical applications. Further tests need to be conducted on the 
methods of dispersing and integrating different nanomaterials 
into biopolymeric matrices to address these problems. Thus, 

nanomaterials like metals, ceramics, carbon, and polymers 
are being examined for their potential use in 3D printed bi-
omedical scaffold applications [39, 40]. Figure 1B presents 
schematically the incorporation of nanomaterials in typical 
3DP methods. Table 1 provides a selection of the utilization 
of natural and synthetic biopolymers that have been incorpo-
rated with nanomaterials and processed using a range of 3DP 
techniques. The addition of nanomaterials improved mechan-
ical and viscoelastic properties.

Polymeric nanomaterials
Over the past decade, nanoscale cellulose nanocrystals (CNCs) 
and cellulose nanofibers (CNFs) derived from natural re-
sources have been extensively utilized in the biomedical field, 
including applications in tissue engineering, wound healing, 
drug delivery systems, implants, and cardiovascular devices. 
This widespread use is due to their exceptional chemical, 
mechanical, and biocompatible properties. Recent research 
has explored the combination of 3DP with nanocellulose 
and polymers as a promising approach for future regener-
ative therapies. The printability of nanocellulose hydrogels, 
attributed to their shear-thinning behaviour, along with their 
ability to support living cells, enables 3D bioprinting with 
nanocellulose. This advancement is considered to have signif-
icant potential [41].

Often, polymers at the nanoscale level and in a variety 
of structures (spheres, tubes, fibres, core-shell designs) are 
mixed with bulk polymeric matrices to improve the func-
tionality of final tissue constructs and processability in 3DP. 
For instance, when nano-fibrillated cellulose was incorpo-
rated into an alginate matrix, an adjustable shear-thinning 
bioink was produced. The resulting material was then used 
for printing cartilage tissues of the ear and the meniscus 
at room temperature and with high structural reliability. 
As proof-of-concept, the bioink was used to entrap human 
chondrocytes before printing and resulting in a viability of 
over 70% [42].

Another application of nanofibers has been in cartilage 
tissue engineering to facilitate the treatment of patients with 
congenital or acquired hearing defects. Bioink based on 
nanofibrillar cellulose and alginate has been utilized to con-
duct 3DP for the fabrication of hearing structures with ap-
propriate cellular distribution and density. It was observed 
that the process supports the redifferentiation of cells and the 
development of components with cartilage-specific extracel-
lular matrix [43]. For the preparation of a hydrogel ink using 
CNCs and an interpenetrating polymer network (IPN) made 
up of gelatine and sodium alginate, it was discovered that a 
vast improvement in the rheological properties was achieved 
for 3DP. Furthermore, it was observed that the orientation 
of the CNCs was aligned at about 80% of the printing di-
rection, as proven by the 2D wide-angle X-ray scattering. 
Moreover, there was a successful optimization of the gradient 
pore structures for the 3DP of scaffolds. Thus, it was able to 
demonstrate the potential of CNCs to create scaffolds with 
controlled pore structure, pore size, and nanocrystal align-
ment via 3DP [44]. By taking advantage of their inherent 
stiffness and robust mechanical strength, CNCs were incor-
porated into composites to lend toughness to the 3D-printed 
objects. 3DP via SLA was used with the CNC nanocomposite 
hydrogel to form structures appropriate for tissue engineering 
[45].
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3DP using bioinks can be used to print structures that 
mimic musculoskeletal tissues to create nanofibrous matrices. 
Polylactic acid nanofibres were therefore integrated within al-
ginate hydrogel before being bioprinted with human adipose-
derived stem cells (hASCs). Utilising bioink with nano-fibre 
reinforcement allowed cells to proliferate in bioprinted parts 
for over 2 weeks with excellent cell viability. At its peak (day 
7), the metabolic activity of the cells with the nano-fibres 
was 28.5% higher than those without nano-fibres. Regular 

examination of the bioprinted meniscus along the external 
areas revealed greater cell density compared to the structure’s 
internal regions. Proteoglycans and collagen were both found 
in the regions around hASCs, indicating that chondrogenic 
differentiation and secretion of extracellular matrix had 
taken place [46]. To examine the behaviour of nanocellulose-
alginate hydrogels during the 3DP of the constructs, compu-
tational fluid dynamics tools were employed. The composite 
hydrogel attained enhanced biofunctionality when cellulose 

Table 1. Summary of biopolymers incorporated with nanomaterials utilized in a range of 3DP techniques.

Nanomaterials polymers Printing 
method

Application Main outcome Ref.

1 Nanocrystalline 
hydroxyapa-
tite (nHA)

Chitosan Extrusion 
Bioprinting

Bone tissue engi-
neering

Storage moduli increased for formulations 
containing nHA

[113]

2 Silver 
nanoparticles 
(AgNPs)

Alginate SLA Bionic ears The printed ear showed enhancement in 
auditory sensitivity for radio frequency re-
ception, and both paired left and right ears 
capable of stereo audio music listening

[71]

3 Nanocellulose Alginate Extrusion 
printing

wound Dressing Enable the creation of personalized implant 
and wound-healing products containing 
therapeutic agents with gradual release

[47]

4 nHA Collagen Extrusion 
printing

Tissue Vasculariza-
tion engineering 
scaffolds

Internal microchannels were created within 
the model

[114]

5 Single-wall 
nanotubes 
(SWCNTs)

Agarose Extrusion 
printing

Biosensors, flexible 
electronics, tissue 
engineering, and 
organ printing.

Enhanced electrical conductivity of 3D 
printed hydrogels, and allowed 3DP of 
patterned hydrogel structures.

[115]

6 Multi-wall 
nanotubes 
(MWCNTs)

Alginate Extrusion 
printing

Fabrication process 
to print vascular 
conduits directly

Improved tensile strength and elastic mod-
ulus, along with reduced ultimate strain, 
result from greater polymer chain cohesion 
due to increased physical entanglements.

[116]

7 Nanocellulose Alginate Extrusion 
Bioprinting

Cartilage tissue 
engineering

Significantly improved shape fidelity [42]

8 Lidocaine, 
diclofenac 
sodium

CMC nano-fibres Gel extrusion Wound healing Sustained release of encapsulated drug (lido-
caine) in the nano-fibres

[50]

9 nHA Polylactic acid FDM Bone tissue repair Improved stem cell adhesion, vascular cell 
growth, proliferation, and osteogenic dif-
ferentiation

[55]

10 PLGA 
nanofibers

Polycaprolactone FDM Cell therapy and 
tissue regener-
ation

Achieve greater mechanical stability and 
enhanced cell adhesion

[49]

11 Gold 
nanoparticles

Polylactic acid FDM Bone tissue regen-
eration

Enhanced mechanical strength, increased 
stiffness, and improved cell adhesion

[66]

12 nHA 1,6-Hexanediol 
l-phenylalanine-
based poly 
(ester urea)

FDM Bone regeneration Significantly elevated mechanical properties 
and enhanced scaffold calcium minerali-
zation

[57]

13 MWCNTs Polycaprolactone Extrusion 
printing

Cardiac tissue en-
gineering

CNTs reinforced the alignment of the pol-
ymer chains. As a result, improvement in 
elastic modulus and hardness

[77]

14 Indomethacin 
nanocrystal

Hydroxypropyl 
methyl cellulose

Extrusion 
printing

Fast dissolving oral 
film

Developed 3D printed film and enhanced 
solubility

[79]

15 Fe3O4 NPs Polycaprolactone Paste extru-
sion

In vitro Doxoru-
bicin delivery

Developed osteogenic activity, localized 
anticancer drug delivery, and magnetic 
hyperthermia

[80]

16 albendazole 
nanocrystals

PEG 1500/
propylenegycol

Melting So-
lidification 
Printing 
Process

To improve drug 
aqueous solu-
bility

3D printed tablets with 25% nanocrystals 
released 90% of the drug within first 
15 min, compared to 25% of commer-
cially available capsules

[81]
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nanofibrils provided sites where avidin protein was able to 
anchor covalently. As a result, water absorptivity and tissue 
compatibility were observed under moist conditions [47]. To 
collect and sense pore-forming toxins and facilitate detoxifica-
tion, a poly(diacetylene) (PDA) nanoparticle-based 3D device 
was devised. Specifically, dynamic optical projection stereo-
lithography (DOPSL) was used to create the bioinspired 3D 
device. This was done by placing PDA NPs in a polyethylene 
glycol diacrylate (PEGDA)-based 3D structure possessing a 
modified liver lobule structure [48].

Two synthetic biopolymers (PCL and PLGA) were used in 
combination to achieve enhanced mechanical stability of 3D 
printed scaffolds fabricated from molten PCL filaments and 
to improve the cell adhesion by using PLGA nanofibres. It 
was found that the scaffolds were suitable for use in tissue 
regeneration and cell therapy processes. The synthesized 
scaffolds consisted of 3D printed PCL with electrospun PLGA 
nanofibre walls and seeded cells. Tensile tests and SEM were 
conducted and revealed no loss in fibre integration and me-
chanical strength within the matrix. Fluorescence and elec-
tron microscopy were used to examine the attachment of cells. 
Further tests revealed insignificant toxicity and cell differen-
tiation into chondrogenic and osteogenic types within the 
scaffolds. Results showed that adding nanofibers increased 
the mechanical stability and enhanced cell adhesion [49].

Diclofenac sodium (DCS), a nonsteroidal anti-inflammatory  
drug (NSAID), and the local anaesthetic lidocaine (LID) were 
mixed in wound-dressing materials and prepared via two dis-
tinct techniques. A comparison was made between the release 
of these drugs from a 3D bioprinted carboxymethyl cellulose 
(CMC)-based scaffold and their release from an electrospun 
CMC-based nano-mesh. LID and DCS had release profiles 
that were completely distinct for the electrospun materials 
compared with those obtained from 3D-printed scaffolds. 
Specifically, for electrospun nanofibres, up to 90% of both 
drugs were released within the first 30 min, signifying a prom-
ising foundation for treating wounds that require quick pain 
reduction. The latter is notable in LID, whose onset of action 
occurs within a couple of minutes, with an effect that is meas-
urable in hours [50].

Tablets (printlets) were prepared by the FDM 3DP after 
soaking poly(ε-caprolactone) (PCL) and Eudragit® RL100 
(ERL) filaments with or without a channelling agent (man-
nitol) in deflazacort-loaded nanocapsules (particle size: 
138 nm). Results showed that the drug loading and drug re-
lease profiles were dependent on the polymeric material of 
the tablets and the presence of the channelling agent. In par-
ticular, tablets prepared with 50% infill had a higher drug 
loading (0.27% w/w) and a faster drug release rate [35].

Ceramic nanomaterials
Tissue engineering is starting to utilize nanoscale ceramics, 
such as bioactive glass (BG), silica (SiO2), hydroxyapatite 
(HA), tricalcium phosphate (TCP), zirconia (ZrO2), and alu-
mina (Al2O3) mainly due to their enhanced bioactivity and 
mechanical strength compared to their bulk counterparts 
[51]. Nanoceramic materials were added to polymer ma-
trices to simulate composite hard tissues and enhance their 
degradation profiles, mechanical properties, and biochemical 
functions [52]. This was achieved by using alkaline ceramics 
such as hydroxyapatite to neutralize the acid end-products 
degraded from polymeric scaffolds such as PLA [53]. 3DP 

has recently improved nanoceramic distribution in polymeric 
matrices for hierarchically structured scaffolds. Furthermore, 
nanohydroxyapatite (nHA) is steadily being accepted as a filler 
material. Almost 70% of the hard tissues in the human body 
are made of calcium hydroxyapatite (Ca10(PO4)6(OH)2) and 
are clinically utilized for dental and orthopaedic repairs [53]. 
These nanocomposites facilitated the passage of bone cells 
and bone ingrowth. However, the main challenges of creating 
bone-like structures by using the aerosol-based 3DP system 
are dispersion of nanophase ceramics in the polymer solutions 
by applying controlled sonication power and adjusting rhe-
ological properties of nanocomposite suspensions for ideal 
aerosolization [54].

PLA-based FDM-printed scaffolds embedded with nHA 
gained various active sites where human mesenchymal stem 
cells (hMSCs) could attach, spread, and undergo osteogenic 
transformation. This eventually led to an enhancement in 
the vasculature and bone matrix formation compared to 
pure PLA scaffolds [55]. In 3D printed PLGA constructs, an 
increase in the content of nHA from 0 to 20 wt.% resulted in 
a gradual increase in compressive strength and modulus. The 
results showed that the compressive strength of the scaffolds 
increased from 1.82 to 32.81 MPa. However, composites 
started to show signs of brittleness beyond that point [56]. 
Porous scaffolds (75% porosity) with enhanced compres-
sive modulus (~50 MPa) were obtained when 1,6-hexanediol 
L-phenylalanine-based polyester urea (PEU) was blended with 
HA nanocrystal in a layer by layer, fused deposition process. 
Furthermore, seeding of the MC3T3-E1 pre-osteoblasts 
achieved >95% cell viability and a composition-dependent 
improvement of radio-contrast after a week-long incuba-
tion in phosphate-buffered saline (PBS) at 37°C. There was 
a 330-fold increase in bone sialoprotein expression with PEU 
scaffold containing 30% HA nanocomposite by week 4. A 
185-fold increase was also generated within the mineralized 
extracellular matrix of PEU-nHA. The rarely examined PEU-
based nanocomposites have therefore stimulated bone re-
generation and were considered suitable to orthopaedics 
[57]. The addition of nHA and TCP in PCL-based composite 
scaffolds, with two different synthesis methods, increased the 
compressive modulus by 130% and 107%, respectively [58]. 
Cell adhesion was enhanced by the incorporation of glass 
NPs into a nozzle-based 3D-printed PLA scaffold as it made 
the surface of the scaffold rougher and more hydrophilic 
[59]. Another study integrated calcium phosphate NPs (Ca–
Ps) into a chitosan and collagen composite that produced a 
scaffold that mimicked natural bone structure and improved 
osteo-conductivity and surface area [60].

Recently, there have been attempts to produce com-
posite bioinks using ceramic nanomaterials to enable 3D 
bioprinting. The hMSCs were suspended in poly(ethylene 
glycol) dimethacrylate (PEGDMA) inks and used with a 
thermal inkjet printer. With bioactive glass (BG) and HA 
NPs undergoing simultaneous polymerization produced 
substrates having an accurate arrangement in the 3D struc-
ture. The interaction between hMSCs and nHA had high cell 
viability (>85%) and a higher compressive modulus after a 
3-week period. Biochemical analysis indicated high produc-
tion of collagen and elevated activity of alkaline phosphatase 
in the PEGDMA-nHA group, in agreement with PCR-based 
gene expression data. This study indicated that nHA has a 
higher efficiency compared to BG for hMSC osteogenesis 

D
ow

nloaded from
 https://academ

ic.oup.com
/jpp/article/77/8/986/8142569 by guest on 05 August 2025

https://www.sciencedirect.com/topics/materials-science/three-dimensional-printing
https://www.sciencedirect.com/topics/materials-science/polymer-solution


991The potential applications of nanocomposites in 3D-printed drug delivery systems

related to bioprinted bone constructs [61]. To address the 
challenge of producing an osteochondral arthritic joint in-
terface, a compact stereolithography 3D printer was used 
to process a nano-ink composite formed by using nHA. The 
osteochondral scaffold produced higher in vitro stem cell 
proliferation, adhesion, and differentiation due to the hierar-
chical nano-to-micro structure having spatiotemporal bioac-
tive factor gradients [62].

Synthetic silicate clay is one class of nanomaterials that has 
various applications in bioprinting. Nanoclays were deemed 
appropriate for regulating shear-thinning behaviour and pre-
gel solution viscosity in bioinks for producing customized 
tissue constructs. Several shapes, such as a hemisphere, cube, 
bundle, pyramid, the human ear, and human nose, were 
created using ternary poly (ethylene glycol) (PEG)-alginate-
nanoclay composite hydrogels. The nanocomposite hydrogel 
of this kind was tough yet appropriate for 3DP and endured 
cell culture [63]. Novel 3D bone scaffolds were successfully 
crafted and printed, featuring supporting structures for bone 
formation and 3D microvascular mimicking channels with 
a high degree of interconnectivity. These attributes provided 
better and more efficient osteogenic bone regeneration along 
with vascular cell growth [55]. By employing a chemical 
functionalization method, the specimens were conjugated 
with nHA to produce novel nano- and micro-featured tools 
for vascularized bone growth [55].

hMSCs mixed in PEGDMA were co-printed with hydrox-
yapatite (HA) and bioactive glass (BG) through simultaneous 
polymerization to obtain printed substrates having precise 
positioning in three-dimensional (3D) locations. This was 
to evaluate the activity of bioactive ceramic NPs towards 
the stimulation of osteogenesis in printed bone marrow-
contained hMSCs in PEGDMA scaffold. Considering all the 
groups, those hMSCs that interacted with HA presented the 
most significant cell viability (86.62 ± 6.02%) and a higher 
compressive modulus (358.91 ± 48.05 kPa) after 21 days 
in culture. Biochemical analysis indicated that the PEG-HA 
group had the highest production of collagen and activity 
level of alkaline phosphatase, which agreed with quantitative 
PCR-based determination of gene expression. The poly (eth-
ylene glycol) glycinamide (PEG-GA) scaffold had the highest 
level of collagen deposition when assessed using Masson’s 
trichrome staining. Hence, HA has better effectiveness when 
compared to BG, for hMSCs osteogenesis in bioprinted bone 
constructs [61].

Metallic nanomaterials
Metals not only have superior mechanical strength but also 
serve as essential frameworks for several bone-forming 
proteins and enzymes, and as enzyme co-factors to start angi-
ogenesis and the formation of extracellular matrices. In com-
parison to their bulk counterparts, metallic nanostructures 
demonstrate an increased ability to boost antimicrobial ac-
tivity and bioactivity and characteristics, such as fluorescence, 
plasmonic behaviour, electrical conductivity, and magnetism. 
The inclusion of metallic nanostructures in 3D printed pol-
ymeric tissue constructs brings the multifunctionalities of 
the engineering applications to the target tissue. Despite the 
rapidly broadening metal NPs applications in therapeutics, 
sensors, and medical diagnostics, there are few reports on 
tissues created by 3DP methods [64]. Silver/graphene oxide 
homogeneous nanocomposites were applied to 3D printed 

β-tricalcium phosphate bioceramic scaffolds, resulting in a 
dual-functional scaffold. Through in vitro testing, the scaffold 
demonstrated both antibacterial and osteogenic properties 
[65].

Gold NPs (GNPs) have a biocompatible nature and have 
been the subject of extensive study for bone engineering 
because they possess the remarkable ability to stimulate 
osteogenic differentiation and bone formation [64]. The 
shortcomings of bioactivity and mechanical stability make 
conventional hydrogels inappropriate for the repair of body 
tissue. These limitations may be overcome by integrating bi-
oactive GNPs in hydrogel-reinforced PLA using 3DP. The 
results demonstrated that nanocomposite hydrogel stiffness 
after reinforcement using 3D-printed microstructures may 
be adjusted to replicate the stiffness of the human mandib-
ular condyle. Increasing gene expression and better osteo-
genic differentiation were made possible by employing such 
a method [66]. In an alternative study, GNPs were produced 
using an aqueous environment on 3D-printed PCLs having a 
PDA coating. The GNPs embedding technique with printed 
scaffolds markedly increased bone matrix deposition both in 
vivo and in vitro [67].

3D-printed core-shell capsules exhibiting programmable re-
lease were described by Gupta et al. [68]. Those capsules had 
aqueous cores and PLGA shells loaded with plasmonic gold 
nanorods which provided selective rupturing of the capsules 
upon laser irradiation. The capsules were described as a proof 
of concept of the combination of additive manufacturing 
and smart materials [69]. Silver NPs (AgNPs) were concur-
rently grown after embedding them with metal salts, PEGDA 
oligomer, and photo-initiator, along with radiation expo-
sure, heat treatment, and 3DP of the composite. The AgNPs 
exerted a positive effect on the thermo-mechanical properties, 
electrical attributes, and morphology of the 3D-printed 
nanocomposites [70]. A bionic ear was created in the shape 
of the anatomical human ear using 3DP with a combination 
of a cell-seeded hydrogel matrix, silicone, and AgNPs. The 
cell-seeded hydrogel matrix was used for in vitro creation of 
cartilage tissue, where AgNPs provided electric conductivity 
to the silicone-based ear antenna coupled to electrodes. The 
3D-printed structure exhibited stereophonic ability and audi-
tory detection of radiofrequency signals. Hence, the produced 
bionic ear has demonstrated both nanoelectronic and biologic 
characteristics after integration with the 3D printed AgNP 
composite [71].

The mix of nano-titania (natural oxide of titanium) NPs 
(32 nm) with PLGA showed potential in drug delivery systems 
and bone tissue engineering. The adaptable nanocomposite 
properties show promise in producing dental prosthetics. 
Moreover, the surfaces of such nanocomposite scaffolds 
demonstrated uniform dispersion of titanium NPs after 3DP 
[54]. Implantable magnetic mat systems to tackle hyper-
thermia during anti-cancer treatment were produced by the 
introduction of iron NPs (Fe3O4) in E-jet 3D printed mats. The 
magnetic characteristics of PCL/Fe3O4 mats provided efficient 
heating during exposure to alternating magnetic fields [72]. 
The stability of encapsulated NPs and the retained heating 
capacity made possible the cyclic heating provided by nan-
ocomposite mats. These mats were positioned near tumours 
using surgical procedures instead of intravenous injection. 3D 
printed mats were also recommended for the delivery of iron 
NPs for inducing hyperthermia for tumour treatment [72]. 
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The combination of hydrogel with NPs provides the opportu-
nity to develop smart (stimuli-responsive) materials [73].

New avenues in the manufacturing of low-cost and 
on-demand antimicrobial surgery equipment could be opened 
by combining 3DP and sonochemistry technology. For ex-
ample, a surgical retractor was designed from a commer-
cial PLA filament using fused deposition modelling, while a 
thin layer of Ag NPs was developed via a simple and scal-
able sonochemical deposition method. The printed retractor 
exhibited a reduction in Staphylococcus aureus (S. aureus), 
Pseudomonas aeruginosa (P. aeruginosa), and Escherichia 
coli (E. coli) viability in experiments conducted at 30, 60, 
and 120 min during lab trials. Also, SEM showed homoge-
neous and full surface coverage of Ag NPs [74]. Furthermore, 
silver NPs were embedded within PLA filaments; and the 
3D-printed objects demonstrated antibacterial activities. 
The printed objects exhibited antimicrobial activity against 
Staphylococcus aureus, Escherichia coli, and Pseudomonas 
aeruginosa. This study showed that incorporating AgNPs 
(0.01–5% w/w) into PLA does not significantly alter its bulk 
properties but imparts antibacterial characteristics to the 
composite [75].

Composite nanomaterials
For tissue engineering, 3DP is making a transition to the 
creation of complex polymeric structures. Multifunctional 
3D constructs can be formed by integrating several 
monofunctional nanomaterials. PLGA nanospheres (75 ± 
17 nm in diameter) and nHA-based (80–100 nm in length) 
bioinspired nanomaterials were surrounded by chondrogenic 
transforming growth factors. Nanoink-based stereolithog-
raphy has been demonstrated to create interconnected three-
layer graded osteochondral scaffolds. The results showed that 
20% nHA increased the compressive modulus in the scaf-
fold by 29% compared to non-nHA control. Also, in vitro 

experiments using mesenchymal stem cells demonstrated 
better cellular differentiation and proliferation [62].

Dual nanomaterials were created using carbon nanotubes 
(CNT) with nHA/PCL composite scaffolds having square 
pores with a diameter range of 450 to 700 nm. The PCL 
polymeric phase had well-dispersed CNT and nHA inside 
the composite having 20 nm mesopores induced by the 
CNTs present in the scaffold (Figure 2). For composites 
having variable reinforcement, a 0.75 %w/w CNT caused 
yield stress to rise by 55% (6.5 MPa, compressive), while 
2% CNT caused the electrical conductivity to rise signif-
icantly. Hence, electrical stimulations were possible for 
healing in the trabecular bone. The CNTs demonstrated 
an improvement in protein adsorption and cell attachment 
[68]. 3DP was employed to develop a bone clip structure-
based internal fixation mechanism. A rat femur bone was 
scanned using computer-assisted tomography (CAT). PLA 
and nHA with silk were the construction materials. The 
PLA-nHA-silk composite demonstrated adequate perfor-
mance in positioning bony segments with bone fractures in 
animal studies [76]. PCL and PCL-based CNT composites 
demonstrated cell proliferation and may potentially have 
applications in cardiac tissue engineering [77]. Also, PLA/
HA composite formulations with 5–15 %w/w HA were 
used for mimic real human trabecular structure by an FDM 
printer. However, the HA particle incorporation decreased 
the printing accuracy, while showing potential for enhance-
ment of the mechanical properties [78].

Pharmaceutical applications
NPs and nanocomposites have been employed in the 3DP of 
pharmaceutical dosage forms. Examples are given in Table 
1 [47, 50, 79–81] and further works are explained in the 
following.

Figure 2. (A) SEM image of the CNT composite scaffold. (B) Higher SEM image magnification of the composite surface. (C) TEM image of the 
composite (left inset: electron diffraction pattern of HA nanoparticle; right insert: high-resolution image of a HA crystal), demonstrating formation of CNT 
network in the scaffold at 10% w/w CNT content. Reproduced with permission from reference [68].
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Fused deposition modelling
Beck et al. [35] incorporate nanocapsules into 3D printed 
tablets by soaking the 3D printed devices in the suspension 
of the nanocapsules, which were detected on the surface 
(Fig. 3A) and inside (Fig. 3B) of the 3D printed tablets. The 
researchers utilized FDM to craft drug delivery devices from 
poly(ε-caprolactone) (PCL) and Eudragit® RL100 (ERL) 
filaments, with or without a channelling agent (mannitol). 
PCL was selected due to known biocompatibility and bio-
degradability. In addition, polymeric nanocapsules have the 
capability to regulate drug release profiles. These devices 
were immersed in an aqueous suspension of nanocapsules 
loaded with deflazacort (with a particle size of 138 nm), 
resulting in the fabrication of 3D-printed tablets (referred to 
as printlets), which were observed through scanning electron 
microscopy (SEM). The presence of the channelling agent 
(mannitol) enhanced drug loading, with a strong linear rela-
tionship observed between soaking time and drug loading. 
Furthermore, drug release kinetics were influenced by both 
the polymer composition of the tablets and the inclusion 
of the channelling agent. Notably, tablets featuring a par-
tially hollow core (50% infill) exhibited higher drug loading 
(0.27% w/w) and a faster rate of drug release (drug release 
half-life reduced from 20 min to 10 min by the inclusion of 
the channelling agent). This study presents an innovative 
method for converting nanocapsule suspensions into solid 
dosage forms and demonstrates an efficient 3DP technique 
for producing novel drug delivery systems, with potential 
applications in personalized nanomedicine [35].

Hot-melt extrusion method was employed to produce 
Eudragit® L100-55 filaments containing alginate NPs 
encapsulating oxaliplatin (OP-NPs). Eudragit L100-55, a 
pH-sensitive methacrylic acid ethyl acrylate copolymer, was 
selected due to its widely used excipient in the formulation 
of the colon-targeted drug delivery systems. The active in-
gredient was formulated as NPs to improve oxaliplatin 
antitumor activity, tumour targetability, and safety profile. 
These OP-NP-loaded filaments were then utilized to pro-
duce 3D-printed tablets using an FDM printer. The tablets 
presented excellent uniformity in drug content and selective 
release of OP specifically in the colonic environment. To eval-
uate the antitumor efficacy, CT-26 tumour-bearing mice were 
treated with the 3D-printed tablets containing OP-NPs, and 
the results were compared with those of intravenous and oral 
administrations of OP solution. Additionally, compressed 
tablets were prepared via a direct compression method with 
the same formulation containing OP-NPs. The antitumor 
effects of the 3D-printed tablets containing OP-NPs were 
found to be remarkable and comparable to those of intra-
venous OP solutions, while demonstrating a superior safety 
profile. In contrast, the compressed tablets did not exhibit 
any significant antitumor effect, possibly due to non-selective 
drug release in the stomach and upper intestine environments 
[82]. 3D-printed tablets containing OP-NPs reduced the 
colon tumour volume in tumour-bearing mice from 150 mm3 
to 50 mm3 over 14 days [82].

Micro-ribbons/microfibers of chitosan or cellulose were 
found to alter the mechanical characteristics of filaments 

Figure 3. SEM images of (A) surface and (B) cross section of the tablet loaded with nano-capsules. Arrows indicate nanoparticles. Reproduced with 
permission from reference [35].

D
ow

nloaded from
 https://academ

ic.oup.com
/jpp/article/77/8/986/8142569 by guest on 05 August 2025



994 Algellay et al.

manufactured through hot melt extrusion. Chitosan and cel-
lulose were selected due to their biocompatibility properties. 
At elevated concentrations, both chitosan micro-ribbons 
and cellulose microfibers rendered the filaments unsuitable 
for high-quality printing. The addition of 1% w/w chitosan 
micro-ribbons to poly-vinyl alcohol (PVA) powder improved 
filament mechanical properties in terms of flexibility (from 
8.13 kg/mm2 to 13.09 kg/mm2) and stiffness (from 7824 g/
mm2 to 8002 g/mm2) (Fig. 4). Additionally, it enhanced dis-
integration time of the FDM-printed oral films. Chitosan 
micro-ribbons may form a network of hydrophilic channels 
within the film, which facilitates rapid disintegration of the 
film in aqueous media [34]. Addition of cellulose microfibres 
(C2000) at 1% w/w increased both film tensile strength and 
elongation compared to the control formulation (without 
cellulose microfibre). It was also found that the surface 
morphology of the filaments became uneven by adding the 

cellulose microfibre, although this did not affect the quality 
of the printed films (Fig. 5, unpublished data).

Semisolid extrusion 3DP
The semi-solid extrusion method was utilized to produce 
fast-dissolving oral polymeric films loaded with indometh-
acin nanocrystals via 3DP. Hydroxypropyl methyl cellulose 
(HPMC) served as the film-forming polymer, while glyc-
erol functioned as the plasticizer. HPMC was selected as 
the film-forming polymer due to its excellent film-forming 
properties for thin-film formulations and its ability to sta-
bilize supersaturated drug solutions. The aim was to de-
velop an immediate release drug delivery system based on 
nanocrystals. Optimal mechanical properties were observed 
in films containing HPMC concentrations of 2.85% (w/w) 
and 3.5% (w/w), which were selected for further drug-loaded 
film investigations. Three different drug concentrations 

Figure 4. Mechanical properties of formulations contained PVA only, chitosan as micro-ribbon (1% w/w), and chitosan as powder (1% w/w). A: Tensile 
strength, B: Elongation. Error bars represent standard deviations (n = 3). The data were obtained from a previously published work [34].
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were examined in the printing studies. At the ideal concen-
tration, the films exhibited flexibility, homogeneity, disinte-
gration within 1 to 2.5 minutes, and drug release within 2 
to 3 min. The drug nanocrystals maintained their nano size 
range (300 to 500 nm) within the polymer films. Comparing 
the 3D-printed polymer films to conventionally casted ones 
revealed similar physicochemical behaviour and pharmaceu-
tical performance [79].

Nanogels have been used as a filler of the 3D-printed ex-
ternal construct to modify its physicochemical properties 
or biocompatibility. Liu et al. incorporated Poloxamer 
407 (also known as Pluronic F-127) nanogels carrying 
simvastatin into the 3D-printed porous titanium alloys for 
orthopaedic applications. This was to develop materials 
with desired mechanical properties with an internal porous 
structure, which provided cavities ideal for filling with the 
injectable thermosensitive hydrogel. Titanium alloy by itself 
was poorly compatible with bone ingrowth. Poloxamer 407 
nanogels carrying simvastatin-induced osteogenic factors 
and promoted osteogenesis but were poor in mechanical 
strength. By combining two composites, a new construct was 
created. The 3D-printed porous titanium scaffolds filled with 
nanogels carrying simvastatin achieved both good compati-
bility with bone ingrowth and mechanical strength. As a re-
sult, this construct significantly enhanced vascularization and 
presented a correlation between the volume of new bone and 
neovascularization in 4–8 weeks after implantation [83].

3DP can be used to create a mould or a frame for fabricating 
nanogels. Tao et al. 3D-printed a mould for preparing nanogels 
using the MRI of a patient’s brain tumour cavity. This 
“customizability” (patient-specific design) is one of the unique 
benefits that 3DP technology can offer to the indirect pro-
duction of nanogels in customer-based settings. In this study, 
customized conformal hydrogel nanocomposites containing 
paclitaxel were prepared in the shape of the patient’s glioma 
tumour cavity created after surgery. For nanogels, paclitaxel 
was encapsulated in NPs and then suspended uniformly in 

macroporous hydrogels. It was observed that NPs slowly 
released paclitaxel, and the hydrogel matrix further delayed 
elution of paclitaxel into the external medium in vitro. In cell 
culture settings, slower release of paclitaxel efficiently inhib-
ited the proliferation of glioma tumour cells. This promises an 
efficient use of hydrogels as a cavity filler after surgical tumour 
resection to eradicate any residual tumour tissues/cells [84].

Nanogels are promising biocompatible materials that fa-
cilitate localized delivery of multiple drugs. Cho et al. [40] 
demonstrated the precise construction of nanogel discs 
containing paclitaxel and rapamycin using 3DP technology. 
These 3D-printed nanogel discs (12 mm in diameter and 
1 mm thick) successfully avoided premature gelation during 
storage and prevented the initial burst release of the drugs in 
the dissolution medium. In vivo, the 3D-printed nanogel discs 
enabled effective intraperitoneal delivery of paclitaxel and ra-
pamycin in ES-2-luc ovarian-cancer-bearing xenograft mice. 
Additionally, they proved to be therapeutically effective and 
capable of preventing postsurgical peritoneal adhesions in the 
treated xenograft mice [40].

A hydrogel scaffold composed of polyallylamine hydro-
chloride and pectin, incorporated with mupirocin-loaded 
quaternized chitosan NPs, was successfully fabricated using 
3DP [85]. The 3D scaffold controlled the release of mupirocin 
via the quaternized chitosan NPs. The mupirocin-loaded 
quaternized chitosan NPs had an average size of 66.05 nm, 
while the 3D-printed construct exhibited an average strand 
diameter of 147.22 ± 5.83 μm and a pore size of 388.44 ± 
14.50 μm. Additionally, the scaffolds showed a haemolysis 
rate below 2%, classifying them as non-haemolytic materials 
with adequate blood compatibility. The biocompatible scaf-
fold showed a great promise for treating chronic and infected 
wounds by preventing infections and facilitating faster 
wound healing. The scaffold demonstrated notable antibacte-
rial activity, improved cell viability in HaCaT cells, sustained 
mupirocin released up to day 7, and promoted in vivo wound 
healing by stimulating human keratinocytes [85].

Figure 5. Photographs of a formulation contained polyvinyl alcohol (69%w/w), paracetamol (30% w/w), and 1% w/w cellulose C2000 microfibre. The 
images demonstrate printing acceptable films, although the surface of the filament was not smooth (Unpublished data).
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Photopolymerization 3DP
Vat polymerization (photopolymerization) is a technique 
where a photo-cross linkable resin liquid is converted into 
a solid upon light irradiation [86, 87]. A study investigated 
the use of stereolithography (SLA) and vat polymerization to 
develop 3D-printed nanocomposites for medicinal purposes. 
Berberine NPs (BBR-NPs) were fabricated and integrated 
into a biodegradable, biocompatible 3D-printed oral dosage 
forms [88]. This approach facilitated sustained BBR release, 
improved gastrointestinal absorption, reduced degrada-
tion, and enhanced bioavailability in vivo [88]. The findings 
demonstrated the potential of SLA-assisted 3DP for creating 
advanced drug delivery systems, including those with mul-
timodal or multi-compartment capabilities. Although NPs 
were not used in the matrix of 3DP, latticed microneedle array 
patches (L-MAPs) were manufactured as a platform by the 
application of photopolymerization. This was done to dem-
onstrate the delivery of small molecules, mRNA lipid NPs, 
and solid-state ovalbumin protein. The production of pro-
grammable L-MAPs was demonstrated with adjustable cargo 
release profiles, enabling combination of needle geometries on 
a single patch [89].

The interaction between nanomaterials and 
formulation components
The successful integration of NPs into the 3DP process 
necessitates detailed attention to various factors. These in-
clude selecting suitable NPs, ensuring their uniform dis-
persion and distribution within the matrix, and optimizing 
processing parameters to achieve compatibility and efficient 
incorporation. Furthermore, a thorough understanding of the 
interactions between NPs and the matrix polymer is crucial 
for attaining the desired material properties and enhancing 
the performance of the final printed parts [90]. A primary ad-
vantage of incorporating nanomaterials into material extru-
sion processes (FDM 3DP) was the substantial improvements 
in mechanical properties. For example, the inclusion of 
carbon nanotubes (CNTs) or graphene within the polymer 
matrix markedly enhanced the tensile strength, modulus, 
and toughness of the resulting printed components [91]. In 
addition, printed objects containing PLA-AgNPs exhibited 
significant antibacterial behaviour against Staphylococcus au-
reus, Escherichia coli, and Pseudomonas aeruginosa without 
chemical changes to the matrix polymer [75]. In the tissue 
engineering sector, FDM printer was used to print bone scaf-
fold by incorporating gold NPs with PLA. Results showed 
improvements in cell adhesion and increase stiffness and 
strength properties [66]. Furthermore, photopolymerization 
has shown the ability to produce nanocomposites with 
enhanced mechanical strength and antibacterial properties 
by integrating cuprous oxide (Cu₂O) NPs into the 
photopolymerization resin. Incorporating Cu₂O NPs at low 
concentrations notably improved the materials’ mechanical 
performance by approximately 20% even at low filler loadings 
and enhanced biocidal efficacy, rendering them highly suit-
able for diverse engineering and medical applications [92].

Comparative analysis
Among the discussed 3DP methods, FDM is readily avail-
able with low prices. There are several suppliers of FDM 3D 
printers, which makes obtaining one possible within a short 
period of time. FDMs normally need filaments to generate 

printed objects. Most of the available filaments do not contain 
the desired active ingredients or NPs. Therefore, the filaments 
should be manufactured prior to 3DP. Producing filaments 
can be challenging, as they should have a uniform diameter 
and desirable mechanical strength to withstand the mechan-
ical stress from the gearing mechanism at the printer head. 
The addition of NPs may not create problems during filament 
manufacturing but may significantly increase the viscosity of 
the molten filament (unpublished data by the authors). Direct 
3DP may eliminate the need for manufacturing filaments. 
However, again the high viscosity of the molten powder at the 
printer head may prevent extrusion of the molten formula-
tion. This may require removing excipients from the formula-
tion or limiting the amounts of active ingredient (unpublished 
data by authors).

There are two types of hydrogel 3D printers: pneumatic gel 
extruder [93] and mechanical gel extruder [94]. The main ad-
vantage of these printers is producing printed objects at low 
temperatures [93]. However, hydrogel 3D printers are not as 
widely available as FDM 3D printers. In addition, they cost 
significantly more than conventional FDM 3D printers, which 
limits their use in research. Furthermore, precise rheological 
properties are needed to achieve printing desired objects [93].

SLA 3D printers allow the manufacture of solid objects 
such as microneedles with fine details [95] or sustained release 
tablets [96]. Printing at low temperatures and achieving high 
mechanical strengths of printed objects can be considered 
advantages of SLA 3DP. In addition, SLA 3D printers are avail-
able at relatively low cost from several suppliers. However, 
SLA 3DP has limitations such as limited variety of suitable 
polymers. So far, only poly(ethylene glycol) diacrylate has 
been used for drug delivery. Additionally, long preprocessing 
and postprocessing are required for SLA 3DP [97].

The inclusion of nanomaterials changed the physicochem-
ical properties of the 3D-printed objects. It was also found 
that the physicochemical properties of nanomaterials such 
as the size also affected the properties of the printed objects. 
For example, increasing the size of SiO2 nanoparticles (26–
847 nm) reduced the printability of 3D-printed objects by 
direct writing ink method, as well as increasing the nanopar-
ticle size allowed adding more nanoparticle content into the 
printing ink [98].

Clinical trials, manufacturing, and regulatory 
aspects
The Food and Drug Administration (FDA) issued guidance 
about the use of nanotechnology in medicinal products 
in 2014 [99]. This guidance states that FDA does not cate-
gorically judge all products that involve the application of 
nanotechnology as intrinsically benign or harmful. The FDA 
considers nanomaterials to be those with the scales falling 
in the range of 1–100 nm. Another guidance issued in April 
2022 about drug products that contain nanomaterials [100]. 
This guideline states that nanomaterials may modify the bioa-
vailability of the same material if it is not manufactured to be 
a nanomaterial. However, this refers to the active ingredients. 
When nanomaterials are used as excipients, it is essential to 
characterize the properties of nanomaterials and how these 
impact the safety and efficacy of the final product. In other 
words, the NPs should be precisely characterized, and any 
deviations should be carefully considered. The safety of NPs 
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should be evaluated. Furthermore, the effects of NPs should 
be determined on the container closure system and the shelf-
life of the product. The guidance indicates that nanomaterials’ 
properties, such as size, size distribution, morphology, and 
surface charge, may change upon storage or handling (such as 
hot melt extrusion in 3DP). Therefore, stress stability studies 
are recommended to elucidate the changes and pathways of 
those changes. It is a regulatory requirement to ensure the 
safety and stability of NPs used in 3DP of pharmaceutical 
dosage forms.

So far, there has been only one clinical trial using NPs in 
3DP. The clinical trial aim was to produce complete dental 
prosthesis for fully edentulous patients by employing stere-
olithography 3DP, using poly (methyl methacrylate) as the 
matrix material and titanium oxide NPs (Stereolithographic 
Technique for Dentures: NCT02911038). The aim of adding 
titanium oxide NPs was to reinforce the matrix and im-
prove mechanical strength [101]. A total of 35 patients were 
recruited and the mean values of general satisfaction scores 
were significantly improved.

The mass production of pharmaceutical dosage forms is de-
sirable, and the 3DP industry heading towards inventing new 
3d printers with the ability to print multiple objects at a time. 
However, personalized medicine is one aspect of pharmaceu-
tical 3DP, but mass production of 3D printed pharmaceutical 
dosage forms cannot be personalized [102]. On the other 
hand, a degree of scale-up is required, as patients normally 
require more than one personalized medicine, which should 
be produced within a short period of time. Supplying drug-
loaded filaments or prefilled-cartridges has been proposed 
by community pharmacists [103]. The drug-loaded filaments 
and pre-filled cartridges would be manufactured at large scale 
by pharmaceutical companies. Currently, Spritam is the only 
3D-printed pharmaceutical dosage form produced at large 
scale. It appears this type of approaches may be feasible.

Current limitations of using nanocomposites 
in 3DP
Notwithstanding the noteworthy advancements achieved re-
cently in the field of 3DP of nanocomposites, many processing 
and fabrication obstacles are yet to be overcome. Efficient 
nanocomposite mixing techniques should be employed to re-
duce unwanted effects relating to the addition of nanofillers 
on printing material characteristics, such as transparency, 
flowability, and viscosity. Material rheology is essential for 
extrusion‐based 3DP techniques; hence, filler content and its 
dispersion can be adjusted to attain appropriate mixture vis-
cosity and elasticity for the 3DP [104]. Additionally, a higher 
concentration of nano or micro composites might affect the 
printing process. As an example, higher concentrations of 
chitosan micro-ribbons or cellulose micro-fibres were un-
suitable for FDM printing of oral films employing PVA or 
poly-vinyl pyrrolidone (PVP). This perhaps could be due to 
the alterations in viscosity of molten filaments during printing 
[34].

Future directions
3DP allows for the manufacture of personalized medicine as 
well as complex drug delivery systems. Each 3DP method has 
its own limitations. For example, FDM requires high printing 

temperatures to reduce the viscosity of the molten polymer 
to flow through the print-head nozzle. This could lead to the 
evaporation or degradation of the active ingredient. It was 
shown that reducing the printing temperature reduced the 
degradation of the active ingredient [105]. Therefore, novel 
nanomaterials, different excipients, and the use of direct 3DP 
should be investigated to reduce the printing temperature and 
its effects on the incorporated NPs (e.g. decomposition). In 
addition, the flow properties of hydrogels play an important 
role in achieving printed objects with desired details [94]. 
Therefore, a better understanding of the NP effects on the rhe-
ological properties should be obtained for 3DP of hydrogels.

Medical 3DP combined with nanotechnology offers the 
advantages of personalization, customization, and complexity 
but also poses challenges related to legal liability and ethical 
considerations. The integration of nanomaterials necessitates 
thorough toxicity evaluations, studies on degradation 
behaviour in biological environments, and the establishment 
of robust evaluation systems such as quantifying marker genes 
in the soil bacteria using quantitative real-time PCR [106]. 
Additionally, scaling up the production of nanomaterial-
enhanced 3D-printed products remains a significant hurdle. 
The development of multi-printhead 3D printers could be a 
future direction. Regulatory frameworks at both institutional 
and governmental levels need to address the classification of 
bio-printed products, which may fall under biologics, drugs, 
or medical devices. 3D-printed personalized medical products 
must be scientifically validated, and a dedicated regulatory 
system should be implemented. Group or enterprise standards 
could help regulating these products, ensuring timely access 
for patients to cutting-edge technology. Also, advancing med-
ical 3DP requires interdisciplinary collaboration, integrating 
fields, such as medical imaging, bioengineering, materials sci-
ence, toxicity studies, pharmacy, and clinical medicine. With 
continued innovation, medical 3DP may achieve significant 
breakthroughs and make substantial contributions to health-
care [107].

Ensuring the performance of 3D printed objects such 
as implants containing NPs could be part of the future 
investigations when these are sterilized by methods such as 
gamma irradiation. This method of sterilization may affect 
the chemical structure of NPs [108]. This will require control-
ling design parameters, achieving material biocompatibility, 
and identifying effective sterilization methods. These will be-
come more challenging, when living cells are included in 3D 
printed objects containing NPs, as nanomaterials may present 
cytotoxicity towards the incorporated cells. However, the sig-
nificant benefits offered to patients and the healthcare system 
justify the extensive research required to establish processes 
for producing customized products [109].

Future studies should also investigate the environmental 
impacts of NPs used in 3D printed objects, and perhaps 
develop novel and environmentally safe nanomaterials. It 
is suggested the use of environmentally friendly solvents, 
non-toxic chemicals, and renewable resources in the pro-
duction of NPs [110]. In addition, NPs may enter the 
sewage system as faeces/urine following consumption of 
3D-printed drug delivery systems containing NPs [111]. 
These may impose toxic effects on plants or algae [112]. 
Therefore, future studies should also consider the bio-
degradability of NPs used in 3D-printed objects in the 
environment.
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Conclusion
Rapid advancements in nanomaterials and additive 
manufacturing know-how have transformed the scale of bi-
omedical engineering. Particularly, the alternatives available 
for producing bespoke biological tissues at cheaper rates and 
with fewer effort compared to the recent past have significant 
implications for biomedical as well as tissue engineering. The 
wide variety of nanomaterials used with compatible biopolymers, 
which provide nanocomposites having extraordinary character-
istics have led to prospects previously unattainable. We have 
emphasized key nanomaterials, composites, and 3DP techniques, 
including stereolithography, direct-write techniques based on 
extrusion, and inkjet-printing methods. Changes achieved using 
surface functionalization, categories of nanomaterials, and 3DP 
technology are having a considerable influence on the perfor-
mance of additive manufacturing and nanocomposites. Though 
there has been noteworthy progress. On the other hand, many 
challenges should be addressed specific to composite processing, 
material availability, fabrication methods, biocompatibility, and 
personalized constructs to enable further development in this 
domain. Ultimately, the aim of developing 3D-printed pharma-
ceutical dosage forms incorporating nanoparticles is to meet the 
healthcare need in terms of personalized medicines, and this will 
require the translation of academic research into practice, which 
would be facilitated by industry. Therefore, initial collaborations 
and partnerships between academia and industry could speed up 
the translation process, by using industry experience in the drug 
development process.
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