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Abstract: Recently, causal models have gained significant attention in natural language
processing (NLP) and computer vision (CV) due to their capability of capturing features
with causal relationships. This study addresses Fine-Grained Visual Categorization (FGVC)
by incorporating high-order feature fusions to improve the representation of feature in-
teractions while mitigating the influence of confounding factors through causal inference.
A novel high-order feature learning framework with causal inference is developed to en-
hance FGVC. A causal graph tailored to FGVC is constructed, and the causal assumptions
of baseline models are analyzed to identify confounding factors. A reconstructed causal
structure establishes meaningful interactions between individual images and image pairs.
Causal interventions are applied by severing specific causal links, effectively reducing
confounding effects and enhancing model robustness. The framework combines high-order
feature fusion with interventional fine-grained learning by performing causal interventions
on both classifiers and categories. The experimental results demonstrate that the proposed
method achieves accuracies of 90.7% on CUB-200, 92.0% on FGVC-Aircraft, and 94.8%
on Stanford Cars, highlighting its effectiveness and robustness across these widely used
fine-grained recognition datasets. Comprehensive evaluations of these three widely used
fine-grained recognition datasets demonstrate the proposed framework’s effectiveness
and robustness.

Keywords: causal models; causal inference; fine-grained visual categorization; feature
fusion; causal intervention

MSC: 68T07

1. Introduction
Fine-grained Visual Categorization (FGVC) presents significant challenges due to

subtle inter-class differences and large intra-class variations [1]. Across different categories,
objects often share similarities in shape, color, and texture [2], making classification difficult.
At the same time, variations within a single category arise due to factors such as pose,
viewpoint, and background differences, further complicating the recognition process. For
example, in bird species classification, distinguishing between two visually similar species
may rely on minute differences in their feather patterns or beak structure. Additionally,
variations in viewing angles can result in vastly different visual representations of the
same bird. This discrepancy occurs because an image is a two-dimensional projection of
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a three-dimensional object, where changes in perspective naturally yield distinct patterns
and textures.

Due to the high cost of manual labeling [3], weakly supervised learning has become
a widely adopted approach for FGVC. Deep learning-based methods [4] have signifi-
cantly advanced this field, and among them, high-order feature pooling techniques have
been gained. These methods apply higher-order transformations to convolutional neural
network (CNN) features before classification, with notable examples including bilinear
models [5–14] and kernel pooling [15,16]. High-order feature fusion enhances contextual se-
mantic information by capturing complex feature interactions, leading to notable accuracy
improvements across different FGVC tasks [17,18].

A key challenge in high-order feature fusion is the presence of confounding factors in
images. When features are extracted and merged without considering these confounders,
the model may incorporate misleading information, leading to incorrect classifications.
Objects in FGVC tasks often appear in distinct environments that may influence classifica-
tion decisions. As illustrated in Figure 1, Great Crested Flycatchers are commonly seen in
forested areas (green backgrounds), while Olive-Sided Flycatchers are typically observed
against a sky backdrop (blue). Consequently, a model may misclassify a bird solely based
on its background rather than its intrinsic attributes.

Figure 1. Visual comparison of misclassified samples: Great Crested Flycatcher vs. Olive-Sided Fly-
catcher. (a,c) show Great Crested Flycatchers; (b,d) show Olive-Sided Flycatchers. These two species
are visually similar, which contributes to classification challenges. In (c), the absence of distinctive
abdominal feathers causes background features to dominate, leading to misclassification. In (d),
the bird’s posture causes its feather patterns to blend with the background, further complicating
accurate identification.

Given the limitations of conventional background noise removal techniques, distin-
guishing meaningful background cues from misleading ones is crucial. Unlike standard
denoising methods that indiscriminately suppress background information, a more effec-
tive approach should be able to selectively preserve useful features while mitigating the
impact of confounding factors.

To address this, causal intervention is introduced to improve fine-grained recogni-
tion by disentangling relevant and irrelevant information. In recent years, causal models
have been successfully applied in computer vision [19–23], particularly through causal
representation learning [24,25]. Unlike traditional machine learning models that assume in-
dependent and identically distributed (i.i.d.) data, causal representation learning leverages
stable causal mechanisms across datasets, making it robust to challenges such as limited
samples, imbalanced data, and biased observations.

Inspired by the work of Rao et al. [26] on counterfactual attention learning for fine-
grained image classification, this study extends causal reasoning into a comprehensive
high-order feature learning framework. To better utilize high-order features for fine-grained
categorization, Interventional High-Order Feature Fusion (IHFF) is proposed, integrating
causal reasoning with high-order feature learning. The approach is built upon structural
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causal models (SCMs) [24,25], aiming to reconstruct latent causal relationships that capture
meaningful semantic interactions.

Previous methods relied on high-order feature fusion to extract fine-grained details.
However, when encountering highly similar objects across different classes, conventional
feature fusion is often insufficient for accurate classification. To address this limitation,
high-order features are decomposed into two components:

(1) Intra-object relationships—capturing structural dependencies within the same object.
(2) Inter-object relationships—modeling semantic differences among distinct objects

within the same category.
By fusing these two levels of semantic relationships, a more discriminative and context-

aware representation of fine-grained details is obtained. Furthermore, analysis of the
structural causal model for FGVC enables the identification of causal links through which
confounders affect classification performance. Causal interventions are then applied to
sever these links, reducing confounding effects and increasing the proportion of effective
features in high-order representations. Causal intervention enables the selective extrac-
tion of high-order features while preserving essential patterns without overemphasizing
misleading information. The contributions of this paper are summarized below:

(1) Constructing a general SCM for FGVC and introducing high-order feature fu-
sion via tensor product spaces to describe the relationships between different semantic
information spaces.

(2) Analyzing the reconstructed SCM to identify causal links through which con-
founders influence classification outcomes and applying causal interventions to mitigate
their impact.

(3) Proposing IHFF, which simultaneously applies high-order feature fusion and
causal intervention.

(4) Conducting comprehensive experiments on three widely used fine-grained public
datasets (CUB-200-2011, FGVC-Aircraft, and Stanford Cars) to demonstrate the effective-
ness of the proposed method.

The subsequent sections of this paper are structured as follows: Section 2 reviews the
relevant literature. Section 3 introduces the structural causal model and its application
to FGVC. Section 4 details a proposed methodology. Section 5 presents the experimental
setup, results, and analysis. Finally, Section 6 concludes the study.

2. Related Work
This section presents a review of relevant research, focusing on two key areas: high-

order feature pooling techniques in fine-grained image analysis and the application of
causal interventions in computer vision.

2.1. Fine-Grained High-Order Feature Fusion

In fine-grained image analysis, high-order feature pooling plays a pivotal role in
enhancing the discriminative power of features, crucial for distinguishing subtle variations
in texture, shape, and color [2] among closely resembling categories. This method integrates
complex interactions of features, crucial for identifying minor differences that conventional
pooling methods often overlook. Research has demonstrated that high-order pooling
techniques, such as bilinear pooling and cross-layer pooling, are particularly effective in
capturing complex patterns and fine-grained structural details.

For instance, in fine-grained recognition tasks, the Fisher vector encoding of SIFT fea-
tures has the ability to outperform outputs from fully connected layers [27,28], prompting
further exploration into advanced feature fusion techniques. A notable development in this
area is the bilinear CNN model, which computes an image representation as the outer prod-
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uct of features from two separate deep convolutional neural networks [5]. This approach
captures the second-order statistics of the features, significantly enhancing fine-grained
recognition accuracy. When two identical networks are utilized, this method essentially
forms a covariance matrix of the features. However, it inherently leads to high-dimensional
feature spaces and an increased parameter count.

To mitigate these challenges, Gao et al. [6] introduced tensor sketching techniques that
approximate these second-order statistics, effectively reducing the dimensionality of the
features. Similarly, Kong et al. [7] implemented a low-rank approximation of the covariance
matrix and developed a low-rank bilinear classifier that could avoid the direct computation
of the bilinear feature matrix, thus significantly cutting down on the number of parameters.
Further innovations by Li et al. [29] involved modeling pairwise feature interactions
through quadratic transformations under low-rank constraints. Yu et al. [11] addressed
the issue of dimensionality explosion by applying dimensionality reduction projections
prior to bilinear pooling and introduced cross-layer bilinear pooling to harness inter-layer
feature interactions across different layers of a convolutional neural network. Additionally,
Zheng et al. [13] focused on simplifying bilinear transformations by calculating pairwise
interactions within each channel group.

Expanding beyond bilinear methods, other methods attempt to capture higher-order
interactions of features. Cui et al. [15] presented a kernel pooling approach that could cap-
ture arbitrary order and nonlinear features through compact feature mappings. Moreover,
Cai et al. [9] proposed a polynomial kernel-based predictor for modeling higher-order
feature interactions across multiple layers, which facilitated capturing detailed part interac-
tions, further advancing the field of fine-grained image analysis.

2.2. Causal Inference

The integration of causal reasoning into computer vision represents a significant
shift toward addressing confounding biases and enhancing the robustness of models. By
employing causal interventions, researchers can isolate the effects of specific variables on
visual phenomena, enabling more precise interpretations and predictions. This approach
utilizes methods such as counterfactual reasoning and structural causal models, which
are instrumental in deciphering the underlying mechanisms of visual representations and
their influences on AI decision-making processes. Such methods are particularly effective
in scenarios where traditional correlation-based techniques falter, like in conditions of
occlusion, variable illumination, and dynamic environments.

Historically, causal inference [25] has roots in diverse fields like psychology, political
science, and epidemiology [30–34] and has recently made significant inroads into deep
learning [35,36], especially noted in natural language processing [37–39]. Inspired by these
successes, numerous studies have embarked on integrating causal representation learning
into computer vision, achieving notable advancements across various applications. These
include image classification [19,20], few-shot learning [21], long-tail recognition [22], and
semantic segmentation [23].

Specifically, causal interventions are employed to remove confounding factors, thus
refining model performance [40]. For instance, Tang et al. [41] utilized causal graphs to
represent specific tasks and calculated true causal effects based on these graphs, effectively
eliminating biases. Qi et al. [42] differentiated visual dialog (VisDial) from Visual Question
Answering (VQA) by incorporating historical information and tackled the challenges using
a causal inference framework, enhancing all VisDial baseline models to state-of-the-art
performance. Niu et al. [43] addressed the issue of language bias in visual and language
integrated tasks by isolating the direct influence of language from the combined effects,
thereby reducing biases significantly.
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Moreover, Zhang et al. [23] applied causal graphs to analyze element relationships
in weakly supervised semantic segmentation, pinpointing context priors in datasets as
confounding factors. Their strategy of implementing causal interventions severed the cor-
relation between context priors and image data, improving result accuracy. Yue et al. [21]
discussed the dual role of pre-training as both a source of rich prior knowledge and
a potential confounder. By applying causal interventions, they effectively eliminated these
confounding factors to boost performance in few-shot learning scenarios.

Additionally, some approaches have embraced counterfactual learning [26], inte-
grating it with attention mechanisms [44,45] in fine-grained image classification to help
networks focus more intensely on primary classification targets. This blending of causal
representation with advanced learning techniques underscores the growing importance
and utility of causal methods in computer vision, paving the way for more accurate and
unbiased models.

3. Structural Causal Model for FGVC
This section outlines the construction of a causal graph for fine-grained image clas-

sification, illustrated in Figure 2 [24,25]. It begins by analyzing causal assumptions and
identifying confounding factors within a baseline model. Subsequently, the section outlines
methods to implement causal interventions by severing causal links effectively. This ap-
proach clarifies the mechanisms underpinning the baseline model and pinpoints strategic
interventions to mitigate biases and enhance accuracy.

Figure 2. S: input image; X: feature map; P: basis of feature space; Y: classification; H: high-order
feature space. (a) Causal graph for FGVC. (b) A new collider H is added to describe feature interac-
tions. (c) After analysis, P can be fully represented by H, so the only causal link influencing the final
classification Y is S→X→H→Y. Therefore, it is sufficient to sever S→X to block the entire causal link,
thereby preventing any confounding factors from affecting the classification result.

3.1. General Structural Causal Model for FGVC

S→X: In this causal link, X represents the feature representation, while S refers to the
input image, which inherently contains both natural semantic information and confounding
factors. For instance, consider a dataset S and its corresponding feature extraction network,
Ω. This causal link implies that the feature map X is derived from the input image S
through the transformation applied by the network Ω.

S→P←X: P represents a transformed version of X, with its foundation stemming from
S. This link consists of two key components:

S→P: The space P is spanned by the basis of the feature space and serves as the
projection of the input image S onto this feature space. This projection is typically realized
through linear transformations in neural networks. Consequently, P encapsulates not only
essential semantic information but also features influenced by confounding factors.

X→P: Feature map X undergoes linear or nonlinear transformations, resulting in the
formation of the feature space P, which subsequently feeds into the fully connected layers
of the model.
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This paper differentiates the foundation of the feature space P into two distinct levels:
the classifier level and the class label level. To mitigate the influence of confounding
factors, causal interventions are applied through backdoor adjustments at each of these
levels separately.

X→Y←P: Let Y represent the classification outcome (e.g., logits), which is influenced
by the feature map X through two distinct pathways: (1) a direct projection from X to
Y, and (2) an intermediary projection via P. Typically, the direct path can be disregarded
if X is fully encapsulated by P, especially when taking into account the dimensionality
reduction in features. For example, in a conventional neural network architecture composed
of convolutional and pooling layers, the feature map X can be completely described in
a linear manner using the basis of the feature space. Consequently, the structural causal
model simplifies to S→P→Y. However, in FGVC, this simplification toward causal links
overlooks the role of contextual factors, which are critical in high-level feature fusion,
as these high-level features cannot be linearly represented by their bases. Regarding
the pathway through the intermediary P, this mechanism naturally arises because the
variables forming the basis of the final classification function are derived from the basis of P,
suggesting that the classification function can always be expressed as an implicit function
of the feature space P.

3.2. Reconstructed Structural Causal Model for FGVC

In FGVC, capturing higher-order semantic information is crucial. Advanced feature
extractors that can handle high-order features have shown superior effectiveness in achiev-
ing precise classification. Their success is largely due to their ability to discern subtle
differences between highly similar sub-categories. Additionally, these extractors are pivotal
in identifying invariant features across different poses, scales, and rotations. Traditional
causal interventions typically focus on an SCM with low-dimensional features, which are
inadequate for FGVC. Therefore, we propose reconstructing the causal link to amplify the
impact of higher-order semantic information through the following model:

X→H←P: H represents the pairwise features derived from two distinct sets of fea-
tures extracted by networks, such as outputs from different convolutional neural networks
(CNNs). This link helps reconstruct the relationships between high-order features (pair-
wise features) and their representation in lower dimensions. For example, let P denote
a linear combination of k + m base vectors, along with a residual noise component. This
approach enhances our understanding and manipulation of complex feature interactions
within FGVC:

x =c1x1 + · · ·+ ckxk + ck+1xk+1 + · · ·+ ck+mxk+m + e,

classi f ier f (x) = f (c1x1 + · · ·+ ckxk + ck+1xk+1 + · · ·+ ck+mxk+m + e),
(1)

where e is the residual noise, {x1, x2, . . . , xk} and {xk+1, xk+2, . . . , xk+m} are from two
different feature extractors. The relationship between them can be described by the
tensor product:

Definition 1. Tensor product of multilinear functions.

Given a k-linear function f ∈ L(V1, . . . , Vk;R), the set of all multilinear functions L,
and an m-linear function g ∈ L(W1, . . . , Wm;R), define the tensor product of both as
a (k+m)-linear function f ⊗ g ∈ L(V1, . . . , Vk, W1, . . . , Wm;R); it satisfies the following:

( f ⊗ g)(v1 . . . , vk, w1, . . . , wm) := f (v1 . . . , vk)g(w1, . . . , wm).∀vi ∈ Vi, wi ∈ Wi. (2)
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It is evident that the basis of H is derived from the basis of P, enabling the causal
relationship of H to inherit the causal structure of P. In other words, three causal links
can be identified: X→H, P→H, and H→Y. Let the last convolutional layers of two feature
extractors be represented by two vector spaces, V and W. Thus, P is the direct sum of V and
W: P = V ⊕W, while H is the tensor product space of V and W (as discussed in Section 4.1):
H = V ⊗W = span{vs.⊗ w|v ∈ V, w ∈ W}. There are fundamental differences between H
and P, as dim(V ⊕ W) = dim V + dim W and dim(V ⊗ W) = dim V ∗ dim W. Therefore,
due to the nature of H as an increased dimensionality representation of the feature space P
(as proven in Appendix A), P can be fully represented by H. Consequently, similar to the
previous analysis, the connection P→H can be omitted. Thus, only the causal link X→H→Y
needs to be considered. This simplification allows for focusing on the backdoor adjustment
of the S→X path in causal interventions.

4. Method
The structural causal model for FGVC in Section 3 consists of a single causal link from

S to Y: S→X→H→Y. To mitigate the influence of confounding factors on the classification
outcome, the backdoor adjustments [46] are applied.

This section constructs mathematical models for causal interventions in fine-grained
visual classification FGVC, consisting of two parts. As shown in Figure 3, first, the high-
order feature space H is defined. Second, backdoor adjustments are applied by severing
the causal link where confounding factors influence Y, specifically the path S → X.

Figure 3. The architecture of the proposed network. The network first computes the bilinear product
of the final convolutional layer outputs from two neural networks processing the same image. Then,
the convolutional output of an image with the same label is downsampled and flattened. A tensor
product between these two feature spaces is performed. For causal intervention, the tensor product
space is divided into blocks, which are sequentially processed by fully connected layers. Finally,
backdoor adjustments are applied by multiplying the tensor product output with a corresponding
weight matrix.

4.1. High-Order Feature Space

Given the last convolutional layers V of a network, V is manually divided into k parts:
{V1, V2, . . . , Vk}. Similarly, the last convolutional layer W of another network is partitioned
into m parts: {W1, W2, . . . , Wm}. Each part is treated as a group representing a subset of
semantic information. Furthermore, each part is subdivided into smaller vector spaces.
For instance, V1 = {v1, v2, . . . , vi} and W1 = {w1, w2, . . . , wj}, with each vi corresponding
positionally to wj. It is essential that k and m are equal. The classification effects are then
represented by two multilinear functions:
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f ∈ L(V1, . . . , Vk;R),
g ∈ L(W1, . . . , Wk;R),
f ⊗ g ∈ L(V1, . . . , Vk, W1, . . . , Wk;R),

(3)

where R is the classification labels.
In fact, v ∈ V, w ∈ W can be treated as linear functions on V∗ and W∗, respectively.

Thus, Equation (4) is obtained:

vs. ⊗ w ∈ L(V∗, W∗;R). (4)

Assume that V has a basis aµ = {a1, a2, . . . , ak} and W has a basis bν = {b1, b2, . . . , bk}.
Thus, the tensor product space V ⊗ W has a basis {aµ ⊗ bν} = {ai ⊗ bj : 1 ≤ i, j ≤ k}.
Moreover, based on the tensor product of functions defined in Equation (2), each ele-
ment ai ⊗ bj belongs to the space L(V∗, W∗;R), thus V ⊗ W is a subspace of L(V∗, W∗;R).
{aµ ⊗ bν} is the basis of L(V∗, W∗;R). It follows that V ⊗ W = L(V∗, W∗;R).

The derivation above demonstrates that the constructed bilinear mapping satisfies
a universal property. This implies that, in an isomorphic sense, the bilinear mapping from
V and W to L is unique. Hence, the tenser product V ⊗ W is rigorously proved unique
as well.

4.2. Feature Extraction with Contextual Semantic Information

To extract high-order features with contextual semantic information, it is essential
to pairwisely train one single image while considering the inter-relationships within it.
Suppose V is the last convolutional layer of image X1: the inter-relationship feature can
be extracted by V ⊗ V. Typically, high-order features are extracted using two different
networks on a single image. However, this does not render the tensor product on a feature
space itself meaningless. Actually, experiments on a bilinear CNN (B-CNN) have indicated
that utilizing the same two neural networks to extract features can also enhance the accuracy
of classification. The discussion in Appendix A.2 offers a more rational mathematical
explanation for these experimental outcomes: Taking the tensor product of a feature space
with itself essentially results in dimensionality expansion.

Next, consider another image X2 that shares the same label as X1, along with its
corresponding final convolutional layer representation W. Pairwise relationships between
X1 and X2 are captured using the tensor product V ⊗ W. With both inter-relationships
(V ⊗ V) and outer-relationships (V ⊗ W) established, feature fusion is then applied to
integrate them. In tensor product operations, the sequence in which inter- or outer-relational
features are extracted does not affect the final outcome of feature fusion. This property is
consistent with real-world scenarios. A formal proof of this property is presented below.

The element f within V ⊗ W can be unfolded as follows:

f = f µνaµ ⊗ bν, (5)

Similarly, function g within (V ⊗ W)⊗ Z can be unfolded as follows:

gµνσ
(

f µνaµ ⊗ bν

)
⊗ cσ = gµνσ f µν

(
aµ ⊗ bν ⊗ cσ

)
, (6)

where cσ is a basis of Z,
{

aµ ⊗ bν ⊗ cσ

}
is a basis of (V ⊗ W)⊗ Z . Similarly,

{
aµ ⊗ bν ⊗ cσ

}
is also a basis of V ⊗ (W ⊗ Z). Thus, Equation (7) is obtained:

V ⊗ W ⊗ Z = (V ⊗ W)⊗ Z = V ⊗ (W ⊗ Z). (7)
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Then, the high-order feature space H is revisited, comprising the inter-relationship,
which is composed of the inter-relationship V ⊗ V and outer-relationship V ⊗ W:

H = V ⊗ V ⊗ W = (V ⊗ V)⊗ W = V ⊗ (V ⊗ W). (8)

From Equation (8), it is clear that the calculation order does not alter the result.
Whether we calculate V ⊗ V first or calculate V ⊗ W first, they both ultimately equal
Equation (8). This equation confirms the uniqueness of the constructed higher-order feature
space H from another perspective.

4.3. Causal Intervention with Rebuilt Causal Link

Let Y be the classification effect, X be the input feature, and z be the semantic informa-
tion set containing confounding factors. Then the probability output formula in the general
network is as follows:

P(Y|X ) = ∑
z

P(Y|X, z )P(z|X ) =
P(Y, X)

P(X)
. (9)

Causal intervention is essentially an adaptive weighted probability involving the
traversal of all objects in the Z set and the calculation of the conditional probability after
intervention. Normally, in an SCM with only one collider (In an SCM, the junction S→P←X
is called a “collider”, making S and X independent even though S and X are linked via P),
the intervention is as follows:

P(Y|do(X)) = ∑
Z

P(Y|X, z)P(z)

= ∑
z

P(Y, X, z)P(z)
P(X, z)

.
(10)

Furthermore, by taking into account the internal relationship of a single image,
Equation (10) is transformed into the following:

P(Y|do(X)) = ∑
Z

P(Y|X, z1, z2)P(z1, z2)

= ∑
z

P(Y, X, z1, z2)P(z1, z2)

P(X, z1, z2)
,

(11)

where z1 and z2 are two events that occur within the same scenario Z.
Assume that z1 and z2 are causally influential features co-determining label Y. For

example, let Y = 008. Rhinoceros_Auklet, z1 represents double white stripes on the eyes
and z2 represents a red bird beak. Then, under Equation (11), P(Y, X, z1, z2) = P(X, z1, z2),
hence we have

P(Y|do(X)) = ∑
Z

P(z1, z2) (12)

Obviously, this probability approaches 1 in theoretical computation, indicating that
applying backdoor adjustment after high-order feature fusion is effective. Equation (10)
can correctly adjust its probability.

Similarly to the previous derivation, to perform backdoor adjustment with pairwise
features from two images, the features of the two images can be averaged, as they cannot
appear simultaneously:
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P(Y|do(X)) = ∑
Z

P(Y|X1, X2, z1, z2)P(z1, z2)

=
1
2 ∑

z

(
P(Y, X1, z1, z2)P(z1, z2)

P(X1, z1, z2)

+
P(Y, X2, z1, z2)P(z1, z2)

P(X2, z1, z2)

)
,

(13)

where X1 and X2 are different images with the same category labels.

4.4. Interventional High-Order Feature Learning

Suppose that V is the last convolutional layer of image X1 through network Ω1.
V is divided into k equal-sized, disjoint subsets in order. Similarly, let W denote the last
convolutional layer of image X2 through network Ω2. Thus, Equation (14) is obtained:

V ={V1, V2, V3, V4},

W ={W1, W2, W3, W4},
(14)

Since the output layer is divided in order, the semantic information within each
individual sub-feature space should be considered positionally similar. Therefore, the focus
is on extracting the relationships between them.

For each subspace, it is further divided into p parts in order. If p = 8, Equation (15)
is obtained:

V =
{

Vi|Vi =
{

vij|1 ≤ j ≤ 8
}

, 1 ≤ i ≤ 4
}

,

W =
{

Wi|Wi =
{

wij|1 ≤ j ≤ 8
}

, 1 ≤ i ≤ 4
}

.
(15)

The tensor product is then applied to each pair of
(
vij, vij

)
:

v̄ij = vij ⊗ vij, (16)

where 1 ≤ i ≤ 4, 1 ≤ j ≤ 8.
Thus, the tensor product space V̄ = V ⊗ V is obtained. Next, the same operation is

applied on V̄ and W to obtain the following:

H = V̄ ⊗ W = V ⊗ V ⊗ W. (17)

As there is no prior knowledge while training, it is difficult to determine the number
of features that have a causal effect toward classification. In other words, the number
of Z = z1, z2 is unknown and infinite to some extent. Thus, it is prohibitive to achieve
the above backdoor adjustment through Equation (13). However, the probability can be
approximated using the inverse probability weighting formulation in Equation (18):

P(Y = i|do(X)) ≈ 1
K

K

∑
k=1

P̃(Y = i, X = x|Z = z1, z2). (18)

Thus, a multi-head strategy is naturally applied [47]. For every v̄ij = vij ⊗ vij , where
1 ≤ i ≤ 4, 1 ≤ j ≤ 8 , it can be considered a fine-grained sampling. Hence, the logit
calculation with the classifiers’ backdoor adjustments for P(Y = i|do(X)) can be formulated
as follows:

P(Y = i|do(X)) =
1
K

K

∑
K=1

P
(

Y|
(

wk
i

)T
xk
)

, (19)

where wk
i is the weight.
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Next, feature backdoor adjustments are applied. Class adjustments are quantized into
weights, which are multiplied by P(Y = i|do(X)), and subsequently normalized:

P(Y = i|do(X)) =
1
n

P(Y|x)
n
∑

n=1
P(Y|x)P(Y|P(yi|x)x̄i)

. (20)

where P(yi|x) represents the probability that x belongs to the i-th label and x̄i is the mean
feature of the i-th class.

To make the causal intervention more fine-grained, two backdoor adjustments are ap-
plied simultaneously. By combining and organizing Equations (19) and (20), the following
is obtained:

P(Y = i|do(X)) =
1
K

K

∑
K=1

P

(
Y|
(

wk
i

)T
xk ⊕ 1

n

n

∑
n=1

(
wk

i

)T
P
(

yi|xk
)

x̄k
i

)
, (21)

where ⊕ denotes vector concatenation. This combination is straightforward: vector
concatenation treats classifier backdoor adjustments as equally important as feature
backdoor adjustments.

5. Experiments
This section evaluates the experimental results from three key perspectives:

(1) a comparative analysis of traditional accuracy metrics, (2) ablation studies to assess the
effectiveness of the proposed method, and (3) an investigation of the impact of different
hyperparameter values through comparative experiments.

5.1. Datasets

The effectiveness of the proposed interventional multilinear learning method is as-
sessed on three widely used datasets for Fine-grained Visual Categorization, including
Caltech-UCSD Birds (CUB-200-2011) [48], FGVC-Aircraft [49], and Stanford Cars [50]. The
datasets’ details are shown in Table 1: (1) Caltech-UCSD Birds-200-2011 (CUB) is an exten-
sion of CUB-200, which includes 200 classes, and each class has around 60 samples. (2) The
FGVC-Aircraft dataset contains 10,200 aircraft images, with each of the 100 different aircraft
model variants having 102 images. (3) The Stanford Cars dataset consists of 196 classes of
cars with a total of 16,185 images. It is important to note that only category labels are used
in experiments.

Table 1. Descriptions of the three datasets used in the experiments.

Dataset Category Training Set Testing Set

CUB-200-2011 200 5994 5794
Stanford Cars 196 8144 8041
FGVC-Aircraft 100 6667 3333

5.2. Implementation Details

Overall framework. The 16-layer Visual Geometry Group (VGG-16) and the 18-layer
ResNet (ResNet-18) [51] were pre-trained and used as backbones. When VGG-16 was
employed as the backbone, the input image was first resized to 448 × 448 pixels, which is
the required input size for VGG-16. For fine-tuning the fully connected layers, the 1000-way
classification layer pre-trained on the ImageNet dataset was replaced with a k-way softmax
layer, where k corresponds to the number of classes in the fine-grained dataset. The final
pooling layer was then replaced with a high-order feature pooling layer.
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It is important to note that the network’s previous parameters were frozen to allow
for training of only the last layer. For high-order feature pooling, bilinear feature fusion
was used as the inter-relationship feature extractor on a single image. To capture outer-
relationship features, this bilinear feature was fused with the output layer of another image
sharing the same label but differing from the first. The parameters of the softmax layer
were randomly initialized. The fully connected layer was trained with a higher learning
rate while monitoring the accuracy of the validation set. After training the fully connected
layer, its parameters were incorporated into the overall network training, with previously
frozen parameters unfrozen.

The classification layer during initial training can be interpreted as a prior probability.
Due to the difficulty and labor-intensive nature of obtaining part-level annotations in
fine-grained datasets, backdoor adjustment could not be performed as part-level prior
probabilities were unavailable. Therefore, using an adaptive network to acquire part-level
prior probabilities proved both suitable and efficient.

Feature fusion details. Taking VGG-16 as an example, the output feature size is
512 × 28. Through bilinear fusion with itself, the inter-relationship is represented as
a 512 × 512 feature map. For causal intervention, the feature space is partitioned into
k parts (with k set to 8 in VGG-16), resulting in eight smaller subspaces, each of size 64 × 64.
Similarly, the output layer of another image is segmented into eight parts, each of size 64.

For outer-relationship feature fusion, each 64-dimensional vector is first expanded
into a 64 × 1 matrix. The Kronecker product is then computed between each 64 × 64
matrix and the corresponding 64 × 1 matrix, yielding a high-order feature subspace
of size 64 × 64 × 64, which can be reshaped into a 512 × 512 structure. By introduc-
ing causal intervention into high-order feature fusion, the final feature space is re-
duced from 512 × 512 × 512 to 8 × 512 × 512, while preserving the rank structure of the
Kronecker product.

The operation of reshaping the fused feature into an 8 × 512 × 512 structure is inten-
tional. Here, the “8” represents the use of eight parallel classifiers, each corresponding to
a distinct layer of backdoor adjustment within the causal intervention framework. These
classifiers are designed to process the feature maps at different levels, allowing the model to
simulate multiple intervention scenarios and refine the feature representations accordingly.

This design enables the model to learn not just from observed data, but also from
intervention-based reasoning, which strengthens its ability to generalise and identify
causally relevant patterns. While the causal reasoning module may appear abstract, it plays
a vital role in guiding the model toward more discriminative and reliable decision-making
in fine-grained classification tasks.

Configuration details. During the preprocessing of the training set, data augmentation
is performed using RandomHorizontalFlip, followed by random cropping to a size of
448 and normalization. To ensure consistency with real-world image classification tasks,
RandomHorizontalFlip is not applied to the validation or test sets. Initially, only the
classifiers are trained using logistic regression, with a batch size of 16, a weight decay of
1 × 10−8, and a learning rate of 1. Subsequently, the entire network is fine-tuned using
stochastic gradient descent, with a batch size of 64, a weight decay of 1 × 10−6, and
a learning rate of 1 × 10−2.

5.3. Results and Analysis
5.3.1. Comparative Analysis and Efficacy of IHFF in FGVC

Table 2 and Figure 4 present the comparative experiments between the proposed
method and several classical methods, all of which were fine-tuned. The key findings are
as follows:
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(1) Accuracy improvements: The results demonstrate that the new method, IHFF,
leads to significant accuracy enhancements across a variety of datasets and backbone
networks, particularly showing notable improvements over the baseline model (B-CNN
with VGG-16 as the backbone). This indicates that IHFF is effective across different datasets
and backbone architectures.

(2) Effectiveness of feature fusion and causal reasoning: The data in Table 2 clearly
show that methods incorporating feature fusion are generally more effective. For instance,
IHFF achieves an accuracy of 90.7% on the CUB dataset using a ResNet backbone, com-
pared to DBTNet’s accuracy at 88.1%. This underscores the utility of causal reasoning in
enhancing Fine-grained Visual Categorization, with IHFF showing an average improve-
ment of 3.40% over B-CNN. Furthermore, among the newer models, IHFF—except for
DCAL—has achieved state-of-the-art performance. Models such as GBP, SFSCF-Net, and
I2-HOFI are all enhancements based on high-order feature fusion, which underscores the
effectiveness and significance of the causal intervention strategy employed in IHFF.

(3) Comparison with B-CNN: The B-CNN initially introduced high-order feature fu-
sion into Fine-grained Visual Categorization. Our proposed IHFF method outperforms the
B-CNN, demonstrating an average improvement of 3.43% across three datasets and an even
higher accuracy gain of 6.07% with the ResNet backbone. These findings validate the appli-
cation of causal reasoning in this domain and illustrate that integrating causal interventions
into high-order feature fusion boosts performance rather than causing antagonism.

(4) Comparison with CAL: CAL pioneers the use of counterfactual causal reasoning
in Fine-grained Visual Categorization but shows a lower accuracy on the CUB dataset
compared to IHFF. The variance may be linked to the differing depths of the backbone
networks utilized. Nonetheless, IHFF’s superior accuracy supports the effectiveness of our
causal intervention approach and its underlying mathematical principles, showcasing the
potential of causal reasoning in fine-grained image analysis.

(5) Comparison with DCAL: DCAL, currently the top-performing network in FGVC,
achieves a higher overall accuracy than IHFF. Both methods employ high-order feature
fusion, but DCAL may have an edge due to its integration of self-attention mechanisms,
which likely improves its capability of capturing contextual information.

(6) Dataset-Specific Performance: IHFF exhibits notably higher performance improve-
ment on the CUB dataset compared to the Aircraft and Cars datasets. This may be attributed
to the CUB dataset having a larger number of categories and more training images per
category. The data suggest that causal intervention learning particularly enhances network
performance on datasets with smaller samples by mitigating confounding factors through
backdoor adjustments, thereby focusing on truly impactful features. Conversely, the lesser
improvement on the Aircraft dataset may be due to the classification task relying less on
feature interactions to extract contextual semantic information, as identifying aircraft types
might often depend more on recognizing distinct physical features, such as the number
of windows.

Table 2. Top-1 classification accuracy.

Method Backbone CUB Cars Aircraft Feature Fusion

ResNet-50 [51] ResNet-50 84.5 - - ×
B-CNN [5] VGGD+VGGM 84.1 91.3 83.9 ✓

DBTNet [13] ResNet-101 88.1 94.5 91.6 ×
Improved B-CNN [52] VGGD+VGGM 85.8 92.0 88.5 ✓

LRBP [7] VGG-16 84.2 90.9 87.3 ✓
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Table 2. Cont.

Method Backbone CUB Cars Aircraft Feature Fusion

HBP [11] VGG-16 87.1 93.7 90.3 ✓
GBP [53] GCNN 87.8 93.5 89.6 ✓

SFSCF-Net [54] ResNet-50 89.6 94.5 - ✓
I2-HOFI [54] ResNet-50 90.1 94.3 92.3 ✓

CAL [26] ResNet-101 90.6 95.5 94.2 ×
DCAL [55] R50-ViT-Base 92.0 95.3 93.3 ✓

IHFF (ours) VGG-16 87.4 93.9 88.2 ✓
ResNet-50 90.7 94.8 92.0 ✓

Figure 4. Bar chart of Top-1 classification accuracy.

5.3.2. Ablation Studies

The ablation experiment freezes the parameters of the backbone network and only
trains the fully connected layer with a learning rate of 1, without fine-tuning. It is important
to note that the baseline model removes the final pooling and fully connected layers from
the backbone networks, replacing them with bilinear pooling layers [5]:

x = vec(∑
i

Vi
TWi),

f (x) =
sign(x)

√
|x|∥∥∥sign(x)

√
|x|
∥∥∥

2

,
(22)

where Vi and Wi represent the output layer parts of different networks that correspond to
the same position.

Table 3 and Figure 5 reveal that prior research has highlighted the value of feature
fusion in Fine-grained Visual Categorization, and our findings substantiate this further:

(1) Enhanced bilinear pooling: Utilizing higher-order feature fusion via the Kronecker
product has significantly enhanced two-dimensional bilinear pooling. This approach
resulted in accuracy increases of 4.96% for VGG-16 and 4.81% for ResNet-18.
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(2) Backdoor adjustment efficacy: Applying backdoor adjustments to the class has
boosted performance by an average of 6.28%, whereas adjustments to the classifier have
shown a slightly higher average improvement of 6.44%. However, applying backdoor
adjustments across all methods only yielded a modest average increase of 1.22%, indicating
that the overall impact of backdoor adjustments may be limited.

(3) Impact of post-adjustment: Implementing post-adjustments without incorporating
high-order feature fusion led to a performance boost of about 1%, which is lower than
when using high-order feature fusion alone. Nevertheless, the results were less effective
compared to scenarios where adjustments were applied after high-order feature fusion. This
finding underscores the potential of causal interventions in managing high-dimensional
data by eliminating confounding factors and retaining more impactful features.

(4) Overall methodology impact: The collective application of all methods led to
an improvement of approximately 7.58% over the baseline model and about 1.20% over
using high-order feature fusion alone. Although the proposed method markedly enhances
accuracy compared to the baseline, the combined benefit of all methods is not additive,
likely due to the diminishing returns associated with increased complexity.

Table 4 demonstrates the effectiveness of the proposed IHFF module after fine-tuning
the entire network with a batch size of 64, a weight decay of 1 × 10−6, and a learning rate
of 1 × 10−2. Even after end-to-end training, the high-order feature fusion and causal inter-
vention module continued to yield an improvement in classification accuracy. However,
the overall accuracy gain was lower compared to the scenario where only the proposed
module was trained while keeping the backbone frozen. This may be attributed to the
increased complexity and number of trainable parameters during full fine-tuning, which
potentially introduces model instability and partial overfitting to the training data.

Table 3. Ablation experiment results with only high-order feature fusion and causal intervention
modules trained.

Backbone Method Accuracy Comparison High-Order Features

VGG-16

Baseline 74.86 - ×
With feature fusion 79.81 +4.95 ✓

With class BDA 81.05 +6.19 ✓
With classifier BDA 81.24 +6.38 ✓

With both BDA 80.17 +5.31 ×
With all 82.22 +7.36 ✓

ResNet-18

Baseline 77.92 - ×
With feature fusion 82.73 +4.81 ✓

With class BDA 84.29 +6.37 ✓
With classifier BDA 84.42 +6.50 ✓

With both BDA 84.06 +6.14 ×
With all 85.71 +7.79 ✓

Figure 6 shows the results of an ablation study on pairwise learning, utilizing
a VGG-16 backbone network. It should be noted that this ablation experiment froze the
parameters of the backbone network and only trained high-order feature fusion and causal
intervention modules. The figure clearly demonstrates that feature fusion strategies that
incorporate outer relationships generally outperform those limited to inter-relationships.
With few exceptions, the accuracy gained by integrating both inter- and outer-relationships
consistently surpasses that achieved through inter-relationship alone. Since traditional
feature fusion methods primarily leverage inter-relationship information derived from fea-
tures within the same image, these findings are significant. They point to a promising new
direction for enhancing feature fusion techniques in Fine-grained Visual Categorization.
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Figure 5. Results for ablation studies with different backbones on CUB-200-2011. The blue line refers
to backbone VGG-16, the orange line refers to ResNet-18.

Table 4. Ablation experiment results with fine tuned network.

Backbone Method Accuracy Comparison High-Order Features

VGG-16

Baseline 84.12 - ×
With feature fusion 85.39 +1.17 ✓

With class BDA 86.13 +2.01 ✓
With classifier BDA 86.38 +2.26 ✓

With both BDA 86.00 +1.82 ×
With all 87.42 +3.30 ✓

Figure 6. Ablation study results using VGG-16 backbone on pairwise learning. The blue line
represents IHFF, while the orange line denotes the variant where outer-relationships are excluded
during feature fusion, illustrating the impact of these relationships on performance.

5.3.3. Research on Varying Numbers of Classifiers

Figure 7 illustrates the accuracy variation with respect to different values of nc (the
number of classifiers) and epochs for the backbone models VGG-16 and ResNet-18. It
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can be observed that as nc increases, the initial accuracy improves more rapidly. This
improvement may be due to the multiple classifier layers, intervened by the backdoor,
pre-training the fully connected layers, which leads to better initial performance. However,
as training progresses, an excessive number of classifiers results in a decrease in accuracy.

(a) (b)

Figure 7. Accuracy of different nc (number of classifiers) and epochs within backbone VGG-16 (as
shown in (a)) and ResNet-18 (as shown in (b)).

Specifically, Figure 8 shows accuracy variations for different values of the number
of classifiers. Generally, performance is better when the hyperparameter nc is set to 8 or
16. Beyond this range, a sharp decline in performance occurs. Contrary to the analysis in
ablation study point 4, this decline is not caused by overfitting. This can be explained by
the total dimension at the final classification layer, which is given by

dim f (x) = nc

(
dim x

nc

)3
, (23)

where f is the classification function.

Figure 8. Results for two backbone networks with varying numbers of classifiers, where the x-axis is
plotted on a logarithmic scale.
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From Equation (23), it is evident that when the number of classifiers doubles, the
overall dimensionality is reduced by a factor of 4. This suggests that an excessive number
of classifiers will lead to a loss of semantic information. By dividing the feature space
too much, the same semantic features could be split into separate parts, resulting in the
loss of fine-grained part-level details. This finding indirectly supports the effectiveness
of the proposed approach in extracting contextual semantic information, as discussed
in Section 4.2.

5.3.4. Convergence Speed Analysis

Figure 9 illustrates the convergence speed of the loss function under different values
of the hyperparameter nc. The experiment compares model convergence performance
across varying nc settings. Results show that increasing nc significantly accelerates conver-
gence and reduces the final loss. The blue curve, representing the baseline model without
causal reasoning, exhibits the slowest convergence, with the loss stabilizing around 2 after
30 epochs. This indicates that the absence of causal reasoning hinders convergence effi-
ciency. With nc = 4 (orange curve), the initial loss reduction is faster than the baseline, but
the overall decline remains moderate, ending with a final loss around 1. When nc = 8 (red
curve), the convergence further improves, showing a sharp decline in the first 10 epochs
and reaching a final loss near 0.6. The best performance is observed with nc = 16 (green
curve), where the loss drops rapidly in the early epochs and stabilizes after 20 epochs at
approximately 0.3. These findings suggest that higher nc values enhance both convergence
speed and model performance. The inclusion of causal reasoning contributes significantly
to more efficient training and faster inference.

Figure 9. Convergence speed analysis (learning rate: 0.1; batch size: 16).

5.3.5. Visualization

Figure 10 presents the generated heat map, highlighting the selected high-response
regions. The results indicate that IHFF consistently identifies the most discriminative areas
within an image. Specifically, in the CUB dataset, it effectively emphasizes feature-rich
regions, such as the bird’s beak and feather texture.

In DCAL, self-attention is modified by replacing the keys (K) and values (V) with
representations from two separate images, allowing the model to capture interactions
between different instances of the same class. Inspired by this, to extract more effective
features by using paired learning IHFF introduces an auxiliary feature extraction path
(Stream C) that processes a second image of the same category. The resulting features are
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then downsampled to reduce their impact on the main feature stream, allowing the model
to benefit from inter-class guidance while preserving the stability and fine-grained nature
of the bilinearly pooled features from Streams A and B.

Figure 10. Visualization of the heat map for IHFF in the CUB dataset. Each group of the images in
order is the CUB dataset, the heat map of IHFF, and their superposition. Specifically, (a) represents
the effectiveness of feature extraction in IHFF, and (b) represents that after causal intervention, the
network focuses on features with causal correlations in IHFF.

The goal is not to alter or dilute the main feature representation, but to provide
additional semantic cues that can help the model better identify discriminative regions by
learning from another instance of the same class. This mechanism effectively encourages
the model to focus attention on the most informative parts of the object. The visualization
experiment supports the effectiveness of this auxiliary feature extraction path. In Figure 10a,
it can be seen that the high response attention area of IHFF is concentrated in areas where
fine-grained targets have identifiable features, such as bird heads and beaks. This proves
that IHFF, like most models, can effectively guide model attention to effective areas.

In Figure 10b, it can be observed that causal intervention effectively reduces misleading
attention, guiding the network toward more relevant discriminative cues. For instance, the
first image in Figure 10b primarily focuses on the bird itself, excluding tree branches from
the high-response features. This suggests that causal intervention helps disentangle features
with statistical correlation but no causal relationship. Specifically, since this bird species
frequently perches on tree branches, the model may mistakenly learn branch features as
intrinsic to the bird. However, tree branches are merely environmental elements and not
part of the bird itself. The causal intervention successfully mitigates this confounding factor.

Similarly, the third image in Figure 10b demonstrates that causal intervention prevents
the misinterpretation of tree stump textures as part of the bird’s feather pattern, ensuring
that high-response areas are concentrated in the correct regions. Furthermore, the second
image in Figure 10b demonstrates the ability of causal representation learning to reinforce
essential discriminative features. Since the bird’s tail feathers are its most distinctive
characteristic, causal representation learning effectively captures this feature even in the
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presence of a complex background. Rather than dispersing attention across the entire
bird, it focuses on the most discriminative region, enhancing classification accuracy. This
discriminative and targeted focus prevents misclassification, which could otherwise arise
due to the bird’s predominantly black body blending with the background.

6. Conclusions
This paper introduces a novel high-order feature learning framework with causal infer-

ence for fine-grained categorization. By leveraging a tensor product space, the framework
extracts high-order feature representations while mitigating the influence of confounding
factors through causal interventions, specifically backdoor adjustments. To the best of the
author’s knowledge, this is the first comprehensive application of causal representation
learning in fine-grained image analysis tasks.

The proposed method does not require bounding boxes or part annotations and can
be trained end-to-end, making it flexible and widely applicable. Extensive experiments on
three benchmark datasets—CUB-200, FGVC-Aircraft, and Stanford Cars—demonstrate the
effectiveness and robustness of the IHFF approach.

By leveraging causal inference and high-order feature learning, this method enhances
the influence robustness and interpretability, making it beneficial in real-world scenarios
where fine-grained distinctions are crucial. Future work will inspire further exploration of
causal interventions in fine-grained visual classification and other CV tasks. The integration
of causal reasoning into computer vision presents a promising direction, and the success
of this method will encourage the adoption of causal models across diverse deep learning
domains. This could further drive the development of multimodal model fusion, akin to
the advancements seen with transformer architectures.
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Appendix A
Appendix A.1. Proof—The Semantic Information of V and W Is Both Included in V ⊗ W

As discussed in Section 3, it is clear that (V ⊗ W,⊗) is a group. Then let{
V′ = {(v, w) ∈ V ⊗ W | w = eW}
W ′ = {(v, w) ∈ V ⊗ W | v = eV}.

(A1)

Obviously, (eV , eW) ∈ V′, then for any (v1, eW), (v2, eW) ∈ V′, Equation (A2)
is obtained:

(v1, eW)⊗ (v2, eW) = (v1v2, eW) ∈ V′. (A2)

Therefore, V′ is closed under multiplication. Ultimately, for each (v, eW) ∈ V′, it
follows that (v−1, eW) ∈ V′. Taken together, V′ is a subgroup of V ⊗ W. Similarly, W ′ is
also a subgroup of V ⊗ W.
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In conclusion, the semantic information in space P is included in H, indicating that P
is completely represented by H. As a result, the causal link P→H can be disregarded.

Appendix A.2. Proof—The Tensor Product of Feature Space and Its Own Is Essentially the
Dimensionality Increase in Features

If the basis in (v, eW) ∈ V′ is replaced with (v, eV), let

V′ =
{
(v, v′) ∈ V ⊗ V | v′ = ev

}
(A3)

then (v, eV) ∈ V′. This indicates that, in a certain sense, V′ is a subspace of V ⊗ V, as any
basis vector in V combined with a unit vector forms a basis vector of V′. Therefore, taking
the tensor product within the same feature space increases the dimension of this feature
space, which aligns with the goal of high-order feature learning.
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