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Abstract: While the role of expanding agriculture in deforestation and the loss of other
natural ecosystems is well known, the specific drivers in the context of small- and large-scale
agriculture remain poorly understood. In this study, we employed satellite data and a deep
learning algorithm to map the agricultural landscape of Central Africa (Cameroon, Central
Africa Republic, Congo, Democratic Republic of Congo, Equatorial Guinea, and Gabon)
into large- (including for plantations and intensively cultivated areas) and small-scale tree
crops and non-tree crop cover. This permits the assessment of forest loss between the years
2000 and 2022 as a result of small- and large-scale agriculture. Thematic [user’s] accuracy
ranged between 91.2 ± 2.5 percent (large-scale oil palm) and 17.8 ± 3.9 percent (large-scale
non-tree crops). Small-scale tree crops achieved relatively low accuracy (63.5 ± 5.9 percent),
highlighting the difficulties of reliably mapping crop types at a regional scale. In general,
we observed that small-scale agriculture is fifteen times the size of large-scale agriculture,
as area estimates of small-scale non-tree crops and small-scale tree crops ranged between
164,823 ± 4224 km2 and 293,249 ± 12,695 km2, respectively. Large-scale non-tree crops and
large-scale tree crops ranged between 20,153 ± 1195 km2 and 7436 ± 280 km2, respectively.
Small-scale cropping activities represent 12 percent of the total land cover and have led
to dramatic encroachment into tropical moist forests in the past two decades in all six
countries. We summarized key recommendations to help the forest conservation effort of
existing policy frameworks.

Keywords: multi-source remote sensing data; deep learning; agriculture; deforestation;
forest conservation

1. Introduction
The combination of a globally changing climate and rapid population growth has

led to numerous challenges, amongst them food insecurity, the loss of natural ecosystems
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and biodiversity, increased pollution, and the exacerbation of existing health issues into
epidemic outbreaks [1]. The World Summit on Food Security stated that in 2050, “The
world’s population is expected to grow to almost 10 billion, boosting agricultural demand—
in a scenario of modest economic growth—by some 50 percent compared to 2013” [2]. This
growing demand needs to be met either by increasing production on existing agricultural
land or by expanding the agricultural production area. Both agricultural intensification
and land expansion frequently harm natural ecosystems and biodiversity and can also
negatively affect people—for instance, through pollution caused by agrochemicals [3–5].
As the demand for food continues to grow, it is crucial to ensure that increases in food
production are accompanied by improved management of land, crops, and soils. This
is necessary to mitigate soil erosion, land degradation, greenhouse gas emissions, and
biodiversity loss [6–8].

Croplands and pastures are now one of the largest terrestrial biomes on the planet,
occupying about 32.2 percent of the land surface [9]. These lands are increasingly degraded,
with about 40 percent of global croplands experiencing some degree of soil erosion, reduced
fertility, or overgrazing. The intensive use of agrochemicals (e.g., pesticides, fungicides,
and fertilizers) further undermines the ecological functioning of these lands [6,8,10,11].
The expansion of cropland and pasture is occurring primarily at the expense of forests,
savannahs, and grasslands. In tropical regions in particular, forests face continuous pressure
from disturbance and conversion to agriculture and other land uses [12].

Agriculture in Central Africa plays a vital role in sustaining rural livelihoods, con-
tributing to food security, and driving local economies [13,14]. However, the expansion
of agriculture has significant implications for biodiversity conservation, especially in eco-
logically sensitive Congo forests [15–17]. Existing policy frameworks have sought to
balance agricultural development and environmental sustainability; however, challenges
persist [18,19]. Addressing these challenges requires robust, data-driven approaches to
monitoring land use changes and assessing the impact of agricultural expansion on forest
conservation. In this context, satellite-based earth observation and remote sensing tech-
niques provide valuable tools for tracking land cover changes at scale, offering insights
that can inform policy decisions. By improving the accuracy of crop classification and
mapping, we contribute to efforts aimed at balancing agricultural development with forest
conservation, thereby supporting policymakers in designing more effective strategies for
sustainable land management.

While the role of expanding agriculture in deforestation and the loss of other nat-
ural ecosystems is well known, the specific drivers, contexts and scales remain poorly
understood. This is especially a concern in Central Africa where forest loss rates are high,
but on-the-ground land cover change dynamics are poorly understood [20]. As a result,
some studies have attributed tropical forest losses in Central Africa primarily to small-scale
agriculture [15,16,21,22], whereas others have attributed these losses to more industrial-
scale processes. These include plantation agriculture [23,24], large-scale infrastructure
development [25–29], industrial mining and extractive industries [22,30,31], and large-scale
pulp and paper plantations [32,33]. The findings from these studies are mostly based on
case studies of areas or industries, rather than regional studies using high-resolution maps
of land cover change. This lack of such high-resolution land cover and land cover change
maps makes it difficult to quantify the role of specific drivers (e.g., particular crop types) in
the loss of forests and other natural ecosystems.

Better land cover data, especially distinguishing smaller- and larger-scale processes
and different crop types, can foster a better understanding of the key drivers of land cover
change and thus inform stakeholder discussions and policy formulation. This can further
shape discussion around decarbonizing food systems, uncoupling development from defor-
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estation and the urgency of improving agricultural practices (such as regenerative farming
and climate-smart agriculture) and other key mitigation measures for sustainability [34].

Here, we present a novel analysis of scale and context of land cover change in Central
Africa using satellite-based earth observation and remote sensing techniques. These tech-
nologies have revolutionized agricultural mapping, providing near real time and low-cost
tools for regional-scale land monitoring. Over recent decades, advancements in the spectral,
spatial, and temporal resolution of satellite data, including big data storage, have improved
crop and land cover mapping. Notably, the integration of optical and radar data has
improved crop classification accuracy, especially in heterogeneous settings [35]. Synthetic
Aperture Radar (SAR) products, unaffected by clouds and haze, are often combined with
optical images to improve crop classification accuracy and class discrimination [36,37].

Recent studies, such as those by Blickensdörfer et al. [3] and Rao et al. [38], utilized
dense time series data from Sentinel-1, Sentinel-2, and other satellites for crop classification
in Germany and India, respectively. Deep learning (DL) techniques have further advanced
crop mapping, using trainable semantic segmentation models that analyze large datasets.
For example, Masolele et al. [39] applied deep learning to identify land use following
deforestation in Africa. Similarly, Descals et al. [40] and Ozigis et al. [41] have also explored
DL and satellite image integration to characterize small-scale and large-scale oil palm.
Despite these advances, challenges remain, particularly in the generalization of models
across regions due to geographical biases and insufficient training data.

In addition, previous studies such as Tyukavina et al. [16] assessing forest cover change
to agriculture in CA have utilized sample-based estimates and other related methods to
ascertain forest cover change. This study provides new perspectives on crop classification
by scale, using 10 m spatial resolution data and integrating both optical and radar imagery.
By doing so, the study supports efforts to balance agricultural development and forest
conservation in Central Africa, utilizing Google Earth Engine and Sentinel data to classify
crop types into small- and large-scale production.

2. Materials and Methods
2.1. Study Area

This study focused on six countries in the Central African Region: The Democratic
Republic of Congo, Central African Republic, Republic of Congo, Gabon, Cameroon, and
Equatorial Guinea (Figure 1). The population of the countries in the CAR has increased
from 71,532,000 to 138,511,000 over the last two decades, while in the same period the
production of commodity products and industrial agriculture has also risen two-fold [16].

2.2. Input Variables
2.2.1. Sentinel-1

We used Synthetic Aperture Radar (SAR) and Multispectral Optical images of the
European Space Agency. The SAR data are a Sentinel-1 C Band Level 1 Ground Range
Detected (GRD) product through Google Earth Engine (GEE). The image covering the study
area consisted of reflected beams in the vertical–vertical (VV) and vertical–horizontal (VH)
polarizations. The Sentinel-1 images were preprocessed to eliminate the effect of noise.
The scenes were processed using the local incident angle (LIA) correction, after which the
median value was computed for images between 1 January 2021 and 31 December 2023
for the ascending and descending scenes separately. The final composite is the average of
the two orbit composites. We used the nearest neighbor resampling method to reproject
the final image to a standard 10 m grid GRD output in the World Geographic System 1984
(WGS84) reference system.
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Figure 1. Study area coverage of Central Africa (CA) region with an approximate area of 373.3 million
hectares (Mha). (A) The six CA countries (including Central Africa Republic, Republic of Congo,
Democratic Republic of Congo, Cameroon, Equatorial Guinea, and Gabon around the Congo forest
basin) within the Continent of Africa. (B) Recent land cover map for CA from the European Space
Agency (ESA) Climate Change Initiative (CCI) land cover product, 2021.

2.2.2. Sentinel-2

The optical data from Sentinel-2 are also a product of the European Space Agency
Copernicus Satellite program. We used Sentinel-2A (launched in June 2015) and 2B
(launched in March 2017) carrying a single multispectral instrument with 13 spectral
bands. This was to ensure more comprehensive and extensive coverage of the study area,
which had significant all-year-round cloud presence. We used the Level-2A atmospheric-
corrected product. All images were accessed and preprocessed through the Google Earth
Engine API to generate a single image from the temporal observations from 1 January
2021 to 31 December 2024 for this study. Only Band 4 (red band) with a spatial resolution
of 10 m was used. The rationale for the use of Band 4 was largely premised on the out-
come of an experiment to identify the best Sentinel-1 and Sentinel-2 bands that provide
the best visualization to discern all the classes of interest. This resulted in the selection
of Sentinel-1 VV and VH and Sentinel-2 Band 4. Similarly, a previous study [40] in this
regard also demonstrated the appropriateness of Sentinel-1 VV and VH and Sentinel-2
Band 4 integration in a random forest model. Following data preprocessing, we integrated
this product with the preprocessed Sentinel-1 VV and VH backscatter products using a
simple layer stacking approach to generate a Central Africa Region composite for the crop
characterization segmentation process.

2.3. Reference Data

We obtained crop type ground truth reference point data (totaling 1540) from
140 parcels in Cameroon and DRC. Field parcels here represent the field boundary for
a particular crop captured as polygon in GIS software (QGIS 3.28.2). The parcels were
established during a field exercise conducted in Cameroon to establish crop types between
7 December 2023 and 19 January 2024. In addition, we obtained data to establish crop type
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parcels for Central DRC collected between 12 February 2020 and 17 February 2020 in the
context of another study [42]. We generated 316 reference points used for the reference
and validation of land cover maps developed by Copernicus Hotspot Land Cover Change
(CHLCC) Explorer as part of our reference data (see Data Availability). The Reference Land
Cover data represent the on-the-ground conditions of land cover features from 2015 to
2020, while the Land Cover Change data span 2000–2019. Both are archived and no longer
updated, providing a valuable snapshot for understanding land cover and its transfor-
mation over time within critical ecological zones and biodiversity hotspot locations for
Central Africa.

We extracted reference data from the tree cover class, which were validated using
high-resolution planet images for the tree cover and other classes to ensure that they were
still the corresponding classes during the model development phase. The planet image
used in this study was a global monthly mosaic for February 2023 acquired at 5 m spatial
resolution. We also obtained 3913 reference data points from the earth hub portal [43],
mostly for non-tree (annual) crops based on their temporal profile. Appendix A shows the
reference data obtained from field and secondary sources used in this study. We generated
an additional 3860 sample points using a stratified random sampling method across the six
countries of the study area to give an indication of other land cover types (based on the
European Space Agency 2021 land cover data [44]) and reassigned the appropriate crop
classes, making a total of 9313 reference data. The entire reference data can be accessed
through the GEE platform.

2.4. Definition of Classes into Large- and Small-Scale Cultivation

In the context of this study, “scale” refers to the spatial extent and intensity of land
use practices, where large-scale indicates mechanized, industrial-level production over
extensive, uniform fields, while small-scale reflects smaller, often irregularly shaped plots
operated by individual or community farmers with minimal mechanization. This definition
of scale is key to distinguishing between land use classes in the classification scheme.

Large-scale tree crops (LSTCs) are generally cultivated landscapes with homogeneous
green fields and a mean temporal NDVI value range of 0.5 to 0.7 [45], typically representing
perennial crops. These areas are characterized by linear, rectilinear, and curvilinear paths
across the fields, indicating high levels of mechanization and orderly cropping operations.
Examples include rubber and sugarcane plantations.

Large-scale non-tree crops (LSNTCs) share similar landscape structure with LSTCs
but differ in their mean annual NDVI values (0.2 to 0.4) [46], indicating sparse vegetation
and non-evergreen crop types. Examples include rice, soy, and cereal plantations.

Large-scale oil palm (LSOP), also known as industrial oil palm, refers to oil palm
fields produced on an industrial scale. These areas typically consist of large, homogeneous
stands of oil palm trees separated by roads that form regular rectangular or geometric
patterns [40,47–49].

Small-scale tree crops (SSTCs), by contrast, are cultivated by smallholders practicing
subsistence or semi-subsistence agriculture. These fields tend to be patchy or clustered,
without the regular patterns or road networks seen in large-scale operations. SSTCs are
predominantly perennial, or a mix of perennial and annual crops, and are often found near
forests due to various social, biophysical, and climatic influences [20].

Small-scale non-tree crops (SSNTCs) have spatial characteristics similar to SSTCs
but differ in the types of crops cultivated, being primarily annuals with seasonal cycles.
Small-scale oil palm plantations, typically managed by local farmers, are often located
near settlements or alongside industrial plantations but lack the infrastructure, such as
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interlinking roads, found in LSOP. These plantations are usually under 5 hectares, with
irregular shapes and sizes.

Finally, other land (OL) includes land cover types such as waterbodies, built-up areas,
wetlands, bare land, rock outcrops, grasslands, and shrublands. These were grouped into a
single class to minimize their interference with the main land use categories during classifi-
cation. Tables A1 and A2 in Appendices C.1 and C.2, respectively, show the broad range of
crops within the tree and non-tree crops category. Tree crops are typically permanent or
semi-permanent, planted once and occupying the same land area for several years without
the need for replanting after each annual harvest. In contrast, non-tree crops are temporary;
they are sown and harvested within the same agricultural year, resulting in more dynamic
changes in agricultural fields.

2.5. Training and Validation Samples

A total of 9313 reference sample points were obtained from both field and secondary
datasets. The reference data were split using a 50:30:20 ratio for training, testing, and vali-
dating the U-Net model [50]. To this end, the number of sample sites for the LSTC, LSNTC,
LSOP, SSTC, SSNTC, SSOP, and OL are 653, 846, 1680, 714, 1240, 320, and 3860, respectively,
and 50 percent of these samples were used for model training, testing, and prediction. To
assess the accuracy of the map product, we generated an additional 43,443 points using
a stratified random sampling approach for the computation of the error matrix [51]. In
this case, we generated 5 km-by-5 km grid cells across the entire CA region and later
obtained the centroid of the polygon, which was then used to query existing field parcels
and secondary datasets to generate the reference class. After this, the predicted class values
were extracted to the same points and used for the validation process. We assessed the
validity of the map based on the overall accuracy (OA), producer accuracy (PA), and user
accuracy (UA). In addition, we also produced error-adjusted area estimates and 95 percent
confidence intervals for both area estimates and accuracy assessment measures based on
the method recommended by [52].

2.6. Forest Masking and Exclusion from Composite Image

The final integrated Sentinel-1 and Sentinel-2 images were tiles of 100 km × 100 km
for the ease of implementation in the deep learning model. We masked out forest cover
based on forest map provided by the Joint Research Council (JRC) for forest cover for
2023, while water and settlement were also masked out using the ESA Worldcover dataset
from the integrated Sentinel 1 and Sentinel 2 product (see Data Availability section of this
paper). The masking was conducted to limit the interference of obvious classes with similar
spectral signatures and representations. All other classes, such as grassland, cropland,
and shrubland, were left in the reference image since cultivated crop fields (especially
small crop fields) exist within grass-, shrub-, and tree-covered areas [53]. The final image
composite used for the classification is shown in Appendix B.

2.7. Image Classification Using the U-Net with ResNet-50 Encoder

We used a U-Net semantic segmentation deep learning model [53]. The U-Net model
used a ResNet-50 encoder pre-trained on ImageNet and tailored for a 7-class semantic
segmentation task. This methodological approach has been used in previous studies [40,41]
and has proved very efficient in discriminating class labels in large-scale applications. The
U-Net uses a ResNet-50 model as its encoder, which is responsible for down-sampling
the input image to capture the context (high-level features). The encoder weights were
pre-trained on the ImageNet dataset. In essence, the encoder was initialized with weights
that were trained on the ImageNet dataset, which helped with faster convergence and
better performance. The model produced an output with 7 channels, corresponding to the
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7 classes. The training dataset from the reference data was further developed into a training
mask by first creating a 10 km-by-10 km area around the point(s) of interest. After this, we
used manual digitization to create the extent of the respective classes of tree- and non-tree
crops based on a high-resolution image (as shown in Figure 2). The digitized shapefile
extents were then converted into training masks of 10 km-by-10 km grids covering both the
defined classes and other land cover types. In total, we developed a total of 350 labeled
masks from the training data, as several reference points were within the proximity of the
10 km grids generated.

 

Figure 2. The semantic image segmentation process flowchart using the U-Net Resnet-50 encoder
used for the image classification in this study.

2.8. Forest to Cropland Conversion

In addition, we also assessed the forest-to-cropland conversion in order to understand
the change dynamics between the mapped classes and tropical moist forests in the region.
This was carried out through an iterative and interactive process in GEE by using the
developed crop cover distribution classes to mask over JRC tropical moist forest cover for
the years 2000, 2005, 2010, 2015, 2020, and 2022.

3. Results
3.1. Classification Output and Class Accuracy

The results from the U-Net classification (as shown in Figure 3 and Table 1) show
that OL was the dominant vegetation class (76.1 percent of the sampled area), followed
by SSTC, SSNTC, LSNTC, LSTC, LSOP, and SSOP (see Data Availability). SSNTCs were
concentrated in the northern and southern savannah belts of the region, while SSTCs
were predominantly within the tropical moist forest zone. The accuracy assessment of
the final map layer as shown in Table 1 indicates an 86.9 percent ± 0.32 OA. Classes
with the highest PA and UA (above 50 percent) were OL, LSOP LSTC, and SSOP, while
SSNTC and SSTC recorded a PA and UA below 50 percent. Specifically, OL had a PA
and UA of 90 percent ± 0.3 and 99 percent ± 0.1, while LSOP and SSOP had a PA and UA
of 88.3 percent ± 8.6 and 91.2 percent ± 2.5, and 82.7 percent ± 8.2 and 52.3 percent ± 8.6,
respectively. Similarly, LSNTC and SSNTC had a PA and UA of 40.0 percent ± 7.4 and
17.8 percent ± 3.9, and 38.7 percent ± 2.9 and 20.9 percent ± 1.8, respectively. In addi-
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tion, LSTC and SSTC had a PA and UA of 88.2 percent ± 5.1 and 60.5 percent ± 6.4,
63.5 percent ± 5.9 and 5.2 percent ± 0.8, respectively. Figure 3 shows the crop map layer
for Central Africa by scale of production. Tables 1 and 2 show the error matrix and the
spatial extent for each of the classes.

 

Figure 3. Land cover map generated in this study.

Table 1. Accuracy Assessment Result, Including User (UA) and Producer Accuracy (PA) and Total
Number of Sampled Points.

Classes OL LSOP SSOP LSNTC SSNTC LSTC SSTC Total UA PA

OL 36,488 27 25 163 1557 65 2867 41,192 0.99 0.89
LSOP 20 455 34 0 0 6 0 515 0.91 0.88
SSOP 2 12 67 0 0 0 0 81 0.52 0.83

LSNTC 83 2 0 68 9 4 4 170 0.18 0.40
SSNTC 353 1 0 150 415 9 144 1072 0.21 0.39
LSTC 10 2 2 2 0 135 2 153 0.61 0.88
SSTC 86 0 0 0 5 4 165 260 0.05 0.63
Total 37,042 499 128 383 1986 223 3182 43,443

3.2. Area Coverage and Estimate for Central Africa

Table 2 presents the results of the error-adjusted area estimates and the confidence
intervals. This generally showed that, as expected, OL had the highest area coverage,
with an estimated area of 3,555,998 ± 8011 km2. The small-scale agricultural land had the
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second highest spatial extent; we recorded an area estimate of 293,248 ± 12,695 km2 and
164,823 ± 4224 km2 for small-scale tree crops and small-scale non-tree crops, respectively.
Large-scale crops including trees and non-trees had area coverages of 7436 ± 280 km2 and
20,153 ± 1195 km2, respectively. Large industrial oil palm plantations and small-scale oil
palm had an area coverage of 2812 ± 57 km2 and 1386 ± 83 km2, respectively.

Table 2. Adjusted Area and Confidence Interval for Crop Cover Classes.

Crop Cover Classes Adjusted Area (m2) 95% C.I.

Other Land 3,555,997.91 8011.09
Large-scale Oil Palm 2811.80 57.24
Small-scale Oil Palm 1385.72 83.38

Large-scale Non-tree Crops 20,152.83 1194.84
Small-scale Non-tree Crops 164,823.92 4223.87

Large-scale Tree Crops 7436.12 279.72
Small-scale Tree Crops 293,248.81 12,694.77

3.3. Crop Cover Characteristics

The extent of the tree crop class (for large- and small-scale cultivation) aligns with the
corresponding spatial extent in the high spatial resolution satellite images (as shown in
Figure 4). However, the results also suggest the presence of mixed cultivation within large
plantations, as several large-scale tree crop areas had patches of SSNTCs within them. The
observed heterogeneity in the classified extent of LSTCs is based on the diverse spectral
difference in the region. Similarly, we also observed that LSTC plantations are within
densely vegetated areas.

 

Figure 4. Example of an LSTC in Cameroon. (a,d) are the classified extents of observed LSTCs.
(b,e) are high-resolution satellite images of areas shown in (a,e). (c,f) are the false color composites of
the images used for the classification.
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Conversely, the results of the LSNTCs (as shown in Figures 5 and 6) indicate substantial
small-scale agriculture carried out around detected LSTC plantations. While good spatial
alignment between detected LSNTC plantations and the corresponding high-resolution
images were observed, the results indicate considerable mixed cropping activities within
them. This is largely premised on the diverse spectral characteristics within the LSNTC
areas (as shown in Figures 4a,d and 5a,d), suggesting the presence of different crop types,
mixed farming, or an uneven planting date within LSNTC areas.

Figure 5. Example of an LSNTC. (a,d) are classified extents of LSNTCs, with observed SSTC and
SSNTC patches around them. (b,e) are high-resolution satellite images of areas shown in (a,e).
(c,f) are the false color composites of the images used for the classification.

SSTCs were primarily observed in the central part of the region close to the forest areas,
suggesting favorable climatic and humid conditions as a driving factor to grow perennial
crops like rubber, coffee, and tea. Figure 7 is an example of the clear disparity between
detected SSTCs and SSNTCs, while Figure 7a shows extreme greenness and crop patches,
and Figure 7d shows extreme dryness and crop patches. In addition, areas classified as
SSTC were also observed to have patches of plain fields (suggesting potential annual crops)
within predominantly SSTC areas, thereby implying potential mixed cropping practices.

3.4. Country Level Assessment of Crop Cover

The results for individual countries of the CA (as shown in Table 3) indicate that DRC
had the largest area coverage of OL with 1,967,400 ± 5594 km2, followed by CAR with
576,274 ± 4471 km2. Similarly, the area coverage of OL in Congo was 318,680 ± 1383 km2,
while Gabon and Eq. Guinea had 26,886 ± 548 km2 and 262,360 ± 1046 km2, respectively.
In terms of LSTC, the results show that DRC had the highest spatial extent of LSTC cover
with an area estimate of 4000 ± 296 km2, followed by Cameroon with 1819 ± 79 km2, while
Gabon and CAR had 180 ± 17 km2 and 530 ± 162 km2, respectively.
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Figure 6. Example of an LSNTC in DRC. (a,d) are the classified extents of LSNTCs, with observed
SSTC and SSNTC patches around them. (b,e) are high-resolution satellite images of areas shown
in (a,e). (c,f) are the false color composites of the images used for the classification.

Figure 7. An example of SSTC and SSNTC. (a,d) are the output from the image classification. (b,e) are
the high-resolution satellite images of (a,d). (c,f) are the false color composites of the image used for
the classification. This showed extreme greenness in the SSTC patches and extreme dryness in the
SSNTC crop patches.
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Table 3. Adjusted Area and Confidence Interval of Crop Cover Classes within the Countries of
Central Africa.

Classes
Adjusted Area (km2) Confidence Interval (C.I.)

Congo CAR Gabon DRC Cam Eq.G Congo CAR Gabon DRC Cam Eq. G

OL 318,680 576,274 262,360 1,967,400 404,354.85 26,885.65 1383.2 4470.73 1045.72 5593.59 2852.61 547.77
LSOP 10 - 400 700 1646.38 - 1.52 - 34.69 26.43 36.55 -
SSOP 50 - 130 600 639.85 - - - 25.48 158.71 44.41 -
LSNTC 350 1393 120 2200 16,051.43 71.66 61.39 275.49 35 185.96 1762.21 -
SSNTC 7510 32,992 40 90,500 33,830.49 - 936.82 2020 7.3 3191.73 1691.57 -
LSTC 0 530 180 4000 1818.80 - - 162.28 17.82 296.3 78.77 -
SSTC 13,100 8396 790 263,800 7163.49 - 2818.67 1299.93 244.77 14,646.35 625.89 -

For LSNTC, the results showed that DRC had the largest area coverage with an area
estimate of 2200 ± 186 km2, while Cameroon had 1646 ± 37 km2. In contrast, Equatorial
Guinea had the least coverage of LSNTCs with 72 km2. Large-area coverages of SSNTCs
were observed in DRC, Cameroon, and CAR with area estimates of 90,500 ± 3192 km2,
33,830 ± 1692 km2, and 32,992 ± 2020 km2, respectively, while Congo and Gabon had lower
SSNTC coverages with area estimates of 7510 ± 937 km2 and 40 ± 7 km2, respectively. DRC
had the highest area cover of SSTC with an estimate of 263,800 ± 14,646 km2, while Congo,
CAR, and Cameroon recorded area estimates of 13,100 ± 2819 km2, 8396 ± 1300 km2, and
7163 ± 625 km2. However, in contrast, no area estimates for SSNTC, LSTC, or SSTC
were recorded for Equatorial Guinea owing to the small size of the country and reported
small-scale agricultural activities.

3.5. Assessment of Crop Encroachment into Forest

The results (as shown in Figure 8) show that in most countries, the conversion of
forest into agricultural land has declined over time (Figure 7). The conversion of forest
to SSTC was observed to be the most prominent across the region. Of the six countries
assessed, DRC had the highest conversion rate of forest to SSTC with the highest conversion
occurring between 2000 and 2005, and 2010 and 2015, with an area coverage of 60,000 km2

by 2015, before experiencing a decline and reaching a total of 2474 km2 by 2022. This
was closely followed by Congo, where SSTC conversion to forest steadily increased from
400 km2 between 2000 and 2005 and reached its peak by 2015, with an area coverage of
1237 km2.

We also observed a similar steady increase in SSTC-induced forest loss in Cameroon,
where forest loss between 2000 and 2005 reached 270 km2 and steadily rose to 405 km2 by
the end of 2020. We observed a unique convergence of forest loss to SSTC between 2010
and 2020 in Equatorial Guinea, with a total of 4.5 km2, while in Gabon, LSOP and SSTC
were the key drivers with a combined total of 265 km2 between 2010 and 2020. In contrast,
we observed a sharp temporal decline in SSNTC- and SSTC-induced forest loss in CAR.
This started with a total of 48 km2 between 2000 and 2005 and later reduced to 0.1 km2 by
the end of 2022.

With respect to SSNTC, the results showed that DRC had the highest forest-to-SSNTC
conversion, with an estimated area of 374 km2 between 2000 and 2005, and steadily declined
to 230 km2 between 2010 and 2015 before reaching its minimum of 19.6 km2 by 2022. We
observed a dynamic trend in forest conversion to SSNTC in Congo. The SSNTC-induced
forest loss area rose from 27 km2 between 2000 and 2005 to 75 km2 by 2020, after which a
significant decline of 3 km2 was observed by 2022. The countries with the lowest forest-
to-SSNTC conversion rates were Cameroon, CAR, and Gabon with a mean of 20 km2,
which declined to 0.3 km2 between 2000 and 2022, respectively, while none was observed
in Equatorial Guinea.
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Figure 8. Bar plot showing the total area of forest converted to crop cover type by country between
2000 and 2005, 2005 and 2010, 2010 and 2015, 2015 and 2020, and 2020 and 2022. Results show
extensive cultivation of SSTCs across the countries of CA, with the profoundly highest in DRC,
Congo, and Cameroon. Statistics can be accessed through GEE.

A similar trend was observed for LSNTC, where DRC also had the highest forest-to-
LSNTC conversion rate, with an area of 22 km2 between 2000 and 2005, but gradually
reduced to 1 km2 by the end of 2022. LSNTC-induced forest loss in Cameroon had a
dynamic trend as the area coverage ranged between 5.1 km2, 11.6 km2, and 17 km2, and a
sharp decline to 1.2 km2 in 2005, 2010, 2020, and 2022, respectively. Congo also exhibited
a similar trend but with a peak convergence period between 2010 and 2015 with an area
of 8.3 km2, before declining to 0.4 km2 by 2022. The countries with the lowest conversion
rates were Gabon, CAR, and Equatorial Guinea, with an average of 0.6 km2 and 0.03 km2,
between the years 2000 and 2005, and 2020 and 2022, respectively. DRC, Cameroon, and
Congo had the highest forest-to-LSTC conversion rate of 80 km2, 19 km2, and 14 km2,
respectively, between 2000 and 2005. These figures increased tremendously in all three
countries to 90 km2, 111 km2, and 25 km2 between 2015 and 2020, and by the year 2022, the
total area decline to 20 km2, 10 km2, and 8.5 km2, respectively. In contrast, CAR had the
lowest forest-to-LSTC conversion area of 0.1 km2 and no variation occurred in the years
2000 and 2022, respectively, while none was recorded for Equatorial Guinea.

4. Discussion
4.1. The Results from the Study

While the overall accuracy assessment of our study was 86.9 percent, we observed the
significant misclassification of SSNTC reference sites as OL (i.e., grassland and shrubland),
LSTC, and SSTC. In addition, significant errors of omission often led to LSNTC being
misclassified as OL, LSOP, and SSNTC. This may be related to the diverse farming prac-
tices in the region, where farmers frequently engage in mixed farming [54–57], rotational
farming [58,59], and intercropping [60], cultivating food crops (such as cassava, maize, and
yam) alongside tree crops to meet both short-term livelihood needs and long-term income
goals [61–64]. Furthermore, we also observed the misclassification of shrubland as SSNTC
and LSNTC, mostly in the savanna-dominated (northern and southern) part of the region,
especially in central parts of Cameroon, CAR, and the southern parts of DRC. We believe
this could be because of the dryland ecosystem in the northern and southern part of the
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CA region [65], which is characterized by low spectral diversity between grassland and
cropland [66], causing a problem for the classifier.

Similarly, the results also show a small expanse of savanna (presumed to be rangeland
and pastoral land) classified as SSNTC, mostly within the southern DRC. However, further
investigation suggests that these areas are potentially grazing fields exhibiting similar
spectral characteristics as annual crop fields across the region [67–69]. Ref. [69] particularly
noted the accelerated conversion of grasslands, woodlands, and forests to croplands and
pastures in the recent decade, particularly in the tropics, highlighting the close association
between pastoral land, rangeland, and cultivated cropland landscapes. Moreover, while
Cameroon, DRC, Congo, and CAR boast large expanses of LSNTCs and LSTCs of at least
1200 km2 and 530 km2, respectively, Gabon and Equatorial Guinea, on the other hand, have
considerably small extents of both LSNTCs and LSTCs, highlighting the lower food crop
production and the heavy reliance on food importation in both countries [9]. The major
factors driving this trend are the limited agricultural land (as can be seen in Figure 6) in
these countries and the large predominance of forest cover, rapid urbanization, and reliance
on crude oil export [70].

4.2. Limitation of the Study

A major limitation encountered is the inaccessibility to sufficient ground reference
data for specific tree and non-tree crop types. This affected our ability to expressly identify
crop fields following the classification and was likely responsible for the observed disparity
among several comparisons of SSNTC, OL, and LSTC. However, this product, developed to
the best of our knowledge, is the first regional classification and crop scale characterization
map for Central Africa. This product, therefore, presents a tool that can guide decision-
making activities, and future studies can leverage its classes to gain insights into identifying
areas currently cultivated in the region.

The observed spatial assessment and comparison with cropland extents from other
studies such as [39,43,71] suggest a lower cropland area spatial coverage compared to this
study, suggesting a sharp increase in cropping activities (especially SSNTC and SSTC) in
the region. This aligns with observations of previous studies [16,21,22,72] where small-scale
rural cropping has been identified as a key driver of deforestation and rapid expansion.
A possible reason for this increasing trend is thought to be associated with increased
population growth, the rapid expansion of the local production of crops to meet the
demands of international export markets, and others (such as infrastructural development
for roads and amenities).

4.3. Implications for Forest Change and Biodiversity Conservation

The results from this study show that small-scale agriculture is much larger than large-
scale and plantation agriculture, and that encroachment into forest steadily increased in
the last two decades. This corroborates results from previous studies that show significant
agricultural encroachment into biodiversity-rich areas [15,16]. Small-scale agriculture is
generally driven by subsistence farming in the traditional African farming ecosystem,
where lands are cultivated over a period, then left to lie fallow for seven to ten years [73],
consequently increasing the demand for new land for farming [74]. In contrast, large-scale
plantations and agricultural operations, typically used to cultivate tree crops such as oil
palm, cocoa, and rubber, tend to remain stable over long periods. Once established, they
involve relatively minimal periodic interference with the forest ecosystem. The need for
small-scale agriculture cannot be overlooked as it is being carried out by rural communities
to meet the attendant needs of food production and energy to sustain livelihood.
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Nevertheless, the expansion of small-scale agriculture in the Congo forest region poses
both challenges and opportunities for biodiversity conservation. On one hand, unsus-
tainable practices, such as slash-and-burn agriculture, contribute to habitat destruction,
fragmentation, and biodiversity loss. On the other hand, sustainable farming practices can
support biodiversity by maintaining ecosystem services, such as pollination, soil fertility,
and water regulation [30]. It is therefore suggested that both new and existing policy
frameworks must address and balance the demand for land to support subsistence agri-
culture. At the same time, they should ensure the conservation of forest ecosystems and
promote biodiversity within agricultural landscapes. This requires integrating biodiversity
conservation into agricultural policies and initiatives and a multi-faceted approach.

4.4. Policy Recommendations That Integrate All Facets

The nexus between small-scale and large-scale drivers of deforestation and its related
biodiversity loss in Central African is of particular concern as small-scale farmers contribute
between 50 and 70 percent of the total food supply, while industrialized farming also
provides the necessary supply chain to support state economic activities. The WWF has
noted that conversion to agricultural land and mining are two key threats to the Congo
Basin Forests, including fuel wood and poaching. To address these threats, the Congo
Basin countries under the African Forest Landscape Restoration Initiative (AF100) have
committed to restoring degraded land, including 12.5 million hectares in Cameroon, 8
million hectares in DRC, 3.5 million hectares in Central African Republic, and 2 million
hectares in Congo ROC [18].

While the existing policy frameworks struggle to achieve the full realization of biodi-
versity conservation with specific recourse to small-scale agriculture [75], evidence from
this study suggests a decline over the past two decades. However, certain measures must
be in place to conserve this rich forest. Collaborative governance, enhanced funding
mechanisms, and capacity-building programs are few among the essential to ensure that
smallholder farmers adopt sustainable practices. Moreover, aligning agricultural devel-
opment goals with biodiversity conservation objectives will create synergies that benefit
both people and nature. While existing frameworks and initiatives provide a founda-
tion for progress, their effectiveness depends on robust implementation and monitoring.
Strengthening institutional capacity, enhancing stakeholder engagement, and fostering
cross-sectoral collaboration are critical steps toward achieving sustainable outcomes in the
Congo forest region.

In addition, more investment in the rural market infrastructure will enable smallholder
farmers to commercialize with ease, improve the availability of perishable products [76]
while also fortifying local supply chain processes. Since different food systems offer differ-
ent transformation pathways, there is generally the assurance that the local food supply
chain either follows an agroecological direction based on the redesign and diversification
of agroecosystems or follows new technology pathways characterized by greater economic
prospects [77].

Similarly, there is a pressing need for a comprehensive transformation of food sys-
tems in the region. This transformation should involve governments, farmers, industries,
financial institutions, scientists, and civil society working together to identify situations
where the negative impacts of agricultural expansion outweigh its benefits, considering
environmental, social, and economic factors. Such evaluations can guide the adoption
of greener and more sustainable farming practices [78]. In addition, strong governance
and increased conservation incentives can support land-sparing strategies [79] and enable
targeted development planning that avoids placing key infrastructure, such as roads and
buildings, in core forest areas.
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Enhanced agricultural practices are also essential to mitigate soil degradation and
other adverse environmental impacts while also contributing to climate solutions [80].
Key strategies include expanding the use of agroforestry systems, which are considered
more resilient than monoculture-based annual cropping [81], and incorporating nitrogen-
fixing legumes that improve soil fertility, reduce dependency on synthetic fertilizers, and
minimize nutrient runoff [82].

5. Conclusions
In conclusion, we provide a unique and retrospective perspective on crop production

scale for CA. We used both Sentinel-1 and Sentinel-2 satellite image composite for 2023 to
distinguish LSOP, SSOP, LSNTC, SSNTC, LSTC, and SSTC based on a U-Net with a Resnet
encoding deep learning model. The results obtained showed greater expansion of cropland
(especially SSNTC and SSTC) than previously reported in CA, suggesting more local- and
rural-based activities in the agricultural sector. The results also suggests less large-scale
agricultural production in Gabon and Equatorial Guinea owing to the limited observed
LSTC and LSNTC compared to Cameroon and DRC, which had extensive large-scale and
small-scale crop cultivation. In addition, the study observed a steady rise in the encroach-
ment of forest by small-scale agriculture in the last two decades, while the existing policy
framework showed gaps in addressing small-scale agricultural expansion, necessitating
robust recommendations to further strengthen forest conservation in the region.

With limited field training data across the extensive coverage of the six countries, this
study was able to produce the very first crop production scale map for Central Africa,
which can further guide policymaking actions, foster intervention activities, and strengthen
various discussions around building resilience against climate change. Future studies can
leverage the results provided to identify areas where crop cultivation activities are intensely
being carried out within the region and further improve the results presented by utilizing
an expanded classification scheme.
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Appendix A
Reference data (including field and secondary sources) used in this study.

Figure A1. Showing the reference site location for the Tree Crops, Non-tree Crops and Field conducted
surveys used in this study.

Appendix B
The final Sentinel-1 and -2 composites used for classification.

 

Figure A2. Showing the final image composite generated from Sentinel-1 VH, Sentinel-1 VV and
Sentinel-2 (Red Band) mosaics used for the Image Classification in this study.



Remote Sens. 2025, 17, 1958 18 of 22

Appendix C
Crop types within the broad crop classes of tree and non-tree crops.

Appendix C.1

Table A1. Crop types within the tree crop class, importance, and uses of the crops.

Tree Crop Countries Importance Uses

Cocoa Cameroon, Gabon, DRC Significant export crop,
especially in Cameroon.

Processed into
cocoa butter, powder, and
chocolate.

Coffee Cameroon, DRC, CAR Major cash crop,
particularly Robusta coffee.

Beans processed into
coffee.

Palm Oil Cameroon, Gabon, DRC,
CAR

Critical for domestic
consumption and export.

Used in cooking, food
products, cosmetics, and
biofuel.

Rubber Cameroon, Gabon, DRC Key industrial crop. Used in tires, footwear, and
industrial products.

Banana and Plantain Cameroon, DRC, Gabon,
CAR

Staple food and important
cash crops.

Consumed as staple food
and in various forms.

Timber Trees Cameroon, Gabon, DRC,
CAR

Major export product from
tropical forests.

Used in furniture,
construction, and wood
products.

Kola Nut DRC, CAR, DRC Culturally significant and
widely used.

Chewed as a stimulant and
in traditional medicine.

Citrus Fruits Cameroon, DRC, Gabon Important for local
consumption and export.

Consumed fresh, in juices,
and food products.

Mango Cameroon, Gabon, DRC Popular fruit crop with
regional demand.

Consumed fresh, in juices,
jams, and dried fruits.

Cashew DRC, Cameroon Growing cash crop with
increasing demand.

Processed nuts and cashew
apple for beverages.

Avocado Cameroon, Gabon, DRC Gaining popularity due to
high demand.

Consumed fresh, in salads,
and for oil production.

Shea DRC, CAR
Source of shea butter;
valuable in cosmetics and
food.

Used in cosmetics, cooking,
and traditional medicine.

Papaya Cameroon, Gabon, DRC Widely consumed fruit
with export potential.

Consumed fresh, in juices,
and as an ingredient.

Appendix C.2

Table A2. Crop types within the Non-tree Crop group of class, importance and uses of the crops.

Crop Countries Importance Uses

Maize All Central African
countries

Staple food; major
carbohydrate source.

Porridge, boiled, roasted,
and animal feed.

Cassava All Central African
countries

Key staple; drought
resistant.

Flour, garri, and thickening
soups.

Yams Cameroon, Gabon, DRC Culturally significant; used
in traditional ceremonies. Boiled, fried, and fufu.
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Table A2. Cont.

Crop Countries Importance Uses

Rice Wetter regions of Central
Africa

Increasing staple and high
imports.

Cooked grain
accompanying sauces and
stews.

Sorghum Semi-arid regions of
Central Africa

Drought-tolerant and
critical in less fertile
regions.

Local beers, porridges, and
flour.

Millet Drier parts of Central
Africa

Essential for food security
and drought resistance.

Porridge, traditional beers,
and bread.

Peanuts Throughout Central Africa Significant protein and
economic value.

Raw, roasted, soups,
sauces, oil, and peanut
butter.

Beans All Central African
countries Important protein source. Side or main dish, with rice

or maize, and soups.

Soybeans Cameroon, DRC Rising importance for
protein and oil.

Cooking oil, animal feed,
and food ingredients.
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