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A B S T R A C T

Random phase durations and dynamic combined phases challenge the application of existing reliability models in
the reliability analysis of multistate-phased mission systems (MS-PMSs). To this end, this paper presents a new
reliability modeling method for multi-state phased mission systems with random phase durations and dynamic
combined phases. Initially, a multi-state multi-valued decision diagram-based (MMDD-based) reliability
modeling method is created to efficiently map random phase durations and the dynamic combined phase nature
of MS-PMSs into the reliability model. To solve the MMDD-based reliability model, a path probability evaluation
method is subsequently constructed with the assistance of the Markov regenerative function. The effectiveness
and the superior performance of the proposed MMDD-based reliability model and its solving algorithm are
validated by the application to the reliability modeling and analysis of an attitude and orbit control system with
multiple modes. Overall, this paper provides the reliability sector with a new reliability model and its solving
algorithm to enhance the reliability and safety of multi-state phased mission systems.

1. Introduction

The whole mission of Phased Mission Systems (PMSs), such as
manned spaceflight [1], satellite [2], aviation flight [3], as well as nu-
clear power [4], can be divided into several subtasks, which are
completed in a series and continuous time durations, called phases.
PMSs accomplishes a series of missions in their whole lifelong with
diverse failure criteria and working environment [2]. For instance, the
full mission of a flight includes taxi and take-off, cruise, and landing.
Each phase requires specific power and experiences unique working
conditions. The dynamic behaviors raise difficulties in PMSs reliability
modeling, that is to assesss the reliability and safety of whole PMSs,
which, however, is challenging with the consideration of phase de-
pendencies [5].

Most methods for PMSs reliability modeling are developed based on
ordinary modeling concepts. These methods include: (i) The combina-
torial methods based on static models, for instance, fault tree [6] and
decision diagram-based methods [7], deal with reliability modeling of
large-scale PMSs with improved modeling efficiency; (ii) The state

space-based models, like the Markov process [8], are able to map dy-
namic characters of elements within phases such as cold spare compo-
nents [9], dependent failure [10], etc.; (iii) The modular methods or the
hierarchical models combine the two concepts already mentioned and
take all their advantages [11]. Furthermore, the classification of PMSs
into distinct groups is informed by their system characteristics,
encompassing aspects such as phase AND/OR/Dynamic, the utilization
of static methods versus state space models, binary versus multistate
systems, the nature of phase durations (fixed or random), and the un-
derlying statistical distributions (exponential or random), see Table 1.
The contributions of methods are categorized into: complexity, effi-
ciency, and a combination of both, offering a structured overview of the
previous models.

Table 1 reveals that a majority of the existing methodologies operate
under two assumptions:

(i) Static phases, implying that the sequence in phases is executed
remains unchanged. Static phases do not align with the reality of
certain PMSs, where the operational procedures are inherently dy-
namic. A prime example of this dynamism is observed in the attitude
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control systems of satellites, as illustrated in Fig. 1. In Fig. 1, the
numbers 2, 1 and 0 represent three states for the missions (success,
degrade and failure). As we can see from Fig. 1, the failure of one
mission may not lead to direct failure of the whole mission. The
dynamic characteristics are shown in two aspects: (1) The phases
executed are decided by the result of former phases; (2) Some mis-
sions could be re-executed. For example, if the ‘Firing and adjusting’
mission fails, the whole mission will be re-executed if there are
enough redundant working components and fuel. These systems
must adapt their operational strategy in a real-time mode based on
external conditions and mission requirements, showcasing a level of

flexibility and responsiveness that static phase assumptions fail to
capture.

Dynamic phase combinations, if some missions fail or are not ideal,
the phases executed are different, see Fig. 1. The backup mission
mechanism has been considered. For instance, Yu et al. [21] proposed a
Binary decision diagram (BDD)-based method to model the PMS with
backup missions, in which the system could re-execute missions to
improve system reliability. Li et al. [25] introduced a multistate
multi-valued decision diagram (MMDD)-based method to model PMSs
with backup missions, which can efficiently model PMSs with multistate
components. Wang et al. [30] considered the PMS with backup missions
and system risks simultaneously and the mission success probabilities
are used as an objective to optimize the system reliability. Li et al. [31]
considered the backup mission mechanisms in MS-PMSs and proposed a
mixed redundancy strategy for system optimization. Wu et al. [32,33]
studied the PMS with backup missions, and an improved BDD model is
also proposed for system reliability evaluation. All research above
considered the backup mission only triggered after failed normal mis-
sions. In the present research, however, a more general mechanism is
considered when the mission result is not ideal (not failed), extra mis-
sions will be executed for a higher precision. And mission failure is
another special case in this model. And an improved PMS-MMDD model
is proposed for reliability modeling.

(ii) The fixed phase duration. Most existing methods assume that
the phase durations are fixed, which is against the practice. The
phase durations are affected by many factors, such as external
environment, personnel operation level, etc. Only a few studies
considered the mentioned scenarios. To be specific, Jia et al. [20]
proposed a simulation-based PMS reliability modeling concept with
the consideration of common cause failures and random phase du-
rations The method can improve the accuracy of the result by a more
close-to-practice modeling technique. Mo et al. [34] proposed a
Markov regenerative process-based method to model fault-tolerant
PMSs with random phase durations, which can better map the un-
certain nature of phases. The simulation-based methods are
time-consuming. To this end, new ideas to evaluate the system reli-
ability, incorporating the Markov renewal theory are necessary by
the sector.

To deal with the problems mentioned above, a reliability modeling

Notations

Ai Component A in phase i.
Ai,j Component A is in state j in phase i.
index(Ai) The order of variable Ai.
Ti The phase duration of phase i
Pij The end state of phase i is j.
ηMi The ith mission path.
ηCi The ith component path.
Fi,j(t) The distribution of component state transition time

from state i to state j.
Q(t) The kernel matrix
θ(t) The state transition probability matrix
fTi (t) The probability density function of phase duration Ti
si The component state at the end of phase i
α,β The shape parameter and scale parameter for the

Weibull distribution

Acronym
BDD Binary decision diagram
FT Fault tree
MMDD Multi-state multivalued decision diagram
PDO Phase dependent operation
PMS Phased mission system
PMS-BDD BDD model for phased mission system
PMS-MMDD MMDD model for phased mission system

Table 1
Reliability modeling methods of phased mission systems.

Phase Combination Modeling Methods Binary/ Multistate
PMS

Phase Duration Component Failure
Distribution

Article Contributions

AND OR Dynamic Static State space Binary MS Fixed Random Exp Random Complexity Efficiency Both

[8] Kim, 1994 √    √ √  √  √  ■  
[13] Tang, 2006 √   √  √  √  √  ■  
[14] Xing, 2007 √   √  √  √  √  ■  
[18] Wu, 2018 √   √  √  √  √  ■  
[19] Li, 2018 √   √ √ √  √   √ ■  
[20] Jia, 2019 √    √ √   √ √  ■  
[21] Levitin, 2020 √    √ √  √  √  ■  
[23] Cheng, 2021 √    √  √ √  √  ■  
[24] Mura, 2021 √    √ √  √  √  ■  
[25] Li, 2022   √ √ √  √ √   √ ■  
[27] Coolen, 2020 √    √ √  √   √ ■  
[28] Tang, 2023   √ √  √  √   √ ■  
[29] Levitin, 2015 √   √  √   √  √ ■  
[7] Zang, 1999 √   √  √  √  √   ■ 
[15] Amri, 2018 √   √  √  √   √  ■ 
[16] Peng, 2014 √   √  √  √  √   ■ 
[17] Lu, 2018 √   √  √  √  √   ■ 
[22] Wang, 2020 √   √  √  √  √   ■ 
[26] Wang, 2023 √   √  √  √  √   ■ 
[12] Xing, 2002  √  √  √  √  √    ■
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mechanism including multi-state multi-valued decision diagram-based
(MMDD-based) reliability modeling and the Markov renewal equation-
based model solving method are proposed. The novelties of the paper
are as follows:

(i) Construct a reliability modeling method and its corresponding
solving algorithm for MS-PMS with random phase durations and
dynamic combined phases.

(ii) Extend the MMDD manipulation rule as a basis to model the MS-
PMS with dynamic phase combinations.

(iii) Propose a Markov renewal equation-based evaluation method
based on the constructed MMDD model to compute the path
probability, considering both the non-exponential multistate
components and random phase durations.

The rest of the article is organized as follows. Concepts and as-
sumptions are introduced in Section 2. Section 3 presents the method for
system MMDD model construction. Section 4 proposes the Markov
renewal equation-based path probability evaluation method. The case
study is illustrated in Section 5. Section 6 provides conclusions.

2. Concepts and assumptions

Assumptions are presented as follows.

(1) There are n components and each with m+ 1 states.
(2) Components are independent (degrade along with the mission

execution) and unrepairable during the missions.
(3) The multiple system states (at the end of phases) are decided by

that of components.
(4) Different phases are combined to complete missions that cannot

be simply modeled by AND or OR logic.
(5) Some mission durations are uncertain and follow specific distri-

butions, i.e., the normal distribution.

The system evaluation mechanism and procedure are shown in
Fig. 2.

3. MS-PMS modeling with dynamic phase combinations

3.1. MMDD

The MMDD method is an upgraded version of the BDD. Two output
variables (occurrence and nonoccurrence) for each nonterminal node in
BDD models but it becomes multiple in MMDD, representing multiple
possible results of multistate systems. For example, if component A has
m states, [m,m − 1, ⋯, 1], and it is in state j(m> j> 1) in phase i, its
mathematical expression is Ai,j = case(Ai,0,⋯,0

⏟̅̅̅ ⏞⏞̅̅̅ ⏟m− j
,1,0,⋯,0

⏟̅̅̅ ⏞⏞̅̅̅ ⏟j− 1
). In this

case expression, Ai represents that component A is in phase i. ‘1’ and ‘0’
represent variable Ai is in and not in this particular state, respectively.
The graphic representation is shown in Fig. 3.

In Fig. 3, ‘m+1’, ‘j’ and ‘0’ embed in the lines represent the states of
variable Ai. ‘1’ and ‘0’ in the circles correspond to the ‘1’ and ‘0’ in the
case expression, representing variable Ai is in and not in this state. The
integration of multiple MMDD models is based on the MMDD manipu-
lation rules, shown as:

g◆h = case(x,G1,⋯,Gm)◆case(y,H1,⋯,Hm)

=

⎧
⎪⎪⎨

⎪⎪⎩

case(x,G1◆H1,⋯,Gm◆Hm) index(x) = index(y)

case(x,G1◆h,⋯,Gm◆h) index(x) < index(y)

case(y, g◆H1,⋯, g◆Hm) index(x) > index(y)

(1)

where, g = case(x,G1,⋯,Gm) and h = case(y,H1,⋯,Hm) represent two
variables and ◆ is the logic operation ‘AND’ or ‘OR’. Gi and Hi are
variables that represent the variable x and y are in state i (Gi,Hi = 1) or
not (Gi, Hi = 0). index represents the variable orders, and it is pre-
defined. In the PMS modeling, many systems could not be repaired
due their characteristics, such as the spacecraft. Therefore, to consider
the non-repairable characteristics, the general casemanipulation rule of
the PMS-MMDD model is modified as:

Fig. 1. The mission execution process of one attitude control process of a satellite.

Fig. 2. Mission execution procedure of the example MS-PMS. Fig. 3. MMDD model for a multistate component A in any state.
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In Eq. (2), G = case(Ai,G1,⋯Gm) and H = case
(
Aj,H1,⋯Hm

)
repre-

sent the component A in phase i and phase j(i < j). In the forward PDO,
the variable ordering is the same as the phase number, index(Ai)

< index
(
Aj
)
, and it is opposite in the backward PDO. In Eq. (2), we can

see that all the variables between G1 and Gn− 1 in Ei,n are set to be ‘0’. The
reason is that if variable Aj in state n (Hn = 1), which means component
A is state n in phase j, component A must be in state n or higher in a
former phase i because the component cannot be repaired. Therefore, all
the variables between G1 and Gn− 1 in Ei,nare set to be ‘0’. And in Ej,n of
the forward PDO, the components’ state cannot be better in the latter
phase. Therefore, all the variables between Hm and Hm− n in Ej,n are set to
be ‘0’. In this way, the non-repair characteristics is considered in the
system modeling, both in backward and forward PDOs. In this way, the
non-repair characteristics is considered in the system modeling. It
should be noted that, in the PMS-MMDD model, Eq. (1) manipulates the
variables representing different components, and Eq. (2) deals with the
variables of the same components in different phases.

3.2. MMDD-based PMS modeling with dynamic phase combination

In this section, the MS-PMS with dynamic phase combinations is
considered and an MMDD-based method is proposed. A simple PMS
example consisting of three missions (M1-M3), six phases (P1-P6), and
six components (A-F) is illustrated, and the mission execution procedure
is shown in Fig. 4. The solid line and dash lines represent the ‘mission
success’ and ‘mission failure’, respectively. To be specific, different
phases, P2, P3 and P4 will be executed to accomplish mission M2, when
the end state of P1 is 2, 1, and 0, respectively. Phase P5 or P6 is selected
to accomplish mission M3, according to the mission performance of M2.

For different phases and system states, the working components and
system structure functions are also unequal, see Table 2. Components A,
C and E with three states (state 2-fully working, state 1-in degradation,
and state 0-failure) and others with two (state 1- work and state 0-
failure). And the phase durations are T1, T2 and T3, respectively. The
structure functions in the 3rd column of Table 2 represent the require-
ment of the specific phase and states, in which ‘⋅’ and ‘+ ’ represent
‘AND’ and ‘OR’. And Ai,j represents that component A is in state j in
phase i.

The MMDD-based model construction is proposed for the reliability
modeling of MS-PMS, as follows:

Step 1. Evaluate the mission paths that lead to mission success, ac-
cording to the mission execution procedure. For the case shown in
Fig. 4, we can see that there are 5 mission paths from phase P1 to
mission result ‘Mission success’, as:

ηM1 = P12P21P51
ηM2 = P12P20P61
ηM3 = P11P31P51
ηM4 = P11P30P61
ηM5 = P10P41P61

(3)

where, Pij represents the system state is in state j at the end of phase i.

Step 2. Construct the MMDD model for different phases and states
shown in Table 2. Firstly, the variable order is set to be:
A <B <C <D <E <F. Then, the MMDD model for different phases
and states could be constructed with the general MMDD manipula-
tion rule shown in Eq. (1). Using P12 as an example, the model
construction process is shown in Fig. 5. By this method, the MMDD
models for different states of phase P1, P12, P11, P10 are shown in
Fig. 6. In the MMDD models, the numbers in the out edges of A1
represent the state of component A at the end of phase 1. The ‘1’ and
‘0’ in the squares represent whether the system is in this state or not,
respectively. The MMDD models for phases and states P21, P31 and
P51 are also shown in Fig. 7.
Step 3. Construct the MMDDmodel for different mission paths. With
the mission paths in Eq. (3), the MMDD models for different paths
need to be merged into system MMDD model. As some components
are used in different phases, and this phase dependency character-
istic is dealt with the phase-dependent operation (PDO), both for-
ward and backward. In these two PDO algorithms, the backward
PDO is more efficiently, due to its merging features. By the backward
PDO, the variables that represent components in different phases
could be merged, which could reduce the variable numbers and
improve the system modeling efficiency.

Fig. 4. Mission execution procedure of the MS-PMS.

Table 2
System structure functions for different phases and system states.

Phases Missions States System structures

P1 1 2 P12 = A1,2⋅B1,1⋅C1,2
1 P11 = A1,2⋅B1,1⋅C1 + A1,1⋅B1,1⋅C1,2 + A1,1⋅B1,1⋅C1,1
0 P10 = A1,0 + B1,0 + C1,0

P2 2 1 P21 = A2,(2,1)⋅D2,1

0 P20 = A2,0 + D2,0

P3 2 1 P31 = A3,(2,1)⋅D3,1⋅E3,(2,1)
0 P30 = A3,0 + D3,0 + E3,0

P4 2 1 P41 = A4,(2,1)⋅C4,1⋅D4,1⋅E4,2
0 P41 = A4,0 + C4,0 + D4,0 + E4,(1,0)

P5 3 1 P51 = A5,(2,1)⋅E5,(2,1)
0 P50 = A5,0 + E5,0

P6 3 1 P61 = A6,(2,1)⋅E6,(2,1)⋅F6,1
0 P60 = A6,0 + E6,0 + F6,0

G◆H = case(Ai,Gm,⋯,G1)◆case
(
Aj,Hm,⋯,H1

)

=

{
case

(
Ai,Gm◆Ej,1,Gm− 1◆Ej,2,⋯,G2◆Ej,m− 1,G1◆Ej,m

)
Forward

(
index(Ai) < index

(
Aj
))

case
(
Aj,Ei,m◆Hm,Ei,m− 1◆Hm− 1,⋯, Ei,2◆H2,Ei,1◆H1

)
Backward

(
index

(
Aj
)
< index(Ai)

)

Ei,n = case

⎛

⎝Ai,Gm,⋯,Gn, 0,⋯, 0
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

n− 1

⎞

⎠,Ej,n = case

⎛

⎝Aj,0,⋯,0
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

n− 1

,Hm− n+1,⋯,H1

⎞

⎠

(2)
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In this section, Using component E as an example, the model con-
struction process by the backward PDO and forward PDO are both
shown in Fig. 8. In Fig. 8, CE3 and CE5 represent the behaviors of
component E in phase 3 and phase 5, respectively. Furthermore, in
Fig. 8, the red numbers are the numbers that changed by different PDOs.
For example, case(E3,1, 0,0) in the backward PDO represent that if
component E is in state 2 in phase 5, then it must be in state 2 in phase 3.
Therefore, the variables representing component E in states 0 and 1 are
set be ‘0’. In Fig. 8, the modeling process by the forward PDO is also
shown. In the second line of forward PDO, ‘1⋅case(E5,0,1,0)’ represents
that component E is in state 1 in phase 3, so it must be in state 1 or 0 in
phase 5. As a result, E5,2 = 0. And ‘1⋅case(E5, 0, 0, 0)’ represents that
component E is in state 0 in phase 3, so it must be in state 0 in phase 5. As
a result, E5,1 = 0,E5,2 = 0.

With the model construction method shown in Fig. 8, the system
MMDD model for the mission path ηM3 with the backward PDO and

forward PDO are constructed, shown in Fig. 9.And the system MMDD
model for mission path ηM1 with backward PDO is also displayed in
Fig. 10.

Fig. 9 indicates that the scale of the MMDD model by the backward
PDO is smaller than the model by the forward PDO. The main reason is
that by the backward PDO, the variables that represent one component
in different phases have been integrated into one variable, which could
decrease the variable numbers and improve the modeling efficiency.
However, it will lead to the unknown passed phases. For example, for
the MMDD model with backward PDO, the out-edge ‘2’ of variable E5
means that component E is still in state 2 at the end of phase 5, and it also
represents that component E works in phase 3 and state 2. To represent
this difference in these models, the general MMDD manipulation rule
shown in Eq. (2) is modified into:

G◆H=case(Ai,Gm,⋯,G1)◆case
(
Aj,Hm,⋯,H1

)

=

⎧
⎨

⎩

case
(
Aij
i ,Gm◆Ej,1,Gm− 1◆Ej,2,⋯,G2◆Ej,m− 1,G1◆Ej,m

)
ForwardPDO

case
(
Aij
j ,Ei,m◆Hm,Ei,m− 1◆Hm− 1,⋯,Ei,2◆H1,Ei,1◆H1

)
BackwardPDO

Ei,n=case

⎛

⎝Ai,Gm,⋯,Gn,0,⋯,0
⏟̅̅̅⏞⏞̅̅̅⏟

n− 1

⎞

⎠,Ej,n=case

⎛

⎝Aj,0,⋯,0
⏟̅̅̅⏞⏞̅̅̅⏟

n− 1

,Hm− n+1,⋯,H1

⎞

⎠

(4)

In Eq. (4), an extra variable ij is added to Ai. By this way, the variable
after manipulated, Aij

i could show the phases that component A has
passed. The backward PDO in the MMDD model is applied efficiently in
the system modeling of the PMS with dynamic phase selections. And
with the improved manipulation rule shown in Eq. (4), the system

Fig. 5. The model construction process of P12 by the MMDD manipulation rule.

Fig. 6. The MMDD models for P12, P11 and P10.

Fig. 7. The MMDD models for phases P21, P31 and P51.
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MMDD model for mission path ηM3 is shown in Fig. 11.
In Fig. 11, eight component paths from variable A5 to ‘1’ by the

backward PDO in these two MMDD models. All the component paths
leading to the system success is:

ηC1 = A125
5,2 B

1
1,1C

1
1,1D

2
2,1E

5
5,(2,1), ηC2 = A125

5,1 A
1
5,2A

1
1,2B

1
1,1C

1
1,1D

2
2,1E

5
5,(2,1)

}
ηM1

ηC3 = A135
5,2 B

1
1,1C

1
1,1D

3
3,1E

35
5,1E

3
3,2, ηC4 = A135

5,2 B
1
1,1C

1
1,1D

3
3,1E

35
5,2

ηC5 = A135
5,1 A

1
1,2B

1
1,1C

1
1,1D

3
3,1E

35
5,1E

3
3,2, ηC6 = A135

5,1 A
1
1,2B

1
1,1C

1
1,1D

3
3,1E

35
5,2

ηC7 = A135
5,1 A

1
1,2B

1
1,1C

1
1,2D

3
3,1E

35
5,1E

3
3,2, ηC8 = A135

5,1 A
1
1,2B

1
1,1C

1
1,2D

3
3,1E

35
5,2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

ηM3
(5)

In Eq. (5), A135
5,2 represents that component A is in state 2 at the end of

phase 5 and it works in phase 1, 3, and 5 in this component path. With
the component paths shown in Eq. (5), the system probability leading to
mission success could be evaluated.

3.3. Modeling validation and modeling efficiency comparison

(1) Model construction efficiency comparison

In this section, using mission ηM3 as an example, the modeling effi-
ciencies with multiple phases and components by the improved back-
ward PDO and forward PDO are studied.

Firstly, the modeling efficiencies with increasing phase numbers are

Fig. 8. The backward PDO for component E in the mission path ηM3 .

Fig. 9. The MMDD model for mission path ηM3 with backward and forward PDO.

Fig. 10. The MMDD model for mission path ηM1 with backward PDO.
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shown in Table 3, with the forward PDO and improved backward PDO-
based algorithms. In the modeling, the phases in the path ηM3 are
recurring. For example, when the phase number is 5, the constructed
model is ηM = P11P31P51P11P31.

Secondly, the modeling time with increasing component numbers is
shown in Table 4. As shown in Fig. 11, there are five components in the
mission path ηM3 . All the increased components are connected to the
components in parallel from component A~ component E. Then, the
modeling efficiencies with different nuber of compoents are shown in
Table 4.

From the comparison in Table 3 and Table 4, the modeling efficiency
of the proposed method is much better than the forward PDO-based
method, especially for large-scale PMSs.

(2) Compared to BDD based method

In this section, the proposed MMDD-based method is compared to
the PMS-BDD-based method [7] to show the correctness and

effectiveness of the proposed method. The modeling process of the
PMS-BDD model is shown in Fig. 12.

The system BDD model for mission paths ηM3 and ηM1 are shown in
Fig. 13. One can see that the model scale of the MMDD models is less
than the BDDmodel (ηM1 6 nodes vs 8 nodes, ηM3 9 nodes vs 14 nodes). The
reason is that for the multistate components, one variable is enough to
represent the multi-state behaviors. However, multiple variables are
necessary to represent multi-state behaviors. And with more compo-
nents’ states, more variables are needed in the BDD models.

Secondly, according to the models shown in Fig. 13, the component
paths for mission path ηM1 could be evaluated as:

ηC1 = A135
5,2 B

1
1,1C

1
1,1D

3
3,1E

35
5,1E

3
3,2, ηC2 = A135

5,2 B
1
1,1C

1
1,1D

3
3,1E

35
5,2

ηC3 = A135
5,1 A

1
1,2B

1
1,1C

1
1,1D

3
3,1E

35
5,1E

3
3,2, ηC4 = A135

5,1 A
1
1,2B

1
1,1C

1
1,1D

3
3,1E

35
5,2

ηC5 = A135
5,1 A

1
1,2B

1
1,1C

1
1,2D

3
3,1E

35
5,1E

3
3,2, ηC6 = A135

5,1 A
1
1,2B

1
1,1C

1
1,2D

3
3,1E

35
5,2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

ηM3

ηC7 = A125
5,2 B

1
1,1C

1
1,1D

2
2,1E

5
5,(2,1), ηC8 = A125

5,2 A
1
1,2B

1
1,1C

1
1,1D

2
2,1E

5
5,(2,1)

}
ηM1

(6)

Compared the component paths shown in Eqs. (5) and (6), we can see
that they are matched. This comparison shows the modeling efficiency
and correction of the proposed model construction mechanism.

4. Probability evaluation method

In this section, the probabilities of all paths will be evaluated by the
proposed Markov renewal equation-based method, considering two key
factors, random phase durations and non-exponential state transition
distributions. These two factors are common in practical engineering
and ignored in most of the PMS reliability analysis methods. As shown in
Fig. 14, the state transition time could follow any distribution, Fi,j(t). As

Fig. 11. The MMDD models for paths ηM1 and ηM3 with improved backward PDO.

Table 3
The modeling efficiency with different phase numbers.

Phased number 5 6 7 8 9 10 11 12

Proposed method Time (s) 0.0172 0.0226 0.0330 0.0392 0.0492 0.0714 0.0921 0.1247
number of calls 234 324 430 575 781 1045 1421 1821

Forward PDO Time (s) 0.0205 0.0513 0.1129 0.3156 0.5023 1.0234 3.5132 14.6129
number of calls 289 813 1746 4732 6827 14270 40291 120457

Table 4
The modeling efficiency with different component numbers.

Component number 5 6 7 8 9 10 11 12

Proposed method Time (s) 0.0175 0.0182 0.0232 0.0321 0.0367 0.0432 0.0634 0.0805
number of calls 240 287 339 415 532 703 912 1142

Forward PDO Time (s) 0.0179 0.0429 0.0903 0.295 0.4331 0.9060 2.7135 12.6129
number of calls 299 713 1592 4437 6174 12649 34228 93913

Fig. 12. The system modeling process of PMS-BDD based model.
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a result, the traditional Markov chain is not available. To this end, an
improved Markov-renewal equation-based method is proposed in this
section.

4.1. Markov renewal theory

Fig. 14 indicates that the state transition time between states does
not follow the exponential distribution, which means the memoryless
property does not exist during the state transitions. Therefore, the
Markov renewal equation-based method is applied to evaluate the state
probabilities. To evaluate the system state probabilities, two matrices,
Q(t) and θ(t), which are the kernel matrix and state transition proba-
bility matrix, are used in this article. Each element, Qi,j(t), in the kernel
matrix Q(t), represents the process transit from state i to state j in once
transition. In general, Qi,j(t) could be evaluated by the competing failure
behaviors. In this article, all the components are degraded linearly, and
the states can only change into the adjacent state, therefore, Qi,j(t) is
equal to Fi,j(t).

Then, the elements, θi,j(t) in θ(t), represents the transition probability
of the process from state i to state j with multiple steps. And with matrix
Q(t), θ(t) could be evaluated by the Markov renewal equation, as:

θi,j(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 −
∑m

j=1(j∕=i)

Qi,j(t), i = j

∑m

k=1

∫ t

0
qi,k(τ)θk,j(t − τ)dτ, i ∕= j

qi,k(t) = dQi,j(t)
/
dt

(7)

With the evaluated system state transition probability matrix θ(t),
the state probabilities at any time could be evaluated with the initial
state probability, as:

P(t) = P(0)θ(t) (8)

4.2. Path evaluation method

Components are assumed to be independent on each other. There-
fore, the path probability could be evaluated by multiplying the prob-
abilities of each component with different states in different phases. For
example, the probability of the path ηC5 shown in Eq. (5) could be
evaluated as:

Pr
(
ηC5
)
= Pr

(
A135
5,1 A

1
1,2B

1
1,1C

1
1,1D

3
3,1E

35
5,1E

3
3,2

)

= Pr
(
A135
5,1 A

1
1,2

)
Pr
(
B11,1

)
Pr
(
C1
1,1

)
Pr
(
D3
3,1

)
Pr
(
E355,1E

3
3,2

) (9)

In Eq. (9), A135
5,1 A1

1,2 represents component A works in phases 1, 3 and
5. Meanwhile, the component state is in state 2 at the end of phase 1.
Then, it degrades into state 1 at the end of phase 3 and it stays in state 1
until the end of phase 5. In this article, there are two difficulties in the
path probability evaluation: (i) The non-exponential multistate
component does not possess the memoryless property during component
state transitions, which made the components’ state transition behaviors

Fig. 13. The system BDD models for mission paths ηM1 and ηM3 .

Fig. 14. The state transition diagram of a multistate component without repair.

Fig. 15. The state transition paths of component A in multiple phases.
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among phases are connected. (ii) The phase durations follow different
distributions.

With random phase durations and non-exponential state transition
distributions, the component state transition behaviors will be very
complex. To show the state probability evaluation method, a component
A with m states and n phases is used to show the proposed method.
Assuming that component A is in statem at the beginning of phase 1 and
the component state at the end of each phase is denoted as s1, s2, s3,…, sn
(m > s1 > s2 > s3 > ⋯ > sn), respectively. And the phase durations also
follow different distributions Ti ∼ fTi (t). The state transition paths this
state combinations is shown in Fig. 15.

According to Fig. 15, the probability that the state of component A
transition in this path could be evaluated as:

Proof.
Firstly, consider two simple cases, the state transition probability

evaluation with one phase and two-phase cases.
For a one phase case, the component transit from state m to state s1

and the phase duration follows a normal distribution T1 ∼ fT1 (t). Then,
the probability could be evaluated as:

Pr(S0 = m, ST1 = s1) = Pr{Z(T1) = s1,T1|Z(0) = m}

=

∫ +∞

0
Pr(Z(T1) = s1,T1 = t1|Z(0) = m)dt1

=

∫ +∞

0

∑m

k=s1

∫ t1

0
fm,k(τ)θk,s1 (t − τ)dτfT1 (t1)dt1

(10)

In Eq. (10), fm,k(τ) represents the state transition probability of
component A from state m to state k and if k − m = 1, fm,k(τ) = qm,k(τ).
And if k − m > 1, fm,k(τ) =

∑k
s=m+1 qm,s(τ)qs,k(τ), which means that each

transition possibility from state m to state k is taken into consideration.
For a two-phase case, the state transition process is more complicated.
The state transitions are shown in Fig. 16. In this transition process, the
known condition is that the component state at the beginning, the end of
phase 1 and the end of phase 2 are m, s1 and s2, respectively. Assuming
the precise transit timing is τ1 and τ2, we can know that component A
transit from state m to state s1 during time interval [0, τ1], then transit
from state s1 to state s2 during time interval [τ1,τ2]. τ1 and τ2 could be any
values between time intervals [0,T1] and [0,T2], respectively.

According to the description, the probability could be evaluated as:

Pr(S0 = m, ST1 = s1, ST2 = s2, ST3 = s3,⋯, STn = sn)

=

∫ +∞

0
.

∫ T− t1 − t2 − ⋯− tn− 1

0

⎡

⎢
⎢
⎢
⎢
⎣

∫ t1

0
fm,s1 (τ1)

∫ t2

0
fs2 ,s1 (τ2 + T1 − τ1)

∫ t3

0
fs2 ,s3 (τ3 + T2 − τ2)⋯

∫ tn

0

∑sn

k=sn− 1

fsn− 1 ,k(Tn + τn − τn− 1)θk,sn (Tn − τn)dτn⋯dτ1

⎤

⎥
⎥
⎥
⎥
⎦

fT1 (t1)⋯fTn (tn)dt1⋯dtn

Fig. 16. The state transition paths of component A in 2 phases.

Pr(S0 = m, ST1 = s1, ST2 = s2)

= Pr{Z(t1) = s1,Z(T2) = s2,T1 = t1,T2 = t2|Z(0) = m}

=

∫ +∞

0

∫ T− t2

0
Pr(Z(T) = s1,Z(T2) = s2|Z(0) = m)fT1 (t1)fT2 (t2)dt1dt2

=

∫ +∞

0

∫ T− t2

0

[∫ t1

0
fm,s1 (τ1)

∫ t2

0

∑s2

k=s1

fs1 ,k(τ2 + T1 − τ1)
θk,s2 (T2 − τ2)

dτ2dτ1

]

fT1 (t1)fT2 (t2)dt1dt2

(11)
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Then, by analogy, for an n-phases case, if the component state at the
end of each phase is s1, s2, …, sn (m>s1>s2>…>sn), the probability
could be evaluated as:

Consider a special case in which the component state is not changing
during one phase, which means that the component state does not
change during this time duration. The state transition does not occur
during this time duration. Then, the evaluation could be simplified. For
example, if s2 = s1 in Eq. (12). The probability is:

Pr(S0=m,ST1 =s1,ST2 =s2,ST3=s3,⋯,STn =sn)

=

∫ +∞

0
.

∫ T− t1 − t2 − ⋯− tn− 1

0

⎡

⎢
⎢
⎢
⎢
⎣

∫ t1

0
fm,s1 (τ1)

∫ t3

0
fs1 ,s3 (τ3+T2+T1 − τ1)⋯

∫ tn

0

∑sn

k=sn− 1

fsn− 1 ,k(Tn+τn − τn− 1)θk,sn (Tn − τn)dτn⋯dτ1

⎤

⎥
⎥
⎥
⎥
⎦

fT1 (t1)⋯fTn (tn)dt1⋯dtn
(13)

With Eqs. (12) and (13), the component path probability could be
evaluated. However, we can see that the multi-integrals in these func-
tions are very complex. And with non-exponential distributions, i.e., the
Weibull distribution, it’s very complex to evaluate an analytical solution
for these complicated multi-integrals. Therefore, an approximation al-
gorithm, the trapezoidal integration method, is applied. By this method,
a high-precision approximate solution could be computed.

In the following, two special cases, exponential multistate compo-

nents, and fixed phase durations, which are commonly seen in previous
research, are also given.

(1) Exponential multistate components [32]
If the state transition time of each component follows the

exponential distribution, the memoryless property is possessed at
any time. All the components’ memory will be lost after the phase
change. For example, in Fig. 16, the component state transition
rate at time τ1 and T1 is the same. So the path probability eval-
uation equation shown in Eq. (12) could be simplified as:

Fig. 17. The consisting components of the AOCS.

Table 5
Component parameters for the AOCS.

Components parameters Components parameters

A α2,1 = 1.8,β2,1 =

1500h− 1
F α2,1 = 1.5,β2,1 =

2500h− 1

α1,0 = 2.5,β1,0 =

1200h− 1
α2,1 = 2,β2,1 =

1800h− 1

B α1,0 = 1.3,β1,0 =

5500h− 1
G α2,1 = 1.5,β2,1 =

2500h− 1

C α1,0 = 1.3,β1,0 =

4000h− 1
H α1,0 = 1.3,β1,0 =

6000h− 1

D α1,0 = 1.3,β1,0 =

8000h− 1
α1,0 = 1.4,β1,0 =

5000h− 1

E α1,0 = 1.3,β1,0 =

6000h− 1
 

Pr(S0 = m, ST1 = s1, ST2 = s2, ST3 = s3,⋯, STn = sn)

=

∫ +∞

0
.

∫ T− t1 − t2 − ⋯− tn− 1

0

⎡

⎢
⎢
⎢
⎢
⎣

∫ t1

0
fm,s1 (τ1)

∫ t2

0
fs1 ,s2 (τ2 + T1 − τ1)

∫ t3

0
fs2 ,s3 (τ3 + T2 − τ2)⋯

∫ tn

0

∑sn

k=sn− 1

fsn− 1 ,k(Tn + τn − τn− 1)θk,sn (Tn − τn)dτn⋯dτ1

⎤

⎥
⎥
⎥
⎥
⎦

fT1 (t1)⋯fTn (tn)dt1⋯dtn

(12)
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Pr(S0 = m, ST1 = s1, ST2 = s2, ST3 = s3,⋯, STn = sn)

=

∫ +∞

0
.

∫ T− t1 − t2 − ⋯− tn− 1

0

⎡

⎢
⎢
⎢
⎢
⎣

∫ t1

0
fm,s1 (τ1)

∫ t2

0
fs1 ,s2 (τ2)

∫ t3

0
fs2 ,s3 (τ3)⋯

∫ tn

0

∑sn

k=sn− 1

fsn− 1 ,k(τn)θk,sn (τn)dτn⋯dτ1

⎤

⎥
⎥
⎥
⎥
⎦

fT1 (t1)⋯fTn (tn)dt1⋯dtn
(14)

(2) Fixed phase durations [25]
Another special situation is the fixed phase durations. If the

phase durations are fixed, that T1, T2,…, Tn are fixed, the path
probability evaluation equation shown in Eq. (12) could be
simplified as:

Pr(S0 = m, ST1 = s1, ST2 = s2, ST3 = s3,⋯, STn = sn)

=

∫ T1

0
fm,s1 (τ1)

∫ T2

0
fs1 ,s2 (τ2 + T1 − τ1)

∫ T3

0
fs2 ,s3 (τ3 + T2 − τ2)⋯

∫ Tn

0

∑sn

k=sn− 1

fsn− 1 ,k(Tn + τn − τn− 1)θk,sn (Tn − τn)dτn⋯dτ1

(15)

5. Illustrations

5.1. Description

The Attitude and Orbit Control System (AOCS) in a spacecraft is used
to show the proposed method’s capability. The AOCS is used to control
the attitude and orbit during the whole lifetime, which is critical for the
spacecraft. The AOCS consists of several functional subsystems, control
subsystem (A), different kinds of sensors (B, C, D, E), batteries (F), and
actuators (G, H), as shown in Fig. 17. Component A, Fand H have three
states and all the sensors have two states. All the parameters for the
components are shown in Table 5. The components’ state transition time
follows the Weibull distribution, and αi,j and βi,j are the shape parame-
ters and scale parameters, respectively. All these data listed here have
been decrypted.

The whole mission process could be divided into several missions
and phases. During the whole lifetime, there are four missions
(launching, orbit transfer, on-orbit operation and back to earth) need to
be completed in different phases, as shown in Fig. 18. During the whole
lifetime, the control subsystem, component A, needs to be in a different
working state. Then, in phase 1, components C and F are used to acquire
the attitude data and provide electricity. In phase 2, the earth sensor and
sun sensors are combined to work. If they are working normally until the
next phase, the system will execute phase 3 to finish mission 3. And if

any of them fail, the star track sensors and gyro will be used in phase 4 as
an alternative to finish the following missions. At last, the star track
sensors and gyro will be used in phase 5 to finish the last mission. In
addition, the 10 N thrusters and 370N thruster will be used in P2/P5 and
P3/P4 for orbit maintenance and orbit transfer, respectively. And the
system structure functions and time durations for different phases are
also shown in Table 6. All the phase durations follow different distri-
butions. For example, T1 and T2 follow the uniform distribution and
normal distribution, respectively.

5.2. System reliability

According to the model construction procedure shown in Section 3,
the system reliability of the AOCS could be evaluated, as shown in the
following.

Step 1. Construct the mission paths for the whole system:

ηM1 = P11P22P31P51
ηM2 = P11P21P41P51

(16)

According to the mission paths, construct the MMDD models for
different phases and states, as shown in Fig. 19.

Step 2. According to the improved MMDD manipulation rule shown
in Eq. (4), construct the system MMDD models for different mission
paths in Eq. (16).
Step 3. According the MMDD models shown in Fig. 20, the compo-
nent paths for the whole system succussing could be evaluated. There
are 8 paths for the mission path ηm1 :

ηC1 = A1235
5,2 B233,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,2H

25
5,2,

ηC2 = A1235
5,1 A12

5,2B
23
3,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,2H

25
5,2

ηC3 = A1235
5,2 B233,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,1F

1
2,2H

25
5,2,

ηC4 = A1235
5,1 A12

5,2B
23
3,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,1F

1
2,2H

25
5,2

ηC5 = A1235
5,2 B233,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,2H

25
5,1H

22
2,2,

ηC6 = A1235
5,1 A12

5,2B
23
3,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,2H

25
5,1H

22
2,2

ηC7 = A1235
5,2 B233,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,1F

1
2,2H

25
5,1H

22
2,2,

ηC8 = A1235
5,1 A12

5,2B
23
3,1C

123
3,1 D

5
5,1E

5
5,1F

12
2,1F

1
2,2H

25
5,1H

22
2,2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ηM1 (17)

For mission path ηm2 , there are 16 paths shown as:

Fig. 18. The missions and phases of the AOCS.
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ηC9 = A1245
5,2 B22,0C

123
3,1 D

45
5,1E

45
5,1G

4
4,1F

12
2,2H

25
5,2,

⋮
ηC24 = A1245

5,1 A12
2,2B

2
2,1C

12
2,1D

45
5,1E

45
5,1F

12
2,1F

1
1,2G

4
4,1H

25
5,1H

2
2,2

⎫
⎪⎪⎬

⎪⎪⎭

ηM2 (18)

Step 4. According to the component paths shown in Eq. (18), the
system reliability could be evaluated with the path probability
evaluation method in Section 4. The system reliability could be
evaluated by adding all the probabilities of paths leading to success.
The evaluated system reliability with the proposed method is
0.9563595.

5.3. Validation and comparison

5.3.1. Validation by MC simulation method
In this section, the evaluated system reliability of the AOCS is

compared to the MC simulation-based method for verification. As we all
know, the MC simulation is based on random simulation and statistical
analysis. The MC simulations are particularly useful in situations where
analytical solutions are difficult or impossible to obtain. And the eval-
uated result by the MC simulation could be more accurate with more
simulations.

Firstly, the simulation procedure for the paths is shown in Fig. 21.
Using the component paths ηC1 and ηC2 in Eq. (17) as examples, the path
probabilities of these two component paths are evaluated by the pro-
posed method and MC simulation method with different simulation
amounts. The simulations are carried out with different simulation
amounts 30 times. The comparison results of the two paths are shown in
Fig. 22 and Table 7.

Fig. 22 and Table 7 indicate that with the increasing of simulation
amount, the errors between the two methods are smaller and smaller.
Therefore, we can have a conclusion that the proposed method could
provide a highly precise approximation result. Secondly, with the same
computer, the evaluation time of the proposed method (segmentation
δ = 0.1) is only 2.52397 s. Therefore, the proposed method is more
efficient.

From the equations shown in Section 4.2, it can be easily seen that
the multiple integrals are very complex, and a numerical integration-
based method is used to evaluate the path probabilities. In this sec-
tion, the evaluation efficiency and accuracy of this method are shown.
Using paths ηC1 and ηC2 as examples, and the standard is the evaluated
result shown in Section 5.2, the comparison result with different seg-
mentation δ is shown in Table 8.

From Table 8, we can see that with the increase of δ, the computation
time, as well as the errors, are also increased. Compared to the results
shown in Table 7, the evaluation efficiency of the proposed method is
much higher.

5.3.2. Sensitivity analysis
In this section, a sensitivity analysis is carried out to show which

component has a greater influence on the system reliability. The state
transition probabilities of all components follow the Weibull distribu-
tion, in which the scale parameters are directly related to the compo-
nents’ lifetime. Therefore, the sensitivity analysis on the parameter β is
carried out. When the parameter β of different components changes from
0.5β to 1.5β, the system reliability changes are shown in Fig. 23.

From Fig. 23, we can see that component A has the greatest influence

Table 6
System structure functions and durations for different phases of the AOCS.

Phases States System structures Phase durations
(h)

P1 1 P11 = A2C1F2 T1 ∼ U(18,22)
P2 2 P22 = A2B1C1F2H1 T2 ∼ N(24,5.2)

1 P21 = A2B0C1F2H2 + A2B1C0F2H2 +

A2B0C0F2H2

P3 1 P31 = A(2,1)B1C1G1 T3 ∼ N(120,6.1)
P4 1 P41 = A(2,1)D1E1G1 T4 ∼ N(144,4.8)
P5 1 P51 = A(2,1)D1E1H(2,1) T5 ∼ U(24,36)

Fig. 19. The MMDD models for different phases of the AOCS.
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on the system reliability. The reason is that component A works in all
phases and the lifetime of component A is also small due to the small β.
On the other hand, we can see that both components D, E and F have
little influence on the system reliability. For component F, it only works
in phase 1 and phase 2, whose durations are very small. And for com-
ponents D and E, they work in phases 4 and 5. Phase 4 is a backup phase
and the duration of phase 5 is also very small. Therefore, the parameter

changing of components D, E and F have a small impact on the system
reliability.

5.3.3. Comparison
In Ref. [34], the system reliability of PMS with random phase

durations and non-exponential components is studied and a Markov
regenerative process-based method is proposed for system reliability
evaluation. However, an assumption is made that the memory is losable,
only during the phase change. By this assumption, the component state
is new at the beginning of each phase. With this assumption, the path
evaluation function shown in Eq. (12) could be simplified as:

With the evaluation function shown in Eq. (19), the path probabili-
ties of path ηC1 and ηC2 could also be evaluated. the comparisons of the
proposed method, MC simulation method with simulation amount 2×

106 [1] and the method in Ref [34] are shown in Table 9.

Fig. 20. The MMDD models for different mission paths of the AOCS.

Fig. 21. The Monte Carlo simulation procedure.

Pr(S0 = m, ST1 = s1, ST2 = s2, ST3 = s3,⋯, STn = sn)

=

∫ +∞

0
.

∫ T− t1 − t2 − ⋯− tn− 1

0
θm,s1 (t1)fT1 (t1)θs1 ,s2 (t2)fT2 (t2)⋯θsn− 1 ,sn (tn)fTn (tn)dt1⋯dtn

(19)
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Table 9 confirms that for path ηC1 , the results by the proposed method
and the method in Ref. [34] are the same. The reason is that in path ηC1 ,
the states of all the components are the same at the beginning and the
end. And in path ηC2 , the state of component A transits from state 2 to
state 1 in phase 3. We can see that the probability of the proposed
method is lower. The reason is that in Ref. [34], due to the memoryless
assumption, after phase change, the state residence time is set to be zero.
However, it should be τ(τ could be any value during [T1 + T2,T1 + T2 +

T3]), which leads to a higher state transition rate from state 1 to state
0 in phase 5. By considering this characteristic, the evaluated path
probability by the proposed method is lower, and precisely.

6. Conclusions

In this study, tailored to address practical engineering scenarios,
novel reliability modeling methodologies are proposed for multistate-
phased mission systems (MS-PMS) characterized by random phase

durations and dynamic phase combinations. Initially, a multi-state
multi-valued decision diagram-based (MMDD-based) modeling
approach is introduced to accommodate dynamic phase combinations,
wherein phase selection is contingent upon the system state of the pre-
ceding phase. Comparative analyses are conducted with the PMS-MMDD
model featuring forward-backward integration, alongside the widely
utilized PMS-BDD model. The results of these comparisons underscore
the superior modeling efficiency of the proposed MMDD model for MS-
PMS systems with dynamic phase combinations. Subsequently, consid-
ering multistate non-exponential components and the stochastic nature
of phase durations, a Markov renewal equation-based method is devised
to ascertain component path probabilities. Aggregating these probabil-
ities enables the evaluation of system reliability. The proposed path
evaluation methodology is juxtaposed against the Monte Carlo simula-
tion method and the exiting approach. Comparative assessments high-
light both the efficiency and accuracy of the proposed methodology.
Finally, the efficacy of the proposed approach is demonstrated through a

Fig. 22. The path probabilities comparison between proposed and MC simulation methods.

Table 7
The evaluation results by the MC simulation with different amount.

Simulations 2× 102 2× 103 2× 104 2× 105 2× 106

Path ηC1 Mean values 0.931494 0.950694 0.947294 0.945619 0.944602
Mean Errors 0.0145 0.0047 0.0013 3.75× 10− 4 1.39× 10− 4

Time (s) 0.82 8.5 79.2 823.3 7823.1
Path ηC2 Mean values 0.017145 0.016625 0.016285 0.016070 0.016178

Mean Errors 9.900× 10− 4 4.470× 10− 4 1.301× 10− 4 8.602× 10− 5 2.032× 10− 5

Time (s) 0.76 7.4 81.2 793.4 7958.6

Table 8
Result analysis of proposed method with different segmentation δ.

δ 0.5 0.4 0.3 0.2 0.1

Path ηC1 Value 0.930837 0.938149 0.943912 0.945434 0.945994
Error 0.0152 0.0078 0.0021 0.00056 0
Time (s) 0.01239 0.02593 0.03125 0.24352 2.52391

Path ηC2 Value 0.014516 0.015416 0.015743 0.016014 0.016155
Error 1.639× 10− 3 7.392× 10− 4 4.120× 10− 4 1.410× 10− 4 0
Time (s) 0.01066 0.02515 0.04116 0.315662 2.77336
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practical application involving the Attitude and Orbit Control System of
a spacecraft.
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