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Abstract: In cloud computing environments, the representation and management of data
through workflows are crucial to ensuring efficient processing. This paper focuses on se-
curing scientific workflow scheduling, which involves executing complex data-processing
tasks with specific dependencies. The security of intermediate data, often transmitted be-
tween virtual machines during workflow execution, is critical for maintaining the integrity
and confidentiality of scientific workflows. This review analyzes methods for securing
scientific workflow scheduling in cloud environments, emphasizing the application of
security principles such as confidentiality, authentication, and integrity. Various scheduling
algorithms, including heuristics and metaheuristics, are examined for their effectiveness in
balancing security with constraints like execution time and cost.

Keywords: scientific workflow; security; scheduling; CIA triad; cloud computing

1. Introduction
The rapid development of information technology has led to exponential growth in

data generation, and the need for processor speed has increased. Therefore, the argument
for a storage place capable of storing huge amounts of data increased, so the trend towards
cloud services began, and this trend increased the need to maintain data security and
simplify it during use. Cloud computing is an essential technology that has arisen to
fulfill the growing demand for more cost-effective information technology services. It
depicts a concept in which the cloud service provider provides a pool of resources, such as
computing power, storage, bandwidth, and so on, in the form of on-demand services that
consumers can rent over the Internet [1–3].

In this context, many tools have been utilized to facilitate data processing, including
workflow. Workflows are a typical application model in computational science. They define
a series of computations that allow for structured and distributed data processing and are
often stated as a set of jobs with interdependencies. These apps provide an efficient method
of processing and retrieving insight from the ever-growing data generated by increasingly
powerful technologies [4,5].

A directed acyclic graph (DAG), typically used to depict scientific workflows, is highly
vulnerable to attacks since errors made in the middle will be reflected in the end product.
Moreover, the fundamental knowledge in certain scientific domains is frequently hidden
in the intermediate data of scientific procedures. Users will suffer enormous damages if
their data are taken [6–8]. Adversaries can affect workflow execution in various ways:
(i) Attackers can get inside virtual machines (VMs) running workflows and make them go
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down. (ii) Instead of disrupting the workflow, the adversaries may aim to tamper with its
execution result by manipulating the execution software and workflow intermediate data.
(iii) Once inside the virtual machines, the adversaries can also steal the workflow data or
implant the backdoor to facilitate the next invasion [6,9,10].

Recently, security has gained popularity as a requirement, and there are numerous
ways to implement it. Either (1) separate data into sensitive and non-sensitive groups and
send them to a cloud (public or private) or (2) make sure that all data processed in public
clouds is safe by providing security services like authentication, integrity verification, and
privacy [11]. Reducing the number of tasks in a scientific workflow is an important problem
in cloud computing. Some workflow scheduling algorithms apply security services such
as authentication, integrity verification, and encryption for sensitive and non-sensitive
tasks. However, this approach requires a lengthy implementation period and incurs
financial costs.

This paper explores the various methods and algorithms developed to secure scien-
tific workflow scheduling in cloud environments. We analyze the effectiveness of these
approaches, focusing on the trade-offs between security, execution time, and cost. The goal
is to comprehensively understand the current landscape and highlight key areas for future
research in secure cloud-based scientific workflows.

2. Scientific Workflows in the Cloud
Cloud computing provides pay-per-use computer resources over the Internet. The

cloud model provides ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (such as networks, servers, storage, applications,
and services) that can be quickly provisioned and released with minimal management
effort or service provider interaction [2,3]. Figure 1 shows three cloud services and several
deployment methods. Software, platform, and infrastructure as a service are the types of
services. Basic deployments are public, private, and hybrid. According to NIST, cloud
computing has five fundamental qualities: on-demand self-service, broad network access,
elastic resource pooling, quick elasticity, and measurable service [12].

The workflow domain orchestrates task sequences and automates processes, consider-
ing energy dissipation, virtual machine types, workflow types, enforced function counts,
deadline limits, cloud billing charges, acquisition and termination delays, etc. Workflow
processing includes problem identification, dataset collection, loading and summarization,
data segregation, model assessment, feature scaling, algorithm selection, model training,
validation, and prediction. Face recognition, scientific procedures, and object detection
systems benefit from workflow scheduling [1,13].
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Data bifurcates workflow classifications into business and scientific categories. First,
business workflows are practical workflows depicted as a directed acyclic graph. Second,
scientific workflows encompass numerous tasks and necessitate an extensive array of tools
for their execution [2,10].

A scientific workflow comprises a series of interdependent computer processes. We
categorize the interdependencies between jobs as either data or control-flow dependen-
cies [4,5]. Intricate workflow applications, such as gravitational wave physics, astronomy,
and bioinformatics, require significant computational power and utilize cloud resources to
analyze large data volumes. Cloud tasks manifest as workflows, predominantly depicted
as directed acyclic graphs (DAGs), as seen in Figure 2 [4,5]. A workflow management
system receives an abstract process as input and transforms it into an executable format.
Scientific workflows are employed to assess cloud workflow scheduling techniques. These
include [6,15,16] the following:

1. CyberShake: Developed by the Southern California Earthquake Center, CyberShake
is designed to assess seismic hazards in a region by using probabilistic seismic haz-
ard analysis (PSHA). It simulates earthquake ground motions by integrating faults,
geology, and seismic wave propagation information.

2. Montage: Created by NASA, Montage is a workflow application that creates large-
scale sky mosaics by stitching together multiple astronomical images. Using input
images from various telescopes and data sources, Montage generates high-resolution
mosaics that astronomers use to study celestial objects across different wavelengths.

3. LIGO inspiral: The Laser Interferometer Gravitational-Wave Observatory (LIGO)
uses this workflow to analyze gravitational wave data produced by events such as
the merging of binary systems, including black holes and neutron stars.

4. Sipht: Developed by Harvard University, Sipht is a workflow used in bioinformatics
research to search for small, non-coding RNAs across various bacterial genomes.
These small RNAs play a critical role in gene regulation, and identifying them is
essential for understanding cellular processes and developing medical applications.

5. Epigenomics is in the bioinformatics field, a CPU-intensive application that automates
the execution of various genome sequencing operations [3].
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A standard cloud-based scientific workflow system consists of five fundamental
modules: the workflow engine, user interface, workflow management module, cloud
provider APIs, and cloud resources, as seen in Figure 3. The workflow engine obtains the
designated workflow from users by modeling their operations in the user interface. The
three main features of the cloud-based scientific workflow system are resource allocation,
workflow scheduling, and workflow interpretation. The workflow engine serves as the
system’s primary component. The resource provisioning module will generate virtual
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machines (VMs) according to the resource specifications established by the workflow parser
after the submission of the workflow [6,9,17].
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Additionally, the workflow parser is capable of transforming each abstract workflow
into an internal executable representation. The task scheduler will assign the workflow
sub-tasks to virtual machines (VMs) for execution employing specified scheduling method-
ologies. Users can select from several scheduling strategies, including minimizing workflow
makespan, reducing the financial expenses of workflow execution, and enhancing security
according to their requirements. The workflow management module will supervise the
generated intermediate data and track the execution status of the workflow during its
operation. This information will be shown on the user interface [6,9].

3. Scientific Workflow Scheduling in the Cloud
Cloud computing can boost data science workflows by providing data availability and

accessibility, data processing and analysis, data visualization and presentation, and data
security and compliance. Cloud computing can help data scientists work faster, smarter,
and more efficiently on their data science projects. Scheduling of scientific workflows in
cloud computing introduces the following challenges [3,8,19,20]:

1. Mapping task classes to virtual resources results in a significant make-span, and the
challenge is in identifying a minimal set of ideal schedules that maximize performance
according to user-defined quality of service parameters, such as cost and speed.

2. A user-controlled scheduler assigns resources in a cloud environment. The challenge
lies in determining the types and quantities of resources required for the workflow
application to function effectively. Resource overprovisioning enhances performance
but escalates costs, while resource under-provisioning detrimentally affects efficiency.

3. Dependencies on data and control flow between tasks increase the wait time before a
task is ready to start, which lengthens the makespan.

Figure 4 below illustrates numerous classifications of methods and techniques for
workflow scheduling [16,21].

Reinforcement learning is a machine learning methodology that addresses decision-
making in dynamic contexts [22,23]. Metaheuristics are more computationally intensive
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algorithms that can be utilized to address a wide range of optimization problems. They
also attempt to find more necessary schedules by investigating various options and using
guided search. Metaheuristics can be divided into two primary categories: population-
based search and single-solution search [20,24].
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A heuristic is a collection of guidelines for solving a particular problem in a reasonable
amount of time. By integrating a workflow application and understanding cloud character-
istics, the heuristic approach finds a timetable that meets the user’s requirements [16,18,24].

Hybrid combines two heuristic algorithms, PSO and GA, or hyper with reinforcement
learning or another way [25–27]. Hyper-heuristic is an automated methodology for se-
lecting or generating heuristics to solve hard computational search problems [27]. Table 1
shows the differences, benefits, and limitations of each approach used in scheduling.

Table 1. The comparison between methods.

Approach Differences Benefits Limitations

Reinforcement
Learning

- Uses agents to learn
optimal scheduling
policies through trial
and error.

- Adaptive to dynamic
environments.

- Can optimize long-term
objectives.

- Learned from experience.

- Requires large training
time and data.

- May struggle with
complex,
high-dimensional state
spaces.

- Computationally
intensive.

Metaheuristics

- High-level strategies
guiding other heuristics
to explore the search
space (e.g., genetic
algorithms, particle
swarm optimization).

- Capable of finding
near-optimal solutions.

- Flexible for various
problem types.

- Can escape local optima.

- No guarantee of finding
the optimal solution.

- May require fine-tuning
of parameters.

- Often computationally
expensive.

Heuristics

- Problem-specific
algorithms that use
domain knowledge to
find good enough
solutions quickly.

- Fast and efficient for
specific problems.

- Easy to implement.
- Requires less

computational resources.

- May not find optimal
solutions.

- Can be inflexible for
different problem types.

- Susceptible to getting
stuck in local optima.
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Table 1. Cont.

Approach Differences Benefits Limitations

Hybrid Approaches

- Combine multiple
techniques (e.g.,
metaheuristics with
heuristics) to leverage
their strengths.

- Can balance exploration and
exploitation.

- Often achieves better
performance than
individual methods.

- Versatile.

- Increased complexity in
design and implementation.

- May require more
computational resources.

- Complex tuning process.

Hyper-heuristics

- A higher-level approach
that selects or generates
heuristics to solve
problems.

- Can operate on a set of
low-level heuristics or
rules.

- Adaptable to different
problem domains.

- Automated heuristic design
and selection.

- Generalizes well.

- It may be less effective than
specialized heuristics.

- High computational
overhead.

- Requires careful design of
the heuristic set.

4. Scheduling Objectives
All surveyed algorithms share the fundamental characteristic of cost awareness. Along

with this goal, most algorithms look at performance indicators, such as the total time the
system takes to run and the number of operations it does. Moreover, several cutting-edge
algorithms integrate energy consumption, dependability, and security into their aims, as
shown in Figure 5 [1,2,24,28]. Choosing less expensive resources, such as less energy-
efficient servers or data centers, is a common strategy for cost reduction. Compared to
more expensive, energy-efficient options, these resources may use more energy per job or
computing unit.
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4.1. Cost

Algorithms designed for cloud platforms must consider the cost of leasing the infras-
tructure. Failure to comply may result in significantly elevated expenses associated with
renting virtual machines, data transport, and cloud storage utilization. This objective is
included in algorithms by either attempting to reduce its value or imposing a limit on
resource expenditure (i.e., budget). All analyzed algorithms balance cost with supple-
mentary performance or non-functional requirements, such as security, reliability, and
energy consumption in cloud environments. For example, the predominant quality of
service (QoS) demand is to minimize total costs while adhering to a user-specified deadline
restriction [4,24].
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4.2. Makespan

Most evaluated algorithms focus on the duration required to execute the process or the
makespan. It is incorporated into the scheduling objectives by either striving to minimize
its value or establishing a time constraint or deadline for workflow execution [4,25].

4.3. Workload Maximization

Workload maximization in cloud-based scientific workflows pertains to executing the
maximum number of workflows within specified constraints, such as budget or deadline;
thus, strategies in this domain focus on optimizing workflow execution within the allocated
financial resources or designated time limits [4,25].

4.4. VM Utilization Maximization

Maximizing virtual machine (VM) utilization is essential in cloud-based scientific
workflow scheduling. Most algorithms implicitly pursue this objective by being cost-
conscious. Unutilized time slots in leased virtual machines are considered a financial
inefficiency, prompting algorithms to circumvent them in their scheduling. Nonetheless, it
is rare for these unutilized time intervals to emerge from workflow execution, mostly due to
task dependencies and performance requirements. Certain algorithms focus on minimizing
idle time slots and maximizing resource utilization, benefiting customers through cost
reduction and providers through decreased energy consumption, increased profit, and
more effective resource usage [4].

4.5. Energy Consumption Minimization

Individuals, organizations, and governments globally have heightened their interest
in minimizing carbon footprints to mitigate environmental effects. This topic, while not
exclusive to cloud computing, has garnered attention. Recently, researchers have developed
several algorithms that consider energy consumption during process execution. They
evaluate a synthesis of conflicting scheduling objectives while seeking a compromise
among energy consumption, performance, and cost [4].

4.6. Reliability Awareness

Reliability is an important goal for algorithms, and they have ways to ensure workflow
execution stays within users’ QoS limits, even if a resource or task fails. Algorithms
designed for unstable virtual machine instances prone to failure (e.g., Amazon EC2 spot
instances) must have policies to ensure dependability. Common methodologies encompass
duplicating essential work and utilizing checkpoints to reorganize unsuccessful processes.
Algorithms must consider the supplementary expenses related to task replication and
data storage for checkpointing. Moreover, it is essential to recognize that most scientific
workflows are legacy software lacking checkpointing facilities, making reliance on this
assumption potentially unrealistic [4].

4.7. Security Awareness

Certain scientific applications may necessitate the safe management of input or output
data. Furthermore, certain activities may include sensitive computations that require
security measures. Algorithms addressing these security concerns may utilize various
security services IaaS vendors provide. They may secure data by classifying it as immovable
or employing resources or providers with superior security credentials to perform and
store sensitive tasks and data. Taking these security measures into account influences
scheduling decisions since functions may need to be rescheduled near fixed datasets, and
the overhead associated with additional security services may need to be factored into time
and cost estimations.



Future Internet 2025, 17, 51 8 of 29

A secure workflow system necessitates the consideration of many security services for
modeling security-sensitive applications, including authentication, integrity, and secrecy,
as elaborated below [8,15,27] and illustrated in Figure 6.
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4.7.1. Authentication

It concerns job execution agent identity verification dependability. AAA is a security
architecture for authentication, authorization, and accounting. AAA checks a user’s authen-
tication credentials when they access cloud resources via a CSP. AAA checks system access
after authentication. Users are authenticated using HMAC (MD5, SHA-1, and others).

4.7.2. Integrity

Integrity services protect data and applications in the IaaS cloud. Data integrity is
compromised when an attacker modifies it. Hash functions like Tiger, RIPEMD-160, SHA-1,
and others provide integrity.

4.7.3. Confidentiality

Users need confidentiality to store critical cloud resources safely. Confidentiality
prevents eavesdropping and other passive risks to cloud resources. Passive attackers might
disclose unsecured or unencrypted data transmission. Encryption algorithms like IDEA,
DES, and others provide confidentiality.

5. Cloud Security
The protection mechanism against unauthorized access, use, and modification of cloud

resources is called security in cloud computing. We employ various technologies, including
rules, processes, and controls, to safeguard the cloud-based system’s infrastructure from
potential threats [29,30].

Security risk is related to many types of attacks, threats, vulnerabilities, and other
issues. Therefore, it is important to take care when selecting or building a system from a
vendor or customer. Thus, the cloud provider uses unique security standards, methods,
and models to satisfy the client’s requirements.

Cloud security protects data, applications, and infrastructure inside cloud computing
environments. It encompasses an array of methodologies, instruments, and legislation
aimed at safeguarding cloud-based systems from intrusions, data breaches, and various
security risks [31,32]. Snooping, data manipulation, and spoofing are three prevalent risks
in cloud environments. Snooping attacks entail an unauthorized entity intercepting data
transmission between two network hosts. An unauthorized entity can access all traffic data
if data transmission lacks encryption [10,17].

Data tampering refers to the unauthorized modification (editing, deletion, or ma-
nipulation) of data. In a data transmission context lacking protection, an unauthorized
individual may intercept the data packet, alter its contents, and redirect its destination.
Malicious refers to altered data, including a script to compromise user personal information.
Finally, spoofing is an assault executed by a nefarious individual who impersonates another
to infiltrate a third system, expropriate data, misappropriate funds, or disseminate malware.
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Numerous spoofing attacks encompass email spoofing, caller ID spoofing, man-in-the-
middle attacks, IP spoofing, and website spoofing [30,31]. Various measures are employed
to mitigate these assaults in the cloud, including encryption, intrusion detection systems,
zero-trust architecture, antivirus software, and others.

The Confidentiality, Integrity, and Availability (CIA) triad remains the most widely
used framework for defining security vulnerabilities in traditional information systems.
The primary goal of this section is to extend these security principles to the emerging cloud
infrastructure. Figure 7 illustrates the key components of cloud computing data security,
highlighting potential threats and corresponding countermeasures [32,33]. By adapting
the CIA model to cloud environments, we can better understand and address the unique
challenges posed by distributed systems, multi-tenancy, and remote access inherent in
cloud computing.
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6. Threats of the Scientific Workflows in Clouds
Numerous scientific procedures are associated with significant computer activities,

including atmospheric science, bioinformatics, high-energy physics, etc. Process intermedi-
ate data contains vital secrets in some fields, and its theft would result in significant losses.
However, one of the major cloud risks is data leakage because of several tenants [12,18].
Virtual machines (VMs) execute workflows in cloud-based scientific workflow systems.

After completing each workflow sub-task, the intermediate data produced in the
virtual machines is employed to execute future sub-tasks. These intermediate data are
generally unencrypted as they are temporarily retained in the virtual machine (VM). These
intermediary data can be readily appropriated if the attacker can access the virtual com-
puters. In a scientific process, virtual machines (VMs) generally exist within the same
tenant network due to the necessity of regular data transfer. The tunneling protocol seg-
regates distinct tenant networks; a failure of this protocol results in the visibility of all
tenant communications.

Consequently, attackers can infiltrate the networks of other tenants by compromising
the tunneling protocol. If an attacker has infiltrated a tenant network hosting numerous
VMs conducting sub-tasks of scientific workflows, he can employ a scanning tool to
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acquire information regarding the operating systems of these VMs. Three common threats
could affect cloud workflow intermediate data: data loss, malicious media, and traffic
eavesdropping [23,34,35]. The three threats are explained as follows [35]:

1. Data of Loss: VMs typically store workflow intermediate data. The availability of the
intermediate data will be jeopardized if these virtual machines fail, as the intermediate
data will be lost.

2. Traffic Eavesdropping: This could make it easier for attackers to obtain information
transferred over the network unlawfully. Numerous workflows are associated with
significant scientific computing activities, including atmospheric science, bioinfor-
matics, high-energy physics, and so forth [25]. Because process intermediate data
frequently contains key secrets in some domains, data theft would result in significant
losses. The confidentiality of intermediate data will be in jeopardy due to this assault.

3. Malicious Medium: This threat involves intercepting and modifying data while it
is being transmitted across the network. In some cases, adversaries may introduce
malicious content to compromise the security of the data. Such actions can corrupt
the workflow by altering or injecting harmful elements into the intermediate data. As
a result, the integrity of the data is compromised, leading to inaccurate results and
potentially rendering the entire workflow unreliable.

Before talking about the need for security, scientific workflow systems must know
what challenges can be exposed. Four primary challenges exist [35,36] and are presented
as follows:

1. To verify that each sub-task can be executed without any VM failures, the systems
must assess the average earliest finish time of the virtual cluster about the subtask
sub-deadline.

2. Systems must be capable of (i) evaluating the accuracy of sub-task results by analyzing
the confidence of intermediate data across all copies and (ii) rectifying modified
outputs to safeguard the system from the third type of assault by re-executing the
current task.

3. The system must possess sufficient strength to endure the fourth type of attack by
eliminating latent threats and purging executors through resource recycling.

4. Preserving system efficiency while implementing security measures, guaranteeing that
the fault-intrusion-tolerant method does not adversely affect workflow performance.

As discussed earlier, scientific workflows face numerous attacks and challenges that
can compromise their progress. Here, we explore the reasons why security is crucial, even
for data that may not initially appear sensitive. Security is often associated with personal
and financial data, but it is equally vital in scientific research for the following reasons:

1. Protecting Intellectual Property (IP): Researchers want to protect their property from
unauthorized access or modification.

2. Maintaining Integrity in Workflow: Unauthorized interference or manipulation of
the scientific process is prevented by a secure workflow, which guarantees that only
permitted actions are carried out in the correct order.

3. Preserving Reproducibility: A fundamental aspect of scientific inquiry is reproducibil-
ity. Because the workflow is not changed, secure workflows contribute to the assurance
that others may precisely repeat experiments.

4. Securing Resources: Scientific workflows often rely on computational resources like
cloud platforms. Security measures protect these resources from unauthorized access,
abuse, and exploitation, ensuring that they are available and functioning correctly
when needed.
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7. Secure Scientific Workflow in the Cloud
Moreover, cloud system security provides numerous advantages, such as centralized

protection, decreased expenses and management, and enhanced reliability. In IaaS cloud
workflow execution, a workflow management system (WMS) assigns workflow tasks to
secure cloud resources to ensure failure-free execution. A secure workflow system necessi-
tates consideration of several security services for modeling security-sensitive applications,
including authentication, integrity, and confidentiality, as elaborated in Section 4.7 [37,38].
Investigations have been conducted about security concerns related to scheduling. Data
security, data center security, and infrastructure security are the three categories into which
the authors divided models after identifying the many security restrictions [39,40]. Our
paper divided the security scientific workflow into data security, data center security, and
allocation security, as shown in Figure 8, which shows each level.
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7.1. Data Security

The scientific workflow is a data-intensive application consisting of tasks and datasets,
where a task may be related to multiple datasets and a dataset may also be related to
consisting of tasks. There is a data dependency relationship between the tasks, where the
output datasets of a task may be multiple tasks.

The tasks are very importantand have different processes, such as entrance, end,
gathering, scattering, and both gathering and scattering. Every task type carries out
particular tasks and has repercussions if its data are stolen. Offer five task selection policies
that can be selected based on security needs. The Entry = End policy, which ensures the
security of all data handled in both entry and end operations, is the initial policy. It can
be selected for workflows that must secure both the source and finished data. Tasks that
transfer sensitive data to numerous tasks or receive sensitive data from several tasks can be
protected by the Gather and Scatter rules, respectively [37,41].

Tasks with multiple parent tasks and numerous child tasks should be gathered and
scattered to ensure security. Lastly, every policy is applied when the data associated with
all jobs requires secure handling. All five policies use encryption, integrity verification, and
authentication services to secure crucial tasks. The workflow management system (WFMS)
may provide policies to secure workflow execution [38].

7.2. Datacenter Security

Data interchange occurs during job scheduling, either within a data center or between
data centers. Many communities have taken a great interest in it because of its fault
tolerance, scalability, and flexibility [9,42,43]. Cloud service providers use their data centers
(DCs) to house various IT equipment, including servers, storage, and network devices.
This practice results in high power consumption and a greater environmental carbon
footprint. For example, DCs account for around 3% of the world’s power generation and
have an estimated cost of over USD 30 billion. Calculations show that despite the volume
of operations, DC power consumption is rising at a rate of 15% to 20% annually [5].
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It is challenging to lower electricity costs when scheduling process operations since
data are located in globally dispersed cloud data centers (GD-CDCs) to improve energy
efficiency and system dependability [43,44]. So, it is very important to take a placement
strategy for tasks to guarantee security.

7.3. Allocation Security

The relationship that exists between the scheduling of workflows and the allocation
of resources (workflow specification and scheduling in hybrid clouds with security con-
straints) applications requests with computing and networking requirements are received
by the scheduler, who also specifies which kind of virtual machine (VM) each workflow
component will run on. The resource allocator then chooses which physical servers can
house these VMs and which set of links will be used for communication between them [44].
We must specify when the resource allocator must be called by the scheduler. The sched-
uler’s next task is to determine the locations for each workflow component’s execution
after receiving the workflow. It needs two types of data to accomplish this: the cloud
infrastructure specification and the concrete workflow specification [22,45].

The scheduler’s goal is to keep the workflow deadlines intact while limiting the
renter’s financial outlays. Workflow components for virtual machines in four distinct states
can be directed by the scheduling output: (i) virtual machines that are currently assigned
and operating in the private (ii) unallocated VMs at the private cloud; (iii) already allocated
VMs in the public cloud; and (iv) unallocated VMs in the public cloud [45,46].

On the other hand, if the scheduler concludes that new, unallocated virtual machines
(VMs) are required to ensure quality of service (QoS), the subsequent action is to identify
the physical machines on which these VMs can be installed. Because of this, every process
submission is scheduled separately, and the scheduler notifies the resource allocator of
the list of virtual machines (VMs) that need to be constructed, the bandwidth that these
VMs require to communicate with one another, and the tenant relationships that need to be
trusted [45,47,48].

Generally speaking, the scheduler handles each workflow’s allocation decision on
its own. It can be added to the hybrid cloud tenant’s local or personal context. The
trust that exists between users is reflected in how dependent one user is on the others.
To mitigate malicious and self-serving attacks in the intra-cloud network, the resource
allocation strategy, which is based on the trust relationships between tenants, uses the
workflow scheduler’s information to allocate resources (e.g., the consumption of an unfair
share of the network to complete tasks in a shorter amount of time) [47–49].

8. Survey of Secure Workflow Scheduling Approaches in
Cloud Environments

Early in the 1980s, workflow technology was developed. Business workflows, grid
workflows, and cloud workflows have all emerged with the growth of distributed com-
puting. Systems for cloud computing use virtualization to provide flexible resource man-
agement. Cloud workflows are more productive and adaptable than previous workflow
solutions. Consequently, cloud workflow solutions have emerged as a popular topic for
research in recent years. In scientific workflows, scheduling in the cloud started many
years ago, almost between 2009 and 2010. This section discusses various existing ap-
proaches to scheduling workflows in cloud environments, particularly those considering
security aspects.

L. Zeng [50] proposed a security-conscious and cost-effective workflow scheduling
technique (SA-BA) that ensures an affordable allocation of activities among available Cloud
Service Providers (CSPs) to deliver consumers reduced makespan and enhanced security
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services. They performed comprehensive simulation tests utilizing six distinct workflows
from both real-world and synthetic applications, significantly enhancing resource utilization
by concurrently managing dynamic data transfer and execution.

Z. Li et al. [42] This study presents five policies for selecting sensitive data tasks.
Five task selection policies were available depending on security needs. The first policy,
entry-end, secures all entry and end data. Workflows with sensitive beginning and end
data can be used. gather, and scatter rules protect tasks that receive or send sensitive data
from various sources. Cleaned up activities with various parent–child roles. When all task
data needs secure handling, all policies are applied. All five policies safeguard critical
processes via authentication, integrity verification, and encryption. They suggested a multi-
population genetic algorithm workflow scheduling system to save costs and meet deadlines.
Four process application experiments show the idea reduces make-span and cost.

A. R. Arunarani’s [51] provides a cost-effective and secure scheduling method for
various jobs in a scientific workflow in the Cloud. The suggested algorithm is based on
the hybrid optimization technique, which incorporates the Firefly and Bat algorithms. The
coding technique aims to achieve the time and risk rate limitations while minimizing the
overall execution cost. A multi-objective function is used in the proposed system, and the
results show that the approach consistently performs better than conventional techniques.

H. Y. Shishido and all [41] use coding to lower execution costs while meeting timing
and risk rate constraints. The multi-objective function system routinely outperforms earlier
methods. Five policies for selecting sensitive data tasks are suggested. Their workflow
scheduling method employs a multi-population genetic algorithm to cut expenses and stay
on time. Using four workflow applications in experiments shows that reducing time and
money while keeping sensitive data safe is possible compared to a different method.

H. Y. Shishido and others’ [52] paper includes workflow simulators incorporating
the added labor of establishing security services for sensitive data. This study advises
adding security services to the workflow simulator. These found seven workflow execution
security overhead evaluation methodologies. They tested the extension using a process
that used authentication, integrity verification, and encryption. By adding security services
to private data and investigating how security affected time, cost, and security metrics, the
add-ons emulated process execution.

Y. Wang and all [35], they proposed (ACISO) system to increase the availability,
confidentiality, and integrity of the intermediate data, thereby securing it. Hash functions,
encryption algorithms, and erasure codes create availability, confidentiality, and integrity
strategy pools. Next, they presented the Security Strategy Optimal Allocation Model
(SSOA), which maximizes intermediate data security while complying with workflow
makespan and storage overhead limits.

A. Abdali and S. M. Nia’s [53] study aims to introduce a novel, robust algorithm for
managing the scheduling of numerous workflows by utilizing various quality of service
(QoS) criteria. It does this by combining the CPSO and GA metaheuristic algorithms.
However, it should be mentioned that the most immediate performance measure used to
manage the scheduling process is the combination of three separate QoS: execution cost,
load balancing, and security. The execution cost of this algorithm was minimized while
meeting deadline and risk rate requirements, according to the conclusion drawn from it.
Verifying the suggested algorithm using alternative algorithms was considered.

Y. Wang et al. [18] suggest switching defensive methods throughout workflow exe-
cution to reduce network scans and turn workflow security into an attack–defense game.
Calculating the attack–defense game model’s Nash Equilibrium yields the probability
distribution of the best-mixed defense options. Based on likelihood, workflow execution
uses differentiated virtual machines. A dynamic HEFT (heterogeneous earliest finish time)
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task-VM mapping mechanism is included to boost workflow efficiency and defense strategy
switching. The studies are carried out in both a simulated and real-world setting. The
findings show that, in comparison to alternative algorithms, the suggested algorithm can
cut the benefits to the attacker by about 15.23% and lower the time expenditures of the
algorithm by around 7.86%.

S. Hammouti et al. [54] argue that all workflow simulators ignore the overhead of
installing security services for sensitive data. This study suggests adding security services
to the workflow simulator. Workflow execution security overheads may be assessed in
seven ways. The extension was tested utilizing authentication, integrity verification, and
encryption. The software successfully emulated a process by including security services
for sensitive data and investigating how security measures affected timeliness, cost, and
security metrics.

M. Farid et al. [55] suggested using the fault and intrusion-tolerant process scheduling
method (FITSW) to improve process dependability. The proposed workflow system utilizes
task executors of many virtual computers to accomplish workflow operations. FITSW
employs a deadline partitioning technique to determine sub-deadlines for each sub-task
following the duplication of each sub-task three times and the implementation of an
intermediate data decision-making process. Thus, job scheduling with resource flow attains
dynamism. The proposed approach enhances efficiency, preserves an organized workflow,
and produces or reuses task executors. WorkflowSim tests and evaluates task completion
rate, success rate, and completion time, which were conducted to examine the efficacy
of FITSW. The data indicate that FITSW improves success rates by around 12%, reduces
completion time by about 15.6% compared to the intrusion-tolerant scientific workflow
ITSW system, and boosts the task completion rate by 6.2%.

The scheduling technique presented by H. Y. Shishido and colleagues [11] takes user
annotation of workflow tasks depending on their sensitivity. They optimize scheduling
with a multi-population genetic algorithm to save money and fulfill deadlines. Three
workflow applications with sensitive job-to-data size ratios were extensively tested for cost,
makepan, risk, and wastage. The methodology secured critical jobs more effectively and
cheaply than earlier techniques in the literature.

S. Shahul Hammed and B. Arunkumar’s [56] paper suggests an effective way to
manage workflow while taking information value into account by classifying high-value
and low-value information and constructing an algorithm that acts as a scheduler using the
parallel implementation in the natural process of genetic algorithms (GA) with a secured
framework for high-value information. The researchers say the suggested job performs
significantly better than traditional methods in terms of execution time and overall cost.

M. Alam et al.’s [57] paper presented the Security Prioritized Heterogeneous Early
Finish Time (SPHEFT) algorithm to maximize the security overhead and guarantee ratio
of the workflow activities in cloud systems. In this case, SPHEFT gives jobs with higher
security requirements, which are assigned to virtual machines with higher reliability and
higher priorities. The traditional HEFT algorithm and SPHEFT are evaluated experimen-
tally for various tasks. Experimental findings demonstrate that SPHEFT performs better
regarding security overhead and has superior efficiency in raising the task guarantee ratio.

J. Lei et al.’s [58] paper proposed two scheduling techniques: simulated annealing
(PSSA) and privacy and security-aware list scheduling (PSLS), aimed at addressing the
constrained optimization problem at hand. PSLS allocates a user-defined deadline to each
work and assigns them to a hybrid cloud resource that meets the specifications while
minimizing costs. PSSA employs PSLS and simulated annealing to rearrange work lists
for iterative enhancement. Simulation tests conducted reveal that PSLS surpasses four
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existing algorithms in financial cost optimization overall, whereas PSSA exceeds PSLS
further, although with increased runtime costs.

M. Farid et al. [59] proposed the approach to decision-making known as minimum
weight optimization (MWO). Multi-objective algorithms use this technique to choose a
set of permutations that offer the optimal compromise between conflicting objectives. By
comparing several weights, (MWO) seeks to identify the optimum option and refines the
search for the ideal answer iteratively. The study compared the suggested technique to
Pareto dominance, multi-criteria decision-making (MCDM), linear normalization I and
II, and weighted aggregated sum product evaluation using common scientific workflows
with conflicting goals. MWO outperforms these methods.

M. Alam et al.’s [60] research uses the security-prioritized mapping approach for
infrastructure as a service cloud computing to create an SPMWA model. Implementing a
security-prioritized allocation technique under precedence limits should enhance workflow
processing in dangerous situations. This strategy prioritizes secure workloads and allocates
resources to more dependable virtual machines to reduce cloud system failure. Decreased
task failures mean assigning tasks to dependable virtual machines with a high trust level
for a comparative examination of task failures, failure probability, and makespan.

M. Alam et al. [61] improved the security measures in the cloud system by integrating
security services into the workflow allocation. Consequently, they suggested a multi-
constraint workflow allocation technique for cloud computing’s heterogeneous activities.
The recommended course of action is to satisfy deadlines and financial restrictions while
minimizing the likelihood of risk and the expense of execution. The results demonstrate
that the method consistently outperforms the current multi-constraint methods in the
suggested system.

N. Soveizi et al. [22] suggested a method that centers on monitoring networks and
cloud services to find security breaches that occur when workflows are being executed.
This method chooses the best adaptation step to minimize the impact on the workflow after
detection. He uses adaptive learning to identify the best adaptation action to reduce the
uncertain cost of such adaptations and their possible effects on other jobs in the workflow.
The metrics used to assess this technique are the efficacy of the detection process and the
effects of the chosen modifications on the processes.

S. Mangalampalli et al. [62] introduced a deep reinforcement learning-based multi-
objective workflow scheduling system. Dependencies determined all workflow priorities
before mapping processes to VMs. Next, data center electricity costs influenced VM priority.
The scheduler uses the Deep Q-Network architecture to schedule tasks dynamically based
on VM and job priority. Simulations of real-time scientific procedures (LIGO, CyberShake,
Montage, Epigenomics). MOPWSDRL was compared to the most sophisticated approaches,
including ant colony optimization, heterogeneous earliest first deadline, and cat swarm
optimization. The recommended MOPDSWRL outperformed state-of-the-art algorithms in
makespan and energy use.

Hao Liang et al.’s [63] paper introduces an SMWE focus that harmonizes security and
makespan by allocating functions to operational contexts and selectively implementing se-
cure methodologies. Comprehensive assessments indicate that SMWE markedly enhances
the security of serverless processes with minimal makespan expenditure.

Alper Alimoğlu and Can Özturan’s [64] paper presented a scientific workflow exe-
cution manager based on the Ethereum blockchain that allocates workflows to cluster
computing providers utilizing the Slurm workload manager. The solution enhances
the eBlocBroker autonomous resource broker, a DAO-based decentralized coordinator,
to facilitate distributed workflow execution through blockchain technology. This novel
methodology is intended for e-Science, where scientific operations are extensively utilized.
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Ginavanee A. and Dr. S. Prasanna’s [65] paper proposes a Hybrid Healthcare Data
Management System (HDMS) that integrates blockchain and cloud computing technology
for secure health data management. The system uses the Ethereum blockchain for data in-
tegrity assurance, blockchain anchoring for scalable storage, Google Cloud integration, and
compliance with Health Level 7 formatting criteria. It also uses decentralized identifiers
and homomorphic encryption for secure computations. The system provides redundancy
and resilience, outperforming the Optimized Blowfish Algorithm in encryption and de-
cryption times. The goal is to improve patient outcomes through proper data handling,
storage, analysis, and use. Table 2 shows a general analysis of selected papers.

Table 2. General analysis of selected papers.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[50] 2015

Optimizing for
security

requirements
while adhering

to budget
constraints in

cloud
environments.

Security-
Aware and

Budget-
Aware
(SABA)

Balances security
requirements
with budget
constraints.

Confidentiality,
Integrity, and
Availability

(CIA)

Allocation of
resources,

balancing cost
against security
needs, security
level, dictating.

The algorithm’s
effectiveness
may decrease

with an increase
in the number of

tasks or
complexity of

workflows.

[42] 2016

Minimize total
cost while

fulfilling timeline
and risk rate
restrictions.

PSO (particle
swarm opti-
mization)

Reduce the total
workflow

execution cost.
CIA

Cost, the
deadline, and

risk rate.

Limited
scalability for

large workflows.

[51] 2017

Reduce
execution costs
while meeting

the deadline and
risk rate

requirements.

FFBAT
(Firefly and

Bat)
algorithm

The proposed
algorithm is
based on the

hybrid
optimization

approach, which
combines the the
Firefly and Bat

algorithms.

Confidentiality
(SEAL, RC4,

Blowfish,
Khufu/Khafre
RC5, Rijndael
DES, IDEA)

Cost, deadline,
risk rate, security

overhead.

High
computational

overhead.

[41] 2018

For minimizing
workflow

execution cost,
preserving the

privacy of critical
tasks while

respecting the
deadline.

Hybrid Meta-
heuristic

Optimized for
privacy and

execution costs.

CIA+ specific
encryption
protocols

Make-span, cost,
and security risk.

Limited
flexibility with
heterogeneous

workflows.
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Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[52] 2018

Evaluate
scheduling

algorithms that
preserve the
security of

sensitive data.

Meta-
heuristic

algorithms.

An extension for
workflow

simulators to
support security

services.

Encryption
(SEAL, RC4,

Blowfish,
Knufu/Khafre,

RC5,
Rijndael, DES,

IDEA) Integrity
(MD4, MD5,

RIPEMD,
RIPEMD128,

SHA1,
RIPEMD160,

TIGER)
Authentication
HMAC (MD5,
SHA1), CBC,
MAC-AES

Makespan,
monetary cost,

reliability, energy
consumption,

and risk.

There is another
approach for

securing
workflow

execution. It
involves
assigning

sensitive tasks to
private clouds

and
non-sensitive

chores to public
clouds.

[35] 2019

To find the best
solution by
comparing
alternative

weights,
narrowing the
search for an

optimal solution
through iterative

refinement.

Multi-
objective
FR-MOS-

MWO
algorithm

that
combines

FR-MOS and
the minimum

weight
optimization

method

A user-
preference-based
minimal weight

optimization
(MWO) method

chooses and
shows a feasible
solution using

the Pareto front’s
optimum set.

The MWO-based
multi-objective

algorithm is
compared to five

standard
workflow

scheduling
decision-making

methods.

CIA

Reliability, cost,
utilization of

resources, risk
probability, and
time makespan.

Optimizing
workflow

scheduling using
more than five

QoS criteria.
They will expand

our
energy-saving

method to
achieve fault

tolerance while
scheduling

workflow in a
hybrid

environment.

[53] 2019

The goal is to
optimize

scheduling
performance,

minimize total
execution costs,

and balance
resource load

while adhering
to constraints

regarding
deadlines and

risk rates.

CPSO
and GA

Assess the
suggested

algorithm in the
context of
extensive
scientific

procedures.
Utilizing such
tools has led to

numerous
significant

discoveries. To
examine the

validity, integrity,
or fallacy of the

proposed
procedure.

CIA
Makespan, risk
rate, cost, load

balance.

Schedules that
optimize the
entire budget
may attract

interest. Thus,
both makepan
and reliability

can also be
minimized.
Using more

effective
optimization

procedures will
be beneficial in
educating the

reader about the
latest trends in

technique
acquisition to
address the

task-resource
scheduling
problem.
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Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[18] 2020

He proposes
CLOSURE to
enhance the

challenges for
attackers

attempting to
infiltrate virtual

machines
executing
workflow
sub-tasks.

HEFT

Propose the
dynamic

recycling and
redeployment of
VMs to alternate

defense
strategies during

workflow
execution; a task

scheduling
technique based

on dynamic
HEFT is

introduced to
enhance the

speed of defense
strategy

transitions and
improve

workflow
efficiency.

Reduce the
attacker’s
benefits,

decrease the time
and costs.

A multiplayer
game model is
needed if there

are multiple
attackers.

[54] 2020

This module
aims to

safeguard
sensitive data
designated for
storage in the
cloud, their

associated tasks,
and data

transferring
between the
(public and

private) clouds.

The
pre-scheduler

designates each
job or dataset for

execution or
storage in the

“private or
public” cloud.
The security

improvement
module focuses

on incorporating
the necessary

security services
for the dataset

while
minimizing the
expenses and

overhead
generated by
these services.

Post-Scheduler
allocates each job

or dataset for
execution or
storage in an
appropriate

virtual machine
(VM) while
adhering to

budgetary and
temporal

limitations.

Confidentiality
Cost · security ·

budget ·
deadline.

The system can
concurrently

tackle the
incorporation of
security services
at both the data
and task levels,
devise a more

economical
cryptographic

method to fulfill
security

requirements,
and pinpoint a

scheduling plan
that incorporates
extra parameters
and constraints,
such as energy

concerns.
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Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[55] 2021

The goal is to
create a FITSW

workflow
scheduling

algorithm that
enhances system

failure and
intrusion
tolerance.

FITSW

Propose the fault
and intrusion-

tolerant
workflow

scheduling
algorithm
(FITSW).

[11] 2021

This work aims
to enhance the

security needs of
workflow tasks

while
minimizing the

cost and
makespan of
workflows in
public clouds.

MPGA

(1) Examination
of the effects of
implementing

security services
only for sensitive
jobs using a task

annotation
methodology; (2)

a scheduling
algorithm that

enhances
task-VM

allocation; and
(3) metrics for
calculating the

ratio-risk and the
inefficiency in

guarding
non-sensitive

tasks.

CIA Risk rate, cost,
time, makespan.

[56] 2022

The security
provisioning in

terms
of validation,

verification, and
encryption

allotted only to
the sensitized

tasks even
reduces the cost
and the time to a

certain level
compared to the
other methods
for scheduling.

GA

The authors
describe a useful

method for
managing

workflows that
differentiates

between
high-value and
low-value data.

They also
develop an

algorithm that
works as a

scheduler by
implementing it
in parallel with

the natural
processes of a

genetic
algorithm (GA),

ensuring that
high-value

information is
kept safe.

CIA
Time of

execution and
total cost.
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Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[57] 2022

The algorithm
aims to enhance
both security and

efficiency.
Ultimately, the

goal is to create a
reliable and
secure cloud
system for
workflow
execution.

SPHEFT
algorithm

The proposed
SPHEFT, which

integrates
security

awareness into
workflow

scheduling by
considering

security
priorities during
task allocation.

Confidentiality
Security

overhead,
deadline.

[58] 2022

We employ a
three-level

privacy and
security model

and use
encryption

methods and
hash functions to

guarantee the
security of

cross-platform
data

transmission.

PSLS + PSSA
(Simulated
Annealing)

Handles privacy,
minimizes cost,

maintains
deadlines

Confidentiality
and integrity
(IDEA, SHA,

Blowfish).

Costs and
performance,

deadline.

Runtime
increases with
workload size.

[59] 2023

Reduce
makespan, cost,

and risk
probability, and

maximize
resource

utilization and
dependability,

which are
concurrently
considered

alongside the
interests of

service providers
and customers.

FR-MOS--
MWO

Offers superior
solutions relative
to the extended

Pareto
dominance and

alternative
decision-making

techniques
utilizing the

FR-OS algorithm.

CIA

Makespan, cost
resource

utilization,
reliability, risk

propalitty.

One may
contemplate

incorporating
over five QoS

criteria to
enhance

workflow
scheduling. One
may broaden this

technique to
diminish energy

consumption
and achieve fault
tolerance while

orchestrating the
workflow in a

hybrid
environment.
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Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[60] 2023

To optimize the
failure

probability and
number of task
failures as per

the requirements
of the cloud

users.

(SPMWA)
Security-

Prioritized
Workflow
Allocation

(SPMWA) A
paradigm for the

IaaS cloud
computing

environment is
suggested by

incorporating the
security-priori

mapping scheme.
Workflow
processing

performance in
risky contexts is
projected to be
improved by

implementing a
security-

prioritized
allocation

strategy under
precedence

restrictions. This
model assigns
jobs requiring
high levels of

security to more
reliable virtual

machines,
thereby reducing
the likelihood of

cloud system
failure.

CIA

Task failure,
failure

probability, and
makespan.

High
dependency on
security metrics.

[61] 2024

To optimize the
risk probability
while satisfying
the precedence
constraints in

workflow
applications and

to solve the
allocation
problem.

SCEDA

Propose a
multi-constraints

workflow
allocation

strategy for
heterogeneous
tasks in cloud

computing.

Authentication

Risk probability
and the

execution cost,
budget, and

deadline
constraints.

Future research
related to this

contribution will
take into account

the VM’s
termination
delay, VMs
located in
various

countries, and
other security

services offered
by CSPs.

Moreover, the
extended work

can include more
than one

objective with
many

constraints.
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Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[22] 2024

The
methodology

emphasizes the
surveillance of
cloud services

and networks to
identify security
breaches during

workflow
operations.

RL and MDP

They have
proposed two

ways to
determine the

optimal action to
mitigate the

consequences of
such infractions.

The initial
technique

identifies the
most economical

adaptation
measure, whilst
the subsequent

one utilizes
adaptive

learning from
previous

responses.

CIA Attack score and
cost.

They will
broaden their

research to
encompass
additional

possible enemies,
including renters
and their users,
and implement

security
measures to

counter these
threats.

[62] 2024

Minimizing
makespan and

energy
consumption.

MOPWSDRL

A prioritized
multi-objective

workflow
scheduling

algorithm was
developed using

a deep
Q-learning

network model.

Priorities of both
tasks and VMs

Cost and
makespan.

Particular
attributes should

be retrieved to
enhance

parameters,
rendering the

scheduler more
resilient and
efficient for

various
operations. A

trust-based
scheduling

mechanism must
be created in a

multi-cloud
context utilizing

reinforcement
learning

techniques.

[63] 2024

Secure and
makespan-
oriented

workflow
execution in

serverless
computing.

SMWE
(secure and
makespan
workflow
execution)

Enhances
security and

reduces
makespan.

Confidentiality,
integrity

Selection based
on task

sensitivity and
dynamic
resource

allocation.

Applicability to
highly

heterogeneous
workflows.



Future Internet 2025, 17, 51 23 of 29

Table 2. Cont.

Ref. Year Object/Aim Algorithm Advantage/
Contribution Type of Security Parameters/

Strategy Limitations

[64] 2024

Autonomous
blockchain-

based workflow
execution broker

for e-science.

Autonomous
blockchain
workflow

broker

Facilitates
trustless

collaboration in
e-science

environments
using

blockchain.

Confidentiality,
integrity,

non-repudiation

Integration of
blockchain for

trustless
workflow

execution; use of
smart contracts
for workflow
orchestration.

High latency and
resource

demands of
blockchain
technology;

scalability issues
with large scale.

[65] 2024

Integration of
Ethereum

blockchain with
cloud computing

for secure
healthcare data
management.

Ethereum
blockchain
integration

Ensures secure
healthcare data
management by

integrating
Ethereum

blockchain with
cloud computing;

provides
immutability and

decentralized
security.

Confidentiality,
integrity,

availability (CIA)

Smart
contract-enabled

data access
control;

decentralized
storage

mechanisms to
enhance security

and prevent
unauthorized

access.

Ethereum’s
transaction

throughput and
high gas fees.

9. Discussion
The reviewed methods demonstrate significant advancements in cloud-based secure

scientific workflow scheduling. Various strategies, such as multi-objective optimization,
hybrid algorithms, game theory, and deep learning, have enhanced security, cost-efficiency,
and performance. The integration of these techniques has led to better resource alloca-
tion, improved data protection, and optimized task execution in complex and dynamic
cloud environments.

Despite these advancements, there remain areas for future research, particularly in in-
tegrating these approaches, addressing emerging security challenges, improving efficiency
in diverse and dynamic cloud settings, and exploring novel algorithms. The literature
review primarily focuses on scheduling workflows in cloud environments, emphasizing se-
curity. Most of the reviewed papers incorporate the CIA triad (confidentiality, integrity, and
availability) to bolster the security aspects of workflow scheduling. Below is a breakdown
of the key contributions from the literature:

• References [1–10]: These studies explore scientific workflow scheduling in cloud envi-
ronments, covering essential topics like scheduling algorithms, challenges, and tools.
They lay the foundation for understanding the complexities of workflow management
in the cloud.

• References [11,12,15–18,21–24,46]: These papers delve into task scheduling with a fo-
cus on optimization techniques, including genetic algorithms, particle swarm optimiza-
tion (PSO), and hyper-heuristics. They emphasize optimizing workflow performance
and efficiency.

• References [13,14,26–29,31–38,40–45,47–53,55–59]: These sources address security con-
cerns in workflow scheduling, highlighting the development of security-aware algo-
rithms, cost-effectiveness strategies, and privacy-preserving techniques. They under-
score the importance of integrating security measures into scheduling algorithms.

• References [19,30,39,56,57,63]: These papers explore broader cloud computing resource
management aspects, such as multi-cloud environments, resource allocation strategies,
scalability issues, and task priority.
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• References [60–62]: This recent work investigates multi-objective workflow scheduling
using deep reinforcement learning, a promising approach that adapts dynamically to
evolving cloud environments and security threats.

• References [64,65]: This research represents an integrated blockchain platform scientific
dataset such as healthcare, montage, epigenomic, and others. This level of security
provided access management, transparency, and integrity.

The evaluated techniques exhibit considerable progress in safe cloud-based scientific
workflow scheduling. Diverse methodologies, including multi-objective optimization, hy-
brid algorithms, game theory, and deep learning, have improved security, cost-effectiveness,
and performance. These techniques emphasize resource allocation, data security, and ef-
ficient job execution in intricate and evolving cloud settings. A crucial element of these
methodologies is their conformity to the CIA trinity (confidentiality, integrity, and availabil-
ity), which is vital for safeguarding scientific processes. The triangle establishes the basis
for assessing and formulating safe workflow scheduling methods, as outlined below:

• Confidentiality: Safeguarding sensitive workflow data from unauthorized access
is essential, especially in private or classified data processes. Heuristic methods,
including encryption techniques, offer rapid answers but may be deficient in scalability.
Metaheuristic techniques, such as particle swarm optimization (PSO) and hybrid
strategies like SPHEFT, include robust encryption protocols and allocate jobs to high-
security virtual machines to maintain confidentiality while preserving efficiency.

• Integrity: Data integrity guarantees that workflow data remains unchanged during
execution. Heuristic approaches frequently use hashing algorithms such as MD5 or
SHA-256 to ensure data integrity. Metaheuristic methods, like genetic algorithms (GA),
use sophisticated integrity-checking systems in optimization procedures.

• Availability: Workflow availability guarantees continuous access to resources and
the prompt execution of tasks. Heuristic methods depend on fundamental failover
mechanisms, but metaheuristics employ dynamic resource allocation to ensure avail-
ability during system failures. Hybrid methodologies such as ACISO employ resource
redundancy and load balancing to guarantee the uninterrupted operation of processes
in the face of disturbances.

This study examines the trade-offs between security and performance by linking the
CIA principles with the analyzed algorithms. Heuristic methods offer efficiency and speed
but may falter in complex scenarios. Metaheuristic approaches provide adaptation and
flexibility; nevertheless, hybrid models balance security and efficiency. These techniques
address the intricate challenges of secure process scheduling in cloud systems.

As illustrated in Figure 9, these studies collectively aim to minimize execution costs,
meet critical deadlines, and maximize security within the framework of scientific workflows
in cloud computing. The figure visually represents the trends and connections between the
different approaches discussed in this survey.

From Section 8, each paper has limitations. These limitations are explained below in
detail to provide a comprehensive understanding:

1. Scalability limitations: Numerous paper approaches encounter challenges in scalabil-
ity when implemented in extensive, intricate operations. As the work quantity rises,
expenses escalate considerably, resulting in possible inefficiencies.

2. Resource Heterogeneity: Although many methodologies tackle resource allocation
and security levels of datasets, they frequently neglect the heterogeneity inherent in
cloud systems. This issue may lead to inefficient work distribution and increased
operational expenses.
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3. Dynamic Threats: Several papers emphasize static security measures but lack
adaptability to dynamic and evolving threats, such as zero-day vulnerabilities or
other threats.

4. Energy Efficiency: The Day World focuses on energy consumption, a critical metric.
So, few algorithms integrate energy-aware scheduling. This omission could lead to
unsustainable cloud operations.

To effectively address these gaps, future research should integrate dynamic security
models, advanced resource management techniques, and energy-efficient algorithms.
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10. Conclusions and Future Work
Reviewing secure scientific workflow scheduling methods in cloud environments

has highlighted significant advancements across various approaches. Researchers have
successfully integrated multi-objective optimization, hybrid algorithms, game theory,
and deep learning techniques to enhance security, cost-efficiency, and performance in
workflow scheduling.

10.1. Conclusions

1. Security Integration: Most reviewed approaches incorporate security considerations
such as confidentiality, integrity, and availability directly into the scheduling process.
This integration ensures that workflows are executed securely without compromising
the performance of cloud resources.

2. Adaptability and Efficiency: The use of diverse algorithms—from heuristic and
metaheuristic approaches to advanced deep learning models—demonstrates the
flexibility and robustness required to manage cloud environments’ dynamic and often
unpredictable nature.
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3. Trade-offs in Optimization: These methodologies focus on balancing the trade-offs
between performance metrics such as makespan and security measures. This balance
is crucial in scientific workflows, where execution time and data protection are of
paramount importance.

4. Resource Management: Techniques like VM utilization maximization and energy-
aware scheduling address resource efficiency and environmental sustainability goals,
catering to user needs and global ecological concerns.

10.2. Future Work

Future research should focus on further integration of these methodologies to address
emerging security challenges. Areas for future exploration include:

• Advanced AI Models: The development of AI-driven models, particularly in re-
inforcement learning, that can dynamically adapt to new threats while optimizing
workflows.

• Multi-Cloud Interoperability: Research into secure workflow scheduling across
multiple cloud platforms, addressing interoperability issues while maintaining robust
security standards.

• Trust-Based Scheduling: We are further developing trust-based models that evaluate
the reliability and security history of cloud resources, allowing for more accurate and
secure task assignments.

These areas hold the potential to significantly advance the field of secure scientific
workflow scheduling, offering more robust, efficient, and scalable solutions for complex
cloud environments.
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