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ABSTRACT: Artificial intelligence (AI) is transforming electrochemical water
and wastewater treatment by enhancing efficiency, predictive accuracy, and process
control. However, a comprehensive evaluation of AI models in optimizing
electrochemical processes for pollutant removal is still lacking. This review
addresses this gap by systematically analyzing AI applications in electrocoagulation
(EC), electrooxidation (EO), electro-Fenton (EF), and electrodialysis (ED).
Focusing on key advances and parameter optimization, it highlights how AI-driven
models improve removal efficiency by capturing complex nonlinear interactions
among variables such as current density, pH, electrode material, electrolyte
composition, and pollutant concentration. Recent studies have notably shown that
artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems
(ANFIS) have achieved R2 values above 0.99 in EC and EO processes,
outperforming traditional models. Hybrid AI approaches like ANN-GA and
ANFIS-ACO have further optimized catalyst dosage and ion migration in EF and ED. While AI has demonstrated remarkable
potential, challenges such as limited data availability, model interpretability, and real-world implementation remain significant
obstacles. Integrating AI with mechanistic modeling and real-time monitoring may overcome these barriers and enable autonomous,
energy-efficient treatment systems. This Perspective offers critical insights into current progress and future opportunities,
underscoring the role of intelligent optimization in advancing sustainable and scalable electrochemical water treatment technologies.

■ INTRODUCTION
Access to clean drinking water remains one of the most
pressing challenges of our time and is a key priority under the
United Nations Sustainable Development Goals (SDGs). At
the same time, water pollution, driven by rapid industrializa-
tion and population growth, has become a significant
environmental issue.1 Addressing both concerns, wastewater
treatment, and reuse provide a promising solution. Over the
past few decades, significant advancements have been achieved
in developing innovative, efficient, and cost-effective methods
to eliminate contaminants from wastewater. Additionally, the
use of optimization and modeling tools to evaluate perform-
ance and enhance efficiency has gained considerable
momentum in recent years.2

Artificial intelligence (AI) is a computer-based system
designed to emulate human intelligence, including the ability
to acquire knowledge, make assessments, and make decisions
autonomously. This rapidly evolving technology has become a
ubiquitous tool in numerous fields, including the optimization
of wastewater treatment processes.3 These models can “learn”
from a set of experimental data without prior knowledge of the
physical and chemical laws governing the system, making them
suitable for systems with nonlinearities and complex behavior.

Recently, these models have proven to be valuable in water and
wastewater treatment research, with successful applications in
process design, water quality monitoring, parameter optimiza-
tion, and performance prediction.4

The integration of AI into water and wastewater treatment
processes offers numerous environmental benefits. For
example, AI enhances the removal efficiency of pollutants,
thus improving water quality and reducing environmental
contamination.5 It facilitates global sustainability efforts by
enhancing efficiency and reducing the resource intensity of
treatment processes. By optimizing the use of chemicals in the
treatment processes, AI also helps to minimize the environ-
mental footprint and operational costs. Furthermore, AI-driven
optimizations can lead to significant energy savings by ensuring
that the treatment processes run in their most efficient settings
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without unnecessary energy expenditure. Water industries are
increasingly investing in AI, with market projections estimating
this investment to reach $6.3 billion by 2030. AI has the
potential to reduce operational costs by 20−30% by optimizing
chemical usage in water treatment processes. Its straightfor-
ward implementation, flexibility, adaptability, and simple
design make AI a valuable tool for streamlining and enhancing
water treatment operations.6,7 Until now, AI models such as
ANNs, ANFIS, and support vector machines (SVMs) have
been extensively used to model and optimize electrochemical
processes, particularly in water and wastewater treatment.8

Figure 1 illustrates the number of publications on the
application of AI techniques for modeling and optimization
of electrochemical processes for water and wastewater
treatment over the recent decade. Published data demonstrate
that AI models offer a robust framework for optimizing
electrochemical processes, leading to improved energy
efficiency, fewer experimental procedures, better parameter
identification, and both economic and environmental benefits.
The noticeable rise in publications after 2018, along with the
cumulative trend, reflects the growing research attention and
expanding adoption of AI-driven strategies in this field.
To the best of our knowledge, no comprehensive review to

date has specifically examined the application of AI models in
electrochemical processes for treating water and wastewater
contaminated with diverse pollutants. Addressing this gap, this
review analyzes the evolution of research in this area by
evaluating annual publication trends and the distribution of AI
applications across key electrochemical technologies. As shown
in Figure 1, the inset chart highlights that EC is by far the most
commonly studied process, followed by EO, ED, and EF.
Rather than aiming to exhaustively review all AI and smart
technologies in electrochemical water treatment, this study
focuses on key findings in the literature, explores how AI
integration enhances process efficiency and control, and
identifies the main parameters influencing its performance.
Lastly, the review outlines future perspectives and research
challenges to support the continued development of AI-driven
modeling in this field.

■ APPLICATION OF AI TECHNIQUES IN
ELECTROCHEMICAL PROCESSES

Literature highlights the increasing role of AI techniques in
electrochemical processes for water and wastewater treatment.
AI enhances process modeling, optimization, and predictive
accuracy, replacing traditional statistical approaches like
response surface methodology (RSM) with advanced models
such as genetic algorithms (GA), ANN, and ANFIS. As can be
seen in Figure 2, the majority of the existing literature in this

field has focused on RSM, with the objective of optimizing the
electrocoagulation process. In recent years, there has been a
notable shift toward the utilization of ANN and sophisticated
AI techniques. Several studies that have explored the use of AI
for modeling electrochemical water and wastewater treatment
are summarized in Table S2. In the compilation of Table S2,
only peer-reviewed scientific publications that are indexed in
the Web of Science and Scopus databases were considered.

■ AI FOR PROCESS PARAMETER OPTIMIZATION
Optimizing process parameters is crucial for enhancing the
efficiency and cost-effectiveness of electrochemical treatments.
Traditional one-factor-at-a-time (OFAT) approaches are time-
consuming and fail to capture complex interactions between

Figure 1. Bibliometric analysis on the application of AI techniques for modeling and/or optimization of electrochemical processes in water and
wastewater treatment. The main chart displays the annual number and cumulative total of related publications from 2013 to 2024 (data extracted as
of December 31, 2024). The inset chart illustrates the percentage distribution of AI-based studies across different electrochemical processes,
highlighting the dominance of electrocoagulation, followed by electrooxidation, electrodialysis, and electro-Fenton.

Figure 2. Distribution of the publication on the use of AI for
modeling and/or optimization of electrochemical processes for water
and wastewater treatment based on the applied computational
approach.
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multiple variables. In contrast, AI-driven techniques, such as
RSM and ANN described in detail in the Supporting
Information, enable systematic optimization by modeling
nonlinear relationships and predicting optimal conditions
with high accuracy. These methods not only reduce the
experimental workload but also enhance the treatment
efficiency by identifying key operational factors that influence
pollutant removal.
Murdani et al.9 optimized hospital wastewater treatment

using RSM with a Box-Behnken Design (BBD), identifying
voltage (6−12 V), contact time (15−45 min), and electrolyte
concentration (0−1M) as key factors in COD reduction.
Optimal conditions (12 V, 45 min, and 1 M electrolyte)
resulted in an 89% COD removal. BBD, with 17 runs and 5
center point repetitions, offered reliable modeling with fewer
experiments than full factorial designs. A high R2 of 0.9945
indicated excellent model fit. The quadratic model, capturing
nonlinear relationships, explained 98.75% of the COD
reduction variability. Predicted and actual COD removals
(70.53% and 69.51%, respectively) closely matched, confirm-
ing the model reliability. On the other hand, RSM’s quadratic
model could not fully capture process complexity. For instance,
increasing the voltage beyond 12 V or electrolyte concen-
tration beyond 0.5 M did not enhance COD removal,
indicating saturation effects. RSM also overlooked practical
issues, such as electrode passivation and increased energy
demand at higher voltages. These findings suggest that RSM is
valuable for optimizing operational parameters but should be
complemented with mechanistic studies for a more complete
understanding of electrocoagulation (Figure 3).
Rumky et al.10 investigated the impact of anode character-

istics in electrochemical treatment, including material type and
surface area, on the removal of COD, dissolved organic carbon
(DOC), and color in wastewater treatment plants. By
incorporating multiple linear regression (MLR) modeling,
they identified key parameters�such as electrode spacing,
system pH, reactor volume, current density, and voltage�that
influenced electro-oxidation efficiency. Their findings revealed
that COD and color removal were primarily dependent on
reaction time, while DOC removal was strongly correlated with
the reactor volume, highlighting the need for process-specific

optimization. MLR modeling proved to be effective in
identifying critical operational variables, aiding in the
optimization of EO for enhanced performance. In a related
study, Foroughi et al.11 employed a three-dimensional
electrochemical system for the treatment of tetracycline
(TC)-containing wastewater, using a least-squares SVM (LS-
SVM) model to predict treatment efficiency. Under optimal
conditions (TC of 84 mg/L, pH 4.8, and current density of
15.72 mA/cm2), the model predicted 90.42 ± 2.3% removal
efficiency, closely matching experimental results.11

In contrast, Radwan et al.12 modeled EF treatment of
phenolic wastewater using a more complex 4−20−1 ANN with
inputs including initial phenol concentration (50−200 mg/L),
time (0−120 min), current intensity (400−900 mA), and Fe2+
dose (0−20 mg/L), and one output for removal efficiency
(Figure 4a). Using 112 experiments (60 for training, 20 for
validation, and 32 for testing), the model achieved high
accuracy (R2 = 0.9742) and low error (Se/Sy = 0.16) (Figure
4b). This model outperformed the simpler ANN used by
Mirsoleimani et al.,13 and Radwan et al.’s model benefited from
a larger data set and more complex architecture, improving
accuracy and error minimization.12 The study also highlighted
the effectiveness of a 5−8−1 ANN in predicting the
Endosulfan removal efficiency. The model captured nonlinear
relationships between parameters, such as increased removal
efficiency from 66.6% to 84.57% as electrolysis time increased
from 15 to 60 min, and from 74.6% to 92.6% as current density
rose from 2.5 to 12 mA/cm2. The ANN maintained high
predictive accuracy even at an initial Endosulfan concentration
of 50 mg/L. By learning complex patterns, the ANN
significantly reduced the need for extensive experimental trials,
saving time and resources. Nevertheless, the ANN did not
provide insight into the underlying electrochemical mecha-
nisms. For example, it failed to fully capture diminishing
returns in removal efficiency beyond 12 mA/cm2 or saturation
effects above 50 mg/L Endosulfan, where coagulant efficiency
declined despite ANN predictions suggesting continued
improvement. The model’s accuracy was also highly dependent
on the quality and comprehensiveness of training data.
Moreover, ANN optimization did not account for operational
issues such as electrode passivation or sludge variability, which

Figure 3. Interaction effects of the time, voltage, and electrolyte concentration on the EC process. Modified after Murdani et al.9 IOP Conference
Series, licensed under CC BY 3.0.
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affect long-term performance. Despite these drawbacks, the 5−
8−1 ANN proved valuable for optimizing electrocoagulation
processes, offering a strong predictive performance with
reduced experimental demands.

■ AI IN ENHANCING POLLUTANT REMOVAL
EFFICIENCY

Optimizing removal efficiency is essential for improving the
effectiveness and sustainability of electrochemical treatment
processes. Traditional methods struggle to capture the
nonlinear interactions among key parameters, limiting their
ability to maximize pollutant degradation. In contrast, AI-
driven techniques, such as ANN, ANFISs, and RSM, enable
systematic optimization by accurately modeling the reaction
dynamics and predicting optimal conditions. These approaches
enhance pollutant removal by optimizing factors such as
current density, pH, electrolysis time, and catalyst dosage,
leading to improved coagulant generation and radical
formation.
Mirsoleimani et al.13 utilized a 5−8−1 ANN architecture to

model endosulfan removal through EC with aluminum
electrodes. As shown in Figure 5, their model included five
input parameters: electrolysis time (0−60 min), current
density (2.51−12 mA/cm2), pH (2−10), solution conductivity
(2.62−7.71 mS/cm), and initial endosulfan concentration
(10−80 mg/L), with one output for removal efficiency. Their
data set consisted of 70 experiments, split into 50 for training
and 20 for testing, achieving a high predictive accuracy (R2 =
0.976). However, the model’s reliance on limited data and
simple network architecture raises questions about its robust-
ness for broader applications.
Mohammadi et al.15 conducted a study that developed an

improved electro-Fenton (EF) process for degrading carba-
mazepine (CBZ) using Fe@Fe2O3 nanowires as a catalyst,
optimized through ANFIS combined with ant colony
optimization (ACO). The ACO algorithm, applied over 200

training epochs, fine-tuned the ANFIS model using Gaussian
membership functions, resulting in high predictive accuracy
(R2 = 0.9988) between the predicted and experimental data.
The model identified optimal conditions for 91.2% CBZ
removal at pH 4, 1050 mg/L Fe@Fe2O3, 5.14 mA/cm2 current
density, and 45 min contact time (Figure 6). At pH 4, •OH
radical generation is maximized via H2O2 decomposition, while
higher pH values hinder efficiency due to H2O2 breakdown
and catalyst deactivation, in line with findings by Jiang et al.16

The model also optimized the Fe@Fe2O3 dosage to ensure
effective use of active sites. As shown in Figure 6a, the optimal
current range (0.1−0.2 A) enhances H2O2 generation, Fe3+
reduction, and CBZ adsorption, supporting results by Panizza
and Cerisola.17 Extended contact time (20−50 min) further
improves removal through greater •OH production and Fe2+−
H2O2 interaction (Figure 6b), consistent with Mohammadi et
al.18 for ibuprofen and naproxen. The nanowires aid in iron ion
release and oxygen interaction, enhancing radical formation.
However, excessive nanowires may lower Fe2+ availability,
reducing efficiency�a limitation addressed through external
Fe2+ addition.19 As shown in Figure 6c, CBZ concentration
affects efficiency; at higher concentrations (7−15 mg/L),
removal decreases due to radical competition and byproduct
accumulation, aligning with Hou et al.20 This trend emphasizes
the need for balancing radical availability with pollutant load to
maintain degradation performance. Overall, the study confirms
the high efficacy of Fe@Fe2O3 nanowires, particularly when
guided by intelligent modeling, for pharmaceutical pollutant
removal in EF systems.

ANFIS, RSM, and ANN models were applied to optimize
aluminum-based electrocoagulation (EC) for Cephalexin
(CEX) removal.21 RSM with CCD analyzed variable depend-
encies, while ANN and ANFIS predicted experimental
outcomes, with ANFIS achieving the highest accuracy (R2 =
0.99). Figure 7 shows the influence of key parameters (initial
CEX concentration, electrolysis time, pH, and electrode type)
on the removal efficiency. Electrolysis time had the greatest
impact, followed by pH. Maximum removal occurred at 35
mg/L CEX and pH 7, while higher concentrations (55 mg/L)
and alkaline pH reduced efficiency. Insulated electrodes
enhanced isopotential regulation and maintained uniform
current density, increasing Al3+ generation and contaminant
trapping. As shown in Figure 7a and c, removal peaked at 35
mg/L and pH 7, with reduced efficiency at higher
concentrations and alkaline pH. Even at 15 mg/L, acidic
conditions resulted in better removal than alkaline ones.
Electrolysis time and pH significantly influenced Al3+
production and floc formation (Al(OH)3), with optimal
removal at 31 min and neutral pH (Figure 7b and d). Beyond

Figure 4. ANN modeling in the EF process of phenolic treatment. (a)
ANN structure. (b) Measured versus predicted phenol removal
percent. Modified after Radwan et al.14 Copyright 2018 Elsevier B.V.

Figure 5. ANN optimized structure for the electrocoagulation
process. Modified after Mirsoleimani et al.13 Copyright 2015
American Chemical Society.
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30 min, efficiency plateaued, indicating optimal treatment
duration. Insulated electrodes consistently outperformed
uninsulated ones by boosting OH− generation and minimizing
electron loss. Removal efficiency increased with a CEX
concentration up to 35 mg/L and then reduced; similarly, it
improved near neutral pH but dropped at pH 11, with
insulated electrodes remaining more effective. Among the three
models, ANFIS provided the most accurate predictions across
80 data points, outperforming both the RSM and ANN in
modeling CEX removal.
AI-driven models such as ANN, ANFIS, and RSM allow for

precise control over factors such as current density, electrolysis
time, pH, and catalyst dosage, leading to higher degradation
rates of contaminants. These models effectively predict
pollutant removal trends and capture nonlinear interactions,

enabling enhanced hydroxyl radical (·OH) production in
advanced oxidation processes and optimized coagulant
formation in electrocoagulation. Hybrid AI approaches, such
as ANFIS-ACO, further refine optimization, achieving near-
complete removal of pharmaceuticals and organic pollutants
while reducing chemical and energy consumption. Addition-
ally, AI-driven insights help mitigate process inefficiencies, such
as radical scavenging, catalyst deactivation, and diminishing
returns at high pollutant concentrations. Despite their
advantages, these models require extensive experimental data
for training and may not fully account for long-term
operational challenges.

■ AI-GUIDED ELECTRODE AND CATALYST
SELECTION

The effectiveness of electrochemical treatment processes
largely depends on the electrode materials and catalysts,
which influence reaction kinetics, pollutant degradation, and
energy efficiency. Electrode composition, surface character-
istics, and catalyst stability directly affect the formation of
reactive species and the overall system performance. Tradi-
tionally, optimizing these components requires extensive
experimentation, but AI-based models such as ANNs, SVR,
and RSM now offer more efficient alternatives. These tools
help predict optimal synthesis and operational conditions,
enhancing material design, and improving contaminant
removal and sustainability.

Yu et al.22 explored photoelectrocatalytic degradation of
norfloxacin using a Ti/SnO2−Sb anode, which significantly
enhanced total organic carbon (TOC) removal through
synergistic oxidation. They employed a back-propagation
ANN with parameter optimization (BP-ANN-P), using four
input variables: initial norfloxacin concentration, pH, current
density, and reaction time. The BP-ANN-P model out-
performed conventional first-order kinetic models, achieving
R2 improvements ranging from 1.619 to 127.137 times. Even at
a high norfloxacin concentration of 200 mg/L, where R2

slightly declined due to sample size limitations (n = 86), the
model still achieved R2 = 0.969, surpassing the first-order
model’s R2 = 0.922. When tested against five randomly selected
data points, BP-ANN-P consistently showed a superior
predictive accuracy. Comparative assessments of current
density and initial pH also reinforced its higher precision,
demonstrating BP-ANN-P’s adaptability and robustness in
predicting TOC removal across diverse operational settings.

Khan et al.23 applied MLR, SVR, and ANN to optimize the
electrochemical degradation of Navy Blue (NB) dye using Si/
BDD electrodes. The key factors examined were current
density, electrolyte concentration, and treatment time. All
models were statistically significant (F = 99.86, p < 0.0001)
with R2, R_adj2, and R_pred2 > 0.90, indicating strong
predictive performance. MLR identified current density as the
most influential variable�dye removal increased from ∼20%
to ∼ 80% as current density rose from 5 to 16 mA cm−2, before
plateauing due to mass transport limitations and oxygen
evolution reactions. Additionally, increasing electrolyte con-
centration from 0.02 to 0.056 M enhanced NB removal from
60% to 88% within 30 min, due to the formation of powerful
oxidants such as SO4

•− and S2O8
2−, as given in eqs (S10−S12).

Synergistic effects were observed when optimizing multiple
parameters simultaneously.

At 15 mA cm−2, 0.056 M electrolyte, pH 6.5, and 20 min,
dye removal reached ∼ 90% due to enhanced •OH radical

Figure 6. 3D surface plots of EF process using Fe@Fe2O3 nanowires
for the degradation of CBZ illustrating the interaction effects between
(a) pH and current, (b) contact time and nanowire Dose and (c)
CBZ and FeSO4·7H2O concentration. Reproduced from Mohammadi
et al.,15 Copyright 2024 Elsevier B.V.
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generation (eqs (S13 and S14)). However, efficiency declined
at higher current densities due to competing reactions like
oxygen evolution (eq S15) and •OH dimerization into H2O2
(eq (S16)). These trends aligned with Bristo et al.,24 who
reported COD removal improvements with Si/BDD and Nb/
BDD electrodes from 76 to 75% to 85−83% at 30 and 60 mA
cm−2, respectively driven by increased •OH production via
anodic water oxidation. However, excessive current led to
waste reactions, reducing efficiency by recombination and •OH
dimerization (eqs (S13−S16)). The rate of dye degradation
increased with longer electrolysis times. This is attributed to
the more extensive oxidation of organic molecules over time,
consistent with findings by Melo da Silva et al.25 Additionally,
at a maximum current density of 20 mA cm−2, increasing the
electrolyte concentration from 0.021 to 0.056 M resulted in an
improvement in dye removal efficiency from 60% to 100%.
The influence of current density on dye degradation showed
that increasing the current density from 8 to 20 mA cm−2

enhanced dye degradation from 20% to 100% at an electrolyte

concentration of 0.056 M Na2SO4. Similarly, increasing the
current density from 6 mA cm−2 to 16 mA cm−2 across all
tested pH values improved NB dye removal from 30% to 80%,
indicating that pH had a negligible impact on the process.

Ganthavee et al.26 investigated a 3D electrochemical system
utilizing graphite intercalation compound particle electrodes
for the removal of methyl orange (MO) dye from textile
wastewater. Under optimized conditions determined as current
density of 15 mA/cm2, 30 min electrolysis, and 50 mg/L initial
MO concentration, the system achieved 98% removal
efficiency, 3.62 kWh/kg energy consumption, and 79.53%
current efficiency. To optimize process parameters, AI models
including ANN, SVM, and random forests (RF) were
employed. Among them, ANN exhibited the highest predictive
accuracy (R2 = 0.992), outperforming RF, SVM, and multiple
regression models with the lowest error deviation. Monte
Carlo simulation was also applied to assess process uncertainty,
enabling robust analysis of parameter variability. ANN
optimization significantly reduced the need for experimental

Figure 7. Response surface plot illustrating the effect of operating parameters on the CEX removal efficiency (a,b) noninsulated electrode, (c,d)
insulated electrode, (a,c) interaction between pH and initial CEX concentration, (c,d) pH and electrolysis time. Reproduced from Arab et al.,21

Elsevier, licensed under CC BY 4.0.

ACS ES&T Water pubs.acs.org/estwater Review

https://doi.org/10.1021/acsestwater.5c00238
ACS EST Water XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig7&ref=pdf
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.5c00238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


trials, improved current efficiency (79.53%), and minimized
energy loss, thereby enhancing sustainability and cost-
effectiveness. However, ANN and RF are black-box models,
offering limited insight into underlying mechanisms. Monte
Carlo analysis, while effective, demanded substantial data sets
and significant computational resources. ANN performance
was also influenced by data quality and was prone to overfitting
with imbalanced data sets. Although RF and SVM performed
slightly less accurately, they contributed to the robustness of
the overall modeling approach. A key limitation was that ANN
did not consider long-term factors such as electrode
passivation and side reactions, which could affect treatment
efficiency over time. The study’s findings indicated that while
AI and ML models substantially improve process optimization,
their integration with mechanistic models would enhance
reliability and support better long-term system performance.26

A study by Mandal et al.27 focused on synthesizing and
optimizing a graphite/PbO2 anode for landfill leachate
treatment using RSM and ANN modeling. The research
evaluated the effects of current intensity, Pb(NO3)2 concen-
tration, HNO3 concentration, and temperature on the
electrode’s oxidation efficiency. RSM developed a quadratic
model for predicting COD removal, achieving high predictive
accuracy (R2 = 0.9632). Increasing current intensity and
temperature improved performance, while excessive Pb(NO3)2
concentration reduced it. Optimal conditions (0.64 A, 0.16
mol/L Pb(NO3)2, 0.16 mol/L HNO3, and 76.98 °C) yielded a
PbO2 anode that removed 79 ± 1.7% COD in 8 h. ANN
modeling provided even higher accuracy (R = 0.99519), and
sensitivity analysis identified the current intensity (47.94%) as
the most influential parameter, followed by the Pb(NO3)2
concentration (20.84%), HNO3 concentration (16.34%), and
temperature (14.89%). XRD and SEM analyses confirmed that
higher current promoted the formation of electrochemically
superior β-PbO2.

27

AI-driven techniques have notably advanced electrode and
catalyst design by optimizing parameters like composition,
morphology, and operational conditions, improving pollutant
removal and energy efficiency. These methods enhance the
understanding of oxidation mechanisms and reactive species
formation, such as hydroxyl and sulfate radicals. While AI aids
in optimization and sensitivity analysis, it requires large data
sets and lacks mechanistic interpretability, necessitating
integration with electrochemical modeling for a more complete
understanding of reaction pathways and electrode durability.

■ AI IN ION SEPARATION AND RESOURCE
RECOVERY

Sadrzadeh et al.28 developed a feedforward ANN model
(4:6:2:1 architecture) using 81 experimental data points to
optimize Pb2+ removal via ED, predicting separation
percentage (SP) and current efficiency (CE) based on feed
concentration, temperature, flow rate, and voltage (Figure 8).
The multilayer perceptron (MLP) ANN, trained with the
Levenberg−Marquardt algorithm, achieved high predictive
accuracy (R2 > 0.99), identifying an optimal SP of 83.22% at
1000 ppm, 30 V, and 333.15 K, and peak CE of 65.81% at
1000 ppm, 20 V, and 1.2 mL/s. The ANN effectively modeled
nonlinear interactions and reduced the need for extensive
experimental trials, outperforming traditional models in
prediction accuracy. However, it had limitations, including a
lack of explicit equations, limited interpretability, inability to
model saturation effects, and high computational complexity in

hidden layer optimization. Furthermore, Sadrzadeh et al.
showed that increasing temperature, feed concentration, and
voltage improves SP by enhancing conductivity and ion
transport�higher temperatures and concentrations reduce
solution resistance, while increased voltage boosts ion
migration. Yet, excessive voltage can cause energy waste,
membrane damage, pH shifts, and concentration polarization,
ultimately hindering separation. Similarly, Min et al.29 reported
over 99% Cu and Ni removal at 12 V after 25 min, but further
voltage increases led to polarization effects and metal
precipitation, reducing efficiency. Conversely, higher flow
rates lowered SP due to shortened ion residence time, limiting
migration through membranes.

Zoungrana and Çakmakci30 found that excessive flow rates
decreased power density, negatively impacting separation
performance in ED. Their study also showed that while
increases in cell voltage and temperature initially improved CE,
further increases led to energy inefficiencies and hindered ion
migration. Feed concentration exhibited a nonlinear effect on
CE, with diminishing returns at higher levels. The researchers
emphasized the importance of balancing operational parame-
ters�low temperature, voltage, and concentration reduced
energy consumption but lower separation percentage (SP),
whereas higher values improved SP but significantly increased
power demand. Optimal conditions (20 V, 313.15 K, 1000 mg
L−1 concentration, and 1.2 mL s−1 flow rate) achieved the best
balance between SP and CE, suggesting a practical and scalable
ED strategy. Under slightly more aggressive conditions (30 V,
333.15 K, 1000 mg L−1), Pb2+ removal reached approximately
83%, confirming the effectiveness of well-optimized ED
systems for wastewater treatment.

■ AI IN HYBRID ELECTROCHEMICAL TREATMENTS
The efficiency of ion separation and resource recovery in
electrochemical processes depends on multiple interacting
parameters such as voltage, temperature, flow rate, and feed
concentration. Traditional optimization methods struggle to
account for the nonlinear relationships among these factors,
often requiring extensive experimental trials. AI-driven
approaches, particularly ANN, have emerged as powerful
tools for predicting and optimizing separation efficiency and
current efficiency in ED and related processes. These models
enhance ion migration predictions, reduce energy consump-
tion, and minimize experimental workload, while improving
scalability. By accurately modeling ion transport dynamics and
identifying optimal operating conditions, AI-driven methods
contribute to more efficient and cost-effective resource
recovery from wastewater streams.

Figure 8. Structure of the ANN modeling for removing Pb2+ ions
using ED. Modified after Sadrzadeh et al.28 Copyright 2009 Elsevier
B.V.

ACS ES&T Water pubs.acs.org/estwater Review

https://doi.org/10.1021/acsestwater.5c00238
ACS EST Water XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.5c00238?fig=fig8&ref=pdf
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.5c00238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


A study by Zare et al.31 investigated EF process for
ciprofloxacin (CIP) degradation using Fe@Fe2O3 core−shell
nanoparticles and a Ti/RuO2 anode. Under optimized
conditions (pH 8.83, 14.80 min reaction time, 19.19 mA/
cm2 current density, 15.13 mg/L pollutant concentration, and
199.03 mg/L catalyst dosage), they achieved 100% CIP
removal and 45% TOC removal. Using RSM with CCD, they
identified the current density as the most influential parameter
(F = 191.90), followed by reaction time (F = 31.12), pollutant
concentration (F = 25.19), and catalyst dosage (F = 5.79). The
RSM model showed strong predictive capability (R2 = 0.918)
and a good fit (p > 0.05). The catalyst contributed to both
adsorption and electrochemical oxidation with up to 35.89%
CIP removal via adsorption at pH 5. Extended mineralization
led to 70.23% TOC removal after 120 min. Biodegradability
improved significantly (BOD5/TOC from 0.68 to 0.98), and
toxicity (plant stem growth inhibition) decreased from 74% to
25% post-treatment. The Ti/RuO2 anode remained effective
over 10 cycles, while Fe@Fe2O3 retained performance for four
cycles before declining due to active site saturation.31

AI-based modeling has significantly improved the optimiza-
tion of ion separation and resource recovery by providing
accurate predictions of separation efficiency and current
efficiency under varying operational conditions. By capturing
complex nonlinear interactions among voltage, temperature,
flow rate, and feed concentration, AI models enhance process
efficiency while minimizing energy consumption and mem-
brane fouling risks. These techniques facilitate precise control
over ED performance, ensuring high removal rates of heavy
metals and valuable ions from wastewater. However, despite
their predictive accuracy, AI models, such as ANN, have
limitations, including data dependency, computational com-
plexity, and reduced interpretability compared to those of
mechanistic models. Additionally, challenges such as concen-
tration polarization, excessive energy demand at high voltages,
and ion migration inefficiencies still require careful parameter
balancing.

■ COMPARATIVE PERFORMANCE OF AI MODELS IN
ELECTROCHEMICAL TREATMENT

The application of AI in electrochemical treatment has led to
significant advancements in process optimization, yet the
effectiveness of different AI models varies depending on system
complexity, data set size, and operational conditions. Tradi-
tional models, such as RSM, provide structured statistical
frameworks for parameter optimization but struggle with
highly nonlinear interactions and inverse calculations. ANN
offers improved predictive accuracy by capturing complex
relationships, but they require extensive training data sets and
suffer from interpretability challenges. Hybrid AI approaches,
such as GA-ANNs (GANN) and particle swarm optimization-
ANN (PSO-ANN), have further enhanced optimization by
refining weight adjustments and improving model general-
ization. SVR and ANFIS balance interpretability and accuracy,
making them suitable for specific applications. Comparing
these models provides critical insights into their strengths,
limitations, and suitability for electrochemical wastewater
treatment, guiding the selection of the most effective approach
for different treatment scenarios.
Conventional neural networks (CNNs) struggle with reverse

calculations and often lack reliability when trained on small
data sets for complex multivariable simulations. To overcome
these limitations, Yang et al.32 addressed the limitations of

CNNs in reverse calculations and small data set reliability by
integrating GA with feedforward neural networks (FFNN) for
optimizing electrochemical degradation of COD and total
nitrogen (TN). The GA optimized FFNN weights and biases,
improving model stability, generalization, and reducing
dependence on large data sets. The hybrid GANN model
was validated using two DOE data sets: Taguchi Orthogonal
Array (25 samples) and BBD (54 samples). GANN out-
performed both FFNN and RSM, achieving 93.6% COD and
62.8% TN removal thanks to its ability to bypass predefined
search constraints. While traditional NNs capture nonlinearity,
they struggle with inverse prediction and suffer from instability
with limited data due to random weight initialization. RSM,
although useful, assumes quadratic relations, limiting its
precision in complex systems. GANN demonstrated high
predictive accuracy (R2 = 0.946 for COD, 0.874 for TN) but
required significant computational effort and tuning. Sensitivity
analysis identified the chloride ion concentration, current
density, and initial pH as key factors in COD removal, while
the electrolyte concentration was most critical for TN
degradation. Chloride ions enhanced reactive chlorine species
formation and solution conductivity, while hydroxyl radicals
(•OH), more effective in acidic conditions (2.85 V vs 2.02 V in
alkaline), played a major role in COD oxidation.

Phan et al.33 showed that lower pH significantly improves
COD removal, achieving 39.57−83.1% at pH 5, compared to
39.56−83.00% at pH 7.45 and just 6.10−50.68% at pH 10.
This confirms acidic to neutral conditions (pH 3−8)
represented by eq S17 in the SI favor HOCl formation�a
stronger oxidant than ClO−, which dominates above pH 8 (eq
(S18))�thus enhancing COD degradation. The study also
reinforced that GANN provides higher predictive accuracy for
COD removal than TN, as its optimization was primarily
COD-focused. Integrating GA with GANN significantly
improved performance (R2 = 0.946, RMSE = 0.022, MAE =
0.019, SSE = 0.027, F = 1.48, p = 0.49), outperforming
traditional neural networks (R2 = 0.863, RMSE = 0.042, MAE
= 0.034, SSE = 0.095, F = 0.84, p = 0.34) using Data set-β.
GANN achieved a maximum COD removal of 93.6%,
compared to 90.2% (RSM), 89.8% (GANN on Data set-α),
and 82.2% (Taguchi OA). For TN, it reached 62.8% removal,
outperforming RSM (58.5%), GANN on Data set-α (57.7%),
and Taguchi OA (54.7%). GANN also converged faster (200
vs 400 epochs for FFNN) with lower training MSE. Notably,
GANN trained on smaller Data set-α performed similarly to
RSM trained on the larger Data set-β (R2 = 0.85−0.90 for
COD). Sensitivity analysis confirmed that chloride ion
concentration, current density, and initial pH were most
influential for COD removal, while electrolyte concentration
had the greatest effect on TN. The GA-GANN integration
enhanced prediction accuracy, reduced data needs, and
increased efficiency, making it a powerful tool for optimizing
electrochemical wastewater treatment.33

Gholami Shirkoohi et al.34 optimized SVR and ANN models
using GA and particle swarm optimization (PSO) to predict
phosphate removal efficiency in EC (Figure 9). They used
Monte Carlo cross-validation with 10 subsets (62 data points
each), splitting them into 42 training, 10 validation, and 10
testing sets. Among all models, the PSO-ANN model achieved
the best performance with R2 = 0.981, MSE = 7.201, and
MAPE = 2.022, outperforming other combinations. AI-driven
optimization indicated that phosphate removal improves at
lower pH and lower initial phosphate concentrations, while
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higher current intensities and longer treatment times enhance
the removal efficiency. Mechanistically, at low pH, Al3+ and
Fe2+ ions formed Al(OH)3 and Fe(OH)2, which precipitated
phosphate as AlPO4 and FePO4. Acidic conditions also
promoted Al3+ and Fe3+ precipitation, whereas high pH levels
led to the formation of soluble species like Al(OH)4− and
Fe(OH)4−, reducing coagulation effectiveness. Increasing the
current intensity accelerated electrode dissolution, generating
more coagulants, while longer treatment durations support floc
formation and sedimentation. However, AI-based models have
limitations. They depend on data rather than on chemical or
physical mechanisms. ANN models require large data sets, and
SVR models are sensitive to hyper-parameter selection, which
limits their adaptability to real wastewater, electrode
passivation, and pH variability. Moreover, AI models generally
ignore side effects, such as electrode fouling, gas evolution, and
secondary reactions, necessitating experimental validation.
Additionally, the computational time required was high (GA-
ANN: 4897s, PSO-ANN: 4851s), posing challenges for real-
time industrial implementation. The study concluded that
while AI models significantly improve predictive accuracy and
process optimization, their integration with mechanistic
models is essential for enhancing reliability and enabling
practical applications in wastewater treatment.34

Igwegbe et al.35 compared RSM, ANN, and ANFIS for
modeling and optimizing electrocoagulation-flocculation
(ECF) in aquaculture effluent treatment using aluminum
electrodes. All three models enhanced process understanding,
prediction accuracy, and efficiency while reducing experimental
costs. RSM offered clear mathematical relationships for
parameter interactions but was limited by its assumption of
quadratic behavior. ANN could model complex nonlinear
interactions with higher accuracy than RSM but required large
data sets and significant computational resources. ANFIS,
which integrates ANN and fuzzy logic, achieved the highest
accuracy (R2 = 0.9990), outperforming ANN (R2 = 0.9807)
and RSM (R2 = 0.9790). When combined with GA
optimization, ANFIS-GA achieved 98.98% turbidity removal,

exceeding the turbidity removal of ANN-GA (97.81%) and
RSM (96.01%). Optimal ANFIS-GA conditions were pH 4, 3
A current, 7.2 min electrolysis, 23 min settling time, and 43.8
°C, with pH (81%) and current (11.8%) identified as the most
influential variables. While ANFIS offered superior predictive
performance, it required expert tuning of fuzzy membership
functions and was computationally intensive. RSM was less
effective at extreme parameter values, and the ANN, despite its
accuracy, lacked transparency. The study highlighted the trade-
offs between accuracy, interpretability, and complexity in
selecting models for ECF process optimization.35

Khan et al.36 optimized electrochemical oxidation for
Synozol Red dye removal using both RSM and ANN. A filter
press flow cell equipped with a Ti/RuO0.3TiO0.7O2 anode and
a stainless steel cathode was employed. ANN, trained via back-
propagation and gradient descent, featured four input neurons,
15 hidden neurons, and one output node (color removal
efficiency), achieving a high accuracy (R2 = 0.99). The data set
was divided into 70% training, 15% testing, and 15% validation
(Figure 10). RSM yielded a slightly lower R2 = 0.954. ANN

effectively captured nonlinear relationships and predicted
optimal conditions: pH 2.95, current density 5.95 mA/cm2,
NaCl concentration 0.075 M, and electrolysis time 29.83 min,
achieving 98.6% dye removal, compared to RSM’s 97.7% under
similar conditions. RSM provided interpretability, showing pH
as the most influential factor (61.03%), followed by current
density (17.29%), NaCl (12.7%), and electrolysis time
(8.98%). However, its quadratic assumption limited detection
of nonlinear behaviors such as a plateau in NaCl efficiency
beyond 0.08 M. ANN, while more accurate, lacked trans-
parency and required higher computational effort. Sensitivity
analysis via Pareto (RSM) and Garson (ANN) methods both
identified pH as the dominant parameter (Figure 11a, b).
Experimental validation confirmed 97.1% removal at pH 3,
current density of 5.88 mA/cm2, NaCl of 0.08 M, and 29.5 min
electrolysis time. 3D surface plots showed enhanced
degradation at pH 3. The Ti/RuO2−TiO2 anode enabled
Cl− oxidation, producing Cl2, HOCl, and ClO−, with HOCl
(1.49 V vs SHE) prevailing at pH < 7.5. Increasing pH
converted HOCl to ClO− (0.89 V), and eventually to less
effective oxidants like ClO3

− and ClO4
−, reducing treatment

efficiency (eqs S19−S24).37 Lowering pH from 5 to 3
increased removal from 40% to >95% at 10 mA/cm2, and
from 25% to 85% with 0.1 M NaCl. High pH hindered
removal due to dye adsorption blocking the electrode sites.
Similar trends were reported by Xia et al.38 using PbO2

Figure 9. Flowchart of the GA and PSO approaches for predicting
phosphate removal efficiency from wastewater using the EC process.
Modified after Gholami Shirkoohi et al.,34 Copyright 2022 Elsevier
B.V.

Figure 10. ANN modeling and three-layer feed forward model on the
decolorization efficiency of Synozol Red dye. Modified after Khan et
al.36 Copyright 2020 Elsevier B.V.
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electrodes. Higher current density (0.178−9.8 mA/cm2)
improved removal, with 100% degradation at pH 3 and 60%
at 0.1 M NaCl. Electrolysis time up to 35 min enhanced
removal from 20% to 70%, supported by da Silva et al.25 An
optimal current density of 5.88 mA/cm2 balanced the
efficiency and energy use. Increasing NaCl from 0.0017 to
0.1 M at pH 3 improved removal from 35% to 95%. At 8 mA/
cm2, degradation rose from 20% to 60%, attributed to greater
Cl− availability, improved conductivity, and lower energy
demand. Reactive species (Cl2, HOCl, ClO−) drove dye
degradation, consistent with findings by Santos et al.39

Shirkoohi et al.40 compared adaptive neuro-fuzzy inference
system (ANFIS) and central composite design (CCD) for
predicting caffeine removal efficiency and energy consumption
in an electrochemical oxidation (EO) process. ANFIS, built
with five layers and trained using Fuzzy C-Means clustering to
avoid overfitting, used 75% of the data for training and 12.5%
for validation and testing. CCD used a 40-run matrix to assess
the influence of electrolysis time, current intensity, initial
caffeine concentration, and anode type. ANFIS outperformed
CCD with a higher predictive accuracy: R2 = 0.993 for caffeine
removal and R2 = 0.976 for energy consumption, predicting
optimal values of 95.24% removal and 0.91 Wh/mg energy use.
While CCD provided interpretable statistical models and

insights into variable interactions, its quadratic assumptions
limited its ability to model nonlinear saturation effects,
particularly at high currents (>0.7 A). ANFIS effectively
modeled these nonlinearities but required greater computa-
tional resources and lacked transparency in mechanistic
interpretation. As shown in Figure 12a and b, RSM (CCD-
based) also performed well (R2 = 0.986 for removal, R2 = 0.939
for energy use), but ANFIS was superior, with RMSE = 2.694
for removal and 0.261 for energy. Surface and parity plots
confirmed ANFIS’s better fit to experimental data, especially
for energy modeling. Among the tested variables, the anode
type had the greatest impact on degradation (81%), followed
by electrolysis time (11.8%). Boron-doped diamond (BDD)
was the most effective anode, outperforming IrO2, graphite,
and Pt, due to its high oxygen evolution potential and efficient
•OH radical generation. These results were consistent with
previous findings by Cotillas et al.,41 Indermuhle et al.,42 and
de Vidales et al.43 Caffeine removal improved with longer
electrolysis time and higher current but decreased with higher
initial caffeine concentration. Using BDD, removal rose from
40% to 100% as time increased from 10 to 50 min and current
from 1 to 2 A. IrO2 did not exceed 35% removal under the
same conditions. Current intensity significantly influenced
electron transfer and the generation of reactive oxygen species

Figure 11. (a) Pareto chart and (b) sensitivity analysis of the relative importance of RSM and ANN input variables on the decolorization efficiency
of the Synozol Red dye. Modified after Khan et al.36 Copyright 2020 Elsevier B.V.
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(ROS) like •OH, SO4
•−, and HOCl.44 For instance,

Periyasamy et al.45 also demonstrated complete florfenicol
degradation in 150 min at 250 mA with BDD, emphasizing the
role of current in generating secondary oxidants such as S2O8

2−

and SO4
•− in sulfate-rich media (eqs S10−S12, S25).46 Under

RSM-optimized conditions�39 min electrolysis, 0.7 A current,
13 mg/L caffeine concentration, and BDD anode�93.82 ±
0.80% removal and 0.70 ± 0.02 Wh/mg energy consumption
were achieved, accurately predicted by ANFIS. While RSM
provided a simpler and interpretable model, ANFIS demon-
strated greater precision and adaptability for modeling
complex, nonlinear EO processes.
RSM remains a widely used classical statistical approach that

facilitates exploration of relationships between process
variables and outcomes, aiding in the identification of optimal
conditions.47 However, its effectiveness declines when applied
to complex, nonlinear processes, as it relies on low-order
polynomial models, which may not adequately capture
intricate variable interactions.8 In contrast, ANNs are highly
capable of modeling complex chemical processes due to their
ability to learn nonlinear relationships without prior
assumptions about data structure. Nevertheless, ANNs are
often criticized as black-box models due to their lack of
interpretability, which can hinder mechanistic understanding

and transparency.48 GAs, inspired by natural selection, offer
robust global optimization capabilities, effectively avoiding
local minima in multidimensional search spaces. However,
their computational demands increase significantly with the
problem size. Other metaheuristic algorithms, such as particle
swarm optimization (PSO), provide additional adaptive and
nature-inspired optimization strategies, serving as valuable
complements to traditional RSM and ANN models.49 These
metaheuristics enhance the optimization of electrochemical
processes by addressing different challenges in efficiency,
complexity, and problem specificity. Further investigation is
needed into alternative experimental designs beyond CCD and
BBD in RSM applications, as most studies rely on these two.
Additional research is also required to evaluate RSM’s
feasibility for optimizing electrochemical water and wastewater
treatment processes in real-world scenarios. ANN-based
models offer high predictive accuracy but require large data
sets and substantial computational power, limiting their
practicality for real-time applications without sufficient training
data. Hybrid models like GANN and PSO-ANN enhance
optimization by improving parameter selection, reducing
overfitting, and increasing model stability but at the cost of
higher computational demands. RSM is still valuable for
analyzing parameter interactions under quadratic assumptions,
although it lacks flexibility for complex electrochemical
systems. ANFIS and SVR strike a balance between accuracy
and interpretability, making them valuable when a clear
understanding of variable interactions is necessary for effective
process control. Sensitivity analyses across AI models
consistently identify the current density, pH, electrolyte
concentration, and treatment time as critical factors influencing
pollutant degradation. Despite the advancements brought by
AI in improving process efficiency, challenges remain in model
transparency, adaptability to real-time scenarios, and integra-
tion with fundamental mechanistic studies.

■ THE ROLE OF ELECTROCHEMICAL DOUBLE
LAYER IN AI MODELING OF ELECTROCHEMICAL
PROCESSES

The electrochemical double layer (EDL) plays a fundamental
role in governing heterogeneous electrochemical reactions,
particularly in the EC and advanced oxidation processes
(AOPs). The EDL consists of a compact Helmholtz layer and
a diffuse layer, which influence charge transfer, mass transport,
and interfacial reaction kinetics. In heterogeneous reactions,
the EDL modulates the adsorption of reactants onto the
electrode surface, the availability of charge carriers, and the
stability of intermediates, ultimately affecting the reaction
efficiency.

The EDL constitutes a foundational concept in electro-
chemistry, playing a crucial role in electrochemical water
treatment technologies. Comprising the compact Helmholtz
layer and the diffuse layer, the EDL governs charge transfer,
mass transport, and reaction kinetics at the electrode−
electrolyte interface. These processes are critical for the
efficiency of electrocatalytic reactions, particularly in environ-
mental remediation and water treatment.50−52 In oxidative
electrochemical technologies such as electrochemical advanced
oxidation processes (EAOPs), the EDL influences the
formation of reactive oxygen species (ROS), pollutant
adsorption, and the stability of electrogenerated intermediates.
Understanding these interactions is essential for optimizing
electrochemical water treatment processes, and artificial

Figure 12. Surface plots of the experimental and predicted values for
ANFIS and CCD models: (a) caffeine removal efficiency (%) and (b)
energy consumption (Wh/mg). Modified after Gholami Shirkoohi et
al.40 Copyright 2022 Elsevier B.V.
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intelligence (AI) has emerged as a powerful tool for process
modeling, parameter optimization, and predictive control.52,53

■ EDL IN ELECTROCOAGULATION PROCESS
The efficiency of the EC is critically dependent on the EDL,
which governs the behavior of coagulant formation, particle
interactions, and flocculation dynamics. Within the EDL,
charge neutralization and coagulation occur as metal hydroxide
species such as Al(OH)3 and Fe(OH)3 interact with
suspended particles, leading to enhanced coagulation and
pollutant aggregation. Additionally, electrode reactions and
coagulant production are regulated by the oxidation of
sacrificial anodes, which release Al3+ or Fe2+/Fe3+ ions that
hydrolyze into active coagulants. The compact Helmholtz layer
plays a crucial role in floc aggregation, influencing particle
attachment efficiency and floc size distribution.54 The
integration of AI in the EC process has revolutionized process
optimization by enabling real-time monitoring, automation,
and adaptive control, significantly improving pollutant removal
efficiency while reducing operational costs. AI-powered
machine learning (ML) models facilitate electrode material
selection, identifying optimal anode compositions that enhance
coagulant generation while minimizing the extent of corrosion.
Additionally, AI-driven process control dynamically regulates
the current density and voltage in response to fluctuations in
water quality, ensuring efficient coagulant production while
minimizing energy consumption. The application of predictive
flocculation modeling allows AI algorithms to analyze particle
aggregation trends, optimizing coagulant dosage and pH levels
to maximize floc stability and improve sedimentation rates.
Furthermore, AI-enhanced diagnostics can detect electrode
passivation, fouling, and system inefficiencies, enabling
predictive maintenance strategies that extend the operational
lifespan of electrocoagulation units. By integrating AI-driven
electrocoagulation with advanced oxidation processes (AOPs)
and filtration systems, overall water treatment performance is
enhanced, leading to more sustainable and cost-effective
wastewater remediation strategies.54

■ EDL IN THE ELECTRO-FENTON PROCESS
The efficiency of the electro-Fenton (EF) process is
significantly influenced by the structure and dynamics of the
EDL. Within the EDL, charge interactions at the electrode
interface affect the diffusion of Fe2+ and Fe3+ ions, modulating
their availability for continuous radical production. Optimizing
EDL properties enhances Fe2+ regeneration, preventing
catalyst deactivation, and improving overall process stability.
Additionally, the electrogeneration of H2O2 is heavily
influenced by the EDL, as it determines the transport of
oxygen molecules to the cathode surface, influencing their
electrochemical reduction into hydrogen peroxide. AI-driven
simulations optimize electrolyte composition, applied poten-
tial, and electrode configurations to maximize the H2O2 yield
while minimizing energy losses. Furthermore, the compact
Helmholtz layer impacts the adsorption of organic pollutants
and iron species onto electrode surfaces, affecting reaction
kinetics and pollutant degradation rates.55

AI-assisted modeling predicts optimal electrode surface
modifications, enhancing the adsorption efficiency and radical
generation. The integration of AI into the EF process enables
real-time control and dynamic system optimization, signifi-
cantly improving pollutant degradation efficiency while

minimizing the reagent consumption and energy costs. AI
algorithms dynamically adjust voltage, current density, and
reaction conditions to maintain consistent H2O2 electro-
generation, preventing process inefficiencies and excessive
reagent consumption. ML models optimize iron catalyst
regeneration and dosing, ensuring proper Fe2+ levels while
minimizing Fe3+ accumulation and sludge formation, which are
common issues in EF systems. AI-assisted process control fine-
tunes electrode potential and operational parameters, achieving
an optimal balance between high oxidation efficiency and
reduced energy input. Additionally, AI-based monitoring
systems analyze real-time water quality data, dynamically
adjusting pH, ionic strength, and reaction conditions to
enhance pollutant degradation performance. AI-driven diag-
nostics track electrode degradation and iron precipitation
trends, enabling predictive maintenance strategies that extend
system longevity, improve efficiency, and reduce operational
downtime. By incorporating AI, electro-Fenton systems
become more adaptable, cost-effective, and sustainable, making
them highly suitable for large-scale wastewater treatment
applications.55

■ EDL IN INDIRECT ELECTROCHEMICAL OXIDATION
Indirect electrochemical oxidation (IEO) is an advanced water
treatment process that utilizes electrogenerated oxidants, such
as ozone (O3), hydrogen peroxide (H2O2), and ferrate
(Fe(VI)), to degrade pollutants. The efficiency of these
oxidants is directly influenced by their formation mechanisms,
stability, and reactivity, all of which are governed by
electrochemical double layer (EDL) dynamics at the
electrode−electrolyte interface. In ozone (O3) formation, O3
is produced at the anode via the oxidation of water molecules,
with the EDL controlling the availability of hydroxyl ions and
oxygen species that participate in ozone generation.56 AI-
driven predictive models optimize electrode material selec-
tion�such as BDD�and fine-tune voltage application to
enhance ozone production while minimizing parasitic side
reactions that reduce the process efficiency. In hydrogen
peroxide (H2O2) generation, H2O2 is synthesized through the
two-electron oxygen reduction reaction (ORR) at the cathode,
where the EDL regulates proton and oxygen transport across
the interface, impacting H2O2 yields and selectivity. ML
algorithms can predict optimal pH conditions, applied
potentials, and current densities, ensuring that H2O2 formation
is maximized over competing water reduction reactions.
Additionally, ferrate (Fe(VI)) electrogeneration is a promising
IEO technique that involves anodic oxidation of Fe(III) to
Fe(VI), a highly reactive oxidant with a strong degradation
potential. The EDL modulates charge transfer kinetics and iron
speciation, affecting the ferrate stability and efficiency. AI-
based process optimization dynamically adjusts anodic
conditions, preventing Fe(VI) degradation while reducing
unwanted Fe(III)/Fe(II) cycling, which can lower the
oxidation efficiency. The integration of AI into IEO processes
enables real-time monitoring, adaptive process control, and
predictive analytics, significantly improving oxidant generation
efficiency, pollutant degradation rates, and overall energy
utilization.56
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■ EDL IN ELECTRO-CATALYSIS AND
ELECTROCHEMICAL OXIDATION

Electrocatalysis is a key technology in wastewater treatment,
accelerating oxidation reactions at the electrode surface to
achieve efficient pollutant degradation. The performance of
EO processes is highly dependent on the EDL, which governs
charge transfer kinetics, reactive oxygen species (ROS)
formation, and interactions of the pollutant with electrode
materials. The EDL plays a crucial role in charge transport and
ROS generation, as it modulates the movement of reactive
species near the electrode interface, directly influencing the
formation of hydroxyl radicals (•OH) and other oxidative
agents. Optimizing EDL conditions enhances radical avail-
ability, increasing pollutant mineralization efficiency and
preventing undesired side reactions. Additionally, electrode
material interactions are strongly influenced by the EDL,
affecting the adsorption and desorption of contaminants on the
electrode surface.57 AI-assisted computational modeling
enables the prediction of optimal electrode materials, such as
BDD and mixed metal oxides (MMOs), to enhance the
oxidation efficiency and electrode durability. Furthermore,
mass transport and reaction kinetics are dictated by the
compact Helmholtz layer, which influences the diffusion of
pollutants to reactive sites. AI-driven multiphysics simulations
optimize operational parameters, balancing mass transport
limitations and charge transfer efficiency to ensure high
treatment performance. The integration of AI into electro-
catalysis allows for real-time process control, predictive
modeling, and automated optimization, significantly improving
the system efficiency and energy utilization. ML models
analyze the electrode composition and surface properties,
identifying materials with the highest catalytic activity and
long-term stability. AI-driven adaptive control systems
dynamically regulate the current density and applied voltage,
optimizing ROS production while minimizing side reactions
that could reduce process efficiency. Advanced AI-based
simulations predict oxidation kinetics under fluctuating water
quality conditions, allowing for real-time process adjustments
to maintain consistent pollutant degradation. Additionally, AI
optimizes power consumption by fine-tuning applied potential
and reaction rates, ensuring a cost-effective operation with
minimal energy waste. AI-based monitoring systems detect
electrode degradation trends, enabling predictive maintenance
strategies that extend the electrode lifespan and operational
stability. Through these advancements, AI-enhanced electro-
catalysis achieves higher degradation rates, improved energy
efficiency, and greater long-term sustainability, making it an
ideal technology for large-scale wastewater treatment applica-
tions.57

■ EDL IN INTEGRATED ELECTROCHEMICAL WATER
TREATMENT PROCESSES

Integrating electrochemical advanced oxidation processes
(EAOPs) with complementary treatment methods, such as
membrane filtration and biological degradation, significantly
enhances the pollutant removal efficiency, process stability, and
overall system performance. The EDL plays a fundamental role
in these hybrid treatment systems, governing charge transport,
ion migration, and pollutant degradation kinetics, which are
critical for optimizing system synergy. Within electrochemical
oxidation and biodegradability enhancement, EAOPs generate
hydroxyl radicals (•OH) and other reactive species that break

down complex organic contaminants into simpler, more
biodegradable intermediates. The EDL influences intermediate
adsorption, oxidation efficiency, and transformation pathways,
ensuring that degraded pollutants are efficiently converted to
bioavailable forms for subsequent biological treatment. In
membrane-electrochemical hybrid systems, the EDL regulates
ion migration and fouling tendencies, which are major
challenges in electrocoagulation-membrane filtration hybrids.
AI-driven predictive modeling helps forecast scaling risks,
optimize membrane surface charge interactions, and improve
membrane lifespan, reducing operational downtime and
maintenance costs. Additionally, the electrochemical removal
of perfluorinated compounds (PFCs), which are persistent and
difficult to degrade, is significantly influenced by the EDL’s
regulation of charge interactions during oxidation reactions.
On BDD anodes, AI-assisted process control fine-tunes
electrode potential and electrolyte composition, maximizing
PFC degradation while minimizing energy consumption. The
integration of AI-driven models into these hybrid systems
further enhances the synergy among electrochemical oxidation,
biological treatment, and membrane filtration, resulting in
more energy-efficient and cost-effective solutions. AI-based
dynamic process control adjusts operational parameters in real
time, ensuring optimal pollutant breakdown, charge transport
efficiency, and system adaptability across different treatment
stages. Predictive membrane fouling mitigation utilizes AI
diagnostics to forecast scaling and biofouling risks, allowing for
optimized membrane cleaning cycles and an extended
operational lifespan. Additionally, AI-powered oxidation path-
way prediction refines reaction kinetics analysis, determining
ideal oxidation conditions that maximize the level of pollutant
degradation while preventing excessive byproduct formation.
AI-driven energy optimization algorithms regulate power
distribution across treatment trains, ensuring minimal energy
wastage while maximizing pollutant removal efficiency.
Furthermore, AI-based adaptive response mechanisms dynam-
ically adjust treatment conditions based on real-time influent
water quality data, ensuring consistent system performance
under varying wastewater compositions. Through these AI-
enhanced hybrid treatment strategies, electrochemical waste-
water treatment becomes more efficient, sustainable, and
adaptable, making it a viable large-scale solution for industrial
and municipal applications.58

■ AI-DRIVEN OPTIMIZATION FOR HYBRID AND
SEQUENTIAL ELECTROCHEMICAL PROCESSES

Artificial intelligence plays a crucial role in enhancing hybrid
and sequential electrochemical treatments by enabling real-
time process adjustments, predictive modeling, and optimiza-
tion of operational parameters. One key AI-driven strategy is
dynamic process control, where ML algorithms continuously
adjust the current density, pH, and electrode spacing to
maintain optimal EDL conditions, ensuring efficient charge
transfer and pollutant aggregation. Additionally, AI-based
simulations aid in electrode material selection, identifying the
most suitable compositions for hybrid treatments while
balancing factors, such as conductivity, oxidation potential,
stability, and cost-effectiveness. AI also optimizes sequential
treatment steps, determining the most effective order of
electrocoagulation, electrochemical oxidation, and advanced
oxidation processes to maximize contaminant removal, while
minimizing energy consumption and operational costs.
Furthermore, predictive maintenance algorithms analyze
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system performance trends, anticipate electrode passivation,
and suggest maintenance schedules, reducing downtime and
extending the equipment lifespan. Another major advantage of
AI integration is energy efficiency enhancement, where AI-
driven optimization minimizes power consumption while
maintaining high degradation efficiency, making these treat-
ments more cost-effective and scalable for industrial
applications. By incorporation of AI into hybrid and sequential
electrochemical treatments, superior pollutant degradation
rates, enhanced energy efficiency, and lower operational
expenses can be achieved. These advancements significantly
improve the feasibility of electrochemical water treatment
systems for large-scale applications, particularly in addressing
complex wastewater streams containing persistent and
biorefractory contaminants.59

■ AI INTEGRATION IN ELECTROCHEMICAL WATER
TREATMENT TECHNOLOGIES

Modular, decentralized electrochemical water treatment
technologies are highly significant due to their adaptability,
energy efficiency, and effectiveness in contaminant removal.
These systems offer flexibility in deployment, making them
suitable for both urban and remote areas while minimizing
energy consumption and operational costs. Their ability to
integrate with renewable energy sources and smart monitoring
systems further enhances sustainability and real-time process
optimization, ensuring efficient pollutant removal across
diverse water treatment applications. AI-enhanced electro-
chemical models improve the predictive accuracy of the
oxidation efficiency under various operating conditions, leading
to more sustainable and cost-effective electrochemical treat-
ments. AI-based models play a crucial role in multiple
electrochemical water treatment techniques by facilitating
parameter tuning, predictive analytics, and adaptive process
control.59

In the EC process, AI models simulate EDL dynamics,
predicting optimal electrode material, current density, and
ionic strength required for efficient charge neutralization and
floc formation. Reinforcement learning techniques dynamically
adjust operating parameters, ensuring long-term system
efficiency while mitigating electrode passivation.60 In electro-
flotation, AI-powered computational fluid dynamics (CFD)
simulations optimize bubble size distribution, surface charge
interactions, and hydrodynamic flow, maximizing the pollutant
flotation efficiency. ML models refine electrode spacing and
gas production rates, reducing energy consumption while
maintaining high pollutant separation performance.39 For
indirect electrochemical oxidation, AI-driven process modeling
optimizes electrode material selection and reaction kinetics,
improving the generation of reactive oxygen species (ROS)
such as hydroxyl radicals, ozone, and ferrate. AI-based adaptive
control systems fine-tune voltage application and electrolyte
composition, balancing oxidation efficiency with energy
demands.17 In electro-Fenton and photo-Fenton processes,
AI-enhanced reaction simulations predict iron cycling dynam-
ics (Fe2+/Fe3+ regeneration), optimize hydrogen peroxide
dosing, and enhance hydroxyl radical production, ensuring
high pollutant degradation rates while reducing unnecessary
chemical consumption. Adaptive AI models control UV/solar
irradiation intensity, dynamically adjusting radical formation in
response to real-time environmental conditions to optimize
degradation efficiency.55 Additionally, in photoelectrocatalysis,
AI optimizes photoanode material selection, such as titanium

dioxide (TiO2), tungsten trioxide (WO3), and zinc oxide
(ZnO), while fine-tuning bias potential applications to enhance
electron−hole separation efficiency and reduce recombination
losses. Through ML integration, solar-driven electrochemical
systems dynamically adjust light intensity and reaction kinetics,
ensuring continuous pollutant degradation while minimizing
operational costs. By leveraging AI-assisted predictive model-
ing, real-time control, and adaptive learning, electrochemical
water treatment systems become more efficient, cost-effective,
and scalable, supporting the transition to sustainable and
decentralized water treatment solutions.61

■ ADVANTAGES AND DISADVANTAGES OF AI IN
ELECTROCHEMICAL PROCESSES

AI has significantly improved electrochemical water treatment
processes by enhancing process control, predictive modeling,
and system efficiency; however, its implementation also
presents challenges. Among its advantages, AI enables real-
time optimization, dynamically adjusting parameters such as
current density, pH, and electrolyte composition to improve
the process efficiency. It also supports predictive maintenance,
allowing ML models to anticipate electrode degradation and
scaling, thereby reducing the downtime. Additionally, AI
enhances energy efficiency by optimizing power consumption,
balancing applied potential and reaction kinetics, and lowering
operational costs. It further improves the pollutant removal
efficiency by predicting the most effective electrode materials
and reaction conditions, leading to higher degradation rates.
Moreover, automated process control ensures a stable
treatment performance by continuously monitoring and
adapting to fluctuations in wastewater composition. Despite
these benefits, AI integration faces several challenges. One
major drawback is its high initial cost, as implementing AI-
driven systems requires specialized software, sensors, and
computational resources. Additionally, AI introduces complex-
ity in data interpretation, demanding large data sets and
continuous updates to maintain predictive accuracy. Integra-
tion challenges also arise when retrofitting AI into existing
electrochemical systems, often requiring hardware and software
modifications. Furthermore, AI models, while effective in
optimizing process conditions, have a limited mechanistic
understanding of the electrochemical reaction pathways. Lastly,
AI-driven systems depend on high-quality real-time data, which
may not always be available in all treatment facilities. Despite
these limitations, AI continues to advance electrochemical
water treatment, offering significant potential for improving
efficiency and sustainability.62

■ INFLUENCE OF EDL ON REACTIONS AND
AI-DRIVEN OPTIMIZATION

The EDL is critical to heterogeneous electrochemical
reactions, governing charge transfer, mass transport, and
interfacial kinetics. It comprises the inner Helmholtz plane
(IHP), outer Helmholtz plane (OHP), diffuse layer, and bulk
electrolyte, with each region playing distinct roles in
adsorption, electric field regulation, and potential distribution
(Figure 13). Optimization of the EDL structure enhances
reaction efficiency and selectivity, which is vital for
technologies like electrocatalysis, EC, and energy storage.63−66

Recent developments have reshaped our understanding of
the EDL behavior. Wu and Qi challenged the classical Stern
model by studying localized high-concentration electrolytes
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(LHCEs), which form micelle-like salt-solvent clusters distinct
from diluent regions. Their DFT and MD simulations showed
how this heterogeneity influences Li+ distribution, charge
screening, and SEI stability.67 Zhu et al. emphasized the impact
of interfacial water structure on the hydrogen evolution
reaction (HER), noting that hydrogen bond networks and
Na+ hydration alter charge screening and drive kinetic pH
effects in alkaline media.68

Cao and Wu69 focused on the EDL in electrochemical
double-layer capacitors (EDLCs), highlighting how the
Helmholtz and Stern models explain ion adsorption in porous
carbon electrodes. They concluded that the electrolyte
concentration and ion mobility are key to optimizing energy
storage. Kelly et al.66 took an innovative approach by
converting interfacial charge dynamics into audible signals
using a relaxation oscillator circuit, linking EDL changes to
applied potential, electrode material, and reaction kinetics.
Several studies have addressed environmental and pH-

dependent influences on the EDL structure. Liu et al.
demonstrated how pH variations restructure the EDL, affecting
PCET mechanisms in HER, ORR, and CO2RR by altering
mass transport and surface adsorption.70 Dong et al.63

investigated Fe2O3 electrodes and showed that specific ion
adsorption in the IHP governs charge storage performance in
energy systems.
Advanced techniques have enabled the direct visualization of

EDL behavior. Favaro et al.65 used ambient pressure X-ray
photoelectron spectroscopy (APXPS) to validate the potential
of zero charge (PZC) and map the potential drop across the
EDL. Shin et al.71 applied first-principles simulations to reveal
how ion electrosorption and structural transitions influence
EDL capacitance and CO2 reduction.
The adsorption of target contaminants onto the electrode

surface is influenced by EDL characteristics, particularly its
charge distribution. A strong electrostatic interaction between
the charged surface and pollutant molecules improves the
efficiency of charge-driven reactions, facilitating pollutant
degradation or coagulation. Li et al. critiqued the limitations
of the traditional Gouy−Chapman−Stern (GCS) model and
proposed an integrated ab initio−continuum approach to
better capture complex electrolyte effects, including pH, ion
identity, and hydrogen bonding.72 Swift et al.73 extended EDL
modeling to solid-state batteries, describing EDLs as space-
charge layers driven by point defects, not solvated ions, and
presenting a DFT-based continuum model for all-solid-state
interfaces.

Finally, AI has greatly accelerated EDL-related research. Kim
et al.74 developed ML models trained on DFT data to identify
catalysts for nitrogen electro-reduction, dramatically speeding
up the discovery of optimal adsorption surfaces. Zhou et al.75

introduced ML potentials to simulate electrochemical inter-
faces with high accuracy, while Dufils et al.76 launched
PiNNwall, a powerful ML-integrated simulation tool for
modeling polarized oxide surfaces in energy storage contexts.

■ POTENTIAL CHALLENGES AND CONCLUSION
The integration of AI into electrochemical water treatment
significantly improved process efficiency, predictive accuracy,
and operational control. However, scaling up these AI-driven
electrochemical processes from laboratory experiments to full-
scale industrial applications presents significant challenges.
These include material costs, energy consumption, process
optimization, data availability, and integration with the existing
water treatment infrastructure. The selection and synthesis of
electrode materials, such as BDD and MMOs, play crucial roles
in determining treatment efficiency. However, their high
production costs and limited scalability remain obstacles to
widespread adoption. AI can address these issues by predicting
material performance, optimizing synthesis processes, and
identifying cost-effective alternatives, reducing dependence on
expensive materials, and improving electrode longevity.

Economic feasibility is another critical factor in implement-
ing an AI-driven electrochemical water treatment. AI can
facilitate cost analysis by integrating real-time data on
operational expenses, capital investments, and maintenance
costs, helping to optimize treatment processes while
minimizing financial burdens. Predictive maintenance, enabled
by ML models, can anticipate equipment failures and reduce
unplanned downtime, thereby improving the system reliability
and cost-effectiveness. Furthermore, AI-driven decision-making
can assess the integration of renewable energy sources, such as
solar and wind power, into electrochemical treatment systems,
reducing energy costs and environmental impact.

Energy consumption is a major limitation of electrochemical
processes, particularly for industrial-scale applications. AI-
driven optimization techniques, such as reinforcement learning
and GAs, can dynamically adjust key operational parameters
including voltage, current density, and treatment time based on
real-time system performance, reducing unnecessary energy
usage while maintaining high pollutant removal efficiency. AI
can also model energy demands under different operational
scenarios, allowing for better planning and integration of
sustainable energy sources to enhance the overall efficiency.

Despite these benefits, AI-based models face challenges
related to data dependency, computational complexity, and
generalization under different treatment conditions. AI models
require extensive, high-quality data sets to ensure reliable
predictions. However, data availability remains a limitation,
particularly for highly complex electrochemical processes that
involve multiple interacting parameters. Overfitting and model
bias are potential risks when AI is trained on limited data sets,
leading to reduced predictive accuracy in new scenarios.
Addressing these issues requires robust training data sets,
improved feature selection, and hybrid AI approaches that
combine data-driven models with mechanistic simulations for
enhanced accuracy and interpretability.

Selecting the appropriate ML algorithm tailored to electro-
chemical pollutant treatment is crucial for optimizing the
performance. Algorithms such as ANN, SVM, RF, and extreme

Figure 13. Schematic of the electrical double layer. Modified after
Dunwell et al.64 Copyright 2018 Elsevier B.V.
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gradient boosting (XGBoost) offer unique advantages in
handling high-dimensional data, noise robustness, and non-
linear relationship modeling. In pollutant degradation
processes, RF and SVM demonstrate strong predictive
capabilities for complex data sets, while ANN excels in
recognizing patterns and modeling nonlinearity. Integrating
hybrid approaches, such as RF-XGBoost-ANN, enhances
predictive accuracy while minimizing computational error.
Future ML advancements in electrochemical oxidation should
focus on improving model interpretability, autonomous real-
time data processing, and energy-efficient learning techniques.
The development of AutoML frameworks can streamline
model selection and hyper-parameter tuning, further optimiz-
ing AI-driven electrochemical water treatment.
Despite these challenges, AI holds immense potential for

revolutionizing electrochemical water treatment. By enhancing
process efficiency, reducing operational costs, and enabling
predictive control, AI-driven techniques can significantly
improve water quality management. Future research should
focus on refining AI integration in electrochemical processes,
bridging the gap between theoretical models and real-world
applications and ensuring AI-driven solutions are adaptable
across different water treatment scenarios. Additionally,
advancements in real-time monitoring, sensor integration,
and automated decision-making will further enhance the
feasibility of AI in industrial-scale electrochemical water
treatment. As AI technology continues to evolve, its synergy
with electrochemical treatment methods is expected to drive
the development of more sustainable, cost-effective, and
scalable water purification strategies, addressing global water
pollution challenges and contributing to long-term environ-
mental sustainability. Furthermore, incorporating AI into real-
time autonomous systems could lead to a paradigm shift in
water treatment, enabling smart, self-optimizing treatment
plants that dynamically adjust operational conditions for
maximum efficiency. The fusion of AI with electrochemical
processes is not just an incremental improvement but a
transformative step toward a future where water treatment is
more intelligent, adaptive, and efficient on a global scale.
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