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Abstract: In the domain of autonomous ship navigation, the construction of bird's-eye view (BEV) 

layouts for waterways has obvious significance. A helmsman can generate the BEV layout of the 

waterway using his/ her eyes only. To simulate this intelligence, a novel neural network-based 

algorithm named SECross is proposed, which enables reconstructing a local map formed by the 

waterway layout and ship occupancies in the bird's-eye view given a first person view monocular 

image only. SECross employs an efficient SEResNeXt encoder to extract features from first person 

view (FPV) monocular images, capturing deep semantic information related to waterways and ships. 

Due to the variations in information across different perspectives, SECross incorporates a Cross-

View Transformation Module, which takes the constraint of cycle consistency between views into 

account and makes full use of their correlation to strengthen the view transformation and scene 

understanding. To fully leverage the feature output of the SEResNeXt encoder, SECross employs a 

decoder based on a dedicated lightweight network. This decoder is responsible for decoding the 

enhanced bird’s-eye view (BEV) feature maps and generating the BEV layout. By employing the 

Focal Loss as the loss function for model optimization, SECross takes into account the quantity and 

classification difficulty of ship samples during the training process, thereby improving the 

generation performance and convergence speed. The experiments demonstrated that SECross 

achieved notable performance metrics, with mIOU and mAP rates reaching 97.8% and 98.2%, 

respectively, in waterway bird’s-eye view layout generation. SECross outperformed other state-of-

the-art (SOTA) algorithms in generating BEV layouts of waterways. In particular, during specialized 

scenarios such as crossroads of waterways and tasks involving small target ships, SECross 

consistently generated satisfactory bird’s-eye view layouts, demonstrating robustness and 

applicability. 
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1.INTRODUCTION 

In the realm of autonomous ship navigation, the perception of the surrounding environment is 

deemed a pivotal task. It carries significant importance in ensuring navigational safety, mitigating 

ship accident rates, and devising optimal routes for ship navigation. The Bird's Eye View (BEV) 

layout finds extensive application in diverse fields within the domain of autonomous ship navigation, 

including waterway recognition, navigation planning, obstacle detection, as well as data collection 

and analysis. This layout facilitates a panoramic view of the ship's frontal 180 degrees from a top-

down perspective, particularly beneficial in complex environments. Consequently, it covers an 

extensive imaging area and ensures high accuracy in capturing the surroundings. Compared to First 

Person View (FPV), the Bird's Eye View (BEV) layout can intuitively present spatial relationships 

between our ship, other ships, and waterways. Therefore, handling BEV data is more 

straightforward than FPV, resulting in significantly improved efficiency in acquiring maritime 

navigation information. 

In general, the image information conveyed by the BEV layout primarily consists of two-

dimensional image data comprising a series of points. These points represent the positions of other 

ships and the waterways. Consequently, the process of generating the BEV layout primarily relies 

on obtaining the relative positional information of other ships and the waterways. While many 

methods traditionally rely on precise devices such as LiDAR or GNSS devices to accurately obtain 

the positional information of other ships, a recently proposed approach in the field of autonomous 

driving is solely based on deep learning. These novel approaches enable the generation of BEV 

layouts exclusively from a monocular FPV color image, eliminating the need for additional devices. 

Traditional BEV layout generation methods often require the integration of multiple cameras 

and sensors, including LiDAR [1]. These methods exhibit high accuracy in scenarios with relaxed 

real-time requirements. However, the real-time generation of precise BEV layouts becomes 

challenging when dealing with fast-moving objects, primarily due to the substantial computational 

resources needed. In recent years, deep learning technologies have rapidly advanced in areas such 

as object detection and instance segmentation, especially with the widespread application and 

continuous refinement of Convolutional Neural Networks (CNNs) and Generative Adversarial 

Networks (GANs) across various tasks. In complex scenarios, such as 3D object detection, traffic 

sign detection, and obstacle detection, CNN-based object detection methods have shown 

outstanding performance. Deep learning-based monocular BEV generation methods, compared to 
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traditional approaches, can achieve more precise target detection and layout generation. 

In the navigation environment of inland waterways, monocular BEV layout research using 

similar methods must face a series of challenges. Firstly, ships encountered in inland waterways 

generally appear at relatively long distances from our ship, resulting in their representation as very 

small targets in the FPV images. Secondly, due to the constrained width of inland waterways, 

occlusion of ships may occur during dense navigation or when ships cross waterways. Lastly, inland 

waterways typically follow the meandering course of rivers, and ships navigating through these 

waterways need to traverse channels with significant curvature. Additionally, there may be many 

crossroads in inland waterways with various geometrical shapes. Therefore, the existing state-of-

the-art (SOTA) BEV algorithms might not have satisfactory performances in producing accurate 

BEV layouts of waterways. 

In response to the characteristics of inland waterways, this research proposes a BEV layout 

generation algorithm based on a customized generative network called SECross. Compared to 

previous research, the method presented in this work differs significantly in several aspects. 

[1] The feature network has been enhanced to extract crucial ship features by employing more 

efficient convolutional modules. 

[2] A transformation module with cross-view attention mechanism is utilized to integrate feature 

information from different perspectives, further enhancing the features of the output, and enabling 

the transformation of features from FPV to BEV. 

[3] The loss calculation process of the algorithm has been optimized to improve the precision 

of positioning targets related to ships. Consequently, this improvement contributes to enhancing the 

algorithm's segmentation effectiveness in scenarios with dense ship presence. 

[4] To evaluate the effectiveness of various algorithms for generating BEV layouts in various 

environmental conditions, a high-quality dataset named MonoWaterwayGen, consisting of 18,000 

images with virtual waterways and 15,000 images with real waterways, has been constructed. 

The remaining sections of this paper are organized as follows. In Section 2, a brief review of 

relevant research on waterway environment perception in different scenarios will be presented. 

Section 3 proposes a waterway BEV layout generation algorithm based on GAN. Section 4 conducts 

a comparative analysis of various algorithms for BEV layout generation in different scenarios. 

Finally, Section 5 provides a summary of the main contributions of the proposed method and 

outlines future developments. 
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2.REFERERNCES 

2.1. Perception Methods in Waterways  

Currently, methods for waterway environment perception have been extensively explored and 

developed in both natural scenes and infrared images. In the early stages, traditional methods 

primarily relied on techniques such as cluster analysis [2] and maritime radar for ship and waterway 

recognition. However, these methods exhibited certain limitations, showing inadequate adaptability 

and possibly facing challenges in achieving satisfactory results across different scenarios. 

Meanwhile, the rapid development of deep learning and neural network technologies has brought 

significant progress to tasks such as semantic segmentation, demonstrating outstanding performance 

in various recognition scenarios. However, in waterway perception, very few BEV related research 

layout generation methods based on deep learning can be found, since no data set has been published 

yet. 

In recent years, significant advancements have been made in object detection, instance 

segmentation and semantic segmentation using CNNs. In 2014, the R-CNN algorithm demonstrated 

a significant advantage on the PASCAL VOC dataset, gradually establishing the dominance of deep 

learning-based algorithms in the field of object detection. As is widely known that single-stage 

algorithms represented by the YOLO [3] series have achieved a satisfactory balance between 

computational speed and detection accuracy, allowing for end-to-end training and widespread 

adoption in various recognition tasks. Meanwhile, in tasks such as semantic segmentation, two-

stage algorithms like Mask R-CNN [4] typically exhibit higher accuracy. The progress of semantic 

segmentation algorithms is also advancing rapidly, Kirillov et al. [5] proposed a semantic 

segmentation model that attempts to segment anything and has achieved expected performance in 

most scenarios. 

In the research on ship detection and waterway recognition in inland waterway scenarios, 

several scholars have achieved abundant research results by integration deep learning methods in 

the realm of object detection. In the field of ship detection, Yang et al. [6] proposed a propagation 

detection and tracking algorithm based on the K-Means clustering algorithm and Soft Non-

Maximum Suppression (Soft-NMS), aiming to enhance the algorithm's accuracy and robustness. To 

address the instance segmentation problem of ships, Zhang et al. [7] proposed a comprehensive ship 

segmentation network based on a SqueezeNet discriminator and a DeepLabv3+ extractor to 

suppress interference information in images and accurately segment ships. In the task of waterway 

segmentation, Yin et al. [8] introduced a shoreline detection method based on the ResNet backbone 
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network and Canny edge detection, aiming for accurate segmentation of inland waterways. 

Furthermore, attention mechanisms and various types of feature pyramid structures have been 

widely applied in algorithm design [9-11]. In summary, the use of deep neural networks can 

effectively extract features related to ships and waterways.  

However, the existing perception technologies mainly focus on studying information related to 

ships and waterways in FPV, lacking the acquisition of relevant information for BEV layouts of 

ships or waterways. Although deep learning-based object detection and instance segmentation 

techniques have been enhanced for applicability in the maritime domain and have achieved 

commendable results, they often lack representation of three-dimensional spatial information. As a 

result, it is difficult for them to directly provide precise position, size, or geometrical information of 

other ships in a three-dimensional space. On the contrary, an accurate BEV layout of the 

circumstance can provide a comprehensive perspective, enabling ships to perceive their 

surroundings more fully, including the relative positional information of other ships and obstacles. 

In fact, deep learning-based methods, such as S-CNN, can extract shorelines from a ship’s FPV 

images, which can also serve as clues to identify navigable areas. However, since the comprehensive 

outlook has been discarded after these shoreline extractions, any occlusion on shorelines might 

result in detection failure, leading to fatal errors in the identification of navigable areas. The 

information contained in the BEV layout can be directly extracted from FPV images as human does, 

which is intuitive and comprehensive. The key challenge lies in simulating such intelligence, a task 

that has been partially accomplished in the context of driverless cars. 

2.2. Methods for Generating BEV Layouts 

Currently, there is a notable dearth of research on the BEV layout generation for ship navigation. 

Nevertheless, in recent years, the field of autonomous driving for cars has experienced rapid 

development. The BEV layout for cars shares similarities with that for ships, as both entail roads, 

other traffic participants, and obstacles. Hence, we can draw inspiration from technical methods in 

relevant research within the autonomous driving domain to design algorithms for generating BEV 

layouts from FPV images for ships. 

In the research on generating BEV layouts for automobiles, the mainstream methods have 

historically involved the use of multiple cameras or LiDAR sensors. The BEV images are generated 

through projecting the collected images and point cloud data onto the BEV space and then 

integrating them. Cai et al. [12] designed a LiDAR-Guided View Transformer (LGVT) and 

proposed a Temporal Deformable Alignment (TDA) module, effectively obtaining camera 
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representations in the BEV space and aggregating BEV features from multiple historical frames. 

Liu et al. [13] proposed an efficient and generic multi-task multi-sensor fusion framework called 

BEVFusion, which effectively preserves semantic information in the BEV space, enhancing 

accuracy and reducing computational costs. Liang et al. [14] proposed a surprisingly simple yet 

novel fusion framework, dubbed BEVFusion, whose camera stream does not depend on the input 

of LiDAR data, ensuring stability in exceptional situations. With recent success of the transformer 

[15], its ability of explicitly modeling pairwise interactions for elements in a sequence has been 

leveraged in many vision tasks. Li et al. [16] designed a spatial cross-attention mechanism and a 

temporal self-attention mechanism to aggregate spatial information and fuse historical BEV 

information, achieving comparable performance without relying on LiDAR. 

As technology advances, research on generating BEV layouts solely based on monocular FPV 

images without relying on LiDAR is becoming increasingly popular. While multi-camera setups 

and LiDAR systems can provide richer depth information, aiding in more accurate capture of the 

positions and distances of objects at different ranges, monocular cameras offer the advantages of 

lower cost, simpler deployment, and higher real-time performance. Therefore, research on 

generating BEV layouts based on monocular FPV images is of significant importance. Lu et al. [17] 

proposed a Variational Autoencoder (VAE) model that can predict road layouts from given images 

but cannot infer layouts that are unobstructed by obstacles. Kaustubh et al. [18] introduced a unified 

model called MonoLayout based on GAN to address the tasks of road layout and vehicle distribution 

estimation from monocular images, and the model employs adversarial feature learning to attempt 

to complete obscured parts of images. Zhou et al. [19] proposed the Cross-view Transformer (CVT) 

network to perform viewpoint transformation. The network utilizes BEV queries and employs cross-

attention to query image features. Additionally, position embeddings calculated from camera 

parameters are added to the image features to provide better priors. Yang et al. [20] proposed a 

network called Pyva that utilizes a cross attention module to enhance viewpoint transformation and 

scene understanding by leveraging the correlation between FPV and BEV perspectives. 

Based on the above analysis，it can be concluded that the key to generate BEV layouts from 

FPV images for waterways lies in designing efficient generative networks using deep learning 

techniques. Furthermore, compared to traditional generation methods, deep learning approaches 

offer significant advantages. Given the characteristics of large curvatures in inland waterways and 

the small size of ships, this research proposes a BEV layout generation algorithm from FPV images 

for waterways based on a Generative Adversarial Network (GAN) framework, incorporating 
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convolutional neural networks and cross-attention mechanisms. Through comprehensive integration 

of the feature information derived from both FPV and BEV, this algorithm can achieve accurate 

localization and precise segmentation of ships and waterways. 

3. A PROPOSED METHOD 

3.1. Network Overview 

The overall framework of the BEV layout generation model from single monocular FPV 

images proposed in this research is illustrated in Figure 1. The model comprises several components, 

with the generator network and the Cross-View Transformation Module being the core ones. The 

generator network is a type of encoder-decoder architecture, wherein the encoder adopts 

SEResNeXt as the backbone network. The basic idea is to add Squeeze-and-Excitation (SE) 

modules to ResNet [21] and introduce grouped convolution [22] to dynamically recalibrate the 

feature channels in the network, thus completing feature extraction. This network can capture 

important features effectively without introducing extra parameters, which helps in understanding 

the semantic information of small-scale ships in FPV images of waterways. The Cross-View 

Transformation Module employs a convolutional computation method based on the Transformer 

structure. By connecting the features of FPV and BEV images, it achieves the fusion of features 

between cross-views to enhance the extracted features. The BEV feature decoder is used to decode 

BEV features, thereby generating the output results. At the final step, in the loss function calculation 

part, the Focal Loss function [23] is used to optimize the calculation process. This method improves 

the imbalance in the quantity and recognition difficulty between ship and waterway samples, 

allowing the model to learn more generalized feature representations. 
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Figure 1. Overall structure of the proposed SECross. 

3.2. SEResNeXt Encoder 

As mentioned previously, waterway FPV images often exhibit some specific data 
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characteristics, such as low resolutions of targets, junctions of shorelines and the horizon line. The 

characteristics result in significant differences between waterway FPV images and traditional 

natural images. Classic feature networks like ResNet50, ResNet101, VGG16, etc., are typically 

designed for general-purpose natural image datasets and may not adapt well to the distinctive image 

characteristics of waterway FPV images, leading to suboptimal feature extraction performance. 

Additionally, since ships in waterway FPV images tend to have smaller scales, feature networks 

should possess the ability to perceive small objects. Based on these analyses, the feature extraction 

network adopted in this research is illustrated in Figure 2. This network is an efficient adaptive 

neural network that demonstrates satisfactory performances in extracting features related to 

waterways and ships. 

 

Figure 2. Overall architecture of the encoder network. 

3.2.1 The group convolution method based on the inception structure 

In FPV images of inland waterways, image sequences often contain ship regions of various 

sizes and shapes, with a large proportion of ships being relatively small in scale. Hence, it is crucial 

to capture key ship features with high sensitivity. Additionally, the feature network should possess 

noise resistance and robustness. To address these requirements, valid convolutional computation 

methods can be employed to enhance network performance. Furthermore, convolutions with 

stronger adaptability can enhance network performance and improve recognition accuracy. This 

research introduces a simple and fast group convolution computation method, resulting in a more 

efficient feature extraction network design. 

With the advancement of CNNs, the depth of networks continues to increase. However, 

excessively deep layers often contain redundant computations, leading to ineffective increases in 

model parameters and computational consumption. Moreover, a significant amount of ineffective 

convolutional computations can impact the extraction of crucial features, especially in ship detection 

under FPV images where targets are small in scale and feature information is limited. Christian et 

al. [24] proposed an inception convolutional structure that effectively reduces computational costs 

by utilizing multiple convolution operations of different sizes within a single layer to extract features 
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at different scales. Therefore, increasing the network width contributes to the network learning rich 

feature representations without significantly increasing the quantity of network parameters. This 

research replaces the convolution in the ResNet network's BottleNeck module with group 

convolution, thereby obtaining the ResNeXt network. This improvement aims to enhance the 

model's ability to capture critical features of ships and waterways while reducing the occurrence of 

overfitting. 

Figure 3 compares the BottleNeck structures of ResNet and ResNeXt networks. For an input 

with 256 channels, ResNeXt compresses it into 32 groups of data with 4 channels each using 1×1 

convolutions. After convolution operations, it then expands back to 256 channels using 1×1 

convolutions. Finally, the 32 groups of data are added together element-wise to form the output with 

256 channels. ResNeXt replaces the original three-layer convolutional Bottleneck in ResNet with a 

parallel stack of the same topological structure Bottlenecks, thereby improving the model's accuracy 

without significantly increasing the quantity of parameters. Therefore, using the ResNeXt network 

allows for more accurate and efficient extraction of image features. 

 

Figure 3. Comparison of Bottleneck structures in ResNet and ResNeXt. 

3.2.2 Channel Attention Model Based on SE 

For the feature extraction network, it is crucial to fully utilize the contextual information around 

ships in the FPV images to enhance the accuracy of ship segmentation. To fulfill this requirement, 

attention mechanisms can be introduced or convolutional structures with global contextual 

awareness can be utilized. By capturing the correlations between ships and their surrounding 

environments, the network can more effectively comprehend the shape, contour, and semantic 

information of ships, thereby enhancing the effectiveness of ship segmentation. 

In response to the aforementioned requirements, the SEResNeXt network used in this research 

incorporates SE modules connected after the residual layers in the ResNeXt network. These modules 

adjust the weights for each channel, enhancing attention towards important channels, thus 
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improving the expressive power of the model. The basic structure of the SE module is depicted in 

Figure 4. The Squeeze operation utilizes global average pooling to extract features for each channel, 

obtaining the importance coefficient for that channel. In the Excitation operation, the feature 

dimension is first reduced to 
𝐶

𝑟
 through a fully connected layer. Subsequently, after passing through 

a ReLu activation, it is then up-sampled back to the original dimension through another fully 

connected layer. Opting for this approach offers more advantages compared to directly employing 

one fully connected layer. Firstly, it can have more nonlinearity, which can better fit the complex 

correlations between channels. Secondly, it greatly reduces the quantity of parameters and 

computational load. Then, the SEResNeXt network obtain the weight for each channel through the 

Sigmoid operation, and finally apply the normalized weights to the original feature maps through 

the Scale operation. The introduction of the SE attention mechanism enables the feature network to 

better capture the complex correlations between channels, thereby enhancing the representation of 

crucial information about channels and ships and improving the model's recognition performance. 

 

Figure 4. SE module 

3.3. Cross-View Transformation Module 

Due to the significant disparity between FPV and BEV images in waterways, there is a 

considerable loss of image content during the perspective projection process. Consequently, 

traditional perspective projection techniques result in flawed outcomes. In order to enhance view 
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correlation while leveraging the capabilities of deep networks, a Cross-View Transformation 

Module is introduce into the generator of the GAN framework. This module strengthens the 

extracted visual features for projecting FPV onto BEV, which consists of two parts: cycled view 

projection and cross-view transformer. They can be considered as a ‘guessing modules’ that make 

reasonable conjectures based on surrounding semantic information. 

3.3.1. Cycled View Projection (CVP) 

Since the features of FPV are not spatially aligned with the ones of BEV due to their large gap, 

it is crucial to effectively utilize data from different perspectives for understanding spatial 

information. Following the practice of [25], the MLP structure is deployed consisting of two fully 

connected layers to project the features of FPV to BEV, which can overtake the standard information 

flow of stacking convolution layers. As shown in Figure. 1, 𝑋 and 𝑋′ represent the feature maps 

before and after view projection, respectively. Hence, the holistic view projection can be achieved 

by: 𝑋′ = 𝐹MLP(𝑋), where 𝑋 refers to the features extracted from the SEResNeXt encoder. 

   

   

𝑋                        𝑋′                        𝑋′′ 

Figure 5. Visualization of the features at FPV and BEV 

However, such a simple view projection structure cannot guarantee the information of FPV to 

be effectively delivered. Zhu et al. [26] proposed a cycled mapping approach, which involves 

mapping images from the target domain back to the source domain, thereby enhancing the transfer 

of information between domains. Therefore, this research introduces a cycled self-supervised 
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scheme, which involves reprojecting BEV features back to FPV to reinforce view projection. As 

shown in Figure 1, an MLP is utilized with the same structure to project 𝑋′ back to 𝑋′′, i.e., 𝑋′′ =

𝐹𝑀𝐿𝑃
′ (𝑋′). To guarantee the domain consistencies between 𝑋′ and𝑋′′, a cycle loss, i.e., 𝐿𝑐𝑦𝑐𝑙𝑒, is 

incorporated as expressed below: 

𝐿cycle = ‖𝑋 − 𝑋′′‖1                            (1) 

The cycled structure strengthens the connection between FPV and BEV views. 𝑋′′ retains the 

most relevant information regarding view projection when the discrepancy between 𝑋  and 𝑋′′ 

cannot be further reduced, since 𝑋′′  is projected back from 𝑋′ . Hence, 𝑋  and 𝑋′  refer to the 

features before and after view projection. 𝑋′′ contains the most relevant features in FPV for view 

projection. 

3.3.2. Cross-View Transformer (CVT) 

Compared to road scenarios in the field of autonomous driving, waterway scenarios present 

more complex traffic conditions. For instance, waterways are generally broader than roads, with 

ships and boats having irregular heading directions compared to the fixed direction of cars. 

Additionally, while cars primarily need to be concerned about nearby traffic participants, ships must 

also consider distant and small ships. These complex conditions not only demand powerful feature 

extraction networks but also require further enhancement of the extracted features. To tackle this 

challenge, the research employs an efficient Cross-View Transformer network, leveraging the 

feature information preserved by the cyclic view projector from different perspectives. 

Specifically, the proposed method is based on the attention mechanism of CVT to enhance the 

key features of waterways and ships in FPV images of waterways. This mechanism fully utilizes the 

feature information under multiple perspectives and enhances BEV features by learning a cross-

attention matrix. In specific implementation, a correlation matrix is obtained by calculating the inner 

product of the features 𝑋 and 𝑋′ before and after projection. Next, the information most related 

to view projection is obtained from the feature selection part as 𝑋′′. Finally, this most relevant 

feature is merged with the projected feature 𝑋′ to form the final output result. 

For waterway images, CVT effectively enhances the features 𝑋′ by correlating the features 

before view projection (i.e., 𝑋) with the features after view projection (i.e., 𝑋′). With the help of 

the context information of view projection, the network is capable of enhancing the features of the 

view projection, thus obtaining additional information about the ships and the surrounding 

environment and background of the waterways. The specific network structure is shown in Figure 

6, where CVT consists of two parts: the cross-view association part, which connects FPV and BEV 
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features to obtain an attention map 𝑊  to enhance 𝑋′   and the feature selection part, which is 

responsible for extracting the most important information from 𝑋′′. 

Particularly, 𝑋, 𝑋′, and 𝑋′′ serve as the key 𝐾(𝐾 ≡ 𝑋), the query 𝑄(𝑄 ≡ 𝑋′), and the value 

𝑉(𝑉 ≡ 𝑋′′) of CVT. The dimensions of 𝑋, 𝑋′, and 𝑋′′ are set as the same. 𝑋′ and 𝑋 are both 

flattened into patches, and each patch is denoted as 𝐱𝑖
′ ∈ 𝑋′ ( 𝑖 ∈ [1, … , ℎ𝑤] ) and 𝑥𝑗 ∈ 𝑋(𝑗 ∈

[1, … , ℎ𝑤]), where ℎ𝑤 refers the width of 𝑋 times its height. In the cross-view association part, 

the correlation between each 𝑥𝑖
′ in 𝑋′ and each 𝑥𝑗 in 𝑋 is measured by the normalized inner-

product: 

𝑟𝑖𝑗 = ⟨
𝑥𝑖

′

‖𝑥𝑖
′‖

,
𝑥𝑗

‖𝑥𝑗‖
⟩                            （2） 

which results in the relevance matrix 𝑅。With the relevance matrix R, two vectors 𝑊(𝑊 = {𝑤𝑖}，

∀𝑖 ∈ [1, … , ℎ𝑤]) and 𝐻 (𝐻 = {ℎ𝑖}，∀𝑖 ∈ [1, … , ℎ𝑤]) are created: 

𝑤𝑖 =  𝑚𝑎𝑥
𝑖

 𝑟𝑖𝑗 , ∀𝑟𝑖𝑗 ∈ 𝑅                         （3） 

ℎ𝑖 =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖

 𝑟𝑖𝑗 , ∀𝑟𝑖𝑗 ∈ 𝑅                       （4） 

each element of 𝑊 implies the degree of correlation between each patch of 𝑋′ and all the patches 

of 𝑋, which can serve as an attention map. Each element of 𝐻 indicates the index of the most 

relevant patch in 𝑋 with regard to each patch of 𝑋′ . 

In the feature selection part, both 𝑋  and 𝑋′′  are FPV features, except that 𝑋  contains 

complete information while 𝑋′′ only includes information relevant to view projection. Assuming 

the correlation between 𝑋 and 𝑋′ is similar to the correlation between 𝑋′′ and 𝑋′, the relevance 

between 𝑋 and 𝑋′ (i.e., 𝑅) can be used to extract the most important information from 𝑋′′. This 

method adopts a feature selection scheme 𝐹𝑆, which generates a new feature map 𝑇, 𝑇(𝑇 = {𝑡𝑖}，

∀𝑖 ∈ [1, … , ℎ𝑤]) by retrieving the most relevant features in 𝑋′′: 

𝑡𝑖 = 𝐹𝑆(𝑋′′, ℎ𝑖), ∀ℎ𝑖 ∈ 𝐻                         （5） 

where 𝐹𝑆 retrieves the feature vector 𝑡𝑖 from the ℎ𝑖-th position of 𝑋′′. 

Hence, 𝑇 stores the most relevant information of 𝑋′′ for each patch of 𝑋′. It can be reshaped 

as the same dimension as 𝑋′ and concatenated with 𝑋′. Then, the concatenated features will be 

weighted by the attention map 𝑊 and finally aggregated with 𝑋′ via a residual structure. 
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Figure 6. Illustration of Cross-view Transformer 

To sum up, the process can be formally expressed as below: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑋′ + 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝑋′, 𝑇)) ⊙ 𝑊                （6） 

where ⊙ denotes the element-wise multiplication and 𝐶𝑜𝑛𝑣 refers to a convolutional layer with 

3×3 kernel size. 𝑂𝑢𝑡𝑝𝑢𝑡 is the final output of CVT and will then be passed to the decoder network 

to produce the segmentation mask of BEV. 

3.4. Feature decoder 

In the SEResNeXt encoder structure, the spatial resolution of the FPV images of the waterways 

is reduced from 1024×1024×3 to 8×8×128 to facilitate the extraction of abstract feature 

representations. Additionally, the Cross-View Transformation Module only enhances the extracted 

features without altering the spatial resolution. Therefore, a decoder network is needed to decode 

the FPV features to obtain the final BEV layout. 

Considering the characteristics of the network structure described above, two feature decoders 

with identical structures were constructed to decode the enhanced features of the waterway and 

ships separately to generate the BEV layout of the inland waterway. The decoder structure is 

illustrated in Figure 7. The input is a feature map of size 8×8×128. It undergoes the following 

operations. The first convolutional layer doubles the number of input channels and increases the 

resolution twice. Then, it passes through 4 deconvolutional blocks that double the spatial resolution 

and halve the number of channels each time. Finally, the last convolutional block adjusts the number 

of channels to 2, resulting in an output feature map size of 256×256×2. 
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Figure 7. Decoder network structure 

The training of the model is defined as minimizing the weighted sum of three loss functions: 

𝐿 = 𝐿𝐺 + α𝐿𝑐𝑦𝑐𝑙𝑒 + β𝐿𝑡𝑟𝑎𝑛𝑠                      （10） 

where 𝐿𝐺 represents the generator loss, serving as the primary objective of the network to minimize 

the gap between the generated layout and the ground truth layout. Since the features enhanced by 

the Cross-View Transformation Module already possess satisfactory detection performance, there 

is no need to train a discriminator to normalize the generated layouts. Hence, the discriminator 

module is removed, reducing the training parameters, and eliminating the need to compute the 

discriminator loss. Instead, the training of the Cross-View Transformation module is emphasized by 

adding a cycle loss 𝐿𝑐𝑦𝑐𝑙𝑒  to train the cycle view projection module. Additionally, 𝐿𝑡𝑟𝑎𝑛𝑠  is 

defined to minimize the gap between the generated layout without enhancement by the Cross-View 

Transformation Module and the ground truth layout to train the Cross-View Transformation Module. 

α and β are the balance weights for the cycle loss and the transformation loss, respectively, set to 

0.001 and 1. 

 In the calculation of the network loss function based on the generative adversarial network 

framework, cross entropy loss is commonly used to compute the losses for both the generator and 

the discriminator. However, in the task of generating BEV layouts for waterways, the ship targets 

are typically small, resulting in less distinctive features. Additionally, in real-world scenarios, there 

is a significant disparity in the number of ship samples compared to waterway samples. To address 

these challenges, this research adopts the method proposed by Tariq et al. [27]: when computing 

𝐿𝐺 and 𝐿𝑡𝑟𝑎𝑛𝑠, Focal Loss is used instead of Cross Entropy Loss. Specifically, the formula for 

Focal Loss is defined as follows: 

𝐹𝐿(𝑝𝑡) = −α(1 − 𝑝𝑡)γ𝑙𝑜𝑔(𝑝𝑡)                   （11） 

where the term α represents the category weight factor, used to control the weighting of positive 

and negative samples. 𝑝𝑡 denotes the difficulty level of sample classification, while γ serves as 

the hyperparameter for Focal Loss. When γ = 0, it reverts to the standard cross-entropy loss. With 

γ > 0, the loss imposes greater weight on poorly predicted labels, directing the model's attention 
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towards challenging samples. Adopting the Focal Loss function highlights incorrectly classified 

pixels, often associated with rare categories, thereby enhancing the performance of these minority 

classes. Consequently, in the task of generating BEV layouts for inland waterway navigation, 

employing the Focal Loss function proves advantageous for the generation of ship BEV layouts. 

4. A CASE STUDY 

4.1. Dataset 

This research had preprocessed data from both virtual and real-world scenarios, creating a 

high-quality waterway image dataset named MonoWaterwayGen, comprising 33,000 images. As 

shown in Figure 8, the MonoWaterwayGen dataset encompasses diverse background environments, 

including narrow waterways, broad waterways, waterways without left or right bank in virtual 

scenes, and visible light and infrared images of Qinhuai River and Yangtze River in real scenes. 

Additionally, the dataset also takes into account factors such as the ship heading, and angle 

variations. Besides, it places a particular emphasis on augmenting the quantity of images depicting 

ships of small-scale and miniature sizes. Considering the potential for misidentification in scenarios 

with waterway bifurcations and dense ship presence, MonoWaterwayGen augments the image count 

in these scenarios to enhance algorithm training and experimental outcomes. 

In the MonoWaterwayGen dataset, synchronized FPV and BEV images are captured using 

Unity3D, drones and ship-borne cameras, preprocessed to meet the dataset format requirements for 

the proposed SECross algorithm. Moreover, all the images are divided into training, validation, and 

testing sets in an 8:1:1 ratio. In particular, various SOTA algorithms were trained on the training and 

validation sets, and evaluation metrics and algorithm performance were assessed on the testing set. 

  

     A narrow waterway                A waterway without left bank 
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A waterway without right bank              a broad waterway 

(a) Examples of virtual waterway images (Unity3D) 

  

Visible light waterway images of the Qinhuai River 

  

Visible light waterway images of the Yangtze River 

(b) Examples of visible light waterway images  

  

Infrared waterway images of the Qinhuai River 

  

Infrared waterway images of the Yangtze River 

(c) Examples of infrared waterway images 

Figure 8. MonoWaterwayGen Dataset 

4.2. Experimental environment and training optimization methods 

The experimental setup relied on the Ubuntu 20.04 and utilized the NVIDIA A40 graphics card 

with an effective memory size of 48GB. The CUDA version used was 11.3.0, PyTorch version was 

1.10.0, and the Python environment was 3.7. The performances of different SOTA algorithms in the 

BEV layout generation were compared, including Monolayout, Pyva and SECross. All algorithms 



19 

 

were evaluated using the same dataset of MonoWaterwayGen. During algorithm training, the input 

image size was set to 1024×1024 pixels, the BEV layout image size was set to 256×256 pixels, the 

batch size was set to 16, and the training was conducted for 300 epochs with an initial learning rate 

of 10−4. 

This research optimized the training process of the proposed algorithm by improving aspects 

such as learning rate decay, loss calculation, and data augmentation. Normally, traditional neural 

network-based algorithms usually employ a series of fixed learning rates for training, which may 

result in significant learning rate decay at different training stages, leading to unstable changes in 

model momentum and negatively affecting the algorithm's training effectiveness. To address this 

issue, the Adam optimizer was introduced to optimize the learning rate, which adaptively adjusts 

the learning rate without the need for manual tuning, based on the magnitude of parameter gradients. 

Furthermore, data augmentation methods, including random mirror flipping and color augmentation, 

were employed to increase the diversity of training data and improve the model's robustness and 

generalization abilities. 

4.3. Comparisons and Discussions 

The metrics of mean Intersection Over Union (mIOU) and mean Average Precision (mAP) 

were selected to measure the performance of BEV generation in waterway scenarios. Firstly, 

comparative experiments were designed to assess the actual performance of various algorithms 

across different evaluation metrics, thereby validating the effectiveness of the SECross. Moreover, 

ablation experiments were conducted to analyze the individual improvements in SECross and verify 

the specific effects of different methods. Finally, the adaptability of the SECross in waterway images 

was examined through the BEV generation of different waterway scenarios. 

4.3.1. Experimental analysis of different algorithms 

On the constructed MonoWaterwayGen dataset, a comparison was conducted between several 

commonly used standard algorithms and the proposed SECross. All the algorithms were trained 

using the same hyperparameters and tested on the same dataset. Moreover, each algorithm 

underwent cross-testing, and the mIOU and mAP values were averaged over three experimental 

trials. As shown in Table 1, for the BEV layout generation on inland waterways, our proposed 

method achieved high mIOU and mAP on the testing images. In comparison to other algorithms, 

our method showcased promising experimental outcomes, credited to SECross' enhanced 

recognition capability for small-sized ships, densely navigated ships, and intricate sharp bends and 
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high-curvature branches within inland waterway images. 

Based on the analysis of the virtual waterway BEV generation, it is evident that in scenarios 

involving narrow inland waterways, SECross only shows a modest improvement of up to 3% 

compared to other algorithms. The reason lies in the fact that such narrow inland waterways are 

quite like roads, where the waterways are narrow, relatively smooth, and straight. Additionally, the 

ships’ visual sizes are large and uniform. Since MonoLayout and Pyva were designed for roads, the 

performance gap of SECross compared to these algorithms is modest and foreseeable. However, the 

data on waterway and ship detection from scenarios with waterways without left or right banks 

shows that SECross improves by around 10% compared to MonoLayout. The analysis suggests that 

the lackluster performance of MonoLayout in recognizing complex scenarios with narrow 

waterways and small ships stems from its failure to enhance extracted waterway features before 

decoding to generate the BEV layout. Additionally, SECross outperforms the Pyva algorithm by 

approximately 3% in ship detection. Moreover, in tasks involving ship detection in virtual wide 

waterway scenarios, it leads by around 5%. This is attributed to the presence of more small-sized 

ships in wide waterway scenarios. The SEResNeXt encoder utilized by SECross exhibits stronger 

capability in extracting features from small-sized targets, thus providing an advantage in the 

detection of small-sized ships. 

To validate the performances of SECross in generating BEV layouts of waterways in real world, 

a comparative experiment was conducted using visible light and infrared images of the Qinhuai 

River and the Yangtze River. The results indicate that, regardless of whether it is the Qinhuai River 

or the Yangtze River, the BEV generation effect of the three algorithms on the infrared images is 

better than that on the visible light images. This is because the shoreline features of the waterways 

are more prominent in the infrared images, which is advantageous for the algorithms to segment the 

waterways. Furthermore, despite the relatively small quantity of ships in the real scene of the 

Qinhuai River, SECross still has a 1% advantage over other algorithms, which suggests that the 

network structure of SECross also outperforms other algorithms in generating BEV layouts of 

waterways in real scenes. 

Table 1. Specific experimental results 

Scenarios Algorithms 
Waterway Ship 

mIOU（%） mAP（%） mIOU（%） mAP（%） 

Virtual narrow 

waterway 

MonoLayout 95.39 96.59 82.54 88.79 

Pyva 97.72 98.26 83.77 91.20 

Ours 98.03 98.78 84.35 95.17 
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Virtual 

waterway 

without left 

bank 

MonoLayout 85.83 89.36 59.09 75.59 

Pyva 95.92 96.65 74.25 85.63 

Ours 97.89 98.26 77.42 88.74 

Virtual 

waterway 

without right 

bank 

MonoLayout 83.43 88.95 58.85 67.30 

Pyva 97.55 98.90 67.00 78.73 

Ours 99.56 99.79 70.95 82.46 

Virtual narrow 

waterway 

MonoLayout - - 54.58 65.31 

Pyva - - 65.77 79.20 

Ours - - 71.35 84.53 

Visible light 

waterway of the 

Qinhuai River 

MonoLayout 64.01 72.98 88.71 90.19 

Pyva 71.07 78.96 88.78 90.55 

Ours 74.01 83.25 89.39 91.97 

Infrared 

waterway of the 

Qinhuai River 

MonoLayout 68.87 77.23 88.17 88.58 

Pyva 76.60 83.45 89.26 91.22 

Ours 77.31 85.62 89.39 92.17 

Visible light 

waterway of the 

Yangtze River 

MonoLayout 73.23 84.95 - - 

Pyva 90.84 91.18 - - 

Ours 95.29 96.85 - - 

Infrared 

waterway of the 

Yangtze River 

MonoLayout 75.85 87.51 - - 

Pyva 91.57 93.28 - - 

Ours 96.06 97.02 - - 

 

4.3.2. Ablation Experiments 

To further validate the practical performance of each improvement method in SECross, a 

comprehensive decomposition analysis was conducted based on the MonoWaterwayGen dataset to 

analyze their impact on BEV layout generation. The main experimental process involved step-by-

step application of various improvement methods on MonoLayout, followed by testing their 

respective performance metrics. The specific results of the ablation experiments for SECross are 

presented in Table 2. 

(1) Analysis of the SEResNeXt network. By replacing the encoder network with SEResNeXt, 

experimental results reveal that the improved feature extraction network increased the accuracy of 

waterway recognition by 2.1% and ship detection by 3.3%. Additionally, there was an improvement 

in the intersection over union metric. This indicates that the algorithm's capability in extracting 

features of small-scale ships has been enhanced, reducing misidentifications and decreasing the 

probability of missing targets. 

 (2) Analysis of Cross-View Transformation Module. In this research, a Cross-View 
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Transformation Module was added between the SEResNeXt encoder and the feature decoder, 

allowing the algorithm to consider feature differences between different perspectives and focus 

more on features most relevant to the perspective projection. This enables the model to perform 

better when facing challenges such as intersections and curves in complex scenes. Based on the 

experimental results, the Cross-View Transformation Module strengthens the correlation between 

FPV and BEV features to enhance significant waterway features, significantly improving the 

evaluation metrics of inland waterway BEV layout generation algorithms. 

 (3) Analysis of the Focal Loss function. Experimental results show that the Focal Loss function 

improved the accuracy of waterway BEV layout generation by approximately 1%. The analysis 

indicates that a loss function that takes into account sample quantity and classification difficulty 

yields relatively better results in BEV layout generation tasks under inland waterway images. 

Furthermore, through multiple experiments, it has been observed that the Focal Loss function could 

accelerate the convergence speed of the algorithm, leading to relatively rapid and stable convergence 

of the loss values based on the training and validation sets. 

Table 2. Ablation experiments of SECross 

Methods Model 1 Model 2  Model 3 Model 4 

MonoLayout ★ ★ ★ ★ 

SEResNeXt  ★ ★ ★ 

CVTM   ★ ★ 

Focal Loss    ★ 

Waterway 
mIOU 0.858 0.871 0.969 0.978 

mAP 0.893 0.914 0.977 0.982 

Ship 
mIOU 0.590 0.625 0.762 0.774 

mAP 0.755 0.788 0.876 0.887 

4.3.3. Comparisons in different scenarios 

Figure 9 illustrates the BEV layout generation results of SECross for navigational waterways 

in different scenes, primarily evaluating its experimental performance on various sizes of ships and 

diverse shapes of waterways in different maritime environments. From Figure 9, it can be observed 

that SECross accurately generates BEV layouts for virtual, visible lights, and infrared navigational 

waterway images, indicating that the proposed algorithm exhibits strong generalization and can be 

applied to various scenarios. In Figure 9 (a) third row, (b) second row, and (c) first row, SECross 

demonstrates satisfactory recognition performance for cross-waterways and curves in different 

scenarios, highlighting its strong capability to extract features from waterways with diverse shapes. 

Additionally, SECross can generate cross-waterways occluded by bridges, indicating that the 

algorithm's generative network has strong completion capabilities. Furthermore, SECross exhibits 

high identification accuracy for ships in waterways. The last three rows of Figure 9 (a), the first row 

of (b), and the second row of (c) demonstrate that SECross does not exhibit omissions or 

misidentification issues for small-scale or even miniature ships in various scenarios. This 
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underscores the algorithm's strong capability in extracting features of small-scale targets, effectively 

mitigating the impact of scene complexity, structures, obstacles, and other interferences. The first 

row of Figure 9 (a) indicates that even in scenarios with dense ship traffic and occlusion, SECross 

can extract features of obscured vessels and accurately generate the BEV layout. This suggests that 

SECross achieves precise segmentation for dense ship scenarios in navigational waterway images 

and exhibits good recognition capabilities for complex situations like intersecting traffic. In 

conclusion, the application of attention mechanisms and Cross-View Transformation Modules in 

SECross enables it to capture prominent features of vessels in situations with dense small targets. 

 

FPV Waterway-Truth SECross 

   

   

   

   

(a) Generation of various virtual waterways 

 

FPV Waterway-Truth SECross 
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(b) Generation of various visible light waterways 

 

FPV Waterway-Truth SECross 
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(c) Generation of various infrared waterways 

Figure 9. Generation results of SECross under waterway images 

4.3.4. BEV layout generation of special scenarios in inland waterways 

As is well known, there are some specific navigation scenarios in inland waterways, posing 

numerous challenges for accurate BEV generation in these situations. To assess the BEV generation 

performance of different algorithms in these scenarios, this research conducted experiments in four 

settings: sharp bends with high curvature, cross-waterways, dense navigation of ships, and small-

sized ships. These scenarios involve numerous small targets, and the identification of cross-

waterways particularly tests the model's performance. To enhance the credibility of the conclusions, 

this experiment compared SECross with MonoLayout and Pyva. As depicted in the first two rows 

of Figure 10(a), SECross demonstrates a more accurate positioning of small-sized ships compared 

to the contrastive algorithms, indicating superior detection precision for small targets. The analysis 

of the first row in Figures 10(a) and (b) leads to the conclusion that MonoLayout exhibits poor cross-

waterway recognition capabilities in both real and virtual scenarios, while Pyva can generate cross-

waterways, its performance in detailing the shapes of these junctions is not as proficient as SECross. 

From the last two rows of Figure 10(a) and the final row in Figure 10(b), it is evident that when 

ships navigate densely, Pyva and MonoLayout tend to identify them as a single entity, whereas 

SECross accurately segments them into multiple individuals. Finally, examining the second and 

third rows of Figure 10(b), it becomes apparent that, whether in visible light or infrared scenarios, 

MonoLayout may miss sharp bends or curves of waterways, while SECross and Pyva exhibit 

comparable generation capabilities. However, Pyva might introduce errors in some scenario. These 

results indicate that by constructing a rational network structure, SECross can effectively extract 

features of waterways and ships from FPV images, significantly enhancing the model's performance 
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in BEV generation tasks in specific scenarios. 

 

FPV 
Waterway-

Truth 

SECross 

(Ours) 
Pyva MonoLayout 

     

     

     

     

(a) Comparison of special virtual scenarios  

 

FPV 
Waterway-

Truth 

SECross 

(Ours) 
Pyva MonoLayout 
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(b) Comparison of special real-world scenarios 

Figure 10. Comparison of BEV layout Generation results for special scenarios across various algorithms. 

 

5. CONCLUSIONS AND DISCUSSIONS 

This paper introduced a BEV layouts generation algorithm named SECross relied on 

monocular FPV images of waterways. SECross employs a novel feature extraction network called 

SEResNeXt, integrating group convolution and attention mechanisms to precisely extract key 

features from inland waterway images. Additionally, it enhances the extracted features by 

introducing a Cross-View Transformation Module to connect features from different perspectives. 

In the calculation of the loss function, SECross improves the loss computation of the generator 

network using the Focal Loss function, thereby generating a more accurate BEV layout for the 

waterway. 

Experimental results have demonstrated that SECross outperforms other available algorithms 

in BEV layout generation on waterway images. SECross accurately generates BEV layouts for 

challenging scenarios like curves and bifurcations, achieving mIOU and mAP values of over 95% 

in various complex scenarios. In the generation of ship BEV, SECross exhibits satisfactory 

performance with mIOU and mAP values exceeding 85%, especially in scenarios involving micro-

sized ships and dense ship traffic. Considering the relatively limited image samples, future research 

will focus on expanding the MonoWaterwayGen dataset, extending it beyond the Qinhuai River, 

Yangtze River to coastal areas, and incorporating more real-world ship data. Additionally, the next 

steps in research will involve introducing more interference factors to enhance the model's 

robustness. 
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