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A B S T R A C T

In the pursuit of advancing autonomous maritime navigation, this study aimed to develop a novel architecture 
designed to enhance the detection accuracy of distant and small targets under the constraints of real-time per
formance and robustness. Through the innovative integration of the Convolutional Block Attention Module 
(CBAM) into the detection model’s backbone, the study achieved superior feature extraction capabilities tailored 
for the complexities of maritime environments. Further optimization of the Spatial Pyramid Pooling (SPP) 
module ensured model compactness and computational efficiency, vital for deployment on edge devices. A key 
methodological novelty lay in the incorporation of the S-IoU loss function, which offers superior bounding box 
regression accuracy over the traditional Generalized Intersection over Union, directly contributing to more 
precise navigation and effective obstacle avoidance. The proposed enhancements collectively yielded a 5.1 % 
increase in mAP@50 %, accompanied by an 11.2 % reduction in model parameters and a 12.6 % decrease in 
computational complexity (GFLOPs). These findings underscore the potential of the presented architecture to 
significantly contribute to maritime safety, presenting an optimized solution for collision avoidance and navi
gation assistance in congested sea routes and adverse weather conditions.

1. Introduction

The relentless progression in autonomous ship navigation technol
ogies increasingly depends on computer vision and augmented visual 
perception capabilities. This reliance is evidenced by the critical need 
for small target detection mechanisms, essential for navigating complex 
maritime environments (Tang et al., 2022). Such systems are vital for 
ships to proficiently identify and respond to numerous, distant objects, 
such as small boats, buoys, and floating debris, particularly in narrow 
channels or congested ports. These detection systems must maintain 
high precision to ensure vessels adhere to their designated routes and 
comply with navigational protocols, crucial for collision avoidance and 
the safety of vessels and their crews (Ghazali et al., 2024).

Unlike traditional navigational tools such as AIS (Automatic Identi
fication Systems) and radar, which primarily detect large, registered 
vessels and provide limited data on small or non-traditional targets, 
vision-based methods can capture a broader range of objects (Zhao et al., 
2024). These include small boats, buoys, and floating debris, crucial in 
narrow channels or congested ports where high precision is vital for 
safety and adherence to navigational protocols.

Vision-based detection systems are particularly advantageous for 
bridge navigation as they offer superior dynamic range and the ability to 
detect both metallic and non-metallic objects, including those that are 
not typically covered by radar or AIS (AliAkbarpour et al., 2024). This 
capability is critical in congested or complex environments where 
traditional sensors might fail to provide sufficient resolution or 
discernment of small targets. Moreover, vision-based systems can be 
more cost-effective, requiring lower maintenance and installation costs 
compared to radar systems, which are generally more complex and 
expensive to operate and maintain.

Advancing autonomous maritime navigation requires detecting 
small, distant targets like nearby vessels, light spots, buoys, and navi
gational obstacles (Zhang et al., 2024). These are critical for safety and 
present significant challenges when viewed from a ship’s bridge. Fig. 1
shows the characteristics of small maritime targets. These targets are 
difficult to detect because they appear small at a distance, blend into 
complex maritime backgrounds, and are affected by environmental 
conditions like fog and waves. Additionally, their dynamic nature, 
influenced by wind and currents, requires robust, real-time detection 
methods. This study develops a novel architecture aimed at enhancing 
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the accuracy of detecting these crucial yet challenging targets, inte
grating advanced computational techniques to improve both naviga
tional safety and operational efficiency in autonomous maritime 
systems.

Furthermore, the term “small objects” in maritime contexts has two 
primary definitions: physically small objects in the real world and those 
classified by image size standards, such as the MS-COCO threshold of 32 
× 32 pixels, known as ‘small objects’ (Lin et al., 2014). However, 
maritime detection standards often require prioritizing objects critical 
for navigational safety over less critical items like floating debris (Shen 
et al., 2024). The need for robust detection algorithms becomes more 
pronounced under challenging weather conditions where small targets 
are harder to detect (Zhang et al., 2022a).

As maritime navigation technologies evolve, there is a growing focus 
on developing efficient detection methods. Techniques such as the 
Sliding Window and Image Pyramid have been foundational, although 
each comes with significant computational demands. Recent advance
ments aim to streamline these methods to better accommodate the 
computational limits of modern technology while enhancing the effi
ciency and accuracy of small object detection systems (Hirzel et al., 
2017; Qin et al., 2021; Pang et al., 2019).

Recent advancements in computing capabilities and algorithms have 
driven a significant shift from traditional object detection methods like 
Sliding Windows and Image Pyramids to deep learning-based tech
niques. Traditional methods were known for their high computational 
demands, especially when processing large images, which slowed pro
cessing speeds and made real-time applications challenging 
(Kheradmandi and Mehranfar, 2022). In contrast, deep learning ap
proaches such as Faster R-CNN (Girshick, 2015), SSD (Single Shot 
Multibox Detector) (Liu et al., 2016), Transformers (Vaswani et al., 
2017), and YOLO (You Only Look Once) (Redmon et al., 2016) have 
substantially enhanced the efficiency and accuracy of small object 
detection. These methods demonstrate superior performance in 
handling diverse and complex detection tasks in maritime 
environments.

Faster R-CNN and SSD are particularly noted for their accuracy and 
real-time detection capabilities, suitable for dynamic maritime opera
tions that require rapid responses. The Transformer model, with its 
ability to capture comprehensive contextual information, is well-suited 
for large-scale maritime surveillance. In contrast, YOLO excels in speed 
by detecting objects in a single forward pass across the entire image, 
which streamlines the detection process compared to the multi-step 
operations of its counterparts.

Despite their advantages, deep learning methods face limitations, 
primarily their substantial computational resource demands. Complex 

models like Transformers require extensive datasets and considerable 
computational power, which can limit their deployment on devices with 
constrained resources (Han et al., 2022). Additionally, models like SSD 
sometimes struggle to detect very small targets due to limited resolution, 
which can hinder their effectiveness in accurately identifying such 
objects.

These insights highlight the need for ongoing enhancements in deep 
learning techniques to balance model complexity, computational effi
ciency, and detection capabilities in practical applications. This balance 
is crucial for advancing maritime navigation and surveillance systems, 
making them more robust and responsive to operational demands.

The integration of computer vision technologies, particularly Con
volutional Neural Networks, has markedly enhanced the precision and 
robustness of small target detection in diverse domains, including 
maritime environments (Xu et al., 2023). Innovations such as those by 
Saleh et al. (2022), who analyzed deep learning methods for underwater 
small habitat fish video analysis, demonstrate the shift from traditional 
manual monitoring to more advanced, automated systems that provide 
crucial ecological insights. Similarly, Zhao et al. (2024) advanced object 
detection using unmanned aerial vehicles (UAVs), reviewing over 200 
studies to illustrate significant progress in field perception and small 
target detection, which are vital for maritime surveillance and research.

In the realm of small target detection, Akyon et al. (2022) provided 
SAHI (Slicing Aided Hyper Inference), which enhances image processing 
by implementing a strategy of slicing large images and utilizing over
lapping slices, this model is adept at merging detection results 
post-processing, making it particularly effective in environments popu
lated with densely arranged small targets. Xu et al. (2022) presented 
DAMO-YOLO, which stands out with its efficient backbone network 
design complemented by MAE self-supervised pre-training, which 
together foster leading-edge detection performance adaptable to various 
target sizes. Furthermore, the RT-DETR (Real-Time Detection Trans
former) framework introduces an end-to-end detection architecture that 
incorporates IoU-aware query selection and efficient feature interaction, 
achieving a balance between real-time performance and accuracy (Zhao 
et al., 2024).

Despite the general progress, specific adaptations for ship navigation 
are less common. Most existing research focuses on broad methodolo
gies like multi-scale feature fusion and adaptability to changing envi
ronmental conditions (Zhang et al., 2023, Chen, Shin), often neglecting 
the unique aspects of maritime navigation. However, Moosbauer et al. 
(2019) addressed these specific needs using the Singapore Maritime 
Dataset to improve object segmentation for maritime settings, 
enhancing the training of models like the weakly supervised recursive 
Mask R-CNN.

Fig. 1. (a) illustrates small targets as viewed from a ship’s bridge, highlighting that, unlike small targets in public datasets, maritime small targets frequently exhibit 
varying lengths and widths. In figure (b), the red bars denote the total number of items per category within our ShipNav dataset, while the blue bars signify the count 
of small targets within each category of the ShipNav dataset. The percentages reflect the ratio of small targets relative to their respective categories. In the categories 
of “Ship bow” and “Own body,” there are no small targets.
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Further expanding on these advancements, Kiefer et al. (2023)
introduced the SeaDronesSee Object Detection v2 benchmark, incor
porating a broader range of categories and camera perspectives, signif
icantly enriching the framework for evaluating maritime computer 
vision algorithms. This benchmark and other developments highlight 
the ongoing evolution of computer vision in the maritime sector, driven 
by the sector’s unique requirements and the potential for significant 
advancements in ship navigation and maritime surveillance.

This paper presents a groundbreaking method for small target 
detection, and it introduces a refined version of a one-stage object 
detection framework, enhanced with the CBAM for superior feature 
extraction and an optimized SPP module to boost efficiency. Addition
ally, this approach incorporates the innovative S-IoU loss function, 
designed to achieve unparalleled precision in target detection. These 
modifications were specifically crafted to meet the distinctive demands 
of maritime navigation, thereby establishing a new standard in the field. 
Through rigorous experimental evaluation, our optimized one-stage 
object detection model demonstrated exceptional proficiency in over
coming the intricacies associated with detecting small targets on water. 
The model’s effectiveness was attributed to three principal new 
contributions. 

a) Integration of SimSPPF and GhostConv Modules: This combination 
effectively retained information across channels while simulta
neously reducing computational demands, ensuring efficient and 
comprehensive feature analysis.

b) Fusion of the CMAB Attention Mechanism: By integrating the CMAB 
attention mechanism, the new framework not only upheld the pre
cision and velocity of small target detection but also diminished the 
model’s overall parameter count. This balance between efficiency 
and effectiveness was critical for real-time maritime navigation 
applications.

c) Adoption of the S-IoU Loss Function: The introduction of the S-IoU 
loss function significantly refined target recognition capabilities. 
This enhancement boosted the regression accuracy of bounding 
boxes, enabling the precise identification of small target types and 
substantially improving overall detection performance.

This paper is organized as follows. Detecting small targets in mari
time navigation is not only a challenge for assisted and autonomous 
driving, which is why we conduct this research. Section 2 provides an 
overview of related work. In Section 3, the algorithms were developed. 
They began by analyzing the principles of the visual object detection 
algorithm YOLOv5 and were then followed by the strategies for 
improving the YOLOv5 algorithm. Section 4 discussed the experimental 
results, and finally, Section 5 summarized the findings and outlined 
future work.

2. Related works

2.1. Datasets

Over the past twenty years, the development of numerous datasets 
has significantly advanced multi-object and specific object detection 
tasks. Well-known datasets such as ImageNet (Krizhevsky et al., 2012), 
PASCAL VOC (Everingham et al., 2010), and COCO have played pivotal 
roles in the recognition and detection of multiple static objects. How
ever, the application of these models in real-world navigation scenarios 
encountered substantial challenges. While many researchers aimed to 
enhance object detection accuracy using these publicly available data
sets, it was observed that existing methods predominantly recognized 
only broad categories, such as ships, which did not suffice for the 
nuanced requirements of practical navigation systems.

Furthermore, the complexity of maritime environments necessitated 
different perspectives for effective monitoring, including shore-based 
and vessel-based views, each fulfilling unique requirements. Shao 

et al. (2018) introduced SeaShips, a comprehensive dataset for ship type 
detection in the Yangtze River basin, limited to six primary ship cate
gories. X Y Zhou et al., 2021) presented the Water Surface Object 
Detection Dataset (WSODD), a benchmark for identifying a variety of 
water surface objects. While these datasets were beneficial, they high
lighted the challenges in real-time maritime navigation monitoring.

Nevertheless, there existed a notable gap in datasets from the 
perspective of the ship bridge, an essential viewpoint for the visual 
perception of long-distance small targets in maritime navigation. This 
absence significantly hampered the task of visual perception, especially 
in detecting small targets over long distances, emphasizing the need for 
specialized datasets tailored to the unique demands of maritime 
navigation.

To address this shortfall, this work introduces the “ShipNav” dataset, 
designed specifically for evaluating the performance of vision-based 
scenarios and tasks in ship navigation. As shown in Fig. 2, the Ship
Nav dataset gathered from the ship bridge perspective, encompasses 
twelve ship bridge acquisition classes. It accounted for various weather 
conditions and rich shore-based backgrounds, incorporating an exten
sive collection of video data from major global shipping routes. More
over, a high proportion of small targets was deliberately included to 
reflect the challenges encountered in maritime visual perception. The 
dataset categorized objects encountered during practical ship navigation 
at sea into two types: navigation-aid objects and obstacle objects. 
Navigation-aid objects included “Work boat,” “Cargo ship,” “Own 
body,” “Unidentified ship,” “Unidentified ship-N,” “Packet,” “Ship 
bow,” and “Island.” Meanwhile, obstacle objects comprised “Gantry 
crane,” “Lighthouse,” “Bridge,” and “Ship lock.” This classification was 
designed to closely mimic the visual perception tasks faced by maritime 
navigators, offering a tool for enhancing object detection algorithms in 
the context of ship navigation.

2.2. One-stage object detection

The evolution of computer vision over the last decade was signifi
cantly tied to the expansion of datasets and the adoption of Convolu
tional Neural Networks. These technologies underpinned breakthroughs 
in various domains, including face recognition (Adjabi et al., 2020), 
object detection (Zou et al., 2023), robot vision (Qiao et al., 2021), and 
autonomous driving (Chen et al., 2022). Deep Learning, a cornerstone of 
Artificial Intelligence (AI), diversified network architectures, enabling 
the automatic and efficient extraction of features from expansive 
datasets.

Among the real-time object detection frameworks, the YOLO series 
stood out for its efficiency and accuracy. Starting with YOLOv1 (Redmon 
et al., 2016), which introduced an end-to-end real-time detection 
approach by converting the detection task into a regression problem, the 
series evolved significantly. YOLOv2 (Redmon and Farhadi, 2017) 
enhanced multi-class detection, YOLOv3 (Redmon and Farhadi, 2018) 
improved small object detection with multi-scale feature maps, and 
YOLOv4 (Bochkovskiy et al., 2020) introduced advanced training 
techniques for better generalization. YOLOv5 (Redmon et al., 2016), 
known for its speed and efficiency, opted for a lightweight design and 
the PyTorch framework for increased usability. YOLOv6 (Li et al., 2022) 
and YOLOv7 (Wang et al., 2023) introduced innovations in autonomous 
delivery and pose estimation, respectively. YOLOv8 (G Jocher et al., 
2023) further expanded the series’ capabilities to encompass a wider 
array of computer vision tasks.

For the model used in this paper, YOLOv5 was selected as the 
baseline model because of its balanced characteristics, including a low 
parameter count, lightweight design, and the requirement for real-time 
processing in complex maritime scenarios. Despite the existence of 
YOLOv8, the extensive documentation and demonstrated effectiveness 
of YOLOv5 across various datasets made it the preferred choice for this 
research.

Currently, more and more researchers have become increasingly 
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interested in enhancing the small object detection accuracy using 
YOLOv5. Innovations such as TPH-YOLOv5 (Zhu et al., 2021), which 
incorporated Transformer Prediction Heads for improved scale detec
tion, and YOLO-Z (Benjumea et al., 2021), which focused on optimizing 
feature map handling through various Feature Pyramid Networks, 
exemplified the ongoing efforts to refine YOLOv5. Additionally, the 
integration of SPD-Conv into YOLOv5 by Raja Sunkara et al. (Sunkara 
and Luo, 2022) demonstrated the potential for significant advancements 
in detecting low-resolution images and small objects, further illustrating 
the dynamic research landscape surrounding one-stage object detection. 
YOLOv11 (Jocher et al., 2023) is the latest edition in the Ultralytics 
YOLO series, incorporating new features and improvements to further 
enhance performance and flexibility. Taking various factors into 
consideration, we have chosen YOLOv5m as our baseline model.

3. Methodology

In the proposed multi-scale object detection architecture designed 
specifically for maritime object detection, the methodology unfolded as 
follows: Initially, an original image served as the input, with the aim of 
outputting detected objects, each delineated by bounding boxes, and 
accompanied by class labels and confidences. The process began with a 
deep convolutional network enhanced with Cross-Stage Partial (CSP) 
structures for efficient feature extraction, generating a rich set of feature 
maps from the input image. Subsequently, these feature maps under
went a transformation through a module designed to refine feature 
representation while minimizing computational costs.

To further enrich the feature fusion process, a combination of the 
CBAM and Ghost Convolution techniques was utilized. This approach 
emphasized crucial features and ensured computational efficiency, 
significantly enhancing the feature set. This enriched feature set then fed 
into the final detection module, which utilized an advanced loss function 
designed to improve the accuracy of bounding box predictions, class 
identifications, and confidence assessments.

3.1. The model of GSimSPPF (simplified SPPF with GhostConv)

In this section, the “GSimSPPF” model is divided into four sub
sections, with the aim of reducing parameter count and improving small 
object detection accuracy. The improved principles of the spatial pyra
mid pooling module are elaborated upon in detail.

3.1.1. The model of spatial pyramid pooling (SPPF)
The SPP module was proposed primarily to address the issue of 

convolutional neural networks handling images of different scales. It 
was widely used in computer vision tasks such as object detection and 
image classification. Moreover, the introduction of the SPPF module 
aimed to further optimize the performance in handling small targets. It 
introduced a feature focusing mechanism, which enabled more effective 
attention and utilization of important regions in the feature map, 
thereby improving the accuracy and performance of small target 
detection. The SPPF module in YOLO series algorithms enabled multi- 
scale feature fusion and receptive field enhancement, and received 
feature maps of different sizes from three MaxPool layers, with kernel 
sizes of 5, 9, and 13. Then they were output at a fixed size, enabling the 

network to train at multiple scales. Due to the similarity in appearance of 
small objects and the variability of the navigational environment, there 
were false detections in small object detection. In addition, it also suf
fered from drawbacks such as computational complexity, limited 
receptive field range, and information redundancy. The structure dia
gram of the SPP and SPPF module is shown in Fig. 3.

The introduction to the SPPF module is as follows and the mathe
matical formula for the Conv layer is: 

Conv(x)= f(Norm(Conv2d(x))) (1) 

The f( ⋅) is the activation function, Norm is batch normalization, and 
Conv2d is the convolution operation.

The mathematical formula for the SPPF layer is: 

SPPF(x)= cv2([cv1(x),MP(x, ks),MP(MP(x, ks), ks),MP(x, ks)]) (2) 

where MP is the max pooling operation, ks represents the kernel size of 
the max pooling kernel.

3.1.2. The model of similarity-based Spatial Pyramid Pooling Fusion 
(SimSPPF)

To address the issues of large parameter count and high complexity 
in the area, a new module called GSimSPPF fusion is proposed. The 
SimSPPF (Liu et al., 2016) module aims to enhance feature extraction 
capabilities and address challenges in computer vision models. The 
pooling kernels of size 9 and 13 in the SimSPPF module are represented 
by kernels of size 5, significantly reducing computational costs. Firstly, 
SimSPPF achieves efficient feature pooling and fusion without 
compromising performance by adopting a similarity-based pooling 
approach to reduce computational complexity. Secondly, it enhances 
feature representation by considering the similarity between different 
spatial pyramid levels. It takes into account relationships and similar
ities between different pyramid levels to capture more discriminative 
and context-aware features. Finally, SimSPPF merges contextual infor
mation by leveraging the similarity between different spatial pyramid 
levels. This enables the model to capture global context and context 
dependencies, thereby improving object recognition and localization.

3.1.3. More features from cheap operations with GhostNet
GhostNet (Han et al., 2020) is a novel neural network architecture 

proposed by Huawei Noah’s Ark Lab. Similar to Google’s MobileNet, 
GhostNet is designed for lightweight and compact networks, particularly 
for hardware and mobile applications, but it outperforms MobileNet. 
GhostNet is based on the Ghost module, which has the unique feature of 
not altering the size and channel dimensions of the convolutional output 
feature map. However, it significantly reduces the overall computational 
load and the number of parameters. In simple terms, GhostNet’s main 
contribution lies in reducing computational load, improving runtime 
speed, and minimizing the decrease in accuracy. Moreover, this modi
fication is applicable to any convolutional network, as it does not change 
the size of the output feature map. The structure diagram of the 
GhostNet module is shown in Fig. 4.

3.1.4. Spatial pyramid pooling module base on GSimSPPF
In summary, the SimSPPF module based on GhostNet addresses the 

Fig. 2. Illustration of the ShipNav dataset, featuring various weather scenarios and complex maritime environments.
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limitations of the SPPF module in terms of computational complexity, 
receptive field range, and information redundancy. The model diagram 
is shown in Fig. 5. It achieves these improvements by reducing 
computational complexity, enhancing feature representation, and 
merging contextual information based on the similarity between 
different spatial pyramid levels. This ultimately reduces the probability 
of misidentifying small object types and decreases the number of pa
rameters and FLOPs introduced by adding convolutional layers.

3.2. Feature extraction module based on CBAM with GhostConv moudles 
(FECG)

In computer vision, feature fusion can achieve favorable 

complementarity among multiple features, resulting in more robust and 
accurate recognition results. The Neck section of baseline model adopts 
the Feature Pyramid Network with Path Aggregation Network (PAN) 
structure to achieve multi-scale feature fusion. The FPN structure 
propagates strong semantic features from top to bottom, while the PAN 
structure propagates strong positional features from bottom to top and 
aggregates parameters from different detection layers in different 
backbone layers. However, the structure uses the same CBS module as 
the backbone. While it can well maintain the model’s feature extraction 
capability, it also leads to a higher number of model parameters and 
computational complexity. Therefore, this paper integrates GhostNet 
and proposes the FECG structure to address these issues.

If the requirement is to generate n feature maps, where the input 

Fig. 3. SPPF module has been optimized compared to the traditional SPP module in terms of feature focusing, dynamic feature resampling, and global information 
integration, thus achieving better performance in computer vision tasks such as object detection and image classification.

Fig. 4. The model structure diagram of GhostConv.

Fig. 5. The model structure diagram of GSimSPPF.
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image size is h × w × c represents the image height, w represents the 
image width, and c represents the input channels). In this equation, 
FLOPs represents the number of floating-point operations required for a 
convolutional layer. Here, n denotes the number of input feature maps, 
hʹ and wʹ represent the height and width of the output feature maps 
respectively, c is the number of channels in each input feature map, and 
k × k denotes the kernel size of the convolutional filter. Therefore, the 
formula calculates the total number of floating-point operations by 
multiplying these factors together, the FLOPs (floating-point operations) 
for regular convolution are as follows: 

FLOPS= n × hʹ × wʹ × c × w × k (3) 

The work by (Han et al., 2020) on exploration of feature maps 
revealed notable similarities among them, leading to a strategic bifur
cation of the feature maps into two distinct categories. The initial step 
involves employing GhostConv to produce m(m≤ n) intrinsic feature 
maps via standard convolutional processes. Subsequently, each of these 
intrinsic feature maps is subject to a linear transformation (Φ), culmi
nating in the generation of corresponding Ghost feature maps for each 
intrinsic one. This secondary set of feature maps acts as the ‘Ghost’ of the 
initial set, encapsulating the essence of the process as follows: 

yij =Φi,j
(
yʹ

i
)
,∀i= 1,…,m, j=1,…, s, (4) 

The yʹ
i represents the i feature map among the m intrinsic feature 

maps, Φi,j represents the j linear transformation of the i intrinsic feature 
map, which implies that each intrinsic feature map can have multiple 
Ghost maps. yij represents the n feature maps. The relationship between 
the feature maps can be described as follows (Han et al., 2020): 

n=m × s (5) 

In the GhostConv module, there is a fixed identity transformation (as 
shown in Fig. 4.). Therefore, there are s − 1 effective linear trans
formations. Combining with equation (5), obtain the following (Han 
et al., 2020): 

m×(s − 1) =
n
s
(s − 1) (6) 

The number of FLOPs generated by the regular convolution opera
tion in the first part is as follows (Han et al., 2020): 

FLOPs=
n
s
× hʹ × wʹ × c × k × k (7) 

In the subsequent segment of the linear operation, when utilizing a 
kernel size of d× d. It is no longer denoted as k × k because we’re using a 
different kernel size, denoted as d× d, in this particular context. The 
notation k × k typically represents the size of the convolutional filter 
kernel. However, in this instance, we’re referring to a different size 
denoted by d× d. The corresponding FLOPs incurred can be expressed as 
follows (Han et al., 2020): 

FLOPs=(s − 1)
n
s
× hʹ × wʹ × c × d × d (8) 

The total number of FLOPs can be calculated as follows (Han et al., 
2020): 

FLOPs=
n
s
× hʹ × wʹ × c × k × k + (s − 1)

n
s
× hʹ × wʹ × c × d × d (9) 

The FLOPs ratio between regular convolution and GhostConv can be 
expressed as follows (Han et al., 2020): 

Fn

Fs
=

n × hʹ × wʹ × c × k × k
n
s × hʹ × wʹ × c × k × k + (s − 1) n

s × hʹ × wʹ × d × d
(10) 

Where Fn and Fs represent the FLOPs of regular convolution and 
GhostConv, respectively. In practical applications, to improve the en
ergy efficiency of CPUs or GPUs, the kernel sizes d and k are similar. In 
this equation, the terms d and k represent different kernel sizes. Spe

cifically: d × d refers to the kernel size used in the second part of the 
linear operation. k × k denotes the kernel size typically used in con
volutional layers. The distinction between d and k is crucial because they 
represent different dimensions of the convolutional filter. In the context 
of the equation, d × d is used when discussing a specific part of the 
operation where a different kernel size is applied, while k × k is a more 
general representation of the kernel size conventionally used in con
volutional layers. The formula is shown as follows (Han et al., 2020): 

Fn

Fs
=

c × k × k
1
s × c × k × k +

(s− 1)
s × d × d

≈
s × c

s + c − 1
≈ s (11) 

From the above formula, it can be observed that the FLOPs of the 
GhostConv module is only 1/s of regular convolution, which effectively 
reduces the FLOPs of the model.

3.2.1. Convolutional Block Attention Module
The C3 module in the baseline model backbone is a critical compo

nent for learning features of small objects. It concatenates two feature 
vectors from the Bottleneck and standard convolutional layer CBS 
branches. However, the concatenation of these branches in the C3 
module fails to capture fine-grained ship image features, such as edge 
information or texture features. It also does not adequately consider 
more detailed feature information from the convolutional kernel, 
resulting in an inability to capture subtle differences between different 
target types. Consequently, this leads to missed detections and false 
positives when detecting small objects. CBAM (Woo et al., 2018) ad
dresses this limitation by integrating channel and spatial information, 
while utilizing an adaptive learning method, enabling the network to 
more accurately focus on the spatial location of the target. Coupled with 
its ability to capture abstract features of small objects, this helps enhance 
the network’s performance in detecting small targets. The approximate 
structure of the CBAM module is shown in Fig. 6.

The model of CBAM can prevent the loss of partial target features 
caused by operations involving feature map dimensionality changes. It 
enables adaptive cross-channel information interaction. It illustrates the 
overall structure after the integration of the CBAM module. As can be 
observed, the output of the convolutional layers first undergoes channel 
attention to obtain weighted results. Subsequently, it undergoes spatial 
attention, and then the results are obtained through weighted aggre
gation. Given a feature map, CBAM infers attention maps independently 
along channel and spatial dimensions. These attention maps are then 
multiplied with the input feature map to perform adaptive feature 
refinement. According to the experiments in reference, integrating 
CBAM into the maritime target detection model significantly improves 
the model’s performance, demonstrating the effectiveness of this 
module.

3.2.2. Feature pyramid networks based on FECG
The structure of FECG is shown in Fig. 7. It replaces the CBS modules 

in FPN + PAN with GhostConv modules to reduce the model’s param
eters and FLOPs. Additionally, CBAM is introduced to fuse shallow and 
deep feature maps at the pixel level, enhancing the network’s adaptive 
capabilities and diversifying feature maps. This, in turn, improves the 
accuracy of extracting ship features from the network. The FECG 
structure reduces the number of model parameters and FLOPs while 
maintaining the accuracy and speed of small object detection. This paves 
the way for future deployment on mobile devices with limited compu
tational resources.

3.3. S-IoU based loss function

The effectiveness of object detection is a crucial issue in computer 
vision tasks, heavily relying on the definition of the loss function that 
evaluates the accuracy of ML model predictions. Traditional loss func
tions for object detection mainly aggregate bounding box regression 
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metrics, such as distances between predicted and ground truth boxes (e. 
g., GIoU (Rezatofighi et al., 2019), CIoU (Zheng et al., 2020), EIoU 
(Zhang et al., 2022a), overlap areas, and aspect ratios. However, these 
loss functions fail to consider the deviation between the required ground 
truth box and the predicted “experimental” box. This limitation might 
lead to slower convergence during the training process and reduced 
efficiency, as predicted boxes may drift, resulting in a poorer model. To 
address these challenges, this paper introduces a novel loss function 
called SIoU (Gevorgyan, 2022), which mitigates the penalization metric 
by incorporating angles between the required regressions. By intro
ducing directionality in the cost of the loss function, faster convergence 
can be achieved during training, improving inference performance for 
faster and more accurate convergence. This, in turn, enhances the ac
curacy of small object detection.

The SIoU loss function consists of four cost functions: angle cost, 
distance cost, shape cost, and IoU cost. The idea behind merging this 
angle-aware low-frequency component is to minimize the number of 
variables related to the “ambiguity” associated with distance. Essen
tially, the model will attempt to align predictions first along the X or Y 
axis (whichever is closer) and then proceed to approach along their 
respective axes.

The angle loss calculation strategy is illustrated in Fig. 8. Given the 
target box B and the regression box BGT, if the angle between B and BGT is 
smaller than α, which converges towards the minimum value α; other
wise, it converges towards β. 

∧=1 − 2 sin2
(

arcsin(x) −
π
4

)
(12) 

x =
ch

σ = sin α

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

bgt
cx
− bcx

)2
+
(

bgt
cy
− bcy

)2
√

ch = max
(

bgt
cy
, bcy

)
− min

(
bgt

cy
, bcy

)

(13) 

The derivation leads to the conclusion that the loss is twice the sine 
value of the current angle, which is reasonable. When the angle is 0◦, it 
directly regresses to the left. When α is π/4, the sine value of (π /4×2 )

equals 1, which is the maximum value. Thus, it holds true that α < π/4.
Distance cost: 

Fig. 6. Partial structural diagram of the CBAM attention mechanism.

Fig. 7. Structural schematic diagram of the FECG module.

Fig. 8. The calculation scheme for the angle cost contribution in the 
loss function.
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Δ=
∑

t=x,y
(1 − e− γρt )ρx =

(
bgt

cx
− bcx

cw

)2

, ρy =

(
bgt

cy
− bcy

ch

)2

, γ =2 − Λ (14) 

shape cost: 

Ω=
∑

t=w,h
(1 − e− ωt )

θ (15) 

where 

ωw =
|w − wgt |

max(w,wgt)
,ωh =

⃒
⃒h − hgt

⃒
⃒

max
(
h, hgt

) (16) 

This part of the formula observes whether the current regression box 
shape is similar to the labeled box.

The final loss function: 

Lbox =1 − IoU +
Δ + Ω

2
L = WboxLbox + WclsLels (17) 

In summary, the SIoU loss function improves accuracy by simulta
neously penalizing misalignments in orientation, distance, and shape, 
which guides the model to converge more quickly to the optimal 
bounding box positions. The combination of these cost components re
duces the drift of predicted boxes and results in a higher mAP, partic
ularly beneficial for small object detection. Experimental results 
summarized in Table 1 confirm that the use of SIoU leads to faster 
convergence and improved accuracy compared to traditional loss 
functions.

3.4. Nav-Yolo

In summary, this paper presents a one-stage object detection model 
that is better suitable for small objects. The model architecture, as shown 
in Fig. 9, incorporates the CBAM attention mechanism module to 
enhance the feature extraction capability of the network. Additionally, it 
combines a feature pyramid structure based on attention mechanisms. 
By ensuring fast inference speed and reducing the model’s parameter 
count, the proposed model achieves improved accuracy, effectively 
addressing the challenges of detecting small objects and mitigating the 
issue of missed detections in the existing small object detection models.

4. Experimental evaluation

Experiments were conducted on a server equipped with an NVIDIA 
Tesla V100 GPU (32 GB of RAM) running a 64-bit Ubuntu operating 
system. The ShipNav dataset was randomly divided into training, vali
dation, and test sets in an 80:20 ratio. For model training, we used a 
batch size of 16 and an initial learning rate of 0.01. The optimizer 
employed was Stochastic Gradient Descent (SGD) with a momentum of 
0.9 and a weight decay (L2 regularization) factor of 0.0005 to mitigate 
overfitting. The model, which consists of 427 layers, was trained for 200 
epochs. These hyperparameter settings were chosen based on pre
liminary experiments and are consistent with configurations reported in 
related studies to balance convergence speed and generalization 
performance.

Moreover, ablation experiments were conducted to compare 
different modules of the improved model. From Table 1 and it can be 
observed that the introduction of SimSPPF and SIoU slightly improved 

the accuracy of baseline model while reducing the number of model 
parameters. From the ablation experiments, it can be observed that 
incorporating the improved modules into the original model resulted in 
a reduction in parameter count and an improvement in model accuracy. 
Typically, behind a CNN network, there are fully connected layers that 
require a fixed input size. Therefore, input images are often resized to a 
fixed dimension, which may lead to geometric distortion and impact 
accuracy. The SimSPPF module addresses this issue by pooling feature 
maps of different scales, fixing them into feature vectors of the same 
length, and then passing them to fully connected layers. Although the 
structure of the fully connected layers after the convolutional layers is 
fixed, in practice, the input image size may not meet the required di
mensions. Traditional methods involve cropping and warping, which 
can distort the original features. However, the SimSPPF layer divides the 
feature map of candidate regions into multiple grids of different sizes 
and performs max-pooling within each grid. This allows subsequent 
fully connected layers to receive a fixed input. By doing so, the SimSPPF 
layer improves accuracy while reducing the number of model parame
ters, making it suitable for deployment on mobile devices.

The reduction in model parameters and computational complexity 
not only enhances the efficiency of the model but also substantially af
fects the consumption of computational resources such as CPU and GPU 
usage, and power consumption. To begin with, the reduced number of 
model parameters directly translates to a lower memory footprint on 
devices. This reduction is beneficial for edge devices with limited RAM 
and storage capacity, allowing them to run advanced models without 
necessitating additional memory. For instance, the decrease in param
eter size from 82.9 MB in the baseline model to 73.6 MB in our optimized 
model implies that less memory is required to store the model weights, 
thereby freeing up resources for other processes or enabling the 
deployment of multiple models simultaneously on the same device. 
Furthermore, the reduction in computational complexity, measured in 
GFLOPs, indicates a lower requirement for computational power. Lower 
GFLOPs mean that the model requires fewer floating-point operations 
per second, which directly correlates with less CPU and GPU utilization 
during inference. This is particularly important for real-time applica
tions where rapid response times are critical, and high computational 
demands can lead to latency issues. In our experimental setup, the 
optimized model demonstrated a decrease in GFLOPs from 51.1 to 44.6 
when compared to the baseline. This 12.7 % reduction signifies that our 
model can operate more efficiently under the computational constraints 
of edge devices.

The incorporation of GhostConv has improved the accuracy of the 
model but slightly reduced the detection speed. By stacking convolu
tional layers, rich feature information, including redundant information, 
can be captured, aiding the network in a more comprehensive under
standing of the data. Therefore, the GhostConv module extracts rich 
feature information through conventional convolutional operations 
while using a more cost-effective linear transformation to generate 
redundant feature information. This approach effectively reduces the 
required computational resources, simplifies the model’s design, and 
facilitates its industrial deployment.

In this section, various optimization strategies were evaluated by 
comparing the improved model with baseline model, using a dataset 
with an input image size of 640*640. As shown in Table 2, compared to 
the baseline model, the improved model’s mAP@50 increased by 5.1 %, 
the number of parameters decreased by 11.2 %, and the fps slightly 
decreased. The analysis suggests that the improved model has advan
tages in detection accuracy and model parameters across three different 
input image sizes. It reduces the number of model parameters while 
improving detection accuracy. Deployment on mobile devices requires 
consistent computational capability and complexity, considering factors 
such as power consumption, heat dissipation, size, cost, and security 
requirements. Reducing the number of model parameters can signifi
cantly decrease power consumption and reduce heat dissipation.

Furthermore, Fig. 10 presents a comparative analysis of the training 

Table 1 
The impact of different optimization strategies on the model.

Model mAP (@50 %) FPS(f/s) Params (MB) GFLOPs

Baseline 65.1 50.1 82.9 51.1
Baseline + SimSPPF 67.0 49.8 77.7 47.5
Baseline + GhostCon 65.8 51.1 81.6 50.3
Baseline + CBAM 65.2 49.7 82.9 51.1
Baseline + SIoU 65.6 51.2 82.9 51.1
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and validation box loss curves over 200 epochs for both the baseline 
object detection model and the improved model “Ours”. The curves are 
clearly labeled as Training Loss and Validation Loss to ensure consis
tency. Both models show a rapid decrease in loss during the initial 
epochs, which indicates effective initial learning. As training proceeds, 
the improved model consistently exhibits lower loss values than the 
baseline model in both training and validation phases. This observation 
suggests that the improved model has enhanced learning efficiency and 
superior generalization capabilities. The improvements in the model, 
which include architectural changes, advanced regularization tech
niques, and the use of the optimized SIoU loss function, contribute to a 
better fit to the training data and improved adaptability to unseen 
validation data. These characteristics underscore the potential of the 
improved model to deliver more accurate and reliable object detection 
in practical scenarios.

From Table 3, it can be observed that the improved model exhibits a 
significant reduction in GFLOPs compared to RT-DETRv2-M, with a 

12.7 % decrease compared to baseline and with a 34.4 % decrease 
compared to YOLOv11. Combining the information in the table, this 
characteristic makes the model more lightweight.

In terms of small object detection, the new improved model dem
onstrates notable advancements compared to baseline model. Specif
ically, Table 4 shows a 4.3 % improvement for ‘Work boat’ and a 6.2 % 
improvement for ‘Cargo ship’ compared to the baseline model. The 

Fig. 9. The structure diagram of the Nav-YOLO model, integrating the GsimSPPF module and FECG module.

Table 2 
The comparative experimental results of different models.

Model Input Size Precision Recall mAP (@50 %) FPS Params

Baseline 448*448 65.3 60.8 63.6 57.4 82.9
Ours 448*448 64.9 61.3 63.7 56.8 73.6
Baseline 544*544 66.2 61.1 64.4 53.6 82.9
Ours 544*544 67.7 63.3 65.3 51.5 73.6
Baseline 640*640 68.6 64.1 65.1 50.1 82.9
Ours 640*640 71.2 67.3 68.6 49.6 73.6

Fig. 10. (a) Comparative analysis of training and validation loss over 200 epochs for baseline and improved object detection models.

Table 3 
GFLOPs of different models.

Model RT- 
DETRv2-M

Baseline DAMO- 
YOLO

SAHI- 
YOLO

YOLOv11 Ours

GFLOPs 100 51.1 61.8 78.9 68.0 44.6

Table 4 
mAP@50(%) of small target and night target.

Model Input Size Work boat Cargo ship Un ship-N

Baseline 448*448 59.5 66.1 63.7
YOLOv11 448*448 60.2 57.6 54.9
Ours 448*448 61.1 69.8 71.9
Baseline 544*544 59.9 66.6 64.5
YOLOv11 544*544 60.8 58.9 54.2
Ours 544*544 61.8 70.6 72.7
Baseline 640*640 60.3 67.0 66.5
YOLOv11 640*640 61.0 60.8 55.4
Ours 640*640 62.9 71.2 73.4
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improved model outperforms the latest YOLOv11 in small object 
detection. In scenarios involving the movement of ships in ports, small 
objects are often located in extremely small areas within the image and 
are highly susceptible to environmental interference. Even a one-pixel 
deviation during network prediction can have a significant impact on 
small objects. Additionally, compared to larger or medium-sized objects, 
small objects have lower resolution, providing limited information and 
presenting challenges in extracting discriminative features. Our 
improved model effectively addresses common issues associated with 
small objects, including partial occlusion, blurriness, incompleteness, 
and difficulty in identification. The comparison between the detection 
performance of the improved model and the original model is shown in 
Fig. 11. The figure clearly shows that the improved model surpasses 
mainstream models in detecting small targets in terms of precision.

Moreover, there is a 10.2 % improvement for “Unidentified ship-N″ 
in nighttime small object detection. Due to low illumination levels, high 
grayscale values, reduced color discrimination ability, and significant 
interference factors (including large shadow areas), nighttime condi
tions pose challenges. Additionally, existing nighttime image acquisition 
largely relies on infrared devices, which suffer from low resolution, poor 
depth perception, and limited texture information. These factors 
collectively hinder the detection of objects such as ships during night
time operations. By enhancing the backbone network and improving the 
performance of the object detector, this work partially addresses the 
challenges posed by unknown light sources at sea, thereby improving 
the accuracy of ship recognition in water environments.

The proposed model significantly outperforms existing methods in 
maritime object detection by demonstrating robustness to environ
mental variations, superior real-time processing capabilities, and scal
able performance across different maritime settings. Enhanced by the 
integration of CBAM and SPP modules, and further optimized with the S- 
IoU loss function, the model achieves a notable improvement in 
detecting small and distant targets, even under challenging conditions 

like low light and high interference. These advancements are quantified 
by a 5.1 % increase in mAP@50 %, alongside reductions in model pa
rameters and computational complexity, making it highly effective for 
real-world applications in autonomous maritime navigation.

5. Discussion

The real-time multi-scale object detection framework has been 
enhanced to mitigate the shortcomings related to contextual informa
tion for distant small targets, addressing the critical need for prompt 
responses in vehicular navigation contexts. Initially, we incorporated 
the SimSPPF and GhostConv modules, which effectively retain infor
mation across each channel while minimizing computational demands, 
thus boosting the model’s processing velocity. Subsequently, the CMAB 
attention mechanism was amalgamated with the feature fusion network, 
striking a balance between precision in detecting small targets and 
operational speed, in addition to streamlining the model’s parameters. 
Finally, the refined model, employing the SIoU loss function, has 
significantly enhanced the accuracy of bounding box regression and the 
precision of small object detection with equivalent parameters. From the 
perspective of crews, this represents a notable advancement.

5.1. Critical issue of the long-distance and small target detection

The changing marine environment significantly impacts small object 
detection, especially in global shipping route scenarios, necessitating 
models with strong generalization capabilities. In the context of ship- 
bridge scenes, long-range target detection may be affected by back
ground interference, including city lights, port facilities, and fishing 
areas, introducing challenges to the algorithm. Firstly, when a vessel 
navigates through areas with bright city lights, the intense urban illu
mination can cause distant targets to become blurred or difficult to 
discern in the image. This may require the algorithm to adapt to varying 

Fig. 11. The figure (a) illustrates the detection results using the baseline model and (b) displays the results of small object detection by YOLOv11. (c) shows the 
detection results of SAHI-Yolo, while (d) depicts the detection performance of the improved model. Through comparison, the improved model demonstrates a 
significant enhancement in the detection of small objects. nts.
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lighting conditions for effective target detection. Secondly, port areas 
typically feature various facilities such as lighthouses, cranes, and docks. 
These structures may resemble the target or introduce complex textures 
and edges in the image, complicating target detection. Lastly, in fishing 
areas, there may be numerous fishing boats, buoys, and other objects 
that can be easily confused with distant targets. The intricate aquatic 
environment in such areas may pose challenges for target detection al
gorithms to accurately identify distant vessels. Moreover, Various con
ditions, such as different weather scenarios or crowded maritime 
environments, must also be considered to enhance the generalizability 
analysis of the model. Due to space limitations in the paper, these dis
cussions will be addressed in future analyses.

5.2. Challenges and non-commercial applications of advanced detection 
systems in maritime navigation

Advanced detection systems in maritime navigation face several 
operational challenges that impact their effectiveness. These challenges 
include vast geographic variability, where maritime routes traverse 
diverse environmental conditions that require datasets covering a wide 
range of scenarios to maintain accuracy. In addition, small targets often 
exhibit dynamic behavior in maritime settings, complicating detection 
due to the lack of effective strategies for switching between identifying 
small, dynamic objects and more clearly defined targets within the same 
scene. Quantitatively analyzing the intrinsic relationship between 
distant and small targets is also challenging in complex maritime envi
ronments, as it is difficult to delineate logical changes between these 
types without a clear, objective framework. Moreover, conventional 
monocular and binocular ranging methods are ineffective in maritime 
contexts, preventing computer vision systems from objectively assessing 
target distances because “distant targets” are often defined subjectively 
rather than through empirical measures.

The practical implications of these challenges extend into non- 
commercial applications. For Vessel Traffic Services (VTS) monitoring, 
the enhanced detection framework can improve safety by accurately 
detecting small vessels and obstacles even in congested or visually 
challenging environments, thereby supporting more effective traffic 
management and early hazard detection. In marine conservation, the 
proposed strategy enables more precise monitoring of marine life and 
environmental conditions by accurately identifying small and often 
overlooked organisms or debris, which is essential for assessing 
ecosystem health. For surveillance against illegal fishing, improved 
detection capabilities can assist enforcement agencies by reliably iden
tifying suspicious activities or unauthorized vessels in real time, thereby 
enhancing the ability to intervene and protect marine resources.

5.3. Building datasets and model improvement strategies

In this study, the research team employed specific methods to 
construct the ShipNav dataset and implement strategies for model 
improvement. The process began with the collection and annotation of 
images depicting small targets relevant to maritime navigation. The 
ShipNav dataset is distinctively curated to include images from the 
perspective of a ship’s bridge, capturing a variety of weather conditions 
and detailed shore-based backgrounds, which enhances the model’s 
practical applicability.

To improve the model’s detection accuracy and efficiency, the 
research team integrated advanced attention mechanisms, specifically 
CBAM and SimSPPF. Additionally, they introduced a novel loss function, 
the S-IoU, designed to refine the accuracy of target detection further. 
These enhancements are aimed at optimizing the model to handle the 
complexities of real-world maritime navigation scenarios more 
effectively.

While the proposed multi-scale object detection framework signifi
cantly enhances target detection capabilities in maritime navigation, it 
encounters limitations regarding scalability, adaptability to different 

ship types, and performance under varied environmental conditions. 
The framework’s optimization for specific scenarios raises questions 
about its scalability to different maritime operations and its adaptability 
across diverse ship environments, such as varying bridge designs and 
electronic interferences. Additionally, its efficacy in adverse weather 
conditions and integration with existing vessel systems presents chal
lenges that need to be addressed. Future research should focus on 
enhancing scalability, ensuring robust performance across different ship 
types and environmental conditions, and achieving seamless integration 
with existing navigation systems to ensure the framework’s applicability 
in real-world maritime operations.

5.4. Selection of baseline model

Considering the balance between performance and efficiency, this 
paper selects YOLOv5m as the baseline model instead of YOLOv11 or 
other small object detection models for deployment on edge servers. 
Firstly, YOLOv5m offers a good balance between speed and accuracy. 
For edge computing applications, such as deployments on edge servers, 
processing speed and response time are crucial. YOLOv5m provides 
faster inference speeds without sacrificing too much detection accuracy. 
Secondly, the model size of YOLOv5m is moderate, and its computa
tional requirements are suitable for the constraints of edge devices. Edge 
devices typically have limited processing power and storage space; the 
relatively smaller model of YOLOv5m can operate better on these de
vices without excessively consuming resources. Finally, YOLOv5 is a 
thoroughly validated model with numerous successful deployment 
cases. Compared to newly launched models such as YOLOv11, YOLOv5 
has higher technical maturity and lower risk.

5.5. Edge service system based on computer vision

This research significantly advances maritime safety and autono
mous navigation by enhancing the capability of detection systems to 
reliably identify small and distant objects in various environmental 
conditions. Integrating these improved detection frameworks into edge 
servers such as the Jetson Nano, combined with navigational aids like 
buoy lights and AIS, could substantially enhance maritime navigation by 
providing robust, real-time decision support directly on the vessel. The 
Jetson Nano, with its compact size and substantial processing power, is 
well-suited for deploying advanced object detection models that require 
real-time analysis and minimal latency. This setup would allow vessels 
to process complex visual and sensor data on-board, ensuring immediate 
response capabilities.

Utilizing buoy lights and AIS devices alongside the enhanced 
detection framework can significantly improve situational awareness. 
Buoy lights help in identifying safe waterways and navigation channels, 
while AIS provides vital information on nearby vessels, such as their 
identity, position, speed, and heading. By integrating these technologies 
with the detection framework on the Jetson Nano, vessels can achieve a 
higher level of navigational safety, effectively detect and avoid potential 
hazards, and comply with maritime traffic regulations more efficiently. 
This system could autonomously adjust to dynamic maritime environ
ments, offering predictive insights and enhanced decision-making sup
port, which is critical in avoiding collisions and navigating through 
complex maritime routes. Additionally, the integrated system can be 
programmed to alert crew members to potential hazards and automat
ically take preventive actions if needed, thereby increasing the overall 
safety and efficiency of maritime operations.

6. Conclusions

The research addresses the challenge of detecting small and distant 
targets in autonomous maritime navigation, which traditional systems 
like AIS and radar struggle with, especially in complex and congested 
maritime environments. It introduces a novel architecture that 
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integrates the Convolutional Block Attention Module (CBAM) and op
timizes the Spatial Pyramid Pooling (SPP) module, achieving a 5.1 % 
improvement in detection accuracy and significant reductions in model 
complexity. These enhancements help enhance maritime safety by 
enabling more reliable detection of small objects, crucial for navigating 
safely in challenging conditions.

The advancements detailed in this study are particularly relevant for 
the development and operational enhancement of autonomous vessels. 
The ability of our model to precisely detect small, distant targets in 
complex maritime environments underlines its potential for integration 
into autonomous ship navigation systems, which are pivotal for 
enhancing maritime safety. Autonomous vessels rely heavily on accurate 
and timely information about their surroundings to navigate safely, 
especially in congested or challenging maritime corridors. By improving 
the detection capabilities of small objects, such as buoys, small boats, 
and debris, the model directly contributes to reducing the risk of colli
sions and navigational errors. Furthermore, the application of this 
vision-based method extends to a variety of maritime operations, 
including search and rescue missions where rapid and reliable detection 
of objects is crucial, and environmental monitoring where accurate 
detection of small objects can aid in tracking pollution sources or marine 
life. The enhanced detection capability also supports the implementa
tion of geofencing and other regulatory compliance measures, ensuring 
vessels operate within safe and legally designated areas.

In summary, the technological advancements presented in this paper 
do not only push the boundaries of computer vision in maritime settings 
but also offer tangible benefits for the safety and efficiency of maritime 
operations, particularly in the context of increasingly autonomous 
maritime navigation systems. Future work will focus on further refining 
the model for deployment on edge devices, aiming to optimize its effi
ciency and applicability in real-world scenarios where computational 
resources are limited. This endeavor aligns with the ongoing need for 
advanced detection systems capable of operating in diverse and chal
lenging maritime settings, thereby contributing to the advancement of 
autonomous maritime navigation technologies.
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Glossary

Fn,Fs: The FLOPs of regular convolution and GhostConv
ýi : The i feature map among the m intrinsic feature map
c: The input channel
h́ : The height of the output feature map
h: The image height
wʹ: The width of the output feature map
w: The image width
AIS: Automatic Identification Systems
CBAM: Convolutional Block Attention Module
CNN: Convolutional Neural Networks
CSP: Cross-Stage Partial
CSP-Net: Cross-Stage Partial Network
FECG: Feature extraction module based on CBAM with GhostConv moudles
FPN: Fusion Pyramid Network
GhostConv: Ghost Convolution
GIoU: Generalized Intersection over Union
MS-COCO: Microsoft Common Objects in COntext
NMS: Non-Maximum Suppression
PAN: Path Aggregation Network
S-IoU: Scaled Generalized Intersection over Union
SimPPF: Similarity-based Spatial Pyramid Pooling Fusion
SPP: Spatial Pyramid Pooling
SPPF: Spatial Pyramid Pooling Fusion
SSD: Single Shot Multibox Detector
UAVs: unmanned aerial vehicles
USV: Unmanned Surface Vehicles
WSODD: Water Surface Object Detection Dataset
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