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Abstract: Appropriate health indicator (HI) and efficient prediction models are critical factors for 

accurate remaining useful life (RUL) prediction, particularly, when dealing with fluctuations and 

redundant information in the HI curve. To address these challenges, this study proposed an HI 

construction method for better characterization of the degradation behavior based on the entropy 

weight method and kernel entropy component analysis (EWM-KECA). The HI construction method 

can eliminate the fluctuations in HI and identify the fault change point position in HI. For RUL 

estimation, a bearing RUL prediction method was developed by integrating slope-based change point 

detection with a whale optimization algorithm (WOA)-Attention-bidirectional long short-term 

memory (BiLSTM) model. By eliminating more than 85% of duplicate data that is not useful for RUL 

prediction, this approach achieves more accurate RUL predictions while reducing computational 

resource requirements. The reliability and effectiveness of the proposed method are validated using 

the bearing degradation dataset. The results from comparative analysis and ablation experiments 

demonstrate that the proposed method consistently achieves superior performance. Compared with 

models such as CNN-Attention-BiGRU, WOA-CNN-BiGRU, and WOA-Attention-CNN, the mean 

absolute error, mean absolute percentage error, and root mean squared error values have been reduced 

by more than 50%, indicating the proposed RUL prediction methodology represents an advanced and 

effective approach. 

 

Index Terms: Remaining useful life, bearing, health indicator construction, slope change point 

detection, neural network 
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I. Introduction 

EARING is an indispensable component in many mechanical systems, and its performance directly 

affects the system's reliability and safety [1]. Through accurate RUL prediction, the bearing potential 

faults are found in advance, and the corresponding maintenance measures are taken to reduce 

unexpected downtime and damage [2]. However, the damage of bearing during operation is not 

observed directly, and constructing appropriate HI that accurately reflects the system degradation trend, 

has become a key issue for RUL prediction [3-5]. 

For a suitable HI construction, many scholars [6-8] have made a lot of efforts in synthesizing the 

degradation information of various aspects of the system from the hybrid metrics [9, 10] such as 

monotonicity, robustness, trendability, and consistency, compared with the single HI such as RMS [11], 

kurtosis [12] and peak-to-peak value [13], the performance of RUL prediction has been greatly 

improved. However, in the process of HI construction with this strategy, many problems emerged, 

which led to inaccurate RUL prediction, which is summarized as follows. 

(a) The weights of the prognostic metrics. HI construction by linear combination is one of the most 

popular approaches, and the weight determination of the prognostic metrics is very important. By the 

prognostic metrics, the feature parameters that best represent the bearing degradation behavior are 

selected, but, the different combinations of the prognostic metrics are led to select different sensitive 

features. It is necessary to develop an algorithm to determine the best weight, to build an optimal 

combination. 

(b) The fluctuations in the HI curve. The fluctuations in the HI curve are from the loss or damage of 

sensors, sudden changes in the environment, the noise or vibration from other equipment, and so on. 

These fluctuations indicate the change in system pattern and contain important information about the 

potential system failure. However, these fluctuations affect the accuracy when developing RUL 

prediction. Therefore, how to balance the relationship between this potential information and the 

accuracy of RUL prediction becomes an important problem. 

(c) The change point position in the HI curve. According to the bathtub curve, there are two 

performance transition points: early failure point and degradation beginning point, and these change 

points are important moments when the state or performance of the mechanical system changes. For 



RUL prediction, it is necessary to focus on the latter degeneration beginning point, in other words, 

RUL prediction is generally carried out in the stage after the degeneration beginning point. Therefore, 

how to accurately identify the position of the degradation beginning point is very important, which 

seriously affects the accuracy and computational efficiency of RUL prediction. 

To determine the weights of the prognostic metrics, statistical or multi-objective optimization methods 

have been adopted by many scholars [14-16]. Typically, Wang et al. [17] established a unified 

framework of weighted normalized square envelope sum to determine the relationships between 

kurtosis, negative entropy, Gini index, and smoothness index. Li et al. [18] used the self-adjusting 

analytic hierarchy process (SAAHP) to determine the weight of the monotonicity, correlation, and 

robustness. Gu et al. [19] found the weights by the convex optimization approach. However, these 

available methods are subject to human intervention and empirical biases. 

For eliminating the fluctuations in the HI curve, the fitting method is a major choice for many scholars 

[20, 21]. However, this fitting method typically relies on specific mathematical models such as 

polynomial regression [22], exponential regression [23], and linear regression [24]. In practice, HI data 

does not fully conform to the assumptions of these models, and inappropriate mathematical models are 

chosen, resulting in poor-fitting results. 

To identify the accurate position of the degradation beginning point, many experts detect the changes 

in the vibration or sound signals [25, 26]. Li et al. [27] used the principle to determine the degradation 

beginning point position. Wong et al. [28] proposed a gradient method to identify the degradation 

beginning point position. However, the method is susceptible to noise interference, leading to 

inaccurate partitioning. 

In addition, for RUL prediction models, the Attention-BiLSTM network is a widely studied model that 

integrates a BiLSTM network with an attention mechanism [29]. The prediction accuracy is improved 

due to BiLSTM captures the sequence information comprehensively by processing the data in forward 

and reverse directions, and the interpretability and effectiveness are improved by the attention 

mechanism that automatically focuses on important time steps to enhance the focus on key features, 

but this Attention-BiLSTM model contains a large number of parameters, requiring a large number of 

experiments for tuning. 



To sum up, to address the abovementioned four issues, a bearing RUL prediction method with slope-

based change point detection and WOA-Attention-BiLSTM model was proposed. First, a HI 

construction method with EWM-KECA was proposed to determine the weights of the prognostic 

metrics and fuse them into one-dimensional HI. Then, a slope-based change point detection was 

proposed to eliminate the fluctuations in HI and identify the fault change point position in HI. Finally, 

a WOA-Attention-BiLSTM model was established to develop RUL prediction. This paper aims to 

develop a comprehensive approach to improve the accuracy, stability, and computational efficiency of 

RUL prediction by focusing on three aspects: weight optimization, fluctuation handling, and change 

point localization. To achieve these objectives, a bearing RUL prediction method based on slope-based 

change point detection and the WOA-Attention-BiLSTM model is proposed. Thus, the contributions 

are summarized as follows. 

(1) The EWM-KECA approach is proposed to construct the HI characterized by the bearing 

degradation behavior. First, the weights of the prognostic metrics are determined by EWM, then the 

selected sensitive features are fused into one-dimensional HI retained more information by KECA. 

(2) A slope-based change point detection method is proposed to reduce the computational burden and 

increase the computational efficiency of the model. By locally weighted regression smoothing 

(LOWESS), the fluctuations in the HI curve are eliminated, and the accurate fault change point position 

is identified by the maximum second-order difference of the slope between adjacent points. This 

method serves as a critical step in enhancing the accuracy and reliability of the proposed RUL 

prediction framework. 

(3) A RUL prediction method with a WOA-Attention-BiLSTM model is proposed to improve the 

prediction accuracy. By adding a WOA [30] optimization algorithm layer into the original Attention-

BiLSTM model network structure, the best hyper-parameters are found for establishing the optimal 

Attention-BiLSTM model, to address issues such as complex parameter selection, high computational 

cost, strong data dependence, poor model stability, and interpretability. 

The remainder of the paper is organized as follows. The details of the proposed bearing RUL prediction 

method are described in Section 2. Experimental results and discussion are performed in Section 3. A 

summary of the paper is given in Section 4. 



 

II. The proposed bearing RUL prediction method 

Fig. 1 shows the procedure of the proposed bearing RUL prediction method with slope-based change 

point detection and WOA-Attention-BiLSTM model, including four sequential steps: (1) data 

acquisition and pre-processing, (2) HI construction with EWM-KECA, (3) slope-based change point 

detection method, and (4) RUL prediction with WOA-Attention-BiLSTM model. 

A: Data acquisition and pre-processing 

In this paper, the vibration signal is selected as the monitoring parameter, because the vibration signal 

contains sufficient operating behavior information and various frequency component information, 

which is used to monitor bearing states and analyze different types of faults, such as roller faults, inner 

ring fault or outer ring fault.  

The bearing's actual operation is complex and changeable, and the collected bearing vibration signals 

are inevitably doped with noise, which is similar to useful signals in their form and characteristics. To 

improve the accuracy and stability of the bearing RUL prediction model, the wavelet threshold de-

noising method is employed to de-noise the vibration signal.  

Then, 33 serial numbering feature parameters are extracted to construct the feature space in this paper, 

including 15 time-domain features, 6 frequency-domain features, 8 wavelet packet energy features, 

and 4 information entropy features. Here, the fifteen extracted time-domain features are mean, variance, 

root mean square, standard deviation, maximum, minimum, peak, waveform index, kurtosis index, 

absolute mean, skewness, square root magnitude, margin factor, impulse factor, peak-to-peak value, 

respectively. The six frequency-domain features are kurtosis frequency, mean frequency, skewness 

frequency, standard deviation frequency, centroid frequency, and root mean square frequency, 

respectively. Wavelet packet energy features are a 3-layer decomposition of wavelet packets, thus there 

are 8 wavelet packet energy features. The four information entropy features are approximate entropy 

[31], fast sample entropy [32], singular spectrum entropy [33], and spectrum exponential entropy [34], 

respectively. Furthermore, the above-mentioned 33 serial numbering feature parameters are 

logarithmic transformations by Eq. (1), then a total of 66 features were obtained in this paper, and the 

extracted features are named No. 1 to 66 in the above order. 
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where, , 1, 2, ,66mF m =   is the extracted features, and the first 33 features are the constructed feature-

space, named , 1,2, ,33iF i =   ; while the last 33 features are obtained through logarithmic 

transformation. 

 

 
Fig. 1. Procedure of the proposed bearing RUL prediction method 

 

B: HI construction with EWM-KECA 

Choosing suitable HI is the premise of accurate RUL prediction, and this paper makes efforts for the 

effectiveness of HI construction. To address the existing problems in statistical analysis methods such 

as lack of criteria for bearing parameter selection, insufficient degradation information for bearing 

feature, and missing of bearing small components, this paper proposes a HI construction method with 

EWM-KECA, including two phases: (1) Phase 1: weights determination for four prognostic metrics 



by EWM, and (2) Phase 2: feature dimension reduction fusion by KECA. The HI construction method, 

referred to HI construction method with EWM-KECA, is summarized below. 

(1) Phase 1: weight determination for four prognostic metrics by EWM 

EWM is a comprehensive evaluation method whose calculation process is simple and easy to 

understand, which is employed to determine the weights of the prognostic metrics with monotonicity 

(Mon), robustness (Rob), trendability (Tre), and Mutual Information (MI) [35, 36] because avoid the 

influence of subjective factors by making full use of the collected data. The calculation of EWM is 

summarized as follows. 

 

HI construction method with EWM-KECA 
Input: all the extracted features from the time domain, frequency domain, wavelet packet energy, 

and information entropy. 

Phase 1: weight determination for four prognostic metrics by EWM 

a. Calculate a score matrix A. 

b. Compute the entropy weight of the prognostic metrics according to Eqs. (3), (4) and (5). 

c. Determine the score for each feature with Eq. (6). 

d. Obtain the average of the feature composite scores, and compose the sensitive feature set above 

the average score. 

Phase 2: feature fusion by KECA 

a. A kernel matrix K of the sensitive feature set is established according to Eq. (8). 

b. The eigenvalues D and eigenvectors E of kernel matrix K are calculated by nonlinear mapping. 

c. Rényi entropy of eigenvalues D and eigenvectors E is calculated according to Eq. (10). 

d. KECA mapping is carried out and the relation between mapping and kernel matrix is established. 

e. The one-dimensional map with the highest contribution rate is selected as a HI. 

Outputs: one-dimensional health indicator, weights of the prognostic metrics, composite score, the 

average score 

 

Step 1: Establish the score matrix A . 
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where, m  is the number of the extracted features for the vibration signal ( m  is 66 in this paper), n  is 

the number of the prognostic metrics ( n  is 4 in this paper), and ijx  is the score of the thi  feature to the 

thj  prognostic metric, respectively. 

Step 2: Calculate the weight ijP  of the thi  feature in the thj  prognostic metric. 
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Step 3: Find the entropy of each prognostic metric. 
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Step 4: Compute the weight of the thi  prognostic metric. 
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Step 5: Calculate the score of the thi  feature. 

 1 1 2 1xi i i n inScore x xω ω ω= ⋅ + ⋅ + + ⋅  (6) 

Step 6: Select the feature that is higher than the average score as the sensitive feature set. 

 { }( )i iF Score mean Score= ≥  (7) 

(2) Phase 2: feature fusion by KECA 

The selected sensitive features by EWM are high-dimensional data, the HI for RUL prediction is 

usually one-dimensional data. Thus, KECA is employed to fuse the sensitive features into one-

dimensional data. KECA introduces the concept of entropy based on KPCA, and it is a new data 

transformation method that carries out entropy component analysis in feature space with good 



nonlinear processing ability. The feature fusion process of KECA is as follows. 

Step 1: Calculate the Euclidean distance of the sensitive features, and establish the kernel matrix K  

through the Parzen window function. 

 T
2 2 221 1 1 1

1 1 1( ) ( , ) ( , ) ( )ˆ d ,
N N

i j i j
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V p k x x k x x x k x x
N N Nσ σ σ= = = =

= ∑ ∫ = ∑ = I KI  (8) 

where, N  is the number of selected features, K  is the kernel matrix, I  is a 1N ×  vector. 

Step 2: Compute the eigenvalues and eigenvectors of the kernel matrix K  by nonlinear mapping. 

 TK EDE=  (9) 

where, 1 2( , , , )ND diag λ λ λ=   and 1 2[ , , , ]NE e e e=   are the eigenvalue matrix and eigenvector 

matrix, respectively. 

Step 3: Calculate the Rényi entropy of the eigenvalues and the eigenvectors  

 2( ) log ( )dH p p x x= − ∫  (10) 

where, ( )p x  is the probability density function. 

Step 4: Reorder the eigenvalues and the eigenvectors 

 ( )2T
i ieξ λ= I  (11) 

where, ξ  is the correlation coefficient of Rényi entropy. Sort the correlation coefficient of Rényi 

entropy to obtain 
1 2 N
ξ ξ ξ> > > , and the first p  eigenvalues are selected as the main component 

direction and standardize their eigenvectors. 

Step 5: Establish the relation between the mapping and kernel matrix by KECA. 

 1/2 T
ecaΦ kD E=  (12) 

where, ecaΦ  is the projection of eigenvalues and eigenvectors.， T
kE is a matrix of feature vectors. 

Step 6: Output the highest contribution rate mapping as the one-dimensional HI. 

 

C: Slope-based change point detection method 

As shown in Fig. 2, in general, the constructed HI has the features of heavy-tail distribution and two 

stages: a stable operation period and a sharp degradation period. In the first stage, HI is stable and the 



degradation features are not obvious. In the second stage, the degradation trend of HI was obvious. 

Therefore, there is a fault change point between the stable operation period and the sharp degradation 

period of HI, and the degraded data of the second stage is used in the RUL prediction model to avoid 

interfering with the accuracy and the computational burden due to non-degraded data. However, so far, 

the fault change points are generally determined according to the experience of experts or by setting a 

threshold. These two methods have great subjective consciousness, leading to inaccurate fault change 

point detection. For this reason, the CUSUM algorithm [37], Cauchy distribution [38], Bayes [39], and 

genetic algorithm [40] are applied to fault change point detection, but these methods have problems 

such as a large amount of computation, long time, and difficult threshold determination. 

 

 

Fig. 2. Slope-based change point detection algorithm 

 

To address the above problems, a slope-based change point detection algorithm is proposed in this 

paper. When the bearing starts to undergo rapid degradation, the slope of the degradation curve is 

changed rapidly. Different from other methods, this paper defines the maximum point of local slope 

increase (decrease) speed change as the failure point. Considering that a curve gradually rises and 

suddenly accelerates after a certain time, or a curve begins to accelerate and decline, and suddenly 



slows down and gradually flattens after a certain point, that is, the point is the slope of the curve. The 

difference in slope of curves on both sides of a point can reflect the amplitude of slope change on both 

sides of the point, that is, the first-order difference, but its "turning point" is not the point of maximum 

slope change, but the point of maximum local slope increase (decrease) speed change. Under the 

condition of equal spacing, the second-order difference of slope change amplitude reflects the increase 

(decrease) rate of slope change. By finding the local maximum value of slope change plus (minus) 

velocity, the position of slope change point can be found. 

The slope-based change point detection algorithm, which plays a key role in identifying critical 

transitions, is summarized in detail, and its step-by-step procedure is outlined as follows. 

 

The slope-based change point detection algorithm 
Input: HI  

a. Smooth the HI data with locally weighted regression smoothing (LOWESS) according to Eqs. 

(13), (14) and (15). 

b. Select the midpoint of adjacent observation points on the HI curve as the exploration point, and 

form a sequence of exploration points as the sliding window. 

c. Calculate the linear regression coefficient for the data points left or right of each exploration point. 

d. Compute the average slope of the left and right sides of the exploration point by the regression 

coefficient according to Eq. (17). 

e. Calculate the first-order difference of the slope with Eq. (18). 

f. Calculate the second-order difference of the slope by Eq. (19). 

g. Determine the interval with the largest slope change. 

h. Determine the position of the fault change point according to Eq. (20) 

Outputs: the position of the fault change point 

 

Step 1: Smooth the HI with locally weighted regression smoothing (LOWESS). Assuming that data 

requiring smoothing processing is determined by x  and y , a smoothed value of ( ),x y  is obtained by 

performing weighted regression specifying a range of data adjacent to x . Regression coefficients are 

defined as follows: 
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where, ( )d x  is the furthest distance between x  and ix  in the specified span width.  

The first-order polynomial fit with the formula y ax b= +  is used to estimate the value of ŷ  at x . 

The slope a and constant b are defined as: 

 2 2 2( )( ) / [ ( ) ]i ia w x x y y w x x= ∑ − − ∑ −  (14) 

 b y ax= −  (15) 

where, x and y  are weighted averages of x  and y , respectively. 

The robust weight function is defined to calculate the new weight using the residual of the estimated 

formula. The robust weighting is: 
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 and ˆi i ir y y= −  is the error of each y value. 

Repeat the new weighting method in Eqs. (13)-(15) to obtain a smooth value for any point ( ),x y  after 

several iterations. In theory, the number of iterations should be less than 4. 

Step 2: Select the midpoint of adjacent observation points on the curve as an exploration point to form 

an exploration point sequence as a sliding window, and make linear regression on n data points left 

exploration point to obtain regression coefficient, which is recorded as ( ) ( )n
l iy x  ; Similarly, makes 

linear regression on n data points right exploration point to obtain regression coefficient, which is 

recorded as ( ) ( )n
r iy x . When n= 2, 3, 4, Weighted averages of ( ) ( )n

l iy x  and ( ) ( )n
r iy x  are taken, with the 

weight being 2n , the weighted average calculation formula is obtained as follows: 

 2 (2) 2 (3) 2 (4)
2 2 2

1( ) [2 ( ) 3 ( ) 4 ( )]
2 3 4j i j i j i j iy x y x y x y x= × + × + ×
+ +

 (17) 

where, 2, 3, and 4 represent different window sizes. (2) ( )j iy x  is the regression coefficient obtained by 

performing a linear regression on the two data points before and after point ix  , (3) ( )j iy x   is the 



regression coefficient obtained by performing a linear regression on the three data points before and 

after point ix , and so on. 

Step 3: As ix  increases, the curve slope is increased, and the first-order difference is 

 Δ ( ) ( ) ( )i r i l iS x y x y x= −  (18) 

Step 4: As ix  increases, the slope changes rapidly at first, then gradually decreases, the second-order 

difference is 

 2
1Δ ( ) Δ ( ) Δ ( )i i iS x S x S x−= −  (19) 

Step 5: Along the sequence ix , the maximum value in the sequence is obtained, and its corresponding 

interval is ( 1ix −  , ix  ), which is the interval where the slope change point is located. Combining the 

interval ( 2ix − , 1ix − ) and ( ix , 1ix + ) and their corresponding values, the accurate value of the change point 

position is obtained. 
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where, x∗  is the precise value of the slope change point. 

To evaluate the accuracy of change point detection methods, this paper defines an error formula. 

 | Detected Position Actual Position |Error 100%
Total Distance

− = × 
 

 (21) 

where, Detected Position represents the detected change point position, Actual Position represents the 

actual change point position, and Total Distance represents the total length of the data sequence. 

 

D: RUL prediction with WOA-Attention-BiLSTM model 

By inputting the HI after the fault change point into BiLSTM, the computational burden is reduced 

and the computational efficiency is improved due to eliminating the interference of useless information. 

Although information is processed in both directions by BiLSTM, there is still an issue of information 

loss. To alleviate the aforementioned problem with BiLSTM, the addition of an Attention Mechanism 



is a common practice. BiLSTM-Attention combines the bidirectional features of BiLSTM and the 

attention mechanism, enabling important information to be captured more effectively. However, the 

BiLSTM-Attention model has more parameters and a more complex structure, making the 

optimization process of the model more challenging, especially when insufficient data leads to 

potential overfitting. To address these issues, the WOA algorithm is utilized in this paper for 

optimizing the parameters of the BiLSTM-Attention model. 

The structure of the WOA-Attention-BiLSTM model is depicted in Fig. 3, and the network structure 

parameters are shown in Table 1, including an input layer, two LSTM layers, an attention layer, and a 

fully connected output layer. In the input layer, vibration time series data is used as input. The first 

BiLSTM layer learns and encodes the input sequence, where each time step contains information about 

the input sequence. The second BiLSTM layer further learns and encodes the output sequence of the 

first BiLSTM layer to generate deeper representations. The attention mechanism is introduced to weigh 

the output sequence of the second BiLSTM layer by learning the attention weights of each time step, 

thereby better highlighting the important time steps. By fully connected layers, the weighted time step 

representation is nonlinear and transformed into a more abstract feature representation. Finally, the 

final model output is generated through the output layer. 

 

 



Fig. 3. Proposed WOA-Attention-BiLSTM model structure 

 

 

Table 1. Network structure parameter 

Parameter Value Parameter Value 

BiLSTM neurons 512 Optimizer Adam 

Dropout Rate 0.3 Epochs 800 

Hidden Layer Neurons 256 Attention Mechanism 64 

Hidden Layer Dropout 0.001   

 

The Attention-BiLSTM model is optimized using the WOA algorithm to reduce redundant calculations, 

improve the overall computational efficiency of the model, and lower the computational complexity. 

The specific optimization process is as follows: 

Step 1: Initialize the parameters of the whale algorithm iW , including the maximum number of 

iterations T, whale population N, optimality seeking dimension, and upper and lower limits of 

parameters.  

Step 2: Initialize the position and size of the whale population, where the learning rate is a decimal and 

the other parameters are integers.  

Step 3: Initialize the global optimal solution, define the initial value of the global optimal solution as 

infinity, then traverse each whale in the population, calculate its fitness value, and update the position 

of the global optimal solution and the optimal solution.  
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where, fitness is the adaptability function for each whale. 

Step 4: Perform iterative operations. In each iteration, each whale in the population is traversed, 

updating its position based on its position and speed. In this process, the exploration strategy and attack 

strategy in WOA are adopted, and the updated position is calculated by a random number, according 

to Eqs. (23) and (24), update the whale's position. 



 1jX X A D+ ∗= − ⋅  (23) 

 jD C X X∗= ⋅ −  (24) 

where, jX  represents the current position of the whale, 1jX +  represents the next position of the whale 

under the influence of prey, which is calculated according to Eq. (27). X ∗   represents the current 

optimal position of the whale, i.e. the position of the prey; D  represents the distance between the 

whale and the prey. A  and C  are obtained as follows. 

 12A ar a= −  (25) 

 22C r=  (26) 

With each iteration, the convergence factor linearly decreases from 2 to 0, in which 1r  and 2r  take 

values in the range of [ ]0,1 . 
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where, the range of p  is [ ]0,1 , when 0.5p ≥ , the position is updated in a spiral shape, with b  being 

the logarithmic spiral shape constant, and l  taking a value within the range of [ ]0,1 ， when 0.5p < , 

a random position is chosen for updating, and randX  is a random position of the whale. 

Step 5: The updated positions are bounded to ensure that the whale's position is within the search space. 

Calculate fitness values for updating positions, and update global optimal solutions and positions of 

optimal solutions by the fitness values 

 ( ) ( ) ,i ifitness W fitness X X W∗ ∗< =  (28) 

Step 6: At the end of each iteration, the fitness of the global optimal solution value is recorded, and the 

current iteration number, the global optimal solution, and the position of the optimal solution are output. 

Finally, the global optimal solution, the process of fitness value change, and the position of the optimal 

solution in each iteration are returned as results.  

To better reflect the error between the predicted and actual values for different RUL models, Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), Mean 



Absolute Percentage Error (MAPE), and coefficient of determinability (R²) is employed as the 

evaluation indicators. The calculation formulas are as follows. 
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where, u  is the training sample number. 

 

III. Experimental results and discussion 

A: Experimental data description 

XJTU-SY bearing dataset is used to verify the accuracy and effectiveness of the proposed RUL 

prediction method [41]. Three working conditions were set up in the test, and five rolling bearings with 

LDKUER204 were tested under each working condition. Two acceleration sensors (PCB352C33) were 

used to collect the bearing vibration data. The signal was sampled every 1min at a sampling frequency 

of 25.6kHz and a sampling time of 1.28s, i.e.32768 vibration signal data points were collected every 

1 min. The specific information of the 15 tested bearings is shown in Table 2, including the sample 

number, rated life, actual life and failure location, and so on. 

 

Table 2. Description of XJTU-SY experimental data 

Conditions Dataset Samples Rated life Actual life Failure location 

Condition 1 

(Speed 2100 r/min, 

Load 12KN) 

Bearing1-1 123 

5.60~9.68 h 

2 h 3 min Outer ring 

Bearing1-2 161 2 h 41 min Outer ring 

Bearing1-3 158 2 h 38 min Outer ring 

Bearing1-4 122 2 h 2 min Cage 

Bearing1-5 52 52 min Inner ring, outer ring 



Condition 2 

(Speed 2250 r/min, 

Load 11KN) 

Bearing2-1 491 

6.79~11.73 h 

8 h 11 min Inner ring 

Bearing2-2 161 2 h 41 min Outer ring 

Bearing2-3 533 8 h 53 min Cage 

Bearing2-4 42 42 min Outer ring 

Bearing2-5 339 5 h 39 min Outer ring 

Condition 3 

(Speed 2400 r/min, 

Load 10KN) 

Bearing3-1 2538 

8.47~14.63 h 

42 h 

18min 
Outer ring 

Bearing3-2 2496 
41 h 

36min 

Inner ring, outer ring, 

cage, roller 

Bearing3-3 371 6 h11 min Inner ring 

Bearing3-4 1515 
25 h 

15min 
Inner ring 

Bearing3-5 114 1 h 54 min Outer ring 

 

B: Bearing RUL prediction 

All the samples are divided into the training set and the testing set with a ratio of 7:3. 

COMPUTER ENVIRONMENT: All algorithms were performed on the MATLAB 2022 Software 

platform on a personal computer equipped with a 12th Gen Intel(R) Core (TM) i5-8300 CPU, and 

16.0G of RAM. 

1) Comparative analysis of HI construction 

Fig. 4 shows the results of the HI construction process, which contains the following steps: (a) wavelet 

de-noised of the raw bearing signal, (b) feature extraction from the de-noised signal, (c) the weight 

determination of prognostic metrics with EWM, (d) the fitness value of all the features, (e) the selected 

sensitive features, (f) one-dimensional HI obtained using KECA. 

 



 

Fig. 4. Results of HI construction process 

As seen in Fig.4 (a), the full-life-cycle signal shows the features of trend rise and two stages, and the 

burr in the raw signal is eliminated and the fluctuation of the signal is reduced by wavelet threshold 

de-noised method.  

To mine the implicit degradation information in the vibration signal, 33 degradation features containing 

time domain, frequency domain, information entropy, and wavelet energy features were extracted from 

the de-noised vibration signals by referring to the feature preprocessing method in Section 2.1. To 

further improve the characterization performance of the extracted degradation features, the 33 

degradation features were logarithmic transformations, to obtain 66 degradation features in total. It can 

be observed from Fig.4 (b), that the 66 extracted features in bearing #1-1, bearing #2-1, or bearing #3-

1, are all chaotic, and their regularities are not obvious if such data is directly used for RUL prediction, 

the accuracy is seriously affected. Therefore, it is necessary to select the sensitive features. 

Before the sensitive feature selection, the weight of four prognostic metrics such as Mon, Rob, Tre, 

and MI is determined by EWM, and the fitness value is computed for the sensitive feature selection. 

Four prognostic metrics such as Mon, Rob, Tre, and MI are calculated for 66 extracted features, and 

the available weight determination methods are often determined manually by experts' experience, 

which is subjective. Therefore, the EWM method is proposed in this paper to determine the weights of 

the four prognostic metrics. 

From Fig.4 (c) and Fig.4 (d), the weights of four prognostic metrics such as Mon, Rob, Tre and MI in 

bearing #1-1, bearing #2-1, or bearing #3-1 are determined as [0.755, 0.004, 0.126, 0.115], [0.513, 



0.004, 0.264, 0.218], and [0.369, 0.003, 0.457, 0.171], respectively. Then, the features that exceed the 

average fitness value are selected as the sensitive features. Here, the average fitness values for bearing 

#1-1, bearing #2-1, or bearing #3-1 are 0.6929, 0.9964, and 1.1760, respectively, and the selected 

sensitive features are shown in Fig.4 (e). 

It can be observed that, compared with the raw features in Fig.4 (b), the selected sensitive features in 

Fig.4 (e) show better degradation features and regularity, and the performance of RUL prediction using 

such selected sensitive features is better. 

From Fig. 4(f), by KECA, the selected sensitive features are constructed into one-dimensional HI, and 

it can be observed that the constructed HI curves that contain 15 bearings under three working 

conditions show the features of rising trend and two stages as with the raw signal, indicating that the 

running behavior of the bearing is well characterized. 

To verify the accuracy of the proposed HI construction method, eight methods such as AHP-KECA, 

FCE-KECA, EWM-PCA, EWM-UMAP, AHP-PCA, AHP-UMAP, FCE-PCA, and FCE-UMAP are 

constructed, from Analytic Hierarchy Process (AHP), Fuzzy Comprehensive Evaluation (FCE), 

Principal Component Analysis (PCA) and UMAP, for comparison with the proposed EWM-KECA 

approach, the comparison results are shown in Table 3 and Fig. 5. 

 

Table 3. Comparison of HI construction methods 

Metr

ics 

EWM-

KECA 

AHP-

KECA 

FCE-

KECA 

EWM-

PCA 

EWM-

UMAP 

AHP-

PCA 

AHP-

UMAP 

FCE-

PCA 

FCE-

UMAP 

#1-1 

Mon 0.230 0.033 0.016 0.016 0.049 0.016 0.016 0.016 0.131 

Rob 0.977 0.827 0.929 0.842 0.784 0.842 0.757 0.842 0.624 

Tre 0.962 0.512 0.390 0.384 0.750 0.384 0.591 0.384 0.096 

MI 4.322 4.062 4.280 4.176 4.158 4.322 4.610 4.112 4.320 

#2-1 

Mon 0.053 0.033 0.020 0.045 0.041 0.045 0.037 0.045 0.037 

Rob 0.943 0.935 0.943 0.611 0.739 0.611 0.685 0.611 0.800 

Tre 0.697 0.142 0.097 0.477 0.438 0.475 0.224 0.477 0.305 

MI 7.759 7.157 6.935 6.587 8.087 6.575 6.627 6.587 6.206 



#3-1 

Mon 0.040 0.007 0.010 0.010 0.004 0.010 0.015 0.010 0.008 

Rob 0.926 0.923 0.922 0.736 0.748 0.736 0.719 0.736 0.687 

Tre 0.409 0.329 0.337 0.019 0.502 0.019 0.558 0.019 0.323 

MI 6.347 6.315 6.309 6.167 6.840 6.168 5.998 6.168 5.895 

 

 

Fig. 5. Comparative results of HI construction methods 

 

From Table 3 and Fig. 5, it can be observed that EWM-KECA has achieved the best performance with 

the maximum values of the Mon, Rob, and Tre prognostic metrics in bearing #1-1, bearing #2-1, or 

bearing #3-1. For Mon prognostic metric, the minimum value of bearing #1-1 appears in AHP-PCA, 

FCE-KECA, AHP-UMAP, and FCE-PCA, and the minimum values of bearing #2-1, or bearing #3-1 

appear in FCE-KECA and EWM-UMAP, respectively. For Rob prognostic metric, the minimum values 

of bearing #1-1 and bearing #3-1 all appeared in FCE-UMAP, and the minimum values of bearing #2-

1 appeared in EWM-PCA, AHP-PCA, and FCE-PCA. For the Tre prognostic metric, the minimum 

values of bearing #1-1 and bearing #2-1 all appeared in FCE-UMAP, and FCE-KECA, respectively, 

and the minimum values of bearing #3-1 appeared in EWM-PCA. AHP-PCA, and FCE-PCA. 

For the MI prognostic metric, the minimum values of bearing #1-1, bearing #2-1, and bearing #3-1 

appeared in AHP-KECA, AHP-PCA, and FCE-UMAP, respectively. The maximum value of bearing 

#1-1 appeared in AHP-UMAP, and the maximum values of bearing #2-1 and bearing #3-1 all appeared 

in EWM-UMAP. EWM-KECA has achieved the second-maximum value with small errors of -6.25%, 

-4.06%, and -7.21% than the maximum value in bearing #1-1, bearing #2-1, or bearing #3-1, 



respectively. Generally, it is acceptable compared with all other methods.  

To sum up, it is concluded that EWM-KECA has obtained the best performance among these HI 

construction methods in bearing #1-1, bearing #2-1, and bearing #3-1. 

2) Comparative analysis of change point detection 

To verify the effectiveness of the slope-based change point detection method, three generated data are 

employed to comparative analysis with six other fault change point detection algorithms such as 

Cauchy outlier detection algorithm(CODA) [42], CUSUM Maximum Cumulative Sum (CUSUM-

MCS) [43], CUSUM Minimum Mean Squared Error (CUSUM-MMSE) [44], Hidden Markov Model 

(HMM) [45], shape-based multiple segmentation algorithm(SMSA) [46] and time-varying Kalman 

Kilter (TVKF) [47]. The three generated data contain 600 data points with a time interval of 1s between 

each consecutive data point. The change point positions of the three generated data are 299th second, 

200th second, and 300th second, respectively. The comparative results for seven fault change point 

detection algorithms are shown in Table 4 and Fig. 6. Here, the errors are computed by Eq. (21), 

Detected Position represents the detected change point position, Actual Position represents the actual 

change point position, and Total Distance represents the total length of the data sequence. 

 

Table 4. Comparison of fault change point detection algorithms 

Models Data 1 Error Data 2 Error Data 3 Error 

Proposed method 299 0 200 0 300 0 

CODA 226 0.120 284 0.140 302 0.003 

CUSUM-MCS 393 0.158 226 0.120 434 0.223 

CUSUM-MMSE 457 0.265 490 0.483 471 0.285 

HMM 299 0 231 0.052 — — 

SMSA 299 0 150 0.083 525 0.420 

TVKF 299 0 247 0.078 388 0.147 

 



 

Fig. 6. Comparative results for change point detection methods 

 

As can be seen from Table 4 and Fig. 6, for the three generated data, the proposed slope-based change 

point detection has all recognized the accurate change point position with zero error. For the first 

generated data, HMM, SMSA, and TVKF recognize the accurate change point position with zero error, 

but for the second generated data and the third generated data, HMM, SMSA, and TVKF have achieved 

worse performance results. Especially, for the third generated data, the largest error appears in SMSA 

and HMM fails to detect the change point of such data. For the first generated data and the second 

generated data, the largest error appears in CUSUM-MMSE. Through the three comparative results 

with these three generated data, it is concluded that the proposed slope-based change point detection 

algorithm has achieved the best detection accuracy. Therefore, this paper adopts the slope-based 

change point detection to identify the change point, and the HI data after this identified change point 

are imported into the RUL prediction model to eliminate the interference of the stable data before this 

identified change point, to increase the computational efficiency and the accuracy of RUL prediction 

model. 

From Fig. 4(f), the constructed HI shows the features of a heavy tail and two stages. Next, the 

constructed HI is imported to identify the change point position, and the results are shown in Table 5 

and Fig. 7. As seen in Table 5 and Fig. 7, since the HI data before the identified change point position 

is relatively stable and the degradation is not obvious, these data are generally discarded in the RUL 

prediction, while the HI data after the identified change point position often shows good degradation 

features and is retained as the input of the RUL prediction model.  

 

Table 5. Units for Magnetic Properties 



Bearing Position Bearing Position Bearing Position 

#1-1 69 #2-1 447 #3-1 2388 

#1-2 111 #2-2 95 #3-2 2031 

#1-3 128 #2-3 279 #3-3 233 

#1-4 76 #2-4 29 #3-4 933 

#1-5 35 #2-5 223 #3-5 81 

 

 
Fig. 7. Results for bearing change point detection 

 

To further verify the effect of the slope-based change point detection, the three minutes before the 

change point (three minutes preceding) and the three minutes after the change point (three minutes 

following) were treated as new change points, the full-cycle data and the processed data that only 

retained the degraded data after the change point position (or the processed data that eliminated the 

stable data before the change point position) are imported into the LSTM model respectively, and the 

comparison results are shown in Table 6 and Fig. 8.  

 

Table 6. Comparative results with or without change point detection 

Data 
Bearing #1-1 Bearing #2-1 Bearing #3-1 

R² MAE MAPE Time R² MAE MAPE Time R² MAE MAPE Time 

Full cycle 

data 
0.944 0.019 0.053 17 0.907 0.025 0.032 23 0.978 0.176 0.117 96 

Three 0.932 0.017 0.019 14 0.843 0.039 0.044 21 0.970 0.267 0.052 41 



minutes 

before 

Processed 

data 
0.998 0.005 0.010 13 0.984 0.022 0.028 17 0.998 0.135 0.027 36 

Three 

minutes 

after 

0.963 0.013 0.014 12 0.834 0.042 0.063 16 0.980 0.240 0.047 34 

 

 

 
Fig. 8. Comparative results with or without change point detection 

 

As can be seen from Table 6 and Fig. 8, all evaluation indicators such as R², MAE, and MAPE for the 

processed data are better than the other three groups of data, proving the validity and practicability of 

the slope-based change point detection method. In terms of the time cost, the processed data is more 

time-saving than the full-cycle data due to eliminating the stable data before the change point position. 

The larger the amount of data, the more time-saving. Thus, it is concluded that the RUL prediction 

model embedded with the change point detection algorithm effectively reduces the computational 

burden and improves the computational efficiency. 



3) Comparative analysis of RUL Prediction Models  

For simplicity, the following sections will only use bearing1-1 data for case validation. Three different 

optimization algorithms such as Moth-Flame Optimization (MFO) [48], Red tailed hawk algorithm 

(RTH) [49], and Wild horse optimization (WHO) [50] are employed to verify the superiority of the 

WOA optimization algorithm, the comparison results are shown in Table 7 and Fig. 9(a), and the 

prediction error for four algorithms are shown in Fig. 9(b). 

From Table 7 and Fig. 9(a), it can be seen more intuitively that the histograms of WOA algorithm with 

MAE, MAPE, and RMSE are all the lowest than three other algorithms such as MFO, RTH, and WHO, 

and From Fig.9 (b), it can be seen that the prediction result of WOA algorithm is the closest to the 

actual prediction value, indicating WOA optimization algorithm shows the best performance in all 

evaluation indicators such as MAE, MAPE and RMSE than three other optimization algorithms.  

Compared to MFO, the three evaluation indicators with MAE, MAPE, and RMSE of WOA have 

decreased by 58.24%, 57.44%, and 58.91%, respectively. Compared to RTH, the three evaluation 

indicators with MAE, MAPE, and RMSE of WOA have decreased by 48.91%, 48.07%, and 48.64%, 

respectively. Compared to WHO, the three evaluation indicators with MAE, MAPE, and RMSE of 

WOA have decreased to 76.93%, 76.35%, and 77.31%, respectively.  

These results show that the WOA optimization algorithm is significantly better than other optimization 

algorithms in all evaluation indicators and the prediction error, proving its effectiveness. Thus, WOA 

is chosen to optimize the Attention-BiLSTM model. 

Ablation experiments are performed to verify the accuracy of the WOA-Attention-BiLSTM model, 

the comparative models are WOA-Attention-LSTM, WOA-LSTM, WOA-BiLSTM, Attention-LSTM, 

and Attention-BiLSTM, and MAE, MAPE, and RMSE are used to evaluate the prediction performance, 

the comparative results of ablation experiments are shown in Table 7 and Fig. 9 (c), and the prediction 

error is shown in Fig. 9 (d). 

As can be seen from the data in Table 7 and Fig. 9 (c), it can be seen more intuitively that the histograms 

of WOA-Attention-BiLSTM with MAE, MAPE, and RMSE are all the lowest than the other models 

such as WOA-Attention-LSTM, WOA-LSTM, WOA-BiLSTM, Attention-LSTM, and Attention-

BiLSTM, and From Fig.9 (d), it can be seen that the prediction result of WOA-Attention-BiLSTM is 



the closest to the actual prediction value, indicating WOA-Attention-BiLSTM shows the best 

performance in all evaluation indicators in ablation experiments. 

Compared to WOA-Attention-LSTM, the MAE, MAPE, and RMSE of WOA-Attention-BiLSTM have 

reduced by 38.46%, 38.37%, and 50.77%, respectively. Compared to WOA-LSTM, the MAE, MAPE, 

and RMSE of WOA-Attention-BiLSTM have reduced by 63.64%, 61.76%, and 73.10%, respectively. 

Compared to WOA-BiLSTM, the MAE, MAPE, and RMSE of WOA-Attention-BiLSTM have 

reduced by 60.00%, 59.48%, and 67.65%, respectively. Compared to Attention-LSTM, the MAE, 

MAPE, and RMSE of WOA-Attention-BiLSTM have reduced by 61.90%, 60.90%, and 70.14%, 

respectively. Compared to Attention-BiLSTM, the MAE, MAPE, and RMSE of WOA-Attention-

BiLSTM have reduced by 65.22%, 67.00%, and 68.61%, respectively. Thus, by the results of ablation 

experiments, the WOA-Attention-BiLSTM model outperformed all other models, demonstrating the 

superiority of the WOA-Attention-BiLSTM model in significantly enhancing the prediction accuracy 

and reducing errors. 

To verify the superiority of the proposed WOA-Attention-BiLSTM model, the STOA RUL prediction 

methods such as WOA-BP, WOA-ELM, WOA-GRU, WOA-BiTCN, CNN-Attention-BiGRU, WOA-

CNN-BIGRU, and WOA-Attention-CNN are chosen for the comparative test, the results are shown in 

Table 7 and Fig. 9 (e), and the prediction error is shown in Fig. 9 (f). 

As can be seen from the data in Table 7 and Fig. 9 (e), it can be seen more intuitively that the histograms 

of WOA-Attention-BiLSTM with MAE, MAPE, and RMSE are all the lowest than the STOA models 

such as WOA-BP, WOA-ELM, WOA-GRU, WOA-BiTCN, CNN-Attention-BiGRU, WOA-CNN-

BIGRU and WOA-Attention-CNN and From Fig.9 (f), it can be seen that the prediction result of 

WOA-Attention-BiLSTM is the closest to the actual prediction value, indicating WOA-Attention-

BiLSTM shows the best performance in all evaluation indicators such as MAE, MAPE and RMSE 

than the STOA models. 

Compared to WOA-BP, the MAE, MAPE, and RMSE of WOA-Attention-BiLSTM have reduced by 

93.30%, 93.43%, and 92.35%, respectively. Compared to WOA-ELM, the MAE, MAPE, and RMSE 

of WOA-Attention-BiLSTM have reduced by 84.75%, 83.62%, and 86.82%, respectively. Although 

the performance of WOA-ELM is a little better than that of WOA-BP, there is still a significant gap 



compared with WOA-Attention-BiLSTM. Compared to WOA-GRU, the MAE, MAPE, and RMSE of 

WOA-Attention-BiLSTM have reduced by 75.45%, 74.54%, and 76.50%, respectively. The WOA-

GRU method performs better, but it still falls short of the performance level of WOA-Attention-

BiLSTM. Compared to WOA-BiTCN, the MAE, MAPE, and RMSE of WOA-Attention-BiLSTM 

have reduced by 77.84%, 75.91%, and 81.46%, respectively. This indicates that the WOA-BiTCN 

method has a larger error and lower prediction accuracy. Compared to CNN-Attention-BiGRU, the 

MAE, MAPE, and RMSE of WOA-Attention-BiLSTM have reduced by 57.59%, 57.23%, and 56.45%, 

respectively. Although the performance of CNN-Attention-BiGRU is already quite good, WOA-

Attention-BiLSTM still has a higher accuracy. Compared to WOA-CNN-BiGRU, the MAE, MAPE, 

and RMSE of WOA-Attention-BiLSTM have reduced by 82.98%, 87.69%, and 65.31%, respectively. 

Although WOA-CNN-BiGRU performs well, there is still a significant improvement in the prediction 

accuracy with WOA-Attention-BiLSTM. Compared to WOA-Attention-CNN, the MAE, MAPE, and 

RMSE of WOA-Attention-BiLSTM have reduced by 55.56%, 66.67%, and 60%, respectively. While 

WOA-Attention-CNN achieves a competitive performance, WOA-Attention-BiLSTM still 

demonstrates superior predictive accuracy. 

In summary, the WOA-Attention-BiLSTM model significantly outperforms the SOTA RUL prediction 

models and has achieved the highest prediction accuracy with the minimum values of MAE, MAPE, 

and RMSE, demonstrating the effectiveness and superiority of the WOA-Attention-BiLSTM model in 

reducing prediction errors and improving model performance. 

 

Table 7. Comparative analysis of the optimization algorithms, ablation experiments and SOTA RUL 

prediction models  

 Models MAE 
Relative 

error 
MAPE 

Relative 

error 
RMSE 

Relative 

error 

Optimization 

algorithms 

WOA-Attention-BiLSTM 0.008  0 0.008  0 0.017  0 

MFO-Attention-BiLSTM 0.018  58.24% 0.019  57.44% 0.042  58.91% 

RTH-Attention-BiLSTM 0.015  48.91% 0.015  48.07% 0.033  48.64% 

WHO-Attention-BiLSTM 0.033  76.93% 0.034  76.35% 0.076  77.31% 

Ablation 

experiments 

WOA-Attention-BiLSTM 0.008 0 0.008  0 0.0172  0 

WOA-Attention-LSTM 0.013  38.46% 0.013  38.37% 0.0349  50.77% 



WOA-LSTM 0.022 63.64% 0.021  61.76% 0.0639  73.10% 

WOA-BiLSTM 0.020  60.00% 0.020  59.48% 0.0531  67.65% 

Attention-LSTM 0.021  61.90% 0.020  60.90% 0.0576  70.14% 

Attention-BiLSTM 0.023 65.22% 0.024  67.00% 0.0548  68.61% 

SOTA RUL 

prediction 

models 

WOA-Attention-BiLSTM 0.008 0 0.008 0 0.017  0 

WOA-BP 0.112 93.30% 0.121 93.43% 0.225  92.35% 

WOA-ELM 0.049  84.75% 0.049 83.62% 0.130  86.82% 

WOA-GRU 0.031 75.45% 0.031 74.54% 0.073  76.50% 

WOA-BiTCN 0.034 77.84% 0.033 75.91% 0.093  81.46% 

CNN-Attention-BiGRU 0.018 57.59% 0.019 57.23% 0.039  56.45% 

WOA-CNN-BIGRU 0.047 82.98% 0.065 87.69% 0.049 65.31% 

WOA-Attention-CNN 0.018 55.56% 0.024 66.67% 0.020 60% 

 

Fig. 9. RUL prediction models: the comparative results, the prediction error 



 

IV. Conclusion 

This paper focused on the problem of HI construction, fault change point detection, and parameter 

optimization in the bearing RUL prediction model, and efforts were made to establish a novel bearing 

RUL prediction method. The effectiveness of the proposed RUL prediction method was verified by the 

XJTU-SY bearing dataset. The main conclusions are as follows. 

(1) Through the comparative results of HI construction, change point detection, and the optimization 

algorithms, it is found that the proposed HI construction with EWM-KECA, the slope-based change 

point detection technique, and the WOA optimization algorithm have all achieved the best performance, 

avoiding the unilaterality and subjectivity and better characterizing the bearing degradation behavior, to 

improve the computing efficiency and reduce the computing burden for RUL prediction. 

(2) By the comparative results of the ablation experiments and the SOTA prediction models, it is 

observed that the histograms of the proposed WOA-Attention-BiLSTM model are all the lowest with the 

smallest prediction error than other models, verifying the superiority of the proposed WOA-Attention-

BiLSTM model. 

(3) It is foreseeable that in the future era of big data, the RUL prediction model embedded with a change 

point detection algorithm will be more and more attention. Due to the features of the heavy-tail 

distribution of the bearing full-life-cycle data, the stable data without degradation trend before the change 

point position accounting for more than 90% will be eliminated for RUL prediction, thus significantly 

and efficiently improving the computing power of the model. 
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