
Odusina, T, Perkasa, P, Chalmers, C, Fergus, P, Longmore, SN and Wich, S

 Detection and Geolocation of Peat Fires Using Thermal Infrared Cameras on 
Drones

https://researchonline.ljmu.ac.uk/id/eprint/26656/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Odusina, T, Perkasa, P, Chalmers, C, Fergus, P, Longmore, SN and Wich, S 
(2025) Detection and Geolocation of Peat Fires Using Thermal Infrared 
Cameras on Drones. Drones, 9 (7). 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Academic Editor: Giordano Teza

Received: 17 March 2025

Revised: 30 May 2025

Accepted: 4 June 2025

Published: 25 June 2025

Citation: Sam-Odusina, T.; Perkasa,

P.; Chalmers, C.; Fergus, P.; Longmore,

S.N.; Wich, S.A. Detection and

Geolocation of Peat Fires Using

Thermal Infrared Cameras on Drones.

Drones 2025, 9, 459. https://doi.org/

10.3390/drones9070459

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Detection and Geolocation of Peat Fires Using Thermal Infrared
Cameras on Drones
Temitope Sam-Odusina 1, Petrisly Perkasa 2,* , Carl Chalmers 3 , Paul Fergus 3 , Steven N. Longmore 1

and Serge A. Wich 4

1 Astrophysics Research Institute, Liverpool John Moores University, Brownlow Hill, Liverpool L3 5RF, UK;
odusinatemi@gmail.com (T.S.-O.); s.n.longmore@ljmu.ac.uk (S.N.L.)

2 Central Kalimantan, Indonesia’s—Center for International Cooperation in Sustainable Management of
Tropical Peatland (UPT LLG—CIMTROP UPR), University of Palangka Raya,
Kota Palangka Raya 74874, Indonesia

3 School of Computer Science and Mathematics, Liverpool John Moores University, Byrom Street,
Liverpool L3 3AF, UK; c.chalmers@ljmu.ac.uk (C.C.); p.fergus@ljmu.ac.uk (P.F.)

4 School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street,
Liverpool L3 3AF, UK; s.a.wich@ljmu.ac.uk

* Correspondence: petrisperkasa@upr.ac.id

Abstract

Peat fires are a major hazard to human and animal health and can negatively impact
livelihoods. Once peat fires start to burn, they are difficult to extinguish and can continue
to burn for months, destroying biomass and contributing to carbon emissions globally. In
areas with limited accessibility and periods of thick haze and fog, these fires are difficult to
detect, localize, and tackle. To address this problem, thermal infrared cameras mounted on
drones can provide a potential solution since they allow large areas to be surveyed relatively
quickly and can detect thermal radiation from fires above and below the peat surface. This
paper describes a deep learning pipeline that detects and segments peat fires in thermal
images. Controlled peat fires were constructed under varying environmental conditions
and thermal images were taken to form a dataset for our pipeline. A semi-automated
approach was adopted to label images using Otsu’s adaptive thresholding technique,
which significantly reduces the required effort often needed to tag objects in images. The
proposed method uses a pre-trained ResNet-50 model as a backbone (encoder) for feature
extraction and is augmented with a set of up-sampling layers and skip connections, like
the UNet architecture. The experimental results show that the model can achieve an IOU
score of 87.6% on an unseen test set of thermal images containing peat fires. In comparison,
a MobileNetV2 model trained under the same experimental conditions achieved an IOU
score of 57.9%. In addition, the model is robust to false positives, which is indicated by a
precision equal to 94.2%. To demonstrate its practical utility, the model was also tested on
real peat wildfires, and the results are promising, as indicated by a high IOU score of 90%.
Finally, a geolocation algorithm is presented to identify the GNSS location of these fires
once they are detected in an image to aid fire-fighting responses. The proposed scheme
was built using a web-based platform that performs offline detection and allows peat fires
to be geolocated.

Keywords: computer vision; deep learning; fire detection; remote sensing; drones; unmanned
aerial vehicle (UAV)
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1. Introduction
Peat and forest fires have gained the attention of governments and non-government

organizations in recent years as they are now an environmental and economic issue, partic-
ularly across densely populated regions in Southeast Asia. They comprise both flaming
and smouldering combustion [1]. Wildfires in peatlands can be attributed to the burning
of porous fuels, vegetation, and litter [2]. They can propagate deep into the soil and burn
slowly for long periods of time. The incomplete combustion that occurs during peat fires
means that many toxic particulates are released into the atmosphere, leading to degraded
air quality conditions for people and animals in the affected areas.

In tropical nations such as Indonesia, these large-scale peat fires are a huge re-occurring
problem. This is illustrated by the devastating consequences of the 2015 fires, in which an
area of 4.6 million hectares was burnt [3]. These fires led to economic losses for millions of
Indonesian people, and the World Bank estimated that tens of millions of people suffered
serious health problems. A peer-reviewed study estimated that 69 million people were
exposed to smoke haze pollution for 3 months and 100,300 deaths arose from these fires [4].
In addition to the human tragedy this presents, losing so many lives has resulted in huge
long-term economic losses for the country. The high carbon content contained within peat
makes it one of Nature’s most efficient carbon stores; therefore, burning peat contributes
significantly to anthropogenic carbon emissions [2]. Detecting and extinguishing peat fires
at an early stage is of vital importance if we are to mitigate the effects caused by large,
out-of-control peat fires.

Fighting fires on peatlands is difficult and dangerous work owing to limited accessibil-
ity and visibility, particularly in remote forested areas. Fire-fighting is traditionally carried
out on foot by experts surveying the terrain. More recently, satellite imagery-based systems
have been proposed for fire detection [5]. However, in many cases the temporal and spatial
resolutions of these systems are still very low for effective forest fire-fighting, especially
where haze impacts detection by satellites [6].

This has resulted in an increased use of drones to tackle these problems [7,8]. The rapid
maneuverability of drones and their extended operational range and improved personal
safety provide an alternative solution. They can be used to survey large areas quickly
from the air, whilst allowing the pilot to remain at a safe distance from the hazardous
site. Additionally, the operating costs of drones are considerably lower than those of
satellite-based systems [9].

Beyond the requirements for flexibility drones fulfill, it is crucial to be able to process
data received from drones and pinpoint the locations of fires quickly. Processing this data
offline manually is slow, time-intensive, and costly. Recently, deep convolutional neural
networks (CNNs) have become the standard models used for image processing tasks. In
particular, object detection and segmentation have been successfully applied to various
image and video recognition applications [10]. This has largely been due to advancements
in deep learning, high-performance hardware, and data availability. CNN models trained
to identify peat fires from images can rapidly speed up the analysis process in both off- and
online modes, especially now it is possible to stream data directly from consumer drones.

The rest of this paper is organized as follows: Section 2 presents a comprehensive
literature review of the existing UAV-based fire detection techniques. Section 3 describes
the data collection and model architecture. Section 4 discusses the results and provides a
discussion of the proposed model architecture. Finally, Section 5 concludes the paper.

2. Background
Zhao et al. [11] used a drone equipped with GNSS and deployed a saliency detection

algorithm for the localization and segmentation of fire regions in aerial images. A 15-layered
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self-learning architecture was employed for both low- and high-level fire feature extraction
and classification. In a similar project, Tang et al. [12] captured 4K data from a drone
and introduced a coarse-to-fine framework for detecting sparse, small, and irregularly
shaped fires. The coarse detector adaptively selected sub-regions containing objects of
interest. The fine detector was passed the details of the sub-regions to subject them to
further scrutiny. In [13], Jiao et al. deployed a large-scale YOLOv3 network for forest fire
detection that captured images of fires from a drone and transmitted them to a ground
station for further analysis.

The studies mentioned relied on RGB cameras for data acquisition, which use the
visual wavelength range of light. This means that RGB cameras can be constrained, and
the quality of data can vary significantly, depending on the environmental conditions, such
as rain, fog, and day and night cycles. Another constraint is that visual-spectrum cameras
are unable to detect fires through haze [14]. As a result, their use in peat fire detection
is limited.

To overcome these peat fire detection constraints, the use of thermal infrared (TIR)
cameras has been proposed to detect peat fires through fog and smoke. Their wavelengths
are longer than optical (visible) wavelengths (thermal infrared wavelengths are 8–14 µm,
compared to optical wavelengths of 0.6–0.9 µm). The thermal infrared wavelengths of
light can pass through different types of suspended particulate matter—such as smoke or
fog—unhindered, whereas visible light is scattered [15]. Consequently, thermal sensors
have proven to be far more robust at detecting fires in challenging environments. A further
justification for the use of thermal infrared cameras is the fact that visible-spectrum imaging
sensors are less sensitive to heat flux. Hotter objects emit TIR radiation and appear as very
bright pixels in TIR imagery. This makes the automated detection of fires with TIR cameras
a much more viable solution than that using their RGB counterparts. For these reasons, we
chose to apply deep learning techniques to thermal images for automated fire detection
rather than to RGB images. It is worth highlighting that there has been some work on
multimodal fusion for fire detection. Ref. [16] combines the use of SAR sensors and Optical
Sensors for real-time wildfire monitoring Similarly, Ref. [17] combines the use of visual and
infrared images to improve fire detection using a pre-trained U-Net 50 architecture with a
ResNet50 encoder.

For early and reliable fire detection, an approach that is robust to varying environ-
mental conditions is required. This paper investigates whether peat fires can be reliably
detected using an off-the-shelf drone equipped with a thermal infrared camera and deep
learning. We first propose a semi-automated approach for data annotation to speed up the
data tagging process in the deep learning pipeline. Secondly, we propose a method to train
a UNet-like architecture for fire detection. The proposed method is robust for the detection
of fires at varying scales and under varying environmental conditions. Finally, we present
a geolocation algorithm to identify the GNSS location of detected fires, which is useful for
fire-fighting crews so that they can act accordingly. Our approach proved very easy to train
and the trained model converged to a reliable solution in just a few epochs, hence saving
computing resources and time.

3. Methodology
In this study, carefully controlled peat fires were constructed in degraded peatland

near Palangkaraya in Central Kalimantan, Indonesia. A series of pits were dug to house
fires, as shown in Figure 1. The fires were contained in an aluminum cylinder with a
30 cm × 19 cm diameter and filled with charcoal briquettes (approx. a 2.8 kg capacity). The
experimental setup for the fires was similar to the one described in [15].
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Figure 1. Experimental setup for data collection. A pit was dug which contained the fires within a
30 cm long × 19 cm diameter cylinder filled with charcoal.

3.1. Data Collection

A DJI MAVIC Dual Enterprise equipped with a FLIR Lepton Thermal sensor (HFOV of
57◦, resolution of 160 × 120) as well as a RGB sensor (FOV of 85◦, resolution of 1920 × 1080)
was used to collect images above the fire pits. Although the thermal sensor had a resolution
of 160 × 120 pixels, the thermal images were internally upscaled to 640 by 480 pixels [18].
A total of ten experiments were performed to capture different-sized fires from the drone
under varying weather conditions. A variable number of aluminum cylinders were used to
control the size of the fires for different experiments. The sizes of the fires were in the range
of 3–5 m. The experiments were performed under weather conditions of between 27 and
33 ◦C, 60–75% humidity, light winds of 1–5 km/h, and a pressure of 1007–1009 hPa. During
each experiment the drone flew above the fire at a starting height of 5 m, increasing to 100 m
over a period of 5 min. The increase in the surface temperature above an underground fire
in comparison to the ambient ground temperature made the fires easily distinguishable in
the thermal images (see Figure 2). A total of 1800 images were gathered. The images were
split into three non-overlapping sets of images: a training set (80%), a validation set (10%),
and a test set (10%). Augmentation techniques such as Random Cropping, changes in the
brightness and contrast, and random affine and perspective changes were used to increase
the size of the training set for generalization purposes.

In Figure 2 above, the top panels show RGB images of the controlled fires at a height
of 60 m (left) and 80 m (right) above the ground. The panels directly below the RGB
images show thermal images taken at the same time as the RGB images. The fires show up
clearly as hot (white) spots in the centre of the thermal images but are not visible in the
RGB images.
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Figure 2. Aerial capture of fire.

3.2. Data Annotation

A set of ground truth annotations was required to train our deep learning model, as
well as to evaluate our segmentation results. Ideally, a human expert should create such
ground truth segmentation masks. The process involves drawing polygons around the
region of interest to create these masks. However, this is a time-consuming process. To
overcome this limitation, we adopted a semi-automatic approach for the annotation of our
dataset. This eliminated the need to annotate every pixel of interest in the image by hand.
For annotation, we adopted Otsu’s adaptive thresholding technique [19]. The algorithm
was designed to find the optimal threshold via an exhaustive search that separated two
classes (foreground and background) in the image. The method minimized the intra-class
variances of the segmented image and could achieve good results when the histogram of
the image had two distinct peaks, one belonging to the background and the other belonging
to the foreground. This method was implemented in Python 3.1 using the OpenCV 4.5.0
library. The output was a set of masks that highlighted the regions of interest (fire pixels) in
the images. Otsu’s method may create suboptimal results when the histogram of the image
has more than two peaks or if one of the classes has a larger variance. Hence the generated
masks were reviewed by a human annotator to ensure the ground truth segmentation masks
were accurate. If any of the ground truth segmentation masks were inaccurate, the necessary
corrections were applied by the human annotator to adjust the polygons of interest. This
step significantly reduced the annotation time in our pipeline. To adjust the annotations, we
utilized the open-source LabelMe annotation tool (https://github.com/wkentaro/labelme,
accessed on 10 January 2025). Approximately 20% of the images required manual editing
after being automatically annotated using Otsu’s thresholding technique. Figure 3 below
shows an example of the adaptive thresholding technique used for segmentation.

https://github.com/wkentaro/labelme
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Figure 3. Adaptive thresholding using Otsu’s method—thermal image acquired from DJI drone (left)
and segmentation map (right), where (black) red corresponds to pixels in which fire was (not)
detected. Setup shown above was for experimental test fire, as shown in Figure 1.

3.3. Deep Learning Network Architecture

The classical U-Net architecture [20] is a symmetric, U-shaped, fully convolutional
neural network that has become a standard method for image segmentation. U-Net adopts
an encoder–decoder structure that extracts features, whereby low-resolution features are
mapped to a high-resolution space. This is achieved using skip connections that fuse
multiple features to enhance the segmentation detail. The encoder is a down-sampling
path which allows the model to learn complex features, and the decoder is a symmetric
expanding path that enables precise localization. As seen in Figure 4, the encoder con-
sists of a sequence of blocks for down-sampling operations, with each block including
two 3 × 3 convolution layers followed by 2 × 2 max pooling layers with a stride of 2.

Figure 4. Overview of UNET architecture [20].
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The number of filters in the convolution layers is doubled after each down-sampling
operation. Towards the bottom of the U, the encoder adopts two 3 × 3 convolution layers
as a bridge to the decoder. The decoder is a series of up-sampling blocks which consists
of 2 × 2 transposed convolutions which halve the number of filters in the output and
two 3 × 3 convolution layers. Then a 1 × 1 convolution layer is used as the final layer to
generate a segmentation map.

A traditional U-Net architecture uses four blocks of convolution layers for feature
extraction. In order to allow for faster convergence during training, we replaced the encoder
with a pre-trained network trained on the ImageNet dataset [21]. The backbone selection is
largely dependent on the complexity of the problem and the amount of training data avail-
able. In this study, we investigated two different network architectures, MobilenetV2 [22]
and ResNet-50 [23], for the feature extraction process.

3.4. ResNet-50 as Encoder

The ResNet architecture has previously shown high convergence and compelling
accuracy, which allowed it to come in first place in the Common Objects in Context (COCO)
classification challenge in 2015 [23]. Its success was attributed to the skip connections
added between layers, making it easier for the network to learn identity mappings, as
shown in Figure 5. This allows more layers to be stacked together without running into the
well-known vanishing gradient problem. Using a pre-trained ResNet as an encoder in a
U-Net architecture helps improve the classification accuracy of the segmentation network
as the number of layers can be increased. As a result, more spatial information is preserved.
In addition, the network already has features such as borders, edges, and shapes. This
helps to reduce the training time and computational burden whilst allowing the model to
converge faster and enhances the quality of the segmentation results.

Figure 5. Residual learning: a building block.

The layers we chose to use within the ResNet network were the ReLU activation
layers, which have the highest number of convolutional filter bands within their feature
map size category (112 × 112, 56 × 56, 28 × 28, etc.). For example, a layer, li, is selected
which changes the image size to (112 × 112) with 64 channels. Another layer, li+n, is
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selected that changes the image size to (56 × 56) with 256 channels. This process is
repeated until the selection of the last layer, which changes the image size to (14 × 14) with
1024 channels. Afterwards the decoder from the UNET architecture is used for up-sampling
and concatenation with the previous output layer and each selected li of the ResNet50
model. Transposed convolutional layers are used for this operation. The output of the
proposed model was of the size (224 × 224) with 1 channel. Since fire detection is a binary
classification task (fire/no fire), we applied a sigmoid activation function—see Equation (1)
below—as the final step to obtain a probability distribution.

P(label=Fire) =
1

1 + e−γ(θ)
(1)

where γ(θ ) is the value of the output tensor extracted from the final deconvolution step.

3.5. Model Training

Model training was conducted on a machine with an Intel(R) Core (TM) i7 CPU@2.30 GHz
with 16 GB of RAM. Since CNN computations can inherently be sped up by using high-
performance computing devices like GPUs, we utilized the NVIDIA Geoforce RTX2080Ti
GPU in this training procedure. Tensorflow 1.13.1, CUDA 10.0, and CuDNN version 7.5
were the software versions used as the basis of our training pipeline.

The network training process solved θ = {W, B}. This was achieved by minimizing
the Dice loss of the training set data.

Ldice =
1
N
(1 − DC) (2)

where N is the number of samples and DC is the dice coefficient, which is expressed as

DC =
2|Y̌⋂

Y|∣∣Y̌∣∣+ |Y|+ ϵ
(3)

where Y̌ represents the predicted value of the network and Y represents the true label of
the sample. ϵ is a small factor included to prevent division by zero. We set ϵ = 10−6. Using
this loss function overcame the problem of the unbalanced distribution of the positive and
negative samples, considerably improving the accuracy of segmentation.

The loss was minimized using batch stochastic gradient descent (SGD) and back-
propagation [24]. The SGD method optimized the weights and biases of the network by
computing derivates and backpropagating them through the previous layers in the network
using the chain rule. This learning rate procedure was repeated until the training error was
considered negligible and is expressed as

vt = γvt−1 + α∇L(Wt) (4)

Wt = Wt−1 − vt

where t is the iteration index, γ is the momentum variable, v is the current velocity, α is the
learning rate, and ∇L(Wt) is the derivative. The other parameters required for training are
shown in Table 1.

Table 1. Hyperparameter settings.

Solver Type Base Learning Rate Gamma Momentum Batch Size

SGD 0.001 0.1 0.9 32
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The proposed semantic segmentation architecture was developed in Tensorflow 2.0.
The network was trained on images with a 224 by 224 resolution and a batch size of 32 as
stated in Table 1 and for 50 epochs. The ResNet weights pre-trained on ImageNet were
used to initialize the encoder and were finetuned in the training/validation stage.

The creation of more data for training was performed using augmentation techniques,
which randomly changed the images before inputting them into the model. The aug-
mentation process in this study was based on affine transformations such as translations,
rotations, and changes in the scale.

4. Results and Discussion
Figure 6 shows the accuracy and loss for the training data. The model converged

smoothly and reached a stable state within 20 training epochs for both the training and
validation datasets. The training time took approximately 5 h.
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Figure 6. Accuracy (left) and loss curves (right) obtained during training.

We further evaluated the model against a U-Net architecture using MobileNetV2 [22]
as the encoder. We could see that we achieved a higher Dice coefficient and a lower loss
during training in comparison with those of the model incorporating MobilenetV2 as
shown in Figure 7.

The test set was used to make comparisons between these models using the metrics
of the recall, precision, and Intersection over Union (IoU). The recall corresponds to the
accuracy of positive examples, and it refers to how many of the samples from the positive
classes were labelled correctly by the model. This can be calculated as follows:

Recall =
TP

TP + FN
(5)

where TPs refer to the true positives, which include the number of instances that are
positive and correctly identified. FNs are the false negatives, which include the number
of positive samples that are mis-classified as negative. The precision is a measure of
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correctness; i.e., out of those samples predicted to be positive, how many of them are
positive. FPs represent the false positives.

Precision =
TP

TP + FP
(6)

Finally, the IoU is given by Equation (7), where T stands for the true label of the image
and P for the prediction of the output image.

IoU =
T ∩ P
T ∪ P

(7)

In K-fold cross-validation, the entire dataset is split into K groups randomly. For every
fold, one out of the K subsets is chosen for validation and K-1 subsets are used for training.
Experiments were conducted for a 10-fold cross-validation, as indicated in Table 2. For
each cross-validation iteration, the model was trained using nine subsets and was tested
using the other subset as the validation set. The procedure was then repeated for 10-fold
cross-validation. Each sample was used once as a validation subset.
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Figure 7. Comparison between Res-Net50 and MobileNetV2 encoders.

Table 2. K-fold cross-validation result.

Models Average
Precision Average Recall Average IoU Parameters

ResNet50 0.942 0.915 0.876 20,670,359

MobileNetV2 0.978 0.547 0.579 3,630,593
Comparison of various models using different metrics; bolded value represents best result.

The number of datasets used for the training process was 1440 images, and 180 images
were used for the testing process in each fold run. The model with the highest average IOU
is the model with the best performance in the K-fold cross-validation experiment and has
been marked with bold print. For a robust comparison, the evaluation metrics reported in
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Table 2 were averaged over the 10-fold cross-validation. The results show that ResNet50
had a slightly higher probability of mistaking non-fire regions as fire regions, as indicated
by the slightly lower precision value in comparison to that of MobileNetV2. However,
ResNet50 showed a relatively better trade-off by achieving higher recall and IOU values in
comparison to MobileNetV2. The lower FNs associated with a higher recall indicate the
higher reliability of ResNet50 if the model predicts a non-fire.

MobileNetV2 provided a much lighter network that reduced the computational cost,
as indicated by the lower number of trainable parameters. This was mainly because of
the depth-wise separable convolution replacing the standard convolution in the ResNet50
model. A standard convolution both filters and combines inputs into a new set of outputs in
one step. Depth-wise separable convolution splits this into two steps. In one step, separate
spatial convolution is applied to each input channel, and in another step 1 × 1 convolutions
are used to combine the outputs from all the channels. This factorization has the effect
of drastically reducing the computation and model size. For real-time applications, the
MobileNetV2 architecture is often preferred because it is faster and more lightweight and
consumes less power compared to the ResNet-50 architecture.

In our experiments, we could correctly distinguish between the fire and background
under different conditions, such as the presence of smoke, different weather conditions,
and various levels of brightness in the environment. In addition, we could identify fires of
varying scales and their precise shapes. Some examples from the test dataset are shown in
Figure 8.

Figure 8. Semantic segmentation of experimental fires. Image acquired from onboard thermal
camera (left). Model’s prediction of fires (right).

We tested our model on real-world open peat fires. We gathered just over 350 images
during the fire season in Palangkaraya. We achieved an IOU score of 0.90 for these datasets.
Our model was able to generalize well and perform reliable detection for these types of
fires as well, as shown in Figure 9.
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Figure 9. Model prediction on real-world fire images. Fire images acquired from DJI drone (left).
Model prediction using ResNet50 (right).

To demonstrate that our model possesses high precision and is not merely biassed
toward classifying all bright regions above a certain threshold as fire pixels, we conducted a
test flight at midday over the rooftops of various houses, capturing thermal images. When
applying the adaptive Otsu thresholding technique described in Section 3.2 to these images,
we observed a significant number of false positives, despite the absence of actual fire pixels.
Figure 10 shows an example below.

 

Figure 10. Thermal image captured by DJI drone (left). Output mask created using Otsu’s segmenta-
tion technique (right).

We then proceeded to test the performance of our trained model over a range of similar
background images also not containing any fire pixels as shown in Figure 11 below.

The predicted masks generated by our model did not include any bright regions
corresponding to fire, demonstrating that the model had learned meaningful semantic
features for fire detection and localization rather than merely flagging bright pixels in the
images as fire. Several practical challenges arise in deploying our proposed system, as
outlined below.
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Figure 11. Captured image from DJI drone (left). Model prediction by trained model (right).

Currently, model inference is conducted offline, meaning that the collected data must
be downloaded and processed after the drone flight. By the time the analysis is completed,
the fire may have already spread, significantly reducing the system’s effectiveness for
enabling a real-time response. To improve the practicality of the solution, real-time (online)
fire detection capabilities are necessary.

Additionally, most multirotor drones have a limited flight duration of 20 to 45 min,
which constrains the area they can survey in a single mission and poses challenges for
monitoring large regions. In contrast, fixed-wing drones offer a more viable alternative, as
they can cover significantly larger areas per flight, making them better suited for wide-area
surveillance applications.

5. Conclusions
In this study, we presented a fire monitoring system that builds on recent advances

in computer vision, machine learning, and UAV technology. By utilizing advanced deep
learning segmentation networks, we could reliably detect and geolocalize potential fires in
a sequence of aerial images. We adopted a ResNet architecture for feature extraction and a
U-Net architecture for solving the fire segmentation task. The experimental results demon-
strated the feasibility and effectiveness of utilizing a ResNet U-Net model for fire detection
on the acquired thermal dataset. A comparison of the employed ResNet U-Net architecture
against a MobileNetV2 architecture showed that the proposed network outperformed the
MobileNet2 network in terms of its metrics, recall, and IOU. Additionally, to demonstrate
the robustness of the model, the model was tested against images captured of real wildfires,
and the precise pixel locations of these fires in the images were also captured precisely. We
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have developed a user-friendly web application to allow users to easily interact with our
application for uploading images for fire detection and geolocation.

To provide early warnings and a rapid response, an online detection system is critical.
Moving forward, we plan to develop a custom UAV solution that supports the integration
of embedded platforms for real-time fire detection. Ongoing and future research objectives
also involve capturing higher-resolution images for further training to improve accuracy, as
well as model optimization and an investigation into how using different thermal imaging
wavelength spectra affects fire temperature measurements and detection. Finally, the
geolocation algorithm presented in Appendix A does not consider the error or uncertainty
arising from camera calibration and the vehicle positioning. More complex geolocation
algorithms will be investigated to further improve the localization accuracy.
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Appendix A. Fire Geolocation Algorithm
Appendix A.1. Geolocation Pipeline

When a fire is detected in an image, the fire’s geolocation is required to allow for the
deployment of fire-fighting resources to extinguish the fire. The geolocation algorithm
utilized employs various components and is described in the flow chart below.

As shown in Figure A1, inference is performed on each input image using the trained
model as discussed in the previous section. The output from the model is a floating-point
value between 0 and 1 since a sigmoid activation function has been used (see Equation (1)).
The binarization of the output image is performed as follows:

f(p) =

{
0, p ≤ β

255, p > β
(A1)

Here, β is chosen to be 0.5. The binarized image is then passed into OpenCV’s
cv2.findContour function to find all the contours in the binary image. Once the contours
are found, the centroid of each contour is calculated as

Cx =
M10

M00
(A2)

Cy =
M01

M00
(A3)

Cx and Cy denote the x and y pixel coordinates of the centroid, and M is the Image Moment [25].
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Figure A1. Flow chart for geolocation algorithm.

Appendix A.2. GNSS Transformation to Locate Fire Pixels

The coverage of an image in the x and y directions (as shown in Figure A2) can be
estimated using the camera’s field of view (FOV) as described in Equations (A2) and (A3),
assuming that the camera is always pointing straight down.

a =
2h

cos
(

FOVx

2

) (A4)

b =
2h

cos
(

FOVy

2

) (A5)

For an image size of 640 × 480, the scale between the distance and pixels is assumed to be
a linear relationship, as shown below:

scalex =
a

640
=

2h

640
(

FOVx

2

) (A6)

scaley =
b

480
=

2h

480
(

FOVy

2

) (A7)
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As shown in Figure A3, a target is assumed to be located in the (x, y) pixel in the image,
and the offset of the target from the centre of the image is

offsettarget =

[
scalex· x
scaley· y

]
(m) (A8)

Figure A2. Area Coverage of onboard camera.

Figure A3. Coordinates of image and world frame.

For a transformation from a north-east (NE) world-to-camera frame with the angle φ,
the rotation matrix is defined as

RC
W =

[
cos(φ) −sin(φ)

sin(φ) cos(φ)

]
(A9)
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φ denotes the yaw angle of the UAV. Hence the position offset in the world frame can be
described as

P = RCT

W ·offsettarget =

[
PE

PN

]
(A10)

Finally, the GNSS location can be determined using

GNSSfire = GNSScam +

[
PE/fx

PN/fy

]
(A11)

where fx and fy denote the distances represented by one degree of longitude and lati-
tude, respectively.

A user-friendly visualization application was built using the Flask library, a lightweight
Python web development framework. Users can access our web application and upload
images for offline analysis. Our application has an embedded map for visualizing the GNSS
location of the detected fires, as shown in Figure A4. Our users have provided feedback
that the interface is intuitive and easy to navigate with quick response times for both the
model prediction and geolocation of fire-affected areas.

 

 

Figure A4. User Interface (top). Blue markers on marks (bottom) denote GPS positions of detected
fires displayed on map.

We observed a positional error of ±5 m when the results were validated against the
GNSS positions reported by Google Earth. The main error in target geolocation came
from system errors, mainly measurement errors from the GNSS and IMU. These sensors
introduced errors into the position and attitude information for the UAV.
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