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A B S T R A C T

By grouping structurally similar chemicals, toxicity endpoints from data-rich substances can be read across to 
data-poor substances, supporting environmental and human health risk assessment without animal testing. 
However, structural similarity alone is insufficient, and additional supporting data can strengthen a grouping 
justification. This study aimed to demonstrate how multi-omics bioactivity data can increase confidence in a 
grouping hypothesis, where the bioactivity profiles can reflect a chemical’s mode(s) of action. We investigated 
three structurally similar phthalates and three uncouplers of oxidative phosphorylation, applying structure-based 
grouping approaches and short-term exposures of the ecotoxicological test species Daphnia magna to generate 
multi-omics data. Bioactivity similarities between the ‘omics responses to chemical exposure were assessed using 
t-statistics comparing treated samples to controls and visualised using hierarchical cluster analysis. Conventional 
structure-based grouping did not assign the phthalates and uncouplers into two anticipated categories, with the 
structurally more diverse uncouplers often assigned into multiple groups. Following bioactivity thresholding, 
which removed one uncoupler as it induced minimal molecular responses, bioactivity profile-based grouping of 
the remaining five substances correctly separated them into two chemical classes with high replicability confi-
dence. However, a plausible toxicological interpretation of the reduced set of functionally annotated molecular 
features driving the grouping was attempted, although of limited success. This study demonstrates how multi- 
omics bioactivity profiles can increase confidence in chemical grouping and investigates a potential strategy 
for plausibly interpreting ‘omics data.

1. Introduction

Chemical grouping and read-across assist regulatory agencies and 
chemical companies in their evaluation of environmental and human 
health hazards posed by chemicals while reducing or even avoiding the 
need for animal testing (Bishop et al., 2012). Under U.S. and European 
regulations, read-across of toxicity endpoint data from one (source) 

substance to another (target) substance for which data are not available 
is permitted, which can avoid the need for additional animal studies. 
Guidance on how to construct and report a grouping and read-across 
argumentation is available from the European Chemicals Agency 
(ECHA; Read-Across Assessment Framework [RAAF]; ECHA, 2017), the 
Organization for Economic Co-operation and Development (OECD; 
OECD, 2017), and the European Centre for Ecotoxicology and 
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Toxicology of Chemicals (ECETOC; ECETOC, 2012). A key prerequisite 
for any read-across argument is the grouping hypothesis on which it is 
based. Examples include the (bio)transformation of source and target 
substances to a common compound, or the structural similarity of test 
substances that infers they will cause similar toxicities, which can 
(ideally) be explained at a mechanistic level (RAAF, 2017). Thus, 
structural similarity is a fundamental part of any read-across argument 
(Kuseva et al., 2019). However, the RAAF stipulates that structural 
similarity alone is not sufficient to justify read-across, and that it should 
be linked to an explanation as to how and why the prediction is possible.

Read-across cases often have to be rejected by ECHA, in part due to 
incomplete supporting data to justify the grouping hypothesis and/or to 
demonstrate scientific plausibility. This can include a lack of evidence of 
the likely modes of action (MoA; Ball et al., 2016). One method to 
strengthen a read-across justification is to group chemicals using 
biological-effects data from targeted in vitro assays representing key 
mechanisms of endpoint toxicity (Escher et al., 2019). A second 
approach is to use biological-effects data from ’omics technologies, such 
as transcriptomics and metabolomics, which measure broad ranges of 
molecular responses and potentially provide insights into a chemical’s 
MoA (Brockmeier et al., 2017; Pestana et al., 2021). Recently, a work-
flow has been proposed for chemical grouping using ’omics data, 
comprising five steps: (i) design the study, providing a rationale for 
selecting the biological test system and ’omics technology, here focused 
on ecotoxicology; (ii) acquire ’omics data and associated metadata; (iii) 
group substances based on a statistical assessment of the bioactivity 
similarities of the ’omics responses; (iv) attempt to provide a plausible 
toxicological interpretation of the molecular responses induced by each 
group of similar chemicals; and (v) integrate the findings into an 
analogue or category justification (Viant et al., 2024). Previously, we 
reported the use of bioactivity profile-based grouping to identify the 
most reliable source substance from a pool of six potential azo dye an-
alogues, by combining transcriptomics and metabolomics data, and then 
reading across a reproductive toxicity endpoint to the target substance 
(Gruszczynska et al., 2024). Although a subsequent toxicity study sup-
ported the reproductive toxicity read-across prediction, one limitation of 
that study was the selection and investigation of data-poor substances in 
an invertebrate model for which the MoA(s) were unknown. Conse-
quently, the grouping hypothesis derived from the ‘omics data could not 
be evaluated against prevailing toxicological knowledge.

The current study aims to further demonstrate the value of multi- 
omics measurements in bioactivity profile-based grouping to 
strengthen a grouping justification, including the first steps towards 
plausible toxicological interpretations of the molecular data that may 
reflect the MoA. We focus on six relatively data-rich test substances that 
we hypothesise will form two distinct chemical categories, the first 
comprising three uncouplers of oxidative phosphorylation (in both 
vertebrates and invertebrates; Song and Villeneuve, 2021): 2,3,4,5-tet-
rachlorophenol (TCP), carbonyl cyanide 3-chlorophenylhydrazone 
(CCCP) and carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 
(FCCP). These substances are hydrophobic, protonophoric weak acids 
that uncouple phosphorylation from electron transport by dissipating 
the pH gradient within mitochondria (Terada, 1990; Hawliczek-Ignarski 
et al., 2017). It should be noted, from a structural perspective, that only 
two of these three uncouplers would be regarded as sufficiently similar 
to be considered as analogues in a formal regulatory read-across case. 
The second group comprised three structurally-similar phthalates: 
benzyl butyl phthalate (BBP), dibutyl phthalate (DBP) and diisobutyl 
phthalate (DiBP). Although some phthalates fit the World Health Or-
ganization’s definition of endocrine disruptors for their effects in ver-
tebrates (Sohn et al., 2016; Xu et al., 2020; Czubacka et al., 2021; Sedha 
et al., 2021), their MoA in invertebrates is largely unknown, although 
chronic exposure to diethyl phthalate or DBP has been shown to increase 
fat accumulation and reduce lifespan in Daphnia (Seyoum and Pradhan, 
2019). Here we hypothesise that the high structural similarities of these 
phthalates will lead to similar molecular responses in invertebrates.

Our approach comprises three primary objectives: first, to apply a 
range of conventional approaches to formulate a grouping hypothesis 
for the six substances, including structural similarity-based grouping 
and an array of mode/mechanism of action profilers. Second, to group 
the substances based on bioactivity profile data to statistically derive the 
bioactivity similarities among the substances, thereby attempting to 
substantiate the structure-based grouping hypothesis (Viant et al., 
2024). Bioactivity profile data are obtained from the omics responses of 
Daphnia magna, acting as an environmental biosensor and having direct 
relevance to regulations that protect the environment, as well as satis-
fying the 3Rs principles of reducing, refining or replacing vertebrate 
animal testing to measure systemic toxicity. Third, we sought a plausible 
toxicological interpretation of the bioactivity profile data that combines 
transcriptomics and metabolomics to build greater confidence in the 
omics-based grouping. Based on our new findings, this objective was 
extended to tentatively explore the conservation of molecular effects 
across animal species to determine whether the bioactivity profile-based 
grouping in Daphnia may be more broadly applicable to other environ-
mental species. We have shown previously that many toxicologically 
relevant pathways are evolutionarily conserved, thereby providing a 
basis for reading across toxicological interpretations from Daphnia to 
distantly related animals, including fish (Colbourne et al., 2022).

2. Materials and methods

2.1. Test substances

Benzyl butyl phthalate (BBP; CASRN 85-68-7), dibutyl phthalate 
(DBP; CASRN 84-74-2), diisobutyl phthalate (DiBP; CASRN 84-69-5), 
2,3,4,5-tetrachlorophenol (TCP; CASRN 4901-51-3), carbonyl cyanide 
3-chlorophenylhydrazone (CCCP; CASRN 555-60-2) and carbonyl cya-
nide 4-(trifluoromethoxy)phenylhydrazone (FCCP; CASRN 370-86-5) 
were purchased from Sigma-Aldrich (UK) with a purity ≥95 %.

2.2. Structural similarity

Using the pvclust package (version 2.2–0; Suzuki and Shimodaira, 
2006), each pair of ToxPrint chemotypes (one per substance, from 
Hazard Comparison Database (https://hazard.sciencedataexperts.com/; 
Yang et al., 2015) were compared using binary distance (method.dist =
“binary”) and hierarchical clustering (method.hclust = “ward.D2”) with 
multiscale bootstrap resampling (n = 10,000 bootstrap 
pseudo-replications). Other structural fingerprints were assessed using 
the same approach (Supplemental section S1 and Fig. S1).

2.3. Mode/mechanism of action profilers

A consensus approach was taken to help identify a MoA from readily 
available structure-based classifiers. Classification outputs were derived 
from the scheme of Russom et al. (1997), available via Chemprop 
(v7.1.1) and the US EPA Toxicity Estimation Software Tool (TEST) (U.S. 
EPAUser Guide for T.E.S.T, 2016) (v5.1.2). The following profilers were 
applied in the OECD QSAR Toolbox (OECD, 2020) (ver 4.4.1): Acute 
Aquatic Toxicity MOA by OASIS (AAT OASIS) (v3.4), Uncouplers 
(MITOTOX) (v1.1), Estrogen Receptor Binding (v2.2), the rtER Expert 
System – USEPA (v1.0) and Verhaar Scheme and adaptations ((Verhaar 
et al., 1992; Verhaar et al., 2000; Enoch et al., 2008) (v3.2)). Addi-
tionally, more recent classifiers were also applied, based on the identi-
fication of mechanisms of action. The schemes of Sapounidou-Firman 
(Sapounidou et al., 2021; Firman et al., 2022) and also MechoA (Bauer 
et al., 2018a,b; iSafeRat® MechoA profiler v1.1.2 (KREATiS, 2020) 
(May 2023), which includes MechoA scheme v2.2 (October 2020)), 
were used.
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2.4. Daphnia acute toxicity and benchmark dose modelling

Daphnia were maintained under constant environmental conditions 
(20 ± 1 ◦C; 16:8 h light:dark photoperiod) in water drawn from a 
borehole at the University of Birmingham. Cultures (20 Daphnia L− 1) 
were fed daily with a suspension of Chlorella vulgaris corresponding to 
0.08 mgC Daphnia− 1. The acute (48 h) toxicity (immobilisation) of test 
substances was established in line with OECD guideline 202 (OECD, 
2004) for DiBP (0.01–10 mg L− 1), DBP (0.001–10 mg L− 1), BBP (0.5–14 
mg L− 1), TCP (0.01–10 mg L− 1), CCCP (0.001–0.4 mg L− 1) and FCCP 
(0.001–10 mg L− 1). Dimethyl sulfoxide (DMSO) was used as carrier 
solvent for all test substances and untreated controls (final DMSO con-
centration of 0.1 %). Benchmark dose (BMD) modelling using the 
PROAST webtool (https://proastweb.rivm.nl/version 66.39) was 
applied to 48 h immobilisation data (Fig. S2) to derive BMD estimates 
for 10 % immobilisation (Table S2) and which informed dose levels for 
multi-omics exposures (Table S3).

2.5. Daphnia exposures for multi-omics sampling

For multi-omics samples, D. magna were obtained from cultures <24 
h old and grown at an increased density of 40 Daphnia L− 1 with daily 
feeding for 4 d. Exposures were initiated at 5 d, where test organisms 
were pooled and randomly distributed into exposure beakers (100 mL) 
containing 10 individuals (n = 6 beakers per treatment). Exposures were 
conducted in two batches, with the lower estimate of benchmark dose 
for 10 % immobilisation after 48 h (BMDL) used as high exposure dose, 
the medium dose being one third BMDL, and low dose one ninth BMDL. 
The first batch included five compounds (BBP (0.51, 1.53, 4.58 μM), 
DBP (0.43, 1.30, 3.92 μM), DiBP (3.16, 9.48, 28.45 μM), FCCP (0.10, 
0.29, 0.86 μM), and TCP (0.47, 1.40, 4.20 μM)) with shared solvent 
controls (0.1 % DMSO), and the second batch was conducted with CCCP 
(0.01, 0.03, 0.09 μM) and paired solvent controls. This second batch was 
required due to greater mortality in CCCP-treated animals at the original 
concentrations (0.02, 0.06, 0.19 μM) than anticipated, with the repeat 
exposures using half the initial concentration (Table S3); the repeat 
exposures proceeded as expected, with 14 % immobilisation observed in 
the high dose treatment after 48 h, close to the target value of 10 % 
expected for this dose). Samples were collected following 24 h (high 
dose) and 48 h (all dose groups) by filtration of organisms from the test 
media, rinsing with deionised H2O and flash-freezing in liquid nitrogen. 
Frozen Daphnia tissue was homogenised in methanol/water (71.4/28.6, 
v/v) extraction solvent (448 μL) using a bead-based homogeniser (Pre-
cellys-24 with CK14 homogenisation tubes, Stretton Scientific, UK) and 
split for RNA (10 %, equivalent to 45 μL homogenate, flash-frozen and 
stored at − 80 ◦C for further transcriptomics preparation) and metabolite 
extraction (90 %, extracted immediately).

2.6. Analytical determination of exposure concentrations

Test substance concentrations were measured in media samples from 
the Daphnia exposure studies, collected at 0, 24 and 48 h, as detailed in 
Supplemental section S2 and Table S4. In brief, samples were analysed 
using liquid chromatography coupled to a triple quadrupole mass ana-
lyser (LC–MS/MS) with an electrospray ion source (Xevo TQD, Waters), 
and a BEH C18 analytical column (Acquity, Waters). Identification 
criteria included the retention time and two transitions, one used for 
quantification and the other for confirmation. Samples were spiked with 
isotope-labelled surrogate standards for quantification purposes.

2.7. Metabolomics data acquisition and processing

Metabolomics analyses are described in Supplemental section S3. In 
brief, metabolites were extracted using a biphasic method modified from 
Southam et al. (2021), producing dried polar and non-polar (i.e., lipo-
philic compounds) extracts from each sample. Data were acquired using 

ultra-high-performance liquid chromatography mass spectrometry 
(UHPLC–MS) metabolomics, with a Dionex UltiMate 3000 Rapid Sepa-
ration LC coupled with a heated electrospray Q Exactive Focus mass 
spectrometer (Thermo Scientific), using both HILIC and C18 columns. A 
hybrid metabolomics method was used, including both an untargeted 
analysis and measuring multiple metabolic biomarkers from the 
MTox700+ panel (Sostare et al., 2022). Changes in the levels of several 
thousand polar metabolite and lipophilic features were determined 
(Lloyd et al., 2020), and features were identified using UHPLC–MS/MS, 
an in-house metabolite library, and the Galaxy Deep Metabolome 
Annotation (DMA) computational workflow.

2.8. Transcriptomics data acquisition and processing

Sample homogenates were pelleted (15,000-g, 5 min, 4 ◦C) and 
extracted with a Biomek FXp liquid handling robot (Beckman Coulter) 
using the Agencourt RNAdvance Tissue Kit (Beckman Coulter A32646) 
according to the manufacturer’s protocol. Purified RNA concentration 
and RNA integrity number were determined with a Nanodrop-8000 
spectrophotometer (Thermo Fisher ND-8000-GL) and Agilent Tapesta-
tion 2200 (Agilent G2964AA) with high sensitivity RNA screentapes 
(Agilent 5067–5579). Changes in gene expression were assessed using a 
custom-designed, targeted TempO-SeqⓇ assay, consisting of 2378 
probes of a BioSpyder platform covering 1988 D. magna genes mapped 
to human orthologs as described in Gruszczynska et al. (2024). Samples 
were shipped as extracted RNA with the remaining sample preparation 
and sequencing performed by BioClavis (UK). Raw counts were sum-
marised to gene level after the removal of probes with aberrant 
hybridisation (n = 7), normalised and log-transformed using DESeq2 
(version 1.30.0; Love et al., 2014).

2.9. Bioactivity profile-based grouping

Two sets of statistical analyses were applied to the transcriptomics 
(single matrix) and metabolomics datasets (four matrices, comprising 
positive and negative ion analysis of polar metabolites and lipophilic 
compounds). First, Student’s t-tests (adjusted for false discovery rate; q 
< 0.1) were applied across all molecular features using normalised 
matrices to identify any significantly changing features between treated 
dose/time groups and their time-matched solvent controls. These results 
indicated the potency of each substance. Next, the high dose treatment 
group (and control) multi-omics data were prepared for hierarchical 
cluster analysis (HCA) to group the substances based on bioactivity 
similarities. Specifically, for each feature, the highest absolute t-statistic 
across the two time points (‘maximum-perturbation’ approach; 
Gruszczynska et al., 2024) was selected and vector-normalised (con-
verted to a unit vector for each treatment condition). The features from 
all five ’omics assays together served as input data for HCA, utilising a 
Euclidean distance metric and Ward’s linkage method (Murtagh and 
Legendre, 2014) implemented in pvclust (version 2.2-0; Suzuki and 
Shimodaira, 2006). Bootstrap replicability confidence p-values for the 
chemical grouping (10,000 bootstrap replications) were computed using 
the selective inference method (Shimodaira and Terada, 2019). The 
molecular features driving the grouping were discovered using partial 
least squares-discriminant analysis (PLS-DA). First, feature fold-changes 
were calculated for the relevant treated samples (i.e., high dose, at the 
same time point used in the HCA, for consistency) by dividing each 
sample’s feature intensity (metabolite level or gene expression) by the 
median of the corresponding control group. PLS–DA was applied to this 
fold-change dataset, with the earlier HCA results used to define the 
group membership.

2.10. Cross-species conservation of molecular pathways

The 1988 D. magna genes represented by probes on the BioSpyder 
platform were identified as members of evolutionarily conserved gene 
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families among invertebrates and vertebrates, including humans 
(Colbourne et al., 2022). In brief, the mapping of each Daphnia gene to 
their orthologs in humans and other animals was obtained by a SPARQL 
query within the OrthoDB Database v10 (Kriventseva et al., 2019), 
which retrieved all genes forming gene families that share common 
ancestry from the root of the animal phylogeny. Further evaluation of 
the conservation of the human genes in the glycolysis pathway (obtained 
from Reactome database (Gillespie et al., 2022); R-HSA-70171) across 
six relevant environmental species was performed using the “Genes to 
Pathway - species conservation analysis tool” (G2P-SCAN; Rivetti et al., 
2023).

3. Results and discussion

3.1. Conventional structure-based grouping hypothesis

Following RAAF guidance, which stipulates structural similarity 
between source and target substances is required for read-across, the 
structural similarity of the six test substances was assessed. HCA was 
applied to ToxPrint chemotypes (comprising 729 bits encoding the 
physicochemical properties of atoms, bonds and structural fragments; 
Yang et al., 2015) representing the test substances, and their structural 
similarities were visualised using a dendrogram (Fig. 1). The test sub-
stances clustered into two distinct groups, corresponding to the phtha-
lates and uncouplers. The same grouping was observed when 
performing HCA with other types of structural fingerprints (see Sup-
plemental section S1 and Fig. S1). Structural similarity among the three 
phthalates is comparatively high, reflecting their shared ortho-diester 
structure and relatively minor side-chain differences. The phthalates 
were also generally assigned the same classification using chemical 
profilers, except by the Sapounidou-Firman (Sapounidou et al., 2021; 
Firman et al., 2022) and MechoA profilers, for which BBP was assigned a 
different set of alerts and identified as SN2 reactivity, respectively. 
These different classifications for BBP compared to the other phthalates 
were attributed to the arene side chain group. In contrast, the un-
couplers are a more structurally diverse group, and the profiler outputs 
were less consistent, with no approach assigning all three uncouplers to 
the same classification. Russom and MITOTOX (OECD QSAR Toolbox) 
assigned only TCP to oxidative phosphorylation uncouplers with no 
alerts for CCCP or FCCP. None of the structure-based profiling 

approaches assigned the uncouplers and phthalates into just two distinct 
groups; instead, there were up to four different classes assigned (e.g., 
Russom classifications; Table S1), highlighting the difficulty in associ-
ating the substances to their shared MoA and/or toxicity using chemical 
structure alone. These results formulated a conventional grouping hy-
pothesis against which bioactivity profile-based grouping, using 
multi-omics data, was compared.

3.2. Magnitude of molecular responses to chemical exposure

Before grouping the chemicals according to their ’omics profiles, the 
magnitude of perturbation caused by each substance on a feature-by- 
feature basis was evaluated. This allows particularly weak or strong 
perturbations, which can lead to unreliable grouping, to be identified 
and removed (termed bioactivity thresholding). A total of 43,424 fea-
tures (including 1944 genes, 22,244 polar metabolite features and 
19,236 lipophilic compound features) were measured as part of the 
’omics profiles for the six substances. The numbers of significantly 
differentially abundant molecules (false discovery rate correction, q <
0.1) are presented in Fig. 2 and Table S5. As expected, the greatest 
molecular changes occurred at the high dose, and more features changed 
significantly after 48 h of exposure compared to 24 h. However, the 
variation in molecular perturbations was unexpectedly large, particu-
larly considering that the doses were phenotypically anchored to 
Daphnia immobilisation. DiBP induced the largest molecular response 
with over 40 % of polar metabolite features (9625 out of 22,244; 
Table S5) significantly changing at the 48 h, high dose. Yet, minimal 
molecular changes were induced following exposure to CCCP with only 
2 (at 24 h) and 21 (at 48 h) polar metabolite features significantly 
changing following high dose exposure, representing a minuscule 
portion of detected features, and no features changed significantly at 
low or medium doses. LC–MS/MS analysis of the exposure media 
revealed that at 0 h, the measured concentrations were within 30 % of 
nominal values for all substances apart from DiBP, which were 8 %, 44 
% and 68 % lower than nominal concentrations for low, medium and 
high doses, respectively (Fig. S3), potentially due to adsorbing to the 
exposure vessels, volatilising or degrading. The test substance concen-
trations remained relatively consistent throughout the 48 h exposure 
period. The limited molecular responses induced by CCCP may have 
been caused by the reduced (i.e., 2x lower) doses for this substance 

Fig. 1. Structure-based similarity of selected test substances diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), 2,3,4,5-tetrachlor-
ophenol (TCP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) showing hierarchical clus-
tering based on ToxPrint chemotypes. Selective inference (SI) bootstrap replicability confidence values are shown at each node. Summarised outputs of chemical 
classifiers are shown for each substance where colouring indicates the same classification within each tool. Classifier alerts for each substance obtained from (1) 
Chemprop for Russom, (2) US EPA Toxicity Estimation Software Tool, (3) OECD QSAR Toolbox for Verhaar acute aquatic toxicity, (4) Acute Aquatic Toxicity MOA by 
OASIS, (5) Estrogen Receptor Binding, (6) USEPA rtER Expert System, (7) mitochondrial toxicity (MITOTOX), (8–9) Sapounidou-Firman (Sapounidou et al., 2021; 
Firman et al., 2022) Non-Fish (8) and Fish (9) schemes, and (10) iSafeRat® Mechanisms of toxic Action profiler. Full classifier outputs are presented in Supple-
mental Table S1.
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(repeated, due to high mortality, at half the original doses, although the 
repeat exposures proceeded as expected with 14 % immobilisation 
observed in the high dose treatment after 48 h, which is close to the 
target value of 10 %; Table S3). Our workflow for bioactivity profile- 
based grouping assesses the similarities of the bioactivity profiles 
based on treatment effects versus controls (as t-statistics), and we have 
observed previously that non- and low-responding treatment groups are 
challenging to group reliably. Based on a bioactivity threshold requiring 
>1 % of total features detected (across all ’omics assays) to be signifi-
cantly perturbed, CCCP was identified for exclusion from the grouping 
analysis.

3.3. Bioactivity profile-based grouping using multi-omics data

HCA was performed on the high dose (and control) multi-omics data 
to produce a bioactivity profile-based grouping of the five test sub-
stances exposed to Daphnia. Input data for this grouping analysis con-
sisted of t-statistics comparing treated samples with their respective 
time-matched solvent controls for all 43,424 features (including genes, 
polar metabolites and lipophilic compounds) in the multi-omics profile. 
To enable the 24 h and 48 h data to be integrated, a ‘maximum 
perturbation’ approach was employed that selected the largest molec-
ular perturbation (i.e., largest absolute t-statistic) from either the 24 h or 
48 h time point, for all 43,424 features (Gruszczynska et al., 2024). In 
this manner, the interpretability of the grouping is increased by reducing 
the number of treatment groups in the dendrogram while retaining in-
formation about the temporal dynamics of the response. The results of 
the maximum perturbation bioactivity profile-based grouping are pre-
sented in Fig. 3. Statistical confidence in the groups was estimated by 
calculating replicability confidence p-values using the selective infer-
ence method. Here, branches with values > 90 % are interpreted as 
being strongly supported by the underlying ’omics data. At this repli-
cability confidence level, the five substances formed two distinct groups, 

separating the uncouplers of oxidative phosphorylation from the 
phthalates. This grouping agrees with the classical structural similarity 
comparisons (Fig. 1).

3.4. Attempted plausible toxicological interpretation

Although the agreement between structure-based and bioactivity 
profile-based grouping strengthens the grouping justification, further 
confidence can be achieved through a ‘plausible toxicological interpre-
tation’ of the ’omics responses underpinning each chemical category 
(OECD, 2017; Viant et al., 2024). Consequently, molecular features with 
fold-changes (treated samples versus controls) that differed between the 
uncoupler and phthalate groups (using dose and time point data 
consistent with the HCA; Fig. 3) were identified using PLS-DA super-
vised multivariate analysis, selecting 14,711 features with variable 
importance in projection (VIP) scores greater than one. Although this 
cut-off selected many features, including 464 annotated genes with 
human orthologs, relatively few metabolites (237) could be annotated 
and hence considered for toxicological interpretation (Supplemental 
section S4, Tables S6 and S7). This highlights a challenge of interpreting 
‘omics responses using a reduced representative set of genes (here using 
a BioSpyder platform that measures 1988 D. magna genes mapped to 
human orthologs) instead of the entire transcriptome of human ortho-
logs supplemented by the fraction of significantly changing metabolites 
that can be annotated. A second difficulty in attempting plausible toxi-
cological interpretations of ‘omics datasets is the relative lack of 
knowledge of molecular signatures associated with chemical MoAs in 
Daphnia. Irrespective of these challenges, interpretation of the ‘omics 
data was attempted using a traditional approach of first prioritising the 
annotated gene and metabolite features (using rank order of their VIP 
scores from PLS–DA) and then searching the scientific literature for 
relevant prior knowledge. The fold-change values and statistical signif-
icance of the ten top-ranked genes, annotated metabolites, and 

Fig. 2. Proportion of the total number of features detected by each ’omics assay that are differentially abundant (q < 0.1) between treated and control groups of 
juvenile Daphnia (5 d) collected following 24-h (top) and 48-h (bottom) exposures to the test substances diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), benzyl 
butyl phthalate (BBP), 2,3,4,5-tetrachlorophenol (TCP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and carbonyl cyanide 4-(trifluoromethoxy)phenyl-
hydrazone (FCCP). Daphnia were exposed to each substance at low, medium and high doses, as indicated.
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unannotated metabolite features are presented in Fig. 4A and B and S4, 
respectively.

While phthalates fit the World Health Organization’s definition of 
endocrine disruptors for their effects in vertebrates, their MoA in in-
vertebrates is largely unknown, and no evidence of endocrine disruption 
was observed here. However, we cannot exclude this MoA as the tran-
scriptomics analysis used a reduced gene set that limited our ability to 
search for hypothesised effects on the endocrine system. Upon analysing 
the annotated metabolite dataset, the class and subclasses of metabolite 
features with the highest number of large VIP scores were ‘lipids and 
lipid-like molecules’ (Fig. S5), indicating differences in lipid metabolism 
between the phthalates and uncouplers. This is also supported by some 
top-ranked lipids in Fig. 4B (including a carnitine, ceramide and tri-
adylcglycerol), which decreased significantly after exposure to at least 
one phthalate substance. These results appear consistent with changes in 
fatty acid metabolism and increased lipid accumulation previously re-
ported in Daphnia in response to phthalate exposure (Seyoum and 
Pradhan, 2019), although the MoA remains unclear and care should be 
taken to not over-interpret the new observations given that only three 
phthalates were investigated.

The most striking differences between the two chemical categories 
are associated with disruption of energy metabolism, which is consistent 
with the MoA of uncouplers. In the highly ranked annotated metabolites 
(Fig. 4B), the levels of two putatively annotated acylcarnitines changed 
following exposure to the uncouplers, with significantly increased levels 
following TCP exposure. While associations between acylcarnitine and 

TCP or FCCP exposure have not been reported previously, accumulation 
of β-oxidation intermediates could indicate disruption of cellular energy 
metabolism through oxidative phosphorylation (Dambrova et al., 2022). 
The transcriptome data also indicated disruptions to energy metabolism, 
including effects on inorganic pyrophosphatase 2 (PPA2) expression 
levels (reduced following phthalate exposure and increased in response 
to uncouplers, though neither of these were statistically significant; 
Fig. 4A). PPA2 plays a key role in phosphate metabolism, including 
oxidative phosphorylation and ATP generation (Phoon et al., 2020).

Furthermore, the highest-ranking gene was annotated as phospho-
fructokinase (PFKM), which was upregulated following high-dose FCCP 
and TCP exposures, although not statistically significant in the latter. As 
phosphofructokinase catalyses a rate-limiting step in glycolysis, this 
change in gene expression may be associated with the MoA of the un-
couplers of oxidative phosphorylation. Five D. magna genes were iden-
tified as orthologues to human glycolysis enzymes (GPI, PFKM, ALDO, 
PGK and ENO) in the gene panel used here. The expression of these 
genes, the conservation of the human glycolysis pathway, and their 
functional relevance to the hypothesised MoA of the uncouplers in 
Daphnia are further explored in Supplemental section S5 (including 
Fig. S6 and Tables S8 and S9).

While some of the annotated genes, metabolites and lipids can be 
associated with the MoA of uncouplers and with previous observations 
of Daphnia exposed to phthalates, rigorous plausible toxicological in-
terpretations that support the bioactivity profile-based grouping (Fig. 3) 
would require a greater number of annotated genes and metabolites in 
search of known MoA ‘signatures’ and toxicity related pathways that are 
enriched by significant features. For example, a plausible toxicological 
interpretation could include mapping the observed gene, metabolite and 
lipid changes to these signatures, assuming that these signatures are 
evolutionarily conserved between Daphnia and humans (Colbourne 
et al., 2022). In additional to reporting how extensively a given signa-
ture was detected (i.e., as a percentage of the number of features in the 
known signature), it would be valuable to indicate what proportion of 
the largest observed molecular changes can be explained by that (or 
those) MoA(s). Such future attempts at plausible toxicological in-
terpretations in omics-based chemical grouping should benefit from 
greater inclusion of genes with mammalian orthologs to explore and 
evaluate their feasibility, for example using a genome-wide analysis of 
gene expression by RNA-Seq. Given the increasing knowledge of MoA 
signatures in human and mammalian systems, for example the 
MTox700+ metabolite biomarkers that are associated with multiple 
human health effects (Sostare et al., 2022), attempts to plausibly toxi-
cologically interpret omics-based grouping results will become more 
achievable.

4. Conclusions

Grouping the six test substances using chemical profilers (based on 
structural alerts) had limited success in assigning them to the two 
anticipated groups based on prior knowledge of their MoAs. Substances 
were assigned to up to four groups depending on which profiler was 
applied. Grouping based on structural similarity yielded results that 
were more consistent with expectations, placing the phthalates and 
uncouplers into distinct categories. Statistical analysis of the Daphnia 
multi-omics data revealed considerable differences between the number 
of significantly perturbed molecular features per substance, indicating 
that improvements in experimental design are needed to generate ‘omics 
datasets that generate a more consistent level of molecular perturbations 
across the treatment groups. Despite this variation in the number of 
perturbed features, the multi-omics bioactivity profile-based grouping 
workflow separated the three phthalates and two uncouplers into 
distinct categories with high replicability confidence scores. Applying 
robust statistical procedures to calculate the bioactivity similarities be-
tween a series of molecular responses, in addition to defining how such 
procedures and their results should be reported, is important for 

Fig. 3. Bioactivity profile-based grouping presented as a dendrogram from a 
hierarchical cluster analysis of t-statistics derived from multi-omics data 
(transcriptomics and metabolomics) measured in samples of juvenile Daphnia 
(5 d) following 24-h and 48-h exposures to high doses of the test substances 
benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), diisobutyl phthalate 
(DiBP), 2,3,4,5-tetrachlorophenol (TCP) and carbonyl cyanide 4-(tri-
fluoromethoxy)phenylhydrazone (FCCP). Values at the top of the branches 
indicate % bootstrap replicability confidence p-values (using the selective 
inference method).
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building confidence in the reliability and transparency of bioactivity- 
based grouping using ‘omics data. Constrained in part by the lack of 
knowledge of MoA signatures in Daphnia, our attempted plausible 
toxicological interpretation was limited in scope. However, some 
metabolite and gene expression changes could be associated with 
anticipated changes in cellular energy metabolism that result from 
exposure to uncouplers of oxidative phosphorylation. Assuming the 
availability of more established MoA signatures for the biological test 
system being measured, for example generated by investigating a series 
of “anchor chemicals” with known MoAs, future grouping studies should 
investigate more robust and transparent strategies for the plausible 
toxicological interpretations of ‘omics datasets.
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