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A B S T R A C T

Hypertension is a significant global health challenge, contributing substantially to morbidity and mortality 
through its association with various cardiovascular diseases. Traditional approaches to hypertension risk pre-
diction, which rely on broad epidemiological data and common risk factors, often fail to account for individual 
variability, highlighting the need for advanced data-driven methodologies.

This review examines the role of Artificial Intelligence (AI) and Machine Learning (ML) in enhancing the 
prediction of hypertension risk by incorporating a range of data sources, including clinical, lifestyle, and genetic 
factors. Despite promising developments, challenges such as data standardisation, the need for high-quality 
datasets, model explainability, and class imbalance in medical data persist. The integration of wearable tech-
nologies, alongside the potential of emerging technologies in healthcare such as digital twins, presents significant 
opportunities in personalising care through the dynamic modelling of individual health profiles. This review 
synthesises current methodologies, identifies existing gaps, and highlights the transformative potential of AI- 
driven, personalised hypertension prevention and management, emphasising the importance of addressing is-
sues of reproducibility and transparency to facilitate clinical adoption.

1. Introduction

Hypertension is a chronic condition where the pressure in the ar-
teries is consistently high and can be defined in recent guidelines as an 
office systolic blood pressure of >140 mmHg (130 mmHg in some 
guidelines) and/or a diastolic blood pressure of more than 90 mmHg [1]. 
If left untreated, hypertension may lead to life-threatening cardiovas-
cular diseases including myocardial infarction, stroke, kidney failure 
and vascular dementia [2]. Consequently, hypertension is one of the 
most prevalent causes of premature death globally, leading to an esti-
mated 10.8 million avoidable deaths every year, and an annual burden 
of 235 million years of life lost or years lived with a disability [3].

Globally, it has been estimated that 1.28 billion adults aged 30–79 
years have hypertension with 46 % of these unaware that they have the 
condition [4]. In the UK, approximately 30 % of adults are diagnosed 
with hypertension [5], whilst in the US it is almost half of the adult 
population (48.1 %) [6]. Given the large social and economic costs 
associated with hypertension [7,8], it is crucial to prioritise preventive 
measures and recognise risk factors early. By tailoring prevention efforts 
to individual needs and circumstances, it is expected that the incidence 
of hypertension could be reduced and management improved [9,10].

The surging availability of health data, together with technological 
advancements over the last decade in Artificial Intelligence (AI) and 
Machine Learning (ML, a subfield of AI), has brought a paradigm shift to 
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healthcare [11]. In the context of hypertension, AI has played a signif-
icant role in applications such as the prediction of hypertension risk, 
estimation of blood pressure (BP), and prediction of treatment outcomes 
and long-term prognosis [12]. More recently, digital twin technology 
has made inroads into healthcare, promising new avenues for the per-
sonalisation of care [13,14]. These innovations promise to improve 
precision in both preventive and therapeutic strategies, paving the way 
for more personalised and effective hypertension care.

Traditional methods for predicting the risk of hypertension often rely 
on broad epidemiological data and common risk factors such as age, 
gender, family history, obesity, and lifestyle habits like smoking and 
alcohol consumption [15,16]. While these methods have been useful in 
identifying high-risk groups in the population, they often lack a per-
sonalised approach, failing to account for individual variability in ge-
netic predispositions, comorbidities, and environmental influences. 
Consequently, the effectiveness of these methods in guiding targeted 
interventions and optimising preventive strategies may be limited, 
underscoring the need for more nuanced, data-driven approaches that 
incorporate individual-specific factors. The diverse causes and effects of 
hypertension, shaped by individual genetic and environmental factors, 
highlight the need for personalised prevention and management stra-
tegies [17].

This review article aims to synthesise the current state-of-the-art 
evidence regarding the application of AI methodologies for the person-
alised prediction of hypertension risk. Second, it seeks to critically 
examine how personalisation has been explicitly addressed in previous 
studies and to identify gaps in the current body of research, emphasising 
early identification of risk factors, enabling the prediction of disease 
onset and empowering individuals to implement timely interventions to 
prevent or delay its progression. Finally, this review explores the impact 
of AI and emerging technologies such as digital twins, assessing their 
transformative possibilities in enabling precision-driven prevention and 
fostering improved health outcomes.

2. Methods

2.1. Search strategy and selection process

We conducted a comprehensive literature search on personalised 
prediction of hypertension risk, prioritising studies that explicitly 
addressed personalisation and prediction of hypertension, using three 
online journal databases: PubMed, Scopus and IEEE. Fig. 1 presents the 
flowchart indicating the selection of the articles relevant to this study, 
including the search terms in order of execution and their location 
within the manuscript (i.e. title, abstract, keywords, etc.). Initial 
screening was conducted by title and abstract, followed by a full-text 
review of potentially relevant articles to ensure they met the inclusion 
criteria, as shown in Fig. 1.

3. Results

3.1. Search results

A total of n = 489 studies (Fig. 1) were obtained from the search 
process (date: March 13, 2024), with n = 373 unique studies between 
the three journal databases (after removing duplicates). Since our focus 
was on the singular prediction of regular arterial hypertension using AI/ 
ML, the following studies were removed: i) studies not related to 
essential hypertension (n = 263); ii) studies related to pulmonary hy-
pertension (n = 11); iii) studies of comorbidities which include hyper-
tension (n = 9) where predicting risk of hypertension was not the focus; 
iv) studies related to BP monitoring, BP estimation, or and profiling of 
patients based on their BP (n = 22); and v) studies on hypertension 
prognosis, treatment or management (n = 25). Additionally, papers such 
as editorials (n = 11), reviews (n = 7), and letters or notes (n = 11) were 
also excluded. Furthermore, 2 studies were excluded due to lack of 

quality, i.e., unclear description of methodology and data used.
In total, 12 predictive modelling articles were read in full and 

initially selected for our review. However, one of the articles was later 
retracted by the publisher (date: August 19, 2024) and subsequently 
removed, resulting in a final inclusion of 11 studies [18–28].

3.2. Factors used to predict hypertension risk

Eleven of the reviewed articles [18–28], summarised in Table 1, 
investigated the development of predictive models for hypertension. 
Most of these studies have relied on demographic and clinical variables 
to predict hypertension. However, there have been other variables 
examined to elucidate the factors associated with hypertension, 
including lifestyle and genetics.

A key lifestyle factor associated with hypertension is physical ac-
tivity [29]. Two studies [24,25], examined the relationship between 
hypertension and physical activity (accelerometer data). Yao and Wang 
[24] proposed a method to process and aggregate accelerometer data to 
characterise complex activities, which were further modelled using 
random forest [30] (AUC: 0.78) for classifying hypertensive and 
normotensive groups. Alternatively, Chiang et al. [25] used SHapley 
Additive exPlanations (SHAP) [31] as a feature selection strategy for 
their random forest model (MAE: 5.34, RMSE: 8.24, MAPE: 4.19, R2: 
0.51), to predict diastolic and systolic blood pressure using the previous 
12-, 24- and 48-h readings and provide personalised activity-based 
recommendations aimed at reducing blood pressure and preventing 
hypertension.

In line with these studies that use wearable device data, Bernal et al. 
[19] presented a proof-of-concept web-based ecosystem with a wearable 
device to measure patient data such as blood pressure, heart rate, and 
step count; a mobile application to collect medication and lifestyle in-
formation and a web platform to organise the data. Multiple ML algo-
rithms were used to model this data, with the optimal model obtained 
using random forest (R2: 0.89) predicting real-time BP and assessing the 
risk of hypertensive crisis.

Abrar et al. [18] followed a similar framework of using wearable 
device data to predict blood pressure along with heart rate at 1–10 days 
using online infinite echo state Gaussian process (OIESGP) – a recurrent 
neural network based framework [32], with the optimal model out-
performing traditional ML models. However, Abrar et al. did not include 
activity data, relying only on vital signs collected from wearable devices 
and other physiological parameters. Furthermore, they calculated a 
hypertension risk score for 1, 2, and 4 years using the Framingham Risk 
Score, but this scoring method may not be the most suitable for the 
Malaysian population studied in this paper due to ethnic, lifestyle, and 
environmental differences.

AI/ML systems integrated with wearable devices can leverage 
continuous real-time monitoring of individuals and environmental data 
to promote healthy choices and deliver personalised recommendations. 
This technology also has the potential to help prevent hypertension, as 
seen in earlier studies such as Chiang et al. [25] and Bernal et al. [19]. 
However, these studies were conducted on a limited number of patients, 
which makes the model performance evaluation unreliable and may not 
reflect broader data distribution, limiting its generalisability. Addi-
tionally, the adoption of wearable devices in clinical practice is limited 
due to frequent calibration needs, dependence on reliable measurements 
in specific body positions [33], and the need for simplicity, affordability, 
and consistency in design and operation.

Genetic factors also play a vital role in the development of hyper-
tension. Two studies [21,23] incorporated genetic parameters, to further 
improve personalised approaches to hypertension prediction. Jusic et al. 
[23] explored the role of microRNAs in predicting essential hyperten-
sion, with their most effective model - Support Vector Machine [34] 
(AUC: 0.90), using a combination of two specific microRNAs - 
miR-361–3p and miR-501–5p, alongside common clinical parameters to 
differentiate between hypertensive and non-hypertensive individuals. In 
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Fig. 1. Flowchart indicating the selection of articles relevant to this review.
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Table 1 
Summary of the 11 articles on predictive modelling that were fully reviewed. Abbreviations used are at the end of the table.

Authors 
and 
reference

Year Downstream task Type of task Model 
(CML/ 
DL)

Training Features Number 
of 
features

Dataset size Data origin 
(modelling)

Evaluation External 
validation

Metric Reproducibility:

Data Code

Abrar et al. 
[18]

2021 Prediction of the 
hypertension risk

Regression CML, DL Supervised Blood pressure time 
series, physiological 
readings

9 + time 
series

4320 data 
records

Malaysia 
(UMMC)

SS (24 h of 
readings for 
training, 5 
consecutive 
days for 
testing)

no MAE, MSE, 
RMSE

no no

Bernal 
et al. 
[19]

2021 Prediction of 
diastolic and 
systolic pressure

Regression CML Supervised Medications, 
demographic and 
clinical parameters, 
weather quality, 
pollution, surveys 
(depression, social 
support, alcohol, stress, 
smoking, physical 
activity, diet)

>120 7 patients Unknownb

(volunteers)
SS (80–20) no RMSE, R2 no no

Davagdorj 
et al. 
[20]

2021 Identifying risk 
factors and 
prediction of 
hypertension

Classification CML Supervised Demographic 
parameters, surveys 
(drinking behaviour, 
marital status, 
education, residential 
area), laboratory 
parameters

31 4094 
patients

Korea 
(KNHANES)

CV (5 folds) no Pre, Re, F1- 
score, Acc

no no

Li et al. 
[21]

2021 Classification of 
hypertension 
subtypes

Classification CML Supervised Genetic and 
environmental 
parameters

up to 
16227

2082 
patients

USA 
(HyperGEN)

SS (80-10-10) no F1-score no no

Du et al. 
[22]

2023 Prediction of a 
hypertension risk

Classification CML Supervised Age, gender, lifestyle, 
blood routine, 
biochemical 
examination 
parameters

57 1617 health 
check 
records

China 
(AHHNU)

SS (70–30) no Acc, Pre, Re, F1- 
score, macro- 
average ROC 
curve, micro- 
average ROC 
curve

no no

Jusic et al. 
[23]

2023 Diagnosis of 
essential 
hypertension

Classification CML, DL Supervised Clinical parameters and 
miRNAs

12 174 patients Bosnia and 
Herzegovina 
(PMG)

LOOCV no AUC, balanced 
Acc, F1-score, 
Pre, Sen, Spe

no no

Yao and 
Wang 
[24]

2023 Identification of 
the relationship 
between 
hypertension and 
physical exercise

Classification CML, DL Supervised Gender, age, blood 
pressure readings, 
activity data

up to 
3435

995 patients USA 
(NHANES)

CV (50 folds) no Kappa, Spe, Pre, 
Re, F1-score, 
balanced Acc, 
ROC curve, AUC

no no

Chiang 
et al. 
[25]

2021 Prediction of 
diastolic and 
systolic pressure

Regression CML, DL Supervised Blood pressure time 
series and activity data

47 25 subjects USA (ACTRI) CV (5 folds) no MAE, RMSE, 
MAPE, R2

no no

Zhang et al. 
[26]

2023 Predicting risk of 
9 chronic diseases

Classification Survival 
Analysis

Supervised clinical and 
demographic 
parameters

78 500000 
participants

UK (UK 
Biobank)

CV (5 folds) no C-index, AUC, 
Spe, Re, Youden 
Index

noa yes

Ismail et al. 
[27]

2020 Analysing health 
factors and 
prediction of 3 
chronic diseases

Classification DL Supervised Demographic, clinical 
and lifestyle parameters

20 10,806 
participants

Korea 
(KNHANES)

CV (10 folds) no Acc no no

Nakamura 
et al. 
[28]

2023 Predict future 
onset of 11 
chronic diseases 

Classification CML Supervised Physiological, 
biomarker, personal 
lifestyle, and socio- 

25 3238 
participants

Japan (IHPP) CV (5 folds) no AUC, F1-score, 
Approached 

no no

(continued on next page)
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contrast, Li et al. [21] highlighted the predictive value of 
single-nucleotide polymorphisms (SNPs) as genetic indicators of hy-
pertension, with their optimised model - ScanMap [35] (F1: 0.63), 
employing ExAC-filtered SNPs to classify participants into 
non-hypertensive, mildly hypertensive, and severely hypertensive 
groups. While both studies demonstrated the relevance of genetic factors 
in hypertension, their findings were constrained by limited sample sizes. 
Additionally, challenges in genomic data collection and standardisation 
may impede the routine clinical use of these models.

3.3. Explainability as an attempt to achieve personalisation

Different model-agnostic explainability methods have been used to 
deliver personalisation when determining future hypertension risk. For 
example, Li et al. [21] and Du et al. [22] incorporated SHAP analysis to 
identify key factors influencing predictions, and aid end-user under-
standing, by providing post-hoc explainability for their models. Similar 
to Li et al. [21], Du et al. [22] applied their best-performing model - 
LightGBM [36] (AUC: 0.82), for predicting hypertension subtypes 
(normotensive, pre-hypertensive, hypertensive). Additionally, Du et al. 
designed a visual risk assessment tool that provided individualised hy-
pertension risk scores highlighting the contributing factors. However, it 
remains unclear whether these scores were derived from SHAP values or 
directly from the model itself, emphasising the need for greater trans-
parency in the scoring process.

In contrast to these SHAP-based approaches, Davagdorj et al. [20] 
proposed a two-step method to enhance end-user interpretability of a 
hypertension prediction model using local interpretable model-agnostic 
explanations (LIME) [37]. Unlike the study from Jusic et al. [23], which 
used recursive feature elimination, Davagdorj et al. utilised multiple 
statistical tests (t-test, chi-square) to identify significant features, which 
were then fed into various models to identify the optimal classifier - 
XGBoost [38] (Recall: 0.90, F1: 0.83, Accuracy: 0.74), based on 
comprehensive performance metrics. LIME analysis was subsequently 
applied to explain individual predictions by highlighting key risk factors 
associated with hypertension and normotension. While model-agnostic 
methods like LIME and SHAP are valuable for understanding associa-
tions between individual predictors and outcomes, they cannot be used 
for personalisation due to the risk of misinterpretations (confounders), 
such as unwarranted causal inferences and misleading feature impor-
tance [39,40].

3.4. Leveraging shared knowledge

While the studies above primarily focused directly on hypertension, 
three additional studies [26–28] investigated the risk of multiple 
chronic diseases, including hypertension, leveraging shared knowledge 
across conditions.

Zhang et al. [26] harnessed concepts of multitask learning [41] and 
Cox proportional hazards model [42] to develop a multitask-Cox model 
for predicting the risk of nine common chronic diseases over time (1, 3, 
5, and 7 years) using UK Biobank data, achieving better performance 
compared to single-task models. Ismail et al. [27] proposed a deep 
learning framework using convolutional neural network (CNN) [43] 
model enhanced by Pearsons correlation analysis and pattern mining to 
classify three chronic diseases. Nakamura et al. [28] on the other hand, 
proposed a methodology to assess individuals’ health state in relation to 
the progression of 11 chronic diseases, aiming to predict disease onset 
within 1–3 years and establish individualised intervention targets for 
disease prevention. Their approach employs health-disease phase dia-
grams (HDPDs), which enable the visualisation of biomarker thresholds 
that delineate healthy states from disease-onset states, facilitating 
tailored early interventions for preventing non-communicable diseases, 
such as hypertension. The study is limited by single-site data with low 
onset records, and personalisation is attempted by visualising 
individual-specific biomarker thresholds that separate healthy states Ta
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from disease onset, as a mechanism to tailor prevention strategies.

4. Discussion

4.1. The impact of AI and emerging technologies in healthcare

AI is dedicated to developing systems capable of performing tasks 
traditionally requiring human intelligence, such as learning from 
experience, understanding natural language, recognising patterns and 
making decisions. These capabilities hold significant promise for 
advancing healthcare [44], particularly in the prediction and manage-
ment of chronic conditions such as hypertension. This transformative 
potential is already reshaping the healthcare landscape, with AI appli-
cations proliferating across various domains.

Key advancements include (i) rule-based expert systems and onto-
logical data models, which enhance clinical decision support [45,46]; 
(ii) natural language processing techniques that analyse unstructured 
clinical notes and other relevant patient information, which can aid in 
the identification of hypertension risk factors [45]; and (iii) AI/ML 
models capable of integrating diverse data sources to uncover complex 
interactions and associations, enabling risk predictions [47,48], 
enabling more accurate predictions of hypertension risk and other 
health outcomes.

Several review studies have addressed the increasing role of AI/ML 
and their transformative impact on hypertension care and cardiovas-
cular events. A systematic review by Cai et al. [49] summarised the use 
of ML for the prediction, diagnosis and classification of hypertension, 
along with automated image assessment of heart failure; whilst Amar-
atunga et al. [50] focused on using AI to predict clinical outcomes in four 
studies that utilised large datasets, two of which related to predicting 
hypertension. In one of these two datasets, the authors explored the 
potential of employing wearable biosensors and portable devices for 
regular monitoring of patients at risk of hypertension. The other focused 
on developing a risk prediction model for incident essential hyperten-
sion within one year, predicting hypertension and finding the risk 
factors.

Layton [51] and Krittanawong et al. [52] also provided a compre-
hensive summary of currently utilised ML techniques for hypertension 
research applications, including random forest, decision trees, k-means, 
and support vector machines. Particularly, Layton [51] discussed the 
potential of the latest technologies such as large language models, sug-
gesting a future where healthcare professionals will adapt and learn how 
to collaborate with AI. Additionally, Krittanawong et al. [52] and 
Chaikijurajai et al. [53] discussed future outlooks of using AI with 
multi-omics data, as well as socioeconomic, behavioural, and environ-
mental factors. Their discussion highlighted the potential for the iden-
tification of novel risk factors and patient phenotypes, that will enable 
improvements in treatment outcomes, all aimed at reducing the global 
burden of hypertension.

Limitations and challenges have also been discussed in Refs. [48,51], 
including data compatibility issues arising from different versions of the 
International Coding of Diseases, as well as others related to AI/ML 
modelling, such as model generalisability (overfitting) and interpret-
ability (black-box models). Dzau et al. [54] explored the potential and 
progress in “precision hypertension” with research in genomics, data, 
and AI to identify specific information related to data-driven approaches 
leading to precision diagnosis and therapy of hypertension. Their review 
also covered advances in biomedical therapeutics which can provide 
more precise therapies in specific populations compared to existing 
antihypertensive treatments. The study concentrated on treatment 
adherence for managing hypertension, discussing the potential appli-
cation of omics data to generate a polygenic risk score indicating an 
individual’s susceptibility to developing hypertension.

AI/ML can leverage data obtained from multiple data sources and in 
different formats and modalities, such as text (e.g., patient’s past med-
ical history), time series (e.g., vital signs, electrocardiograms), imaging 

(e.g. x-rays, computed tomography scans, echocardiograms) and cross- 
sectional tabular data (e.g., patient demographics) [55]. High-quality 
data are fundamental to the success of these models, as the accuracy 
of predictions, including hypertension risk, depends on robust training 
and validation datasets [56]. Large-scale data repositories such as the 
UK Biobank [57], BioBank Japan [58], Australian Genomics Health 
Alliance [59], and MIMIC [60], have played a significant role in the 
understanding of disease prediction, diagnosis, and therapeutic strate-
gies, particularly when these databases are open-access [61]; changing 
the landscape of modern healthcare [56].

Emerging technologies in healthcare such as digital twins [13] 
further enhance the potential of AI/ML in precision medicine. A digital 
twin of a patient represents a virtual model of such a patient that in-
tegrates information such as medical history, demographic information, 
laboratory tests, vital measurements, and lifestyle factors. A defining 
feature of digital twins in healthcare is their capacity to model indi-
vidual patients, setting them apart from traditional population-based 
models.

Digital twin technology enables the simulation of patient-specific 
responses to various treatments, allowing clinicians to explore the 
likely outcomes of different therapeutic strategies before applying them 
in practice. By continuously assimilating new data from the patient, 
digital twins have the potential to dynamically evolve and reflect 
changes in health status, thereby offering powerful means for testing 
interventions, predicting adverse events, and optimising treatment 
pathways in a personalised manner.

This innovative approach coupling digital twins and AI is currently 
being developed and applied in extensive research programmes [14,62] 
to improve diagnosis, risk prediction, peri-stroke management and 
post-stroke rehabilitation. Still, these digital twin technologies are yet to 
be used for predicting hypertension risk. By simulating disease pro-
gression and forecasting conditions like hypertension, digital twins offer 
the potential for proactive interventions and personalised treatment 
plans. As a tool for risk prediction and personalised care, patient digital 
twins could transform hypertension management and contribute to 
broader advancements in precision medicine.

4.2. Advantages of AI over traditional statistical techniques

Traditional statistical approaches have been widely used for 
hypertension-related studies. These approaches typically involve the use 
of clinically relevant variables to elucidate associations, aimed at help-
ing to understand the underlying biological and pathophysiological 
mechanisms [63]. These clinical variables are usually limited, as they 
may not capture the full complexity of individual variability, genetic 
factors, environmental influences, or other non-clinical determinants 
that contribute to the development and progression of hypertension. 
Consequently, traditional methods may overlook important contributors 
to disease outcomes, leading to an incomplete understanding of the 
condition.

Several studies have employed conventional regression and survival 
analysis methods to predict hypertension risk. For example, logistic 
regression [64] has been used to develop a screening tool for hyper-
tension [65], a hypertension risk calculator [66], and the prediction of 
incident hypertension at 8 years among women [67]. Linear and logistic 
regression [68] methods have been employed to evaluate the association 
of genetic risk scores with longitudinal changes in blood pressure and 
the incidence of hypertension [69]; while Cox proportional hazards 
models have been utilised to estimate the risk of developing hyperten-
sion [70]. Among the widely applied techniques for hypertension risk 
assessment is the Framingham Hypertension Risk Score [71]. As this 
score is based on a single measurement of blood pressure and other risk 
factors, and was originally derived from a predominantly Caucasian 
population [71], subsequent studies have aimed to recalibrate and 
validate it across more diverse population datasets [72,73].

These statistical approaches have offered the advantage of being 

A. Naik et al.                                                                                                                                                                                                                                    Computers in Biology and Medicine 196 (2025) 110718 

6 



simple to understand and with fewer and less complex computations 
than AI/ML models. This simplicity comes with disadvantages; they are 
often poor at predicting risk in populations they were not validated on 
[67]. Moreover, the often ‘one-off assessment’ only gives long-term risk 
prediction, and does not consider that risk factors can change over time 
or in response to lifestyle modifications. Conversely, there is the argu-
ment that traditional AI/ML models are difficult to interpret [63]. 
However, recent advancements in explainable AI/ML have brought 
forward techniques like SHAP value analysis and LIME, among others, 
which have been utilised to help interpret and explain the decisions and 
predictions of complex AI/ML models [20–22].

Compared to traditional statistical models, AI/ML models offer 
flexibility and scalability and are less reliant on prior assumptions, such 
as normality, linearity and equality of variance [63]. Additionally, they 
are routinely validated with separate datasets during model develop-
ment and can easily differentiate which set of variables is most relevant 
in risk prediction [49,63]. AI/ML has also outperformed traditional 
statistical methods in reducing bias, auto-managing missing variables, 
controlling for confounding and handling data imbalance, which are key 
factors in developing accurate models [74]. This is evident in several 
hypertension studies, including the work by Wu et al. [75], where the 
authors applied extreme gradient boosting (a method from the AI/ML 
family) for the prediction of clinical outcomes in young hypertensive 
patients aged 14–39, achieving a better concordance statistic score than 
statistical methods such as Cox proportion regression model and reca-
librated Framingham risk. Similarly, a study in Japan to predict the new 
onset of hypertension employed an ensemble AI/ML approach which 
outperformed a regression-based classification model [76].

Using AI for the personalisation of care would require analysing 
increased volumes of data as it would need to use detailed information 
and many more potential predictors. AI/ML helps towards this as it 
excels in large data problems, analysing multiple types of data (e.g., 
imaging, demographic, and laboratory findings) and addressing com-
plex interactions within numerous variables, where commonly used 
statistical approaches would struggle [63,74]. Furthermore, AI/ML al-
gorithms have proven particularly effective for omics-based data anal-
ysis, facilitating the elucidation of complex relationships among 
variables and their impact on primary outcomes [63], a critical 
advancement for precision medicine. Additionally, AI/ML enables the 
integration of radiomics with manually curated, clinically relevant 
features, allowing for a more comprehensive and nuanced analysis of 
data [77].

4.3. Shortcomings of the existing approaches to predict hypertension risk

Our review revealed several shortcomings of the existing techniques 
for personalised hypertension risk prediction, particularly in terms of 
data sources and explainability. These limitations point to the need for 
more advanced methods that can handle complex, unstructured data. In 
this context, our findings highlight the prevalence of tree-based 
ensemble models across the majority of studies. While traditional AI/ 
ML algorithms form the backbone of data-driven approaches, high- 
capacity deep learning models remain underrepresented. These 
models have the potential to automate representation learning, which 
could be particularly beneficial for analysing unstructured raw clinical 
data, a domain where hand-crafted feature engineering often proves 
inadequate. Leveraging deep learning for such tasks may unlock more 
nuanced insights and improve performance.

Genetic and physical activity data offer significant potential for 
advancing personalisation in healthcare, particularly in predicting the 
risk of hypertension. However, several shortcomings limit their current 
utility. Challenges related to data collection, standardisation, and pro-
cessing hinder clinical applicability, and despite substantial advance-
ments in genomics research, the integration of these findings into 
routine clinical practice remains slow and complex [78]. Furthermore, 
genetic information is not yet widely available in healthcare settings, 

limiting its use in studying conditions such as hypertension.
Deep learning, with its ability to process diverse and complex data 

types, is well-suited to analyse the intricate and heterogeneous nature of 
genomic data, thereby accelerating the development of precision med-
icine. However, its application to genomic data is constrained by the 
need for large, high-quality datasets, which are often unavailable. 
Similarly, whilst deep learning can accurately classify accelerometer 
wear-site and activity intensity directly from raw acceleration data, 
overcoming limitations associated with the specific placement of 
wearables [79], these methods are reliant on robust models and 
consistent input data. Variability in device usage and participant 
adherence further complicate efforts to utilise these approaches effec-
tively in physical activity research, impacting their reliability for hy-
pertension risk prediction.

Another critical challenge identified in our analysis is the issue of 
class imbalance in medical datasets, where normal cases far outnumber 
abnormal ones. This imbalance can significantly degrade model per-
formance [80,81]. Data augmentation techniques such as SMOTE 
(Synthetic Minority Over-Sampling Technique) [82] have been 
employed to address this issue, as observed in one of the studies 
reviewed [22]. The application of similar strategies, including random 
oversampling and ADASYN (Adaptive Synthetic Sampling) [83], has 
also been reported in other healthcare-related studies confronting class 
imbalance—for instance, in machine learning-based analyses of 
early-onset hypertension risk factors [84] and, in body 
composition-based hypertension prediction models [85]. However, 
despite their intent to mitigate class imbalance, these conventional ap-
proaches exhibit notable limitations, including the risk of overfitting due 
to oversampling and the potential loss of information from 
under-sampling. Moreover, such methods may also result in poorly 
calibrated models, diminishing their clinical utility by producing inac-
curate risk predictions [86,87].

In contrast, deep learning techniques such as autoencoders [88] and 
generative adversarial networks (GANs) [89] offer alternative ap-
proaches by generating synthetic data or learning robust representations 
[90,91]. Specialised strategies tailor-made for deep learning, such as 
Balanced-MixUp [92] - a data regularisation technique, may offer 
further alternatives to enhance model performance in federated learning 
settings, by generating synthetic data and ensuring a more uniform class 
distribution, while preserving privacy [93]. Additionally, transfer 
learning approaches could also be utilised to handle data scarcity or 
imbalance [94–96]. They can leverage knowledge from a model trained 
on a different but related dataset to improve performance, particularly 
for the underrepresented class of a skewed distribution. Transitioning to 
more such advanced methods could not only enhance predictive accu-
racy but also broaden the applicability of AI/ML techniques in clinical 
settings.

Furthermore, understanding causal relationships and identifying 
relevant risk factors is also crucial in healthcare. However, the black-box 
nature of many ML models limits transparency and trust. Interpretable 
models (e.g., decision trees) can offer a clear, human-understandable 
logic, supporting clinical trust and accountability, but may lack the ac-
curacy of complex models. Explainability methods, such as SHAP, 
enable post hoc analysis, shedding light on the predictions from black- 
box models by highlighting influential features and helping identify 
potential risk factors. However, these methods primarily indicate cor-
relations rather than causal relationships, and can be sensitive to model 
variations. To address these limitations, deep learning frameworks like 
graph neural networks (GNNs) [97] could offer a promising solution as 
they can model complex relationships between entities – such as pa-
tients, diseases, treatments, etc. By capturing both local and global 
contexts, GNNs can enhance predictive performance and support 
interpretability via node and edge analysis. This makes them well-suited 
for incorporating domain knowledge and understanding relational or 
causal structures in healthcare data. Additionally, they can form the 
backbone of digital twins, enabling the integration of multiscale 
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computational modelling with AI, as demonstrated by a recent study 
that used GNNs to forecast blood pressure and GANs for synthetic data 
generation, albeit with a focus on treatment rather than prevention or 
prediction of hypertension [98].

In addition to interpretability, issues of bias and generalisability 
remain major concerns in existing approaches. Notably, each of the 
studies [18–28] used data from a single country (see data origin column 
in Table 1), limiting demographic diversity and contributing to models 
being trained on datasets that may lead to biased predictions. As a result, 
many models may not generalise well to populations differing in 
ethnicity, sex, age, socioeconomic status, or geographical location. Such 
biases risk exacerbating health disparities if not properly addressed. 
Furthermore, none of these studies assessed their models using external 
datasets (see external validation column in Table 1). This is critical, as 
models that perform well on internal validation often fail to replicate 
their performance when tested on independent, external cohorts. To 
improve generalisability, models must be developed using larger, more 
representative datasets and validated rigorously across diverse pop-
ulations. Efforts to mitigate bias are essential to ensure that AI models 
for hypertension risk prediction are equitable and clinically reliable 
across varied patient groups. Coupled with interpretable modelling, 
these practices can enhance both the trustworthiness and effectiveness 
of AI-based personalised medicine.

Building on the concept of leveraging shared knowledge to address 
disease interdependencies, the multitask learning approach described by 
Zhang et al. [26] demonstrated the ability to account for disease 
comorbidities by capturing interdependencies across conditions, 
although its reliance on the Cox proportional hazards model limits its 
ability to model complex, non-linear interactions. The study of Ismail 
et al. [27] emphasised the ability of deep learning models to capture 
more complex, non-linear, complex patterns, enhancing the classifica-
tion of chronic diseases. In addition, the health-disease phase diagrams 
of Nakamura et al. [28] leveraged explainable AI techniques to tailor 
early prevention efforts by visualising biomarker thresholds, offering a 
more individualised (albeit not fully personalised) strategy for man-
aging hypertension within the broader context of chronic disease pre-
vention. However, despite their advancements, none of these 
approaches fully integrate individual-specific contexts, behaviours, or 
dynamic health trajectories into their predictive or intervention frame-
works, and cannot be considered personalised.

The analysis conducted in this review also showed that most methods 
cannot be easily reproduced (see Table 1), as the utilised datasets and 
implementations are not publicly available. Additionally, these datasets 
substantially differ in terms of included predictors and underlying 
characteristics. Furthermore, the authors often follow inconsistent 
validation procedures and experimental regimes, defined as the 
training-test dataset splits and quality metrics used for quantifying the 
generalisation capabilities of AI/ML models, which makes direct com-
parisons between algorithms extremely challenging, even when 
addressing similar tasks. Given these issues, and in light of the repro-
ducibility crisis affecting (not only) medical data analysis [99], 
addressing these gaps and ensuring full experimental reproducibility is 
crucial for accelerating the adoption of data-driven techniques in hy-
pertension management. Standardising methodologies for developing 
and evaluating AI/ML approaches in hypertension prediction and 
management is essential to facilitate objective comparisons, ultimately 
helping to identify the most effective and generalisable models for 
integration into routine clinical practice.

As discussed by Royen et al. [100], there are five critical quality 
criteria which are pivotal to be met while introducing AI/ML solutions 
into the medical data analysis field. They include 1) reproducibility of 
AI/ML techniques, 2) their clear intended use, 3) rigorous validation of 
such methods with 4) appropriate sample size, as well as 5) openness of 
the data and software. Although we may indeed observe a promising 
trend in increasing the number of patients being included in the vali-
dation process of emerging AI/ML solutions in the context of 

hypertension management, our analysis revealed that the reported 
studies are extremely difficult or impossible to reproduce (as the code 
and data or the training/test dataset splits are not publicly available), 
hence the numerical results reported in such works cannot be compared 
directly; therefore, it is challenging to monitor the progress in the field of 
hypertension risk prediction and disease management.

Addressing the aforementioned issues and meeting the quality 
criteria are, in our view, of paramount importance. We emphasise that it 
is the responsibility of authors, researchers, and reviewers (readers) to 
ensure that clinical AI prediction modelling studies in cardiovascular 
health meet the five key quality criteria. These include comprehensive 
reporting, clearly defined model usage, rigorous validation, sufficient 
sample sizes, and transparency of code and software. Adhering to these 
standards will enhance the quality, clinical relevance, and impact of AI 
prediction studies in this field.

4.4. Precision medicine and personalisation – the likely future of 
hypertension prevention and management

The convergence of AI, digital twin technology, and precision med-
icine, is impacting healthcare by addressing complex problems in per-
sonalised care [56], offering transformative potential for the prediction 
and management of hypertension. In the context of hypertension, these 
technologies can integrate diverse data streams, such as wearable device 
outputs, environmental exposures, and behavioural patterns, to create 
dynamic models of an individual’s health, which can be used to identify 
nuanced risk markers and simulate how different factors contribute to 
hypertension risk. This approach not only refines risk prediction but also 
enables the testing of potential interventions in the virtual space before 
applying them in real life, minimising trial-and-error approaches in 
patient care.

By incorporating digital twins, precision medicine will move beyond 
static datasets to continuous, adaptive insights. For hypertension, this 
would mean personalised prevention strategies can be modelled and 
optimised in real time. For instance, a digital twin might simulate the 
impact of dietary changes, medication adjustments, or stress-reduction 
techniques on blood pressure, offering tailored recommendations that 
are dynamically updated based on new data from wearables or routine 
check-ups.

From a data science and engineering perspective, building effective 
digital twins for the prediction and management of hypertension re-
quires the integration of multimodal data through robust pipelines 
capable of real-time data ingestion, preprocessing, and feature extrac-
tion. Advanced AI/ML models, such as recurrent neural networks and 
graph-based architectures, can be leveraged to capture temporal and 
relational aspects of physiological and behavioural data. In addition, 
developing reliable patient-specific simulations demands sophisticated 
calibration and validation techniques, ensuring that digital twin outputs 
accurately reflect clinical realities. Engineering scalable frameworks for 
deploying digital twins will also be crucial, necessitating the develop-
ment of secure, interoperable systems that maintain data privacy and 
support continuous model updating as new patient data becomes 
available.

Specifically for risk prediction, digital twins can integrate longitu-
dinal datasets encompassing blood pressure trajectories, medication 
adherence patterns, genetic predisposition, and lifestyle factors to pre-
dict an individual’s future risk of developing hypertension. Through 
counterfactual simulations, digital twins can also help assess how 
different modifiable factors, such as reductions in salt intake or increases 
in physical activity, may alter the risk profile over time. This predictive 
capacity enables early, highly targeted interventions aimed at delaying 
or preventing the onset of hypertension altogether.

The integration of AI with digital twins has the potential to enhance 
the precision and scalability of hypertension prevention and manage-
ment. It will empower patients to engage actively with their health 
through actionable insights whilst supporting clinicians in making data- 
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driven, individualised decisions. This approach has the potential not 
only to improve prevention, diagnosis, and treatment but also to opti-
mise resource utilisation, offering a pathway to reduce the burden of 
hypertension on healthcare systems and society.

4.5. Challenges to the clinical adoption of digital twin technology

Realising the full potential of digital twins in clinical settings re-
quires addressing several critical challenges. As highlighted by the 
EDITH consortium [13], key barriers include the lack of robust, 
individual-level predictive models that can accurately represent the 
complexity and variability of human physiology. The integration of 
heterogeneous in-silico modelling approaches, ranging from data-driven 
to mechanistic methods, is also technically demanding and is further 
constrained by the scarcity of high-quality, representative datasets for 
model development and validation. Data accessibility is also constrained 
by stringent privacy regulations and a lack of consensus on data types, 
standards, and governance requirements.

In addition, regulatory uncertainty (particularly the absence of 
harmonised frameworks for evaluating the credibility and safety of in- 
silico technologies) impedes their incorporation into clinical and regu-
latory pathways. Broader implementation efforts are further hindered 
by limited stakeholder awareness, inadequate interoperability with 
electronic health record systems, and a shortage of professionals with 
expertise bridging clinical practice and computational science. These 
challenges are reflected in prior studies [101–103], which have similarly 
emphasised the importance of data quality, infrastructure, security, and 
validated methodologies.

Addressing these interrelated barriers will require coordinated, 
interdisciplinary collaboration to establish common standards, enhance 
data governance, and create supportive regulatory and commercial en-
vironments conducive to innovation and clinical translation.

5. Conclusion

The integration of AI/ML into personalised hypertension risk pre-
diction is a rapidly advancing field, with emerging technologies such as 
digital twins offering promising avenues for enhanced precision in hy-
pertension care. AI models, especially those that leverage diverse data 
sources, including genetic markers, wearable device outputs, and clin-
ical variables, have demonstrated considerable potential in improving 
prediction accuracy and enabling more targeted, personalised preven-
tion strategies. However, the field faces significant challenges, such as 
issues related to reproducibility, inconsistent methodological standards, 
and limited access to heterogeneous datasets. These barriers hinder the 
generalisability of findings and the broader adoption of AI-based solu-
tions in clinical practice.

To realise the full potential of AI in hypertension prevention and 
management, it is essential to overcome these obstacles through the 
standardisation of methodologies, transparent reporting, and rigorous 
validation processes across diverse populations. A particularly prom-
ising innovation in this area is digital twin technology, which holds the 
potential to enable healthcare providers to both, tailor prevention 
measures and manage hypertension in real time, by simulating treat-
ment outcomes and optimising personalised care strategies. These 
technologies have the potential not only to improve prevention, diag-
nosis, and treatment but also to optimise resource utilisation, offering a 
pathway to ultimately improve patient outcomes and reduce the global 
burden of hypertension. A coordinated, interdisciplinary collaboration 
will be required to realise the full potential of these novel technologies in 
clinical settings.
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[8] E. Wierzejska, B. Giernaś, A. Lipiak, M. Karasiewicz, M. Cofta, R. Staszewski, 
A global perspective on the costs of hypertension: a systematic review, Arch. Med. 
Sci. 16 (2020) 1078–1091, https://doi.org/10.5114/aoms.2020.92689.

[9] M. Volpe, G. Tocci, A. de la Sierra, R. Kreutz, S. Laurent, A.J. Manolis, K. Tsioufis, 
Personalised single-pill combination therapy in hypertensive patients: an update 
of a practical treatment platform, High Blood Pres. Cardiovasc. Prev. 24 (2017) 
463–472, https://doi.org/10.1007/s40292-017-0239-7.

[10] E.K. Oikonomou, E.S. Spatz, M.A. Suchard, R. Khera, Individualising intensive 
systolic blood pressure reduction in hypertension using computational trial 
phenomaps and machine learning: a post-hoc analysis of randomised clinical 
trials, Lancet Digit. Health 4 (2022), https://doi.org/10.1016/S2589-7500(22) 
00170-4.

[11] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, 
Y. Wang, Artificial intelligence in healthcare: past, present and future, Stroke 
Vasc Neurol 2 (2017), https://doi.org/10.1136/svn-2017-000101.

[12] V. Visco, C. Izzo, C. Mancusi, A. Rispoli, M. Tedeschi, N. Virtuoso, A. Giano, 
R. Gioia, A. Melfi, B. Serio, M.R. Rusciano, P. Di Pietro, A. Bramanti, G. Galasso, 
G. D’Angelo, A. Carrizzo, C. Vecchione, M. Ciccarelli, Artificial intelligence in 
hypertension management: an ace up your sleeve, J. Cardiovasc. Dev. Dis. 10 
(2023), https://doi.org/10.3390/jcdd10020074.

[13] M. Viceconti, M. De Vos, S. Mellone, L. Geris, Position paper from the digital 
twins in healthcare to the virtual human twin: a moon-shot project for digital 
health research, IEEE J. Biomed. Health Inform. (2023), https://doi.org/ 
10.1109/JBHI.2023.3323688. PP.

[14] S. Ortega-Martorell, I. Olier, M. Ohlsson, G.Y.H. Lip, T. Consortium, TARGET: a 
major European project aiming to advance the personalised management of atrial 
fibrillation-related stroke via the development of health virtual twins technology 
and artificial intelligence, Thromb. Haemost. (2024), https://doi.org/10.1055/a- 
2438-5671.

[15] H. Zhao, X. Zhang, Y. Xu, L. Gao, Z. Ma, Y. Sun, W. Wang, Predicting the risk of 
hypertension based on several easy-to-collect risk factors: a machine learning 
method, Front. Public Health 9 (2021), https://doi.org/10.3389/ 
fpubh.2021.619429.

[16] S.M.S. Islam, A. Talukder, MdA. Awal, MdM.U. Siddiqui, MdM. Ahamad, 
B. Ahammed, L.B. Rawal, R. Alizadehsani, J. Abawajy, L. Laranjo, C.K. Chow, 
R. Maddison, Machine learning approaches for predicting hypertension and its 
associated factors using population-level data from three South Asian countries, 
Front. Cardiovasc. Med. 9 (2022), https://doi.org/10.3389/fcvm.2022.839379.

[17] S.T. Turner, G.L. Schwartz, E. Boerwinkle, Personalized medicine for high blood 
pressure, Hypertension 50 (2007) 1–5, https://doi.org/10.1161/ 
HYPERTENSIONAHA.107.087049.

[18] S. Abrar, C.K. Loo, N. Kubota, A multi-agent approach for personalized 
hypertension risk prediction, IEEE Access 9 (2021) 75090–75106, https://doi. 
org/10.1109/ACCESS.2021.3074791.
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