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Abstract

The objective of binaural direction of arrival (DoA) estimation is to find the DoA of

a sound source by measuring the sound field with a binaural array. This field increas-

ingly applies deep learning to this task, particularly convolutional neural networks

which are trained on relatively raw representations of the binaural audio.

This work investigates the field, establishing common trends among different publi-

cations, particularly in the data preparation, scrutinising these trends for instances

of the emergence of collective wisdom without empirical backing. Based on this, an

experimental evaluation is performed to gain insight into the efficacy of different ex-

isting and novel techniques, based on a recurring testing framework.

Such experimental evaluations are undertaken for several topics: an analysis of acous-

tic conditions on the performance of binaural DoA estimation, a broad empirical

study on binaural feature representations to be used with convolutional neural net-

works (CNNs), the proposal and comparison of convolutional recurrent neural network

(CRNN) models for binaural DoA estimation, and an investigation into binaural DoA

estimation in the mismatched anechoic condition; referring to a mismatch in head-

related transfer function (HRTF) measurements between training and testing datasets

for an identical binaural array.

The findings in this thesis lead to recommendations for more effectively using deep

neural networks for binaural DoA estimation, while also demonstrating the limited

ability of such systems to generalise to unseen binaural data when using simulated

binaural datasets which are limited in their scope.
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1 Introduction

1.1 Motivation

sound source localisation (SSL) systems are routinely encountered in every day life.

A technology which is often associated with its military and robotics applications now

also finds home in many speech processing applications for a simple reason; sound

localisation helps machines understand us.

The techniques used in SSL tend to rely on microphone arrays containing as large

a number of transducers as possible.

It is not just machines that can perform this task. We humans, as well as much of

Animalia, are able to identify the direction of a sound. For many animals this ability

is significant as it allows for the detection of predators, or conversely prey. Despite

this, none of these animals have more than two ears, contrary to the dependence on

microphone arrays in SSL.

binaural sound source localisation (BSSL) is the field of study which seeks to

replicate this within machine hearing systems. Doing so would potentially allow for

reduction of the costly data acquisition associated with large arrays, and potentially

be vital for unlocking some of the more remarkable elements of human sound cogni-

tion, such as the cocktail party effect (Cherry, 1953).

Interest in such technology is found in fields related to speech processing, where

it is hoped that breaking down auditory scenes into individual components would

provide a method by which computer understanding of speech is advanced.

There is interest in BSSL also from the field of robotics, and in particular for

humanoid robots (Keyrouz, 2014; Nguyen et al., 2018; Dávila-Chacón et al., 2018)

where BSSL can be directly applied for the same role it serves in the human audition

system. Another important application of BSSLs is in hearing aids and cochlear im-

plants. The sound localisation ability in hearing impaired listeners is limited (Durlach

et al., 1981), and amplification of signals alone, as done in hearing aids, is not known

to improve the localisation ability (Noble and Byrne, 1990; Köbler and Rosenhall,

2002). To aid this degraded ability HRTF rendering based on a known DoA has been

proposed, for which BSSL is required to find the DoA.

More typically however, it is through the use of BSSL in pursuit of expanding SNR

1



that is helpful, as accurate DoA estimation allows for use of binaural beamforming

to attenuate unwanted sound sources (Doclo et al., 2010), and consequently improve

speech intelligibility (Froehlich et al., 2015). As will be established in this work’s

literature review, the field of BSSL has begun to become dominated by the application

of deep learning techniques to this task; with it particularly often being reported that

deep learning techniques are more capable of robust localisation in adverse acoustic

conditions (Ma et al., 2017).

1.2 Structure of Thesis

The main body of this work is divided into five chapters, a summary of each of these

are given here.

Relevant Background

The task of SSL is typically seen as a problem in the domain of signal processing,

and now typically machine learning; however, the task pertains not only to digital

signals, but also on sound’s propagation in the real world, and so relies heavily on

knowledge drawn from acoustics. The binaural element expands this further due to

its biological origin, leading to audiology and psychology to also provide important

background.

The knowledge required from these fields to understand the task of BSSL is in-

troduced in Chapter 2.

Building on this, the chapter also introduces previous work relevant to this study;

this starts with an overview of HRTF measurement datasets, required due to their

importance to the task, and that there exists no similar survey which is sufficiently

current. Proceeding this, methods of approaching the task of BSSL are presented,

beginning with legacy algorithmic and model based approaches, introducing some

now more classical machine learning approaches, and finally an in-depth review of all

known work on the use of deep learning for the task of BSSL.

Research Aims and Design

This chapter introduces the primary aim and the objectives of this thesis, and dis-

cusses the research methodology applied in pursuit of this aim.
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Localising in Simulated Acoustic Environments

As will be shown during the literature review, the on-trend approach to Deep-BSSL

is to use deep neural networks (DNNs) with convolutional layers: CNNs.

Chapter 4.1 shows the effectiveness of using such models for BSSLs in perfect

acoustic conditions, which serves as an introduction to the general experimental

framework applied in all chapters of this work of training and testing models on

binaural datasets created under controlled conditions to gain insight over an aspect

of the dataset, or the model itself. This also introduces the evaluation metrics used

throughout this thesis.

Following this, the same model is evaluated on binaural datasets containing various

acoustic degradations: the mismatched HRTF condition as well as additive noise in

the forms of diffuse noise, interfering sound sources, and the noise mixtures which are

used throughout the rest of this thesis. Following this experimentation is undertaken

on BSSL in the presence of reverberation, finding that CNNs generalise poorly to

unknown rooms when trained on binaural data made with either real or synthetic

binaural room impulse responses (BRIRs).

These experiments address the effect of changing reverb time, finding experimental

proof of the aforementioned generalisation issue, the effect of changing only room

geometry, localisation performance when training and testing with real measured

BRIRs, and the resolution of this issue with generalised datasets, at the expense of

increased dataset complexity.

Feature Representations

As will be established in the literature review, it is typical that works on BSSL focus

on novel models for achieving improved performance; one oversight occurring due to

this is a lack of attention on the optimal preparation of datasets.

One such example is that previous works which apply CNN to BSSL use a number

of different feature-representations of the binaural audio, with no discernible justifi-

cation.

This chapter begins to address this oversight, by looking specifically at the con-

version of audio in feature representations.

First, experimentation is undertaken into different magnitude based feature rep-
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resentations, and then on phase and time-delay based representations of the audio.

Deep Learning Architectures

This chapter addresses the design of the deep learning models rather than the datasets.

Throughout this thesis 2D convolutional layers are used in models, therefore also

making all the feature representations 2D. The first experiment in this chapter makes

an essential check of whether the use of 2D matrices is justified, or whether 1D

representations would have been preferable.

A trend identified in the larger field of SSL, which is less common in BSSL, is

the use of recurrent layers alongside convolutional layers, in models referred to as

CRNNs.

This chapter seeks to answer the following questions: Does CRNN also improve

performance in BSSL as it does in microphone array-based SSL, and if so, which

recurrent layers are optimal to employ to achieve that objective?

Do address this, a comparison is undertaken of CRNN with a CNN, followed

comparison of four CRNN models with differing recurrent layers.

Mismatched Anechoic Condition

Due to the way in which previous studies have been performed, an acoustic condi-

tion highly relevant to BSSL is the mismatched anechoic condition; being when the

freefield HRTFs used in the training sets differ from those in the testing dataset.

Theoretically these are identical, however small amounts of measurement noise can

create generalisation issues.

This chapter investigates CNNs susceptibility to this issue, and proposes some

possible methods of augmenting HRTFs to reduce this issue without requiring larger

numbers of measured freefield HRTF datasets to overcome the generalisation issue.

Conclusion

An assessment of how the results presented in this work do or do not support the use

of deep learning in DoA estimation.
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1.3 Novel Contributions

The scope of this work includes several novel contributions. These are:

• An experimental analysis of BSSL with CNNs in a variety acoustic conditions,

establishing the largest challenges in deep binaural DoA estimation.

• A broad experimental comparison of binaural feature representation techniques

for deep binaural DoA estimation with CNNs to establish best practices.

• A study on the use of CRNNs for binaural DoA estimation, establishing their

benefit over CNNs, and the proposal and comparison of four CRNN models

leading to evidence based recommendations for CRNN design.

• Investigation of binaural DoA estimation in the mismatched anechoic condition,

including the proposal, testing and evaluation of novel augmentation techniques.

1.4 Associated Publications

Selected results and work in this thesis have also been presented in the following

publications.

Chapter 5 - Feature Representations

Reed-Jones, J. T., Jones, K. O., Fergus, P., Marsland, J., and Ellis, D. L. (2023).

“Comparison of Performance in Binaural Sound Source Localisation using Convolu-

tional Neural Networks for differing Feature Representations”. In: Audio Engineering

Society Convention 154. Audio Engineering Society.

Chapter 6 - Deep Learning Architectures

Reed-Jones, J. T., Fergus, P., Ellis, D. L., and Jones, K. O. (2024a). “A Study on the

Relative Accuracy and Robustness of the Convolutional Recurrent Neural Network

based approach to Binaural Sound Source Localisation”. In: Audio Engineering So-

ciety Convention 157. 290. Audio Engineering Society.
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Reed-Jones, J. T., Fergus, P., Ellis, D. L., Marsland, J., and Jones, K. O. (2024b).

“Improving Full Horizontal Plane Binaural Sound Localization by use of BiLSTM”.

In: 2024 International Conference on Information Technologies (InfoTech). IEEE,

pp. 1–4.
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2 Relevant Background

The task of binaural sound source localisation draws from several fields including

acoustics, audio signal processing, machine learning, audiology and more. To under-

stand the task fully it is necessary to introduce relevant knowledge from these fields,

which is presented in this chapter.

2.1 Acoustics & Psychoacoustics

2.1.1 3D Space

Since this work relates to localisation of sources in space, spatial coordinates of objects

will regularly be used. These can either be given as Cartesian coordinates, (x, y, z) in a

3D space, or with the polar coordinates (φ, θ, r) where φ is azimuth, θ is elevation and

r is distance, a convention used consistently throughout this work. Polar coordinates

are generally a more useful concept in sound localisation, as it is often the direction

of arrival (DoA) of a sound being estimated, without the inclusion of distance.

The two systems can be defined in relation to each other as:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(1)

Another convention used in this work is defining azimuth (φ) on a scale from −180◦

to 180◦ so that 0◦ is the forward direction and 180◦ is the backward direction and

also equal to −180◦. Elevation (θ) is defined between −90◦ and 90◦ so that −90◦ is

the downwards direction, 90◦ is upwards.

Occasionally referred to in this thesis are the front and back hemifields. These

refer to the range of values in front and behind the reference point, so that:

front→ −90◦ < φ < 90◦

back → 90◦ < φ < −90◦
(2)

remembering that 180◦ wraps around to −180◦.
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2.1.2 Human Anatomy

Orientation with relation to the human body can be described with several anatomical

planes:

The horizontal plane otherwise known as transversal or axial plane, is the plane

which divides the body into a head and tail sections.

The median plane otherwise known as the sagittal plane, is the plane which divides

the body into left and right sections.

The frontal plane otherwise known as the coronal plane, is the plane which divides

the body in front and back sections.

Typically these planes are imagined to converge at the centre of the body, around the

abdomen. However, in sound localisation it is typically more useful to think of the

centre of the head as being the centre of the body. This creates an approximation in

which the ears sit on both the horizontal and frontal planes, and the median plane

equally divides the axis between the ears.

This axis drawn between the ears can also be referred to as the interaural axis.

2.1.3 Wave Propagation

Sound is the name given to oscillations of pressure travelling through any elastic

medium, typically air. These peaks and troughs propagate through the medium

typically as transverse waves, where particles are moved to cause compressions and

rarefactions in the medium (Everest, 2022).

An important feature of acoustic waves is sound pressure p, which is measured

with the unit Pascals (Pa). Due to the very large total range of typical values of p,

this is often converted onto the decibel scale with a reference level of 20µPa.

dB(SPL) = 20 log
p

2× 10−5
(3)

Another important parameter is sound intensity, which defines the level of power for
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an area. Intensity is related to pressure as:

I = pv (4)

where v is particle velocity.

Geometric Spreading

Imagine sound as emanating from a point in space, or a point source. Sound will

travel from this point in space at an equal speed in all directions, leading to sound

spreading as a sphere. Figure 1 shows waves spreading from a point source.

Figure 1: 2D representation of spherical spreading from a point source

As sound wave travels away from a source then it can be thought of a sphere with

an increasing radius. This leads to a proportional loss of sound pressure as the radius

increases.

p ∝ 1

r
(5)

particle velocity also has the same inversely proportional relationship

v ∝ 1

r
(6)

This leads to intensity being proportional to the square of the inverse, a relationship

known as the inverse square law.

I =
1

r2
(7)
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The Speed of Sound

The propagation speed of sound in this thesis is referred to as c0. The speed of sound

in air is dependent upon some variables, such as the temperature and humidity of

the air, but in linear models of wave propagation it is presumed to be non-dependent

upon any characteristic of the wave itself, and thus is treated as a constant. The

assumed value of c0 exclusively used in this work is given by Equation (8).

c0 = 343m/s (8)

Reflection

When sound interacts with a boundary one possible outcome is reflection. In the

case of specular reflections, as shown in Figure 2, the angle of angle of reflections is

equal to the angle of incidence. Specular reflections, however, occur only when the

reflecting boundary is larger than the wavelength and is seemingly smooth compared

to the wavelength. In practice, most surfaces contain irregularities which results in

diffuse reflections, in which the sound wave is scattered over multiple directions.

Figure 2: A reflection

Absorption

In acoustics, absorption refers to the transformation of acoustic energy into another

innocuous form (Everest, 2022). This happens in air itself, leading to some attenua-

tion by the medium. The level of this attenuation is described as an air absorption

coefficient, m, which is dependent on the frequency of the sound, the temperature

of the air, the humidity, and the atmospheric pressure. This attenuation is larger at

higher frequencies.
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When sound interacts with a reflecting boundary, the boundary also has an ab-

sorption effect on the reflected sound. This similarly is described with an absorption

coefficient α, which can vary widely for different materials as well as for different

frequencies of the sound, with higher frequencies typically being more absorbed.

Diffraction

When sound interacts with an obstacle, it will spread around the obstacle’s edges

in a process referred to as diffraction. This is shown in Figure 3 with planar waves

interacting with an obstacle. The waves behind the obstacle are attenuated relative

to those which have not been diffracted.

Figure 3: Diffraction around an obstacle.

The size of the obstacle defines how much disturbance to the sound field is caused,

with small obstacles having little influence. Behind the obstacle, particularly for

larger obstacles, the sound pressure level will be reduced, but not eliminated.

Nearfield vs Farfield

As previously established, sound waves spread from a point source spherically. As

the radius of this sphere gets larger, the surface of the sphere appears flatter. This

means that at an adequate distance from a sound source, travelling sound waves can

be approximated as planar waves. This phenomenon is illustrated in Figure 4.
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Figure 4: Illustration of Spherically Spreading and Planar Waves

The distance at which the planar wave approximation becomes accurate depends

on the wavelength, aperture of the original sound source, and aperture of receiver; in

the context of binaural listening this is often approximated as 1m.

2.1.4 Binaural Hearing

Binaural hearing refers to the perception of sound using the two ears, a near ubiq-

uitous trait in the animal kingdom. This is not due to a common ancestor; differ-

ent parts of the animal kingdom independently developed a binaural hearing system

(Schnupp and Carr, 2009), suggesting a strong evolutionary advantage to this feature.

The range of auditory tasks which benefit from binaural hearing are vast, but a

fundamental one is the ability to perceive the DoA of sound, an ability referred to as

binaural sound localisation.

Based on the information already presented we can formulate an understanding

of the cues used to achieve this.

First, consider the most basic binaural formulation: a sound source and two sen-

sors. Relative to the sensors, the sound source has some angle, φ, and a distance, r.

Additionally, the distance between the sensors is denoted as d.
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As clearly illustrated in Figure 5, sound waves are likely to arrive at one sensor

before the other. In other words there is a time difference on arrival (TDOA). This

is due to the path lengths from the source to each of the sensors being different;

the degree to which they are different is dependent on the DoA, with sources on the

interaural axis having the maximum possible TDOA, while sources on the midsagittal

plane create a symmetric image, and therefore no TDOA.

Figure 5: Binaural Freefield Model

This phenomenon, where sound arrives at different times between the ears, is the

first of the binaural localiser’s salient cues, and in this context is referred to as the

interaural time difference (ITD).

Presuming planar waves, the relationship between ITD and azimuth can be given

with:

φ = arcsin
c0τ

d
(9)

This is not the only cue however. To uncover the next cue requires a new model:

the rigid-sphere model (Rayleigh, 1907).

By imagining not just two sensors, but two sensors sitting on a sphere through

which sound does not easily transmit. In this case, the head casts an acoustic shadow

behind which the sound will be attenuated. If an ear is occluded by the sphere,

therefore, a level difference between the ears will occur: this is the other salient cue,

interaural level difference (ILD). This is illustrated in Figure 6.
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Figure 6: Illustration of the Head Shadow

The rigid sphere model also reveals a change to the freefield model of ITD: the sphere

also somewhat increases the difference in path length between the ears, due to the

sound now needing to travel around the sphere. This is illustrated in Figure 7.

Figure 7: Shortest path length according to Rigid Sphere Model

The relation between φ and τ previously given in Equation (9), therefore, is incorrect.

One method of solving for this is to scale the head diameter to add extra ITD:

φ = arcsin
c0τ

kd

1.2 ≤ k ≤ 1.3
(10)

This is known as the sine law (Blauert, 1997).

Alternatively the Woodworth ITD model (1938) gives a more geometrically mo-
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tivated approximation, derived from the path lengths around a spherical head.

(φ+ sinφ) =
2c0τ

d
(11)

These models make no suggestion to any frequency dependence since the path length

and speed of sound remain constant at all frequencies. However, in reality measured

ITDs reveal a level of frequency dependence with ITD not remaining constant for

altering frequency (Abbagnaro et al., 1975). Based on investigation into the ITD of

a mannequin head, Kuhn (1977) found that the Woodworth model becomes invalid

at lower frequencies, with ITDs increasing to beyond those modelled.

The Human Hearing Apparatus

Humans hear with the ear, but that is made up of smaller parts, which can be

categorised into the outer ear, middle ear and inner ear.

The outer ear consists of the pinna, and the entrance of the ear canal. The pinna,

or auricle, is the visible external part of the ear. Further categorisation of the pinna

can be seen in Figure 8.

Figure 8: Anatomy of the Pinna (Hussain, 2020)

The middle ear is responsible for converting pressure waves in air into pressure

waves within the cochlea. It consists of an air-filled space, sealed by the tympanic

membrane (Volandri et al., 2011). The tympanic membrane vibrates under pressure,

which in turn incites motion in the last part of the middle ear, three bones named

the ossicles. The ossicles acoustically couple the tympanic membrane to the cochlea
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deeper within the ear, providing the necessary change in acoustic impedance (Peake

et al., 1992) required to transmit vibration to the cochlea.

The inner ear consists primarily of the cochlea: the part of the inner ear respon-

sible for converting mechanical waves into electrochemical impulses. The cochlea is a

hollow tube, rolled into a spiral, and containing fluid. Within this is a tissue struc-

ture named the basilar membrane, which contains sensory hair cells; the transduction

mechanism of the ear (McPherson, 2018). The cochlea duct reduces in diameter

along its length, leading to different parts of the cochlea being sensitive to different

frequencies (Greenwood, 1961), this being the cause of humans’ ability to indepen-

dently detect sound levels at different frequencies.

After the cochlea, the electrochemical signals are sent to the brain via the audi-

tory nerve. The part of the brain responsible for auditory processing is named the

auditory cortex (Gelfand and Calandruccio, 2009). The human ear does not seem to

be very phase sensitive, although some reactivity has been reported to phase changes

(Laitinen et al., 2013). The duplex model of hearing, however, is entirely dependent

on humans being sensitive to small timing differences between the two ears, and so

there must be a mechanism by which interaural time differences can be sensed.

The Jeffrees model (Jeffress, 1948) is a neurocomputational model seeking to

explain such phenomena, which models the onsets coming from each path as tapped

delay lines, wherein the taps are joint with coincident detectors. The tap at which

coincidence occurs corresponds to the interaural time difference.

Much later, evidence for such an architecture was found in barn owls (Carr and

Konishi, 1990), however other strategies have been found in other avian and mam-

malian species (Ashida and Carr, 2011)

Cone of Confusion

A notable factor of both the shadowless head model and the freefield model is that

they are both entirely symmetrical about the interaural axis. This is true also for

ILD and ITD values which are equal in the front and rear hemifields. This leads to

two or more possible horizontal plane positions existing for any viable ITD or ILD

value.

Consider also the relation of positions in 3D space according to the rigid sphere
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model. The complete symmetry in all dimensions of a sphere means that as elevation

is changed, the binaural cues are not affected. Similarly, assuming planar waves

altering distance also has no effect upon binaural cues. Accounting for this, then,

reveals a possible range of positions for a given ITD in the shape of a cone.

Figure 9: Cone of Confusion

This is the cone of confusion, illustrated in Figure 9. This phenomenon does occur

among humans; particularly notable is front-back confusion where we incorrectly

localise a sound source’s mirror image on the horizontal plane. However, in most

familiar environments this is not a common problem, and so this model of localisation

must not yet be complete.

Monaural Cues

Instead of models, consider instead the real human head. Compared to the rigid-

sphere, it is notably not symmetrical about the coronal plane nor any horizontal

plane. This is particularly true when examining the outer ear, where paths from

the rear are blocked by the pinnae. This does somewhat alter the binaural cues,

adding a slight frequency dependence, however this is still not sufficient information

for resolving the cone of confusion.

The other effect that the outer ear, and rest of the head, has on sound is im-

parting a unique filtering characteristic, as at different frequencies sound interacts

with different parts of the head in different fashions. As this filtering is linear and

time-invariant, this can be described with a set of transfer functions, which are named

head-related transfer functions (HRTFs), and their time-domain counterparts head-

related impulse responses (HRIRs). It is possible to measure HRTFs as per other
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acoustic transfer functions.

Torso Effects

Considering the human head alone still does not provide a complete representation

of how humans hear sound. The torso can also impose an acoustic shadow for some

source positions, but also can cause a scattering of sound, particularly at the shoul-

ders. These cues are particularly import for median plane localisation. Torso effects

can be considered through expansion of the rigid sphere model into a ’snowman’

model (Duda et al., 2002), as well as in real measured HRTFs.

2.1.5 Spatial Audio

Binaural Audio

The field of spatial audio aims to create immersive audio experiences through repro-

duction of a full sound field. One of the techniques used is through binaural audio.

This can be native binaural audio, which refers to audio recorded with a binaural

array. Here, a binaural array refers to a two element array which imparts binaural

cues on oncoming sound. Alternatively, the audio could be a binaural render, in

which audio is seemingly placed at a desired location in space through application

of HRTFs. This binaural audio can then be played back through either headphones,

or loudspeakers employing crosstalk cancellation processing, to give the illusion of a

three-dimensional soundfield.

Head Simulators

It is possible to measure HRTFs using real human heads, by placing microphones

on or in the ear. However, measurements conducted in this way are often compro-

mised due to the necessity of the subject to remain completely motionless over a

long measurement period. Additional issues are that the microphones may change

position over the course of a measurement as cannot be permanently affixed, and

measurements can not be taken with a microphone placed at the actual location of

the tympanic membrane.

An attractive alternative is the use of head simulators; these being mannequin

heads with microphones positioned in the ears of the mannequin, which are designed
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to accurately model the acoustic characteristics of the human head. This approach

allows for the use of larger and higher quality microphones, more accurate positioning

of these microphones, and the removal of unwanted movement and noise from the

human body.

Binaural Rendering

In most spatial audio situations, using audio recorded with a head simulator is not

practical. More typically audio is spatialised through use of HRIR/HRTF. For an

audio source, x[n], binaural directionality can be applied through convolution with

an HRIR of the target DoA.

y[n, r, θ, φ] = x[n] ∗ hrir[n, r, θ, φ] (12)

or equivalently in the frequency domain:

Y [ω, r, θ, φ] = X[ω]HRTF [ω, r, θ, φ] (13)

This relationship is also fundamental to binaural sound source localisation (BSSL),

as it describes the relation of binaural audio to the sound source’s DoA.

The HRTFs used for rendering can be created through impulse response (IR)

measurement of head simulators, IR measurement of human heads with binaural

microphones, or some simulation method. These methods of acquisition are covered

further in Chapter 2.1.7.

The resulting binaural audio can be used to give spatial impression if played

directly over headphones, though the correct delivery of monaural cues also relies

upon a completely transparent reproduction system, and so the transfer function

of the headphones themselves are often also inverted as part of a binaural renderer

(Sunder et al., 2014).

Binaurally recreating a spatial scene with loudspeakers is more difficult, as both

ears exist within the soundfield produced by both loudspeakers. To reproduce this,

the soundfield control technique known as crosstalk cancellation (Nelson and Elliott,

1991), in which the unwanted contralateral path is cancelled with destructive inter-

ference.
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Research Interests in Binaural Audio

While binaural spatial reproduction has been known to have been used for over a

century (Boren, 2017), its adoption has only been recent with its use in video games

(Farkaš, 2018) and virtual reality (VR) (Serafin et al., 2018). This has led to its

increased popularity as a research topic.

There are some common research themes:

Personalised HRTFs as monaural cues are dependent on the pinnae, and binaural

cues are dependent on the size and shape of the head, they can vary significantly

between different subjects, so HRTFs should be considered individualised (Wen-

zel et al., 1993). As measuring HRTF is lengthy process requiring specialised

equipment, there is significant interest in synthesising HRTFs through numeri-

cal calculation (Ziegelwanger et al., 2015; Brinkmann et al., 2023) or modelling

based on anthropomorphic features (Hu et al., 2008; Miccini and Spagnol, 2020).

HRTF Interpolation A limiting factor on the quality of binaural rendering is the

sampling density of the datasets, which is often limited by measurement appa-

ratus and time taken to perform measurements. When trying to render sources

of directions not present in the dataset, interpolation can be used; however

this is a compromise, especially when using diffuse field binaural room transfer

functions (BRTFs). One common research theme emerging due to this is ac-

curate binaural room impulse responses (BRIRs) interpolation (Garcia-Gomez

and Lopez, 2018; Bruschi et al., 2020; Qiao and Choueiri, 2023; Li et al., 2025),

and the similar task of spatial upsampling of HRTF datasets (Hogg et al., 2024).

6 Degrees of Freedom another part of binaural rendering, particularly for VR ap-

plications, is trying to reproduce accurate dynamic cues based on the listeners

real movements. Doing this for all directions of motion (x,y,z translation as well

as x,y,z rotation) is often referred to as 6 degrees of freedom (6DoF). This is

achieved by counter-rotating sound sources direction based on the the listener’s

head pose, while translation adaption is achieved by recalculating the receiver

to source vectors based on the listener’s reported position relative to a refer-

ence point (McCormack et al., 2023). Research on the topic tends to focus on
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efficiently achieving this (Plinge et al., 2018) or the listener perception of doing

so (Bacila and Lee, 2023)

2.1.6 Binaural Arrays

Consider cases in which binauralised audio is desired without use of human par-

ticipants. Given spatial hearing’s reliance on cues imposed by the body, for these

purposes it is essential to think of the human body as being a part of the human

hearing apparatus, which must be replicated.

To do so, the human anatomy is broken down according to its relevance to sound

localisation, which is firstly summarised in Table 2.

Table 2: Sound localisation cues imparted by different parts of human anatomy

Inner Ear Outer Ear Head Torso Rest Of Body
Monaural Cues × ✓ × ✓ ✓
Binaural Cues × × ✓ × ×

Inner Ear As the inner ear does not impart direction-dependent filtering to a sound,

it does not need to accurately be modelled in a binaural array. This, however, is not

true for other similar but more popular fields requiring use of ear simulation, such as

headphone measurement, and some of the binaural arrays discussed do simulate the

inner ear.

Outer Ear (Pinna) The pinna’s heavy influence in HRTFs means that for a bin-

aural array to contain plausible monaural cues, it must accurately model the pinna.

Due to this, binaural arrays typically create human-like pinnae of a soft material with

acoustic properties designed to match that of the real ear. There exists a commer-

cially popular binaural array which places pinnae in the freefield with no head1 which

trades accurate binaural cues for reduced cost and easier usability for field recording.

However, these are not commonly used in research beyond testing of its accuracy

13DIO Binaural Microphones: https://3diosound.com/collections/microphones [Accessed
21st October 2023]
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(Crnigoj, 2020). Also, there exist ear simulators, which simulate of only a single ear2,

which due to having only one receiver cannot be considered binaural arrays.

Head The head is entirely responsible for imparting the binaural cues on oncoming

sound waves. Despite this importance, ITD and ILD are mostly determined by the

geometry of the head rather than its material. Owing to this in head simulators the

head is often just modelled as some plastic with a density similar to a head, rather

than the more accurate modelling of the pinnae. An example of a binaural array

which models only the head, and not the pinnae, is Rayleigh’s rigid sphere (Rayleigh

and Lodge, 1904).

Torso Given that the torso is known to induce monaural cues, some measurement

apparatus also include torso: this apparatus is often abbreviated as head and torso

simulator (HATS). Lifelike accuracy is not a great priority for the torso simulator,

but it is typically desired that the head should be able to make free yaw movements

relative to a fixed torso, as per human head movements.

Rest of Body Other large parts of the body such as the arms and legs must have

some small impact on the HRTF, however it is reasonable to presume that this is not

significant for sound localisation as this has never been proven. Other parts of the

body that do have some impact include the hair, which despite its proximity to the

ears, is generally not studied in relation to HRTF, and the bones inside of the head

which are able to deliver sound to the ear in a process named bone conduction. Bone

conduction is also not generally considered important to sound localisation.

Head Simulators used in Research

Knowledge of the head simulators used in research is important as measurements of

these are often used in creating binaural DoA estimators.

Neumann KU-100

The Neumann KU-100 is a binaural microphone specifically designed for binaural

2GRAS Acoustics 43AG Ear Simulator: https://www.grasacoustics.com/products/

ear-simulator-kit/product/ss\_export/pdf2?product_id=737 [Accessed 21st October 2023]
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recording3. It is heavily used in spatial audio research due to its accurate sound lo-

calisation cues, while being relatively inexpensive compared to more multi-applicable

head simulators.

GRAS KEMAR

The GRAS KEMAR Head and Torso Simulator4 also regularly features in HRTF

measurement datasets. As opposed to the KU-100, the KEMAR has a torso, as

well as more accurate inner-ear simulation for other measurement tasks. Notably,

the KEMAR has detachable pinnae, for which there are two varieties which can be

installed commonly referred to as the small pinnae and large pinnae.

B&K HATS

Brüel & Kjær manufacture a Head and Torso Simulator also designed for transfer

function measurement, and which can also be used specifically for HRTF measure-

ment.

Head Acoustics HMS Range

Head Acoustics produce a range of head simulators, both for electroacoustics measure-

ment and binaural recording5. Despite its suitability, these rarely feature in HRTF

related research.

FABIAN

FABIAN is a Head and Torso Simulator belonging to Technical University of Berlin

for which HRTF Measurements are available (Brinkmann et al., 2017).

Cortex

The Cortex HATSs is a now discontinued line of head simulator manufactured by

3Neumann KU-100: https://www.neumann.com/en-en/products/microphones/ku-100/ [Ac-
cessed 21st October 2023]

4GRAS 45BB KEMAR: https://www.grasacoustics.com/products/

head-torso-simulators-kemar/product/ss_export/pdf2?product_id=733 [Accessed 21st
October 2023]. Other similar KEMAR models exist also, but do not differ in a way that affects
HRTFs

5Head Acoustics Artificial Heads: https://www.head-acoustics.com/products/

artificial-head-binaural-recording [Accessed 21st October 2023]
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Neutrik Cortex Instruments. Its use can be found in publications from the original

time of manufacture (Maijala, 1997; Kahana, 2000), with remaining units still being

used in modern work (Vicente and Lavandier, 2020).

Binaural Microphones

The real human head can be turned into an electroacoustic array by the addition of

microphones at the ears. This approach is discussed further in Chapter 2.1.7, but it is

important to note that this can be achieved with a pair of well matching microphones

small enough to be placed on or in the ear.

2.1.7 HRTF Measurement and Simulation

There have been attempts to measure HRTFs for almost a century (Troger, 1930),

however it was with the advent of digital recording and a renewed interest in binaural

recording that HRTF measurements became common in audio research.

The spatially oriented format for acoustics (SOFA) (2022) is a standardised file

format for storing and sharing acoustic measurement data. It has conventions for

different forms of acoustic data, including several appropriate binaural data:

• SimpleFreeFieldHRIR

• SimpleFreeFieldHRTF

• SimpleFreeFieldHRSOS (Second Order Section)

• FreeFieldHRTF (Supports spatially continuous representations)

• FreefieldHRIR (Supports spatially continuous representations)

• SingleRoomSRIR (Spatial Room Impulse Response; can be used for arbitrary

number of receivers)

• SingleRoomMIMOSRIR (Multiple Input Multiple Output Spatial Room Im-

pulse Response)
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2.1.8 Freefield Measurements

When measuring HRTFs, the aim is to measure a transfer function showing the effect

the human body has upon a sound source. Consider, however, the case of sound

propagation in a room. Thinking in the time-domain, the BRIR can be thought of

as the convolution of HRIRs and the room impulse response (RIR):

brir[n] = hrir[n] ∗ rir[n] (14)

meaning also that the resulting sound source, as acted upon by the BRIR, has the

relation:

y[n] = hrir[n] ∗ rir[n] ∗ x[n] (15)

showing that in order to measure only the HRIR, the RIR must equal exactly δ[n];

that is to say the room must have no observable effect upon the signal. The most

effective way to achieve this would be to remove all physical boundaries allowing

sound to propagate freely; however, this is rarely practical. Instead, specialist rooms

are designed to try to simulate this situation: these rooms being named anechoic

chambers.

Anechoic chambers tend to feature walls covered in large wedges of some very

absorbent material, such that upon reflection the wave receives a significant reduction

in energy. Furthermore, the shape is designed to maximise the number of reflections

that each path is likely to undergo before reaching the receiver.

There is also another element of soundfields which obscures the HRIR from ob-

servation also; additive noise.

y[n] = hrir[n] ∗ rir[n] ∗ x[n] + η[n] (16)

Where η[n] is the additive noise. This can come in different forms, but includes

waves propagating from other sound sources. While it not difficult to remove other

sound sources from the same room, sound can transmit well enough through typical

walls so as to still be audible; another objective in anechoic chamber design deals

with this issue, the elimination of acoustic transmission through the walls of the

chamber. This is achieved by suspending the room within another larger room, with
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the impedance mismatches between the solid materials of the wall and the air acting

as the attenuator.

Ideally all HRTF measurements should be carried out in an anechoic chamber for

these reasons.

2.1.9 Room Auralisation

As previously established, when a wave propagates in rooms, a listener will hear not

only the sound directly coming from the sound source, but also reflections of the

sound off the walls and other boundaries in the room. In various applications, it is

advantageous to be able to simulate such a sound field: a process here named room

auralisation.

Image Source Method

A virtual scene of reflections can be efficiently calculated using geometric principles,

in an approach known as the image source method (ISM) (Savioja, 1999).

Consider sound as a ray—that is, it travels only in straight lines. A reflection can

then be modelled by tracing the path of such a ray as it travels from a source, to a

boundary, and then to a receiver, as previously illustrated in Figure 2. As can be

seen, the path of interest consists of two vectors, one from the source to the boundary,

and one from the boundary to the receiver.

Finding this path is greatly aided by the geometric property that if the source is

mirrored about the boundary, a single vector from the mirrored source to receiver is

identical to the reflected distance in distance, as well as sharing the same point of

intersection with the boundary. This is shown in Figure 10.

Figure 10: A mirror source image of a a reflection
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Recalling that T = d/c0, the propagation time T can be estimated based on an

assumption of speed of sound, c0, as d can be calculated as the euclidean distance

between mirrored source and receiver.

A value for d, furthermore, allows us to estimate the wideband attenuation caused

by spherical expansion, by use of inverse square law:

p ∝ 1

d
(17)

where p is pressure. This can be further expanded by also considering the frequency

dependent attenuation effects of air absorption.

It also becomes possible to model surface absorptions effects, as this method

provides knowledge of the number boundaries the ray has intersected. Consider now

not only a single boundary, but an entire rectilinear room. We can apply the same

technique, not just mirroring the source but also all the boundaries, which we refer

to as the image space as seen in Figure 11.

Figure 11: 1st Order Reflection as seen in a slice of the original room and the image space

Based on an estimate of the absorption coefficient, α, of that boundary, a resulting

frequency dependent reduction on attenuation can be modelled for the first order

reflection, that is a reflection path which intersects with a single reflection, as seen in

Fig 11.

This can be further expanded for higher orders, by creating a higher order image

space by further reflections, as shown in Figure 12. The resulting higher level of

surface absorption effects on the signal are known through the number of intersections

with boundaries in image source path, where for each intersection that boundary’s α

is applied.

With this information it is possible to simulate a convincing monophonic reverberation

by creating a finite impulse response (FIR) filter consisting of the sum of this series
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Figure 12: 2nd Order Reflection as seen in a slice of the image space

of reflections. As reverberation is an infinite system, this does require truncation

of the maximum order for which this is calculated. This can be achieved either by

defining maximum order as a parameter, or a maximum length of time which is used

to truncate at the order in which propagation time exceeds the maximum length.

In the context of binaural audio, another useful property of reflections is present

when modelling with the image source method: the direction of arrival of every

reflection is known as this is the same as the angle of the receiver and mirrored

source. This means that HRIR convolutions can be applied to each reflection to

create a binaural room impulse simulation. However, as this involves a convolution

for every direction, for higher orders this method is computationally expensive.

Scattering Delay Network

The scattering delay network (De Sena et al., 2011; De Sena et al., 2015) is a related

concept, which simulates rooms based on real geometries and acoustic parameters,

but which also introduces a trade-off of gaining increased computational efficiency for

reduced accuracy.

The scattering delay network method considers only first order reflections, calling

the intersection points of these first order reflections for room nodes. Path lengths

are then calculated for every combination of node, source and receiver. A first order

reflection can be modelled as [source→ node→ receiver], and a second order reflection

can be modelled as [source → node → node → receiver], and so forth. These paths

are illustrated in Figure 13.
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Figure 13: Paths in Scattering Delay Network.

This is computationally efficient, as this can be implemented solely through delay

lines without the use of FIR filtering, however for higher orders this approximation

of path length becomes increasingly inaccurate.

This can be binauralised using the directions of the nodes relative to the receiver,

however this results in a relatively small number of unique directions compared to

the number found when using the ISM.

Wave Based Modelling

ISM and scattering delay networks are based on geometric acoustics, which assume

that sound propagates as rays. This approximation is valid primarily when surfaces

are smooth and significantly larger than the wavelength of the sound, such that wave

phenomena like diffraction and interference can be neglected.

A more accurate simulation of sound propagation can be achieved by solving

the full wave equation, which provides a true representation of sound’s behaviour,

including wave phenomena such as diffraction.

There are several well established approaches to wave based modelling (Murphy et

al., 2007), but in the context of the simulation of room acoustics the most typical ap-

proach is finite element method (FEM) modelling. In FEM, first the target 3D space

is modelled. This can include not only the boundaries used in the geometric methods

to create a room, but also objects placed within that room for a more complex model.

Surfaces and boundaries are assigned material properties which determine how sound
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will interact with them.

Following this, the model is discretised to create a mesh of elements. Then at

least one node is designated a source, from which sound is emitted, and at least one

node is designated a receiver, at which sound arrives.

In FEM, the wave equation is then solved to find pressure at every element, for every

target frequency. The number of operations involved in this makes FEM very com-

putationally expensive relative to the previously introduced geometric methods.

Finally, the output is the pressure at the receiver element. Combining these outputs

across frequencies together constructs a transfer function which describes the differ-

ence from source to receiver.

Modelling sound as rays has the benefit of providing knowledge of the reflections’

DoAs which can be used to select HRIR for spatialisation. To spatialise the output

in FEM another approach must be taken: the head and its pinnae must be added

to the model and the receiver elements placed at the ears. To accurately render an

HRTF in this manor requires a very detailed model, and high frequency resolution,

which significantly increases the computational expense of this approach.

2.2 Digital Signal Processing and Analysis

This subchapter provides a summary of standard digital signal processing formula-

tions. These formulations are widely available in standard texts (Oppenheim and

Schafer, 2009; Smith, 2007).

A continuous time-series signal, x(t) can be converted into a discrete time signal,

x[n], through the process of sampling. The highest frequency available in the discrete

time signal, otherwise named the Nyquist frequency, is determined by the sampling

rate fs by the relation:

fN =
fs
2

(18)

The cross correlation measures the similarity between two signals as a function of

time lag, computed by finding the integral of the product of the two signals. This

operation can be expressed with the ⋆ operator.

Rx1x2(τ) = x1(t) ⋆ x2(t) =

∫ ∞

−∞
x1(t)x2(t+ τ).dt (19)
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where x1 and x2 are the two signals, x1(t) is the complex conjugate of x1(t), and τ is

the time lag. This has an equivalent expression for discrete-time signals:

Rx1x2 [k] = x1[n] ⋆ x2[n] =
∞∑

n=−∞

x1[n]x2[n+ k].dt (20)

where k is the discrete time lag.

Equation (12) introduced the use of convolution in binaural rendering. A more

complete definition of convolution can be given as:

(x1 ∗ x2)(t) =

∫ ∞

−∞
x1(τ)x2(t− τ) dτ (21)

and equivalently for discrete time signals:

(x1 ∗ x2)[n] =
∞∑

m=−∞

x1[k]x2[n− k]

It is notable that unlike cross-correlation, the convolution operation is commutative,

that is to say:

(x1 ∗ x2)(t) = (x2 ∗ x1)(t) (22)

All these continuous and discrete time signals exist within the time-domain. It is

imperative to also consider signals in the frequency domain. Conversion between the

two is achieved by Fourier transform:

X(ω) =

∫ ∞

−∞
x(t)e−jωt dt (23)

where j is the imaginary unit, and ω is angular frequency of the relation ω = 2πf .

The corresponding inverse fourier transform (IFT) is defined as:

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωt dω (24)
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The discrete Fourier transform (DFT) meanwhile is defined as:

X[k] =
N−1∑
n=0

x[n]e−j 2π
N

kn (25)

with k in this case being an integer value representing frequency. Note that typically

in this work, ω is still used as the independent variable so as to make more clear when

frequency domain is being used. The inverse DFT then is defined as:

x[n] =
1

N

N−1∑
m=0

X[k]ej
2π
N

kn (26)

If DFT is applied to two signals, x1[n] and x2[n], to give X1[k] and X2[k], the cross

power spectrum (CPS) of the two signals can be obtained by multiplication of one of

the spectra with the conjugate of the other.

Sx1x2[k] = X1[k]X2[k] (27)

This is to say that the CPS is the Fourier transform of the cross correlation of the

two signals:

Sx1x2[m] = DFT{Rx1x2[k]} (28)

Signals are created and altered by systems. Some important features of systems are

their linearity, and time variance.

A system is linear if it adheres to the superposition principle, and the homogeneity

principle. The superposition principle states that the output of the system for the

sum of multiple inputs is exactly equal to the sum of outputs for the same inputs

processed separately:

S{̧x1[n] + x2[n]} = S{x1[n]}+ S{x2[n]} (29)

where S is the system.

The homogeneity principle states that if the input of a system is scaled by a
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constant, the corresponding output of the system must be equivalently scaled:

S{a · x[n]} = a · S{x[n]} (30)

where a is the scalar.

A system is said to be time-invariant if its behaviour does not change over time.

Such that:

y[n− n0] = S{x[n− n0]} (31)

where n0 is a time period, which could be of any positive value.

Systems which meet both these conditions, linearity and time invariance, are said

to be linear time-invariant (LTI) systems. If a system is LTI, its behaviour in the

time domain can be characterised by an impulse response; that is the output of the

system to an impulse.

h[n] = S{δ[n]} (32)

where δ[n] is the unit function:

δ[n] = [1, 0, 0, 0, 0, . . .] (33)

One property of note, is that the output of the system will be equal to convolving

the input with h[n]:

y[n] = x[n] ∗ h[n] (34)

So that if x[n] = δ[n] then y[n] = h[n].

This can also be equivalently defined in the frequency domain.

Y [ω] = X[ω] ·H[ω] (35)

H[ω] can therefore be described as the system’s transfer function, as it defines the

output with respect to the input. The human head is an LTI system, and as such

can be described with a transfer function: the previously introduced HRTF.

pear[ch] = psrc · HRTF[ω, ch, r, θ, φ] (36)
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where pear is pressure at the ears, and psrc is pressure at the source.

Impulse responses can be either finite or infinite in duration. An FIR only feed-

forwards, allowing Equation (34) to be re-expressed as:

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + . . .+ bNx[n−N ] (37)

This is shown as a block diagram in Figure 14.

Figure 14: FIR Filter

A notable property of FIR filters it that b0 = h[0], b1 = h[1] and so forth until

bN = h[N ].

infinite impulse responses (IIRs), on the other hand, are infinite in duration, due

to presence of feedback in the system. They can be expressed as:

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]+ . . .+ bNx[n−N ]

−a1y[n− 1]− a2y[n− 2]− . . .− aMy[n−M ]
(38)

This is shown as a block diagram in Figure 15.

Figure 15: IIR Filter

Time domain signals can also be converted to the time-frequency (TF) domain, in

which the signal takes a matrix form with one axis representing time and one dimen-
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sion representing frequency. This can be achieved by a short-time fourier transform

(STFT). This operates by applying Fourier transforms to discrete windows of the

input signal, as given below for an input signal x[n]

X[m,ω] =
∞∑

n=−∞

x[n]w[n−mH] e−jωn (39)

where X[m,ω] is the output matrix of complex values, m is the frame index, H is the

hopsize, and w[·] is the windowing signal. Hopsize refers to the number of samples

the centre of the window is moved each frame: a high hop size reduces the amount

of overlap between between frames. This can reduce redundancy, but also gives a

sparser sampling of the signal.

The TF-matrix could then be turned into a spectrogram by taking the magnitude,

in order to give a way to visually interpret the magnitude response of the signal over

time.

spectrogram{x[n]} = |X[N,ω]| (40)

Additional transformations could be applied to find different characteristics within

the source signal. For example, a power spectrogram can be found by taking the

square of the magnitude:

power-spectrogram{x[n]} = |X[N,ω]|2 (41)

A log-magnitude spectrogram can be found by taking the logarithm of the magnitude:

log-magnitude spectrogram{x[n]} = log(|X[N,ω]|) (42)

Or, the frequency make up of the spectrogram could be transformed by taking the

matrix multiplication of the spectrogram and a filterbank

filterbank-spectrogram{x[n]} = |X[N,ω]| · F [ω,K] (43)

where F [·] is a bank with K number of filters.

Spectrograms provide a powerful way of visualising frequency content over time,
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however they can be ambiguous if the input contains multiple convolved sources of

variation; a typical example of this being the vocal tract and glottal source in speech.

Cepstral analysis was developed to analyse such signals, wherein the IFT is taken

of the log of the magnitude of the spectrum. In the TF domain this is given as:

cepstrum{x[n]} = F−1 {log (|X(N,ω)|)} (44)

where F−1 is the IFT. This IFT does not return the signal from frequency domain

to time domain, but rather transforms it into the abstract quefrency domain, and so

you the resulting matrix represents time and quefrency. A low quefrency relates to

slow-varying components of a signal, while a high quefrency relates to quickly-varying

components of a signal. This is helpful in the analysis of speech signals as the vocal

tract shape is a slowly changing modifier, and the glottis is a fast-vibrating source,

and so when analysed with a cepstrum these previously convolved sources are now

seen as two additive components existing at different quefrency ranges.

2.2.1 Sound Source Localisation

sound source localisation (SSL) refers to estimation of a sound source’s DoA based

upon measurement of the sound field; an application of digital signal processing.

As per human cognition, this typically involves exploiting differences seen between

different sensors caused by wave propagation. Unlike the human auditory system,

however, such systems are not necessarily limited to two sensors. Owing to this, it is

common for conventional SSL approaches to improve localisation accuracy through

use of a large number of transducers in an array.

Time Difference on Arrival Estimation

TDOA refers to the delay of a sound wave arriving at spaced sensors. This, therefore,

is functionally equivalent to the ITD, however does not refer to biological systems,

and is not limited to two sensors.

For a sound source, x(t), we can describe the sound arriving at the transducer as:

yn(t) = x(t−Dn) (45)
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where n is the transducer number, and D is the time delay, equivalent to:

Dn = dn.c0 (46)

where d is the distance from the transducer to the sound source. For each transducer,

then, time lag will be different.

The difference in τ between two sensors can be estimated using cross-correlation

(Nuttall et al., 1974).

Rx1x2(τ) = x1(t) ⋆ x2(t) (47)

where τ is the time lag. The time delay estimate D is then found as the value of τ

at which the function maximises.

D = argmax
τ

(Rx1x2(τ)) (48)

The condition in Equation (48) assumed that the signals x1 and x2 are highly corre-

lated. In the context of audio, there are some conditions where this is not necessarily

true, for example in the presence of high levels of noise and reverberation. Due to

this the approach can lack robustness.

2.3 Machine Learning, Neural Networks, and Deep Learning

Machine learning is a field of study which aims to develop statistical models and al-

gorithms capable of autonomously mapping inputs to outputs on unseen data, based

on relationships learned from seen data. This is typically achieved through a train-

ing phase, during which a model learns from training data using an optimization

algorithm, followed by an inference phase, where the trained model is used to make

predictions on unseen data.

The approaches, techniques, models, and formulations presented in this subchap-

ter are consistent with standard treatments found in literature (Bishop and Nasrabadi,

2006; Goodfellow et al., 2016). Approaches to machine learning differ, and can be

categorised into four major types:

Supervised learning The model learns from labelled data, mapping inputs to known
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outputs.

Unsupervised learning The model identifies patterns in unlabelled data.

Semi-supervised learning The model is provided both labelled and unlabelled

data.

Reinforcement learning The model learns by taking actions, and is rewarded or

penalised based upon its performance compared to the desired outcome.

2.3.1 Machine Learning Models

The model used in machine learning is often dependent on the desired output. To map

inputs to continuous outputs, it is typical to use regression; this being a supervised

learning approach wherein a dependent variable is mapped to independent variables

by finding a function which best fits the relationship between the two. Most typical

examples include linear regression in which the relationship is matched with a linear

equation, or polynomial regression in which higher order polynomials are used instead.

Instead of a continuous variable, often the desired output is a categorical label:

models designed to map inputs to these categorical outputs are called classifiers.

Typically to be deemed classification, learning must be supervised. Examples of

classification machine learning (ML) models include support vector machines, decision

trees, and näıve Bayesian classifiers, k-Nearest Neighbours classifiers.

Clustering also maps inputs to categorical outputs, however in clustering the in-

puts are not labelled; and as such it is considered an unsupervised approach. Exam-

ples of clustering models include k-means clustering, and hierarchical clustering.

Another desired output could be a lower-dimensional representation of the input,

for this dimensionality reduction models can be employed. A common example of

this is principal component analysis.

Another desired output may be the generation of new data which resembles the

data found in the training dataset, these being referred to as generative models.

Examples include gaussian mixture models (GMMs) and hidden Markov models.

This list of types of machine learning model is not exhaustive, but also it is

important to note that models that have here been identified with one type of output
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and training may be reapplied elsewhere; for example, GMMs are often associated

with clustering (Najar et al., 2017).

2.3.2 Feature Extraction

While different types of output have been introduced, the nature of the inputs remains

to be examined. It is often unproductive to attempt to train machine learning models

on raw data. A good example of this is audio. Take, for example, the task of SSL in

which the aim is to map input audio to a a location in space. It would be possible

to achieve this by directly training the model on raw time domain waveform audio,

however doing so is not a typical approach as the waveform audio is both large in

its number of data points, and lacks an inherent structure from which the model can

easily recognise patterns.

Due to this, it is essential to transform the input data to a representation with

lower-dimensionality. This is often achieved using signal processing and statistical

methods which have been hand-picked for the task so as to highlight relevant features

in the raw data; doing so reduces the complexity required in the model, allowing

for the more successful learning of input-output relationships. To continue with the

example of audio, an audio file initially containing several thousand samples, may be

reduced to just a few features.

2.3.3 Training

Machine learning models are modified to achieve specific tasks through training; this

refers to the process in which the model learns the relationships between input and

outputs from a training dataset. To achieve this, a cost function is defined which

describes the model’s ability to capture patterns in the data: the system would be

behaving perfectly when this function is minimised.

An optimisation algorithm seeks to minimise the cost function by adjusting model

parameters, leading to a model trained for the task. Optimisation in ML can be

closed-form, directly calculating the optimal solution, however typically cost functions

are non-convex and so require an iterative approach.
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2.3.4 Datasets

In the design and creation of a machine learning system, models are typically trained

and then evaluated. To do this effectively, separate datasets for training and testing

must be constructed. In addition to this, it is also common to create a validation

dataset for use during training.

The training dataset contains the data from which the model should be able to

learn to map input to output relationships. A strong training dataset should be large,

highly relevant to the task, accurately annotated if labelled, diverse such that it covers

a realistic variety of situations, and well balanced in terms of its distribution across

possible outputs.

The testing, or evaluation, dataset is auxiliary to the testing dataset. Rather than

being used in training, it is used in evaluation in which the dataset is used predict

outputs on the data, and the performance of the system is measured by a relevant

metric. If a system performs poorly on both the training and testing datasets, it is

said to have underfit and has not successfully identified patterns between the input

and outputs. If a system performs well on the training dataset, but poorly on the

testing dataset, it is said to have overfit, and has learned patterns between inputs

and outputs which are unique to the training dataset.

A good testing dataset should be representative of the real-world conditions in

which the model will be applied, as this provides the ability to evaluate the system

under realistic conditions. To be able to identify overfit, it is also important that the

testing dataset contains unseen data; that being data which is completely separate

and independent of the training data.

Lastly, it is also common to construct a validation dataset. A validation is a

process in which between iterations during training, the model is used to predict

outputs on a small validation dataset. The validation dataset can be used as proxy

for the testing dataset, providing real-time insight into underfit and overfit in the

system during training.

A good validation dataset should possess the same characteristics as a good testing

dataset: good representation, and meet the unseen condition. The validation dataset,

however, should also be independent from the testing dataset. This is because the

role of validation in the training process can lead to a bias towards the validation
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dataset, something which can only be uncovered in final evaluation if there is adequate

independence between the validation and testing datasets.

2.3.5 Evaluating Machine Learning Systems

Machine learning models are evaluated using performance metrics, which can be sim-

ilar to the cost function but differ in that they are not used in the training process.

These metrics vary depending on the task and type of output. Below are some com-

mon performance metrics for classification and regression models.

Classification

Below are some common categorical performance metrics. To better understand these

metrics it is important to understand that all categorical predictions can have one of

four outcomes

True Positive (TP) The ground truth is positive, and the prediction is positive.

True Negative (TN) The ground truth is negative, and the prediction is negative.

False Positive (FP) The ground truth is negative, but the prediction is positive.

False Negative (FN) The ground truth is positive, but the prediction is negative.

Accuracy The rate at which a models predicted category matches the ground truth.

Accuracy =
TP + TN

TP + TN + FP + FN
(49)

Precision The proportion of true positives among all positive instances, made up

of true and false positives. This is an especially useful metric when the cost of

false positives is high.

Precision =
TP

TP + FP
(50)
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Recall The proportion of true positives among true positives and false negatives.

This is an especially useful metric when the cost of false negatives is high.

Recall =
TP

TP + FN
(51)

Regression

Below are some common performance metrics for continuous outputs.

Mean Absolute Error The mean error with directionality removed.

MAE =
1

n

n∑
i=1

|yi − ŷi| (52)

Mean Squared Error The mean of the squares of errors. The square term more

heavily penalises large errors.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (53)

Root Mean Squared Error The square root of the mean squared error. This re-

tains the heavy penalisation of large errors, but returns the values back to the

scale of the data.

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (54)

2.3.6 Artificial Neural Networks

A specific type of machine learning model are artificial neural networks. These are

models made up of artificial neurons, with these neurons being connected within

the model much like nodes within a network. This is inspired by, and analogous

to, biological neural networks, however it is important to note that this analogy is

somewhat superficial: artificial neurons are not direct models of biological neurons.
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Neurons take a series of inputs and calculate an input through a linear transfor-

mation and a nonlinear function. The linear transformation consists of a weighted

sum and a bias. The nonlinear part is known as an activation function, and applies

a pre-selected nonlinear function to the signal.

y = f

(
n∑

i=1

wixi + b

)
(55)

where xi is the series of inputs to the neuron, wi is a series of weights, b is a bias, f(·)
is the activation function, and y is the output.

These biases and weights are the neurons learnable parameters; it is these values

which are updated during the training.

The activation function provides the neuron an ability to map nonlinear relation-

ships between inputs and outputs. This is achieved not by changing the activation

function itself, but instead by changing the weights and biases which determines how

the input interacts with the activation function. Listed below are some common

activation functions.

Sigmoid This activation function produces an S-shaped curve by using an exponen-

tial function in the denominator, mapping values to the range 0 to 1.

σ(x) =
1

1 + e−x
(56)

Hyperbolic Tangent This activation function also produces an S-shaped curve, but

within the range -1 to 1

tanh(x) =
ex − e−x

ex + e−x
(57)

rectified linear unit (ReLU) In modern ML practice ReLU is the most common

activation function. It simply imposes a lower limit of 0 on the signal.

ReLU(x) = max(0, x) (58)

Softmax Unlike the other activation functions, softmax is applied across an entire

layer of neurons. This is helpful at the output of a neural network for classifi-
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cation as it creates a probability density.

Softmax(xi) =
exi∑
j e

xj
(59)

where the index i refers to the specific neuron, and the index j iterates over all

neurons in that layer.

Neurons are then organised into neural networks. Instead of single values, such as

at the input of a neuron, consider instead x as being a vector containing features

calculated through feature extraction, with a length of ninputs.

The most simple architecture which could be created is to combine neurons in

parallel, to create a layer. This can be expressed in matrix form:

y = f(Wx+ b) (60)

where y is the output vector with a length of noutputs, and W is a matrix of weights

with the dimension noutputs × ninputs. This simple model is named a single layer

perceptron (SLP). The shortcoming of SLPs is that because only one linear operation

is applied to the input, they are incapable of mapping complex non-linearities.

To overcome this, an additional layer can be added to create a multi-layer per-

ceptron (MLP). This additional layer is referred to as a hidden layer, as it abstracted

from the output. Letting h be the output of the hidden layer, this can then be defined

as the serialisation of two SLPs:

h = f1(W1x+ b1)

y = f2(W2h+ b2)
(61)

It is important to note that as the hidden layer is abstracted from the output, its

length is no longer determined by the input or output layers and is therefore arbitrary.

This then becomes a hyperparameter which can be tuned to optimise performance.
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2.3.7 Cost Functions

For neural networks to be trained, it is essential to introduce a cost function by which

the performance of the system can be measured in terms of the degree to which the

the model’s predictions have deviated from the ground truth.

For classification, this is almost exclusively cross-entropy loss, as defined below.

J(ξ) = − 1

m

m∑
i=1

C∑
c=1

y(i)c log(ŷ(i)c ) (62)

where i is the index of the training data, c is the index of the class, ŷ
(i)
c is the predicted

probability that the training data instance i belongs to the class c, y
(i)
c is a binary

indicator that i is of c, C is the total number of classes, m is the total number of

training examples, ξ are the neural network parameters and J(ξ) is the cost function.

In the case of the MLP described in Equation (61), ξ would refer to all of the

weights and biases in the system such that ξ = W1,W2, b1, b2.

It can be seen that this function is only suitable if a finite number of classes exist,

hence the need for a classification task. Furthermore, the binary indicator means that

all incorrect classifications are treated as exactly equally incorrect.

In regression based problems, a continuous function is required based on error.

The functions introduced as evaluation metrics, mean absolute error (Equation (52)),

mean square error (Equation (53)), or root mean square error (Equation (54)) could

also be used as cost functions in this case.

2.3.8 Backpropagation

Given the cost function, the loss can be computed and used to update the weights

W1,W2 and biases b1, b2 during training. To achieve this, first a forward pass is

undertaken wherein an input vector is propagated through the network leading to a

predicted output ŷ. This is compared to the true output as defined by a label, y, in

the cost function J(·).
L = J(ŷ, y) (63)
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With the loss now available, the objective becomes to compute the degree to which

the loss changes when each parameter is adjusted. These are the gradients, and are

defined as the derivative of the loss with respect to the parameter, for example the

gradient with respect to a weight is defined as ∂L
∂W

. The gradient of the output can

be defined in relation to the cost function:

∂J

∂ŷ
= J ′(ŷ, y) (64)

Then, using the chain rule, the gradients of the weights and biases of the output layer

can be found:
∂J

∂W2

=
∂J

∂ŷ
· ∂ŷ

∂W2

= J ′(ŷ, y) · hTf ′
2(W2h+ b2) (65)

∂J

∂b2
=

∂J

∂ŷ
· ∂ŷ
∂b2

= J ′(ŷ, y) · f ′
2(W2h+ b2) (66)

Loss is then propagated back to the first layer.

∂J

∂W1

=
∂J

∂ŷ
· ∂ŷ
∂h
· ∂h

∂W1

= J ′(ŷ, y) ·W T
2 f

′
2(W2h+ b2) · xTf ′

1(W1x+ b1) (67)

∂J

∂b1
=

∂J

∂ŷ
· ∂ŷ
∂h
· ∂h
∂b1

= J ′(ŷ, y) ·W T
2 f

′
2(W2h+ b2) · f ′

1(W1x+ b1) (68)

This method of propagating loss back through the network to calculate gradients is

called backpropagation.

2.3.9 Optimisation Algorithms

The parameters in the model can then be updated based upon the gradients calculated

during backpropagation. This is achieved by means of an optimisation algorithm.

Below some typical optimisation algorithms are introduced.

Batch Gradient Descent

Gradient descent is a very common optimisation technique in ML. This starts with
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the gradients of all of the parameters in the model:

∇J(ξ) =



∂J
∂ξ0
∂J
∂ξ1
∂J
∂ξ2
...
∂J
∂ξn


(69)

In gradient descent, steepest descent then is iteratively applied to the parameters. At

each iteration, this is such that:

ξ(t+1) = ξ(t) − α∇J(ξ(t)) (70)

where t is the current iteration, and α is a learning rate which weights the change

in parameters per iteration. Specifically in batch gradient descent (BGD), these

iterations occur once per every pass of the training dataset, so once per epoch.

Stochastic Gradient Descent

stochastic gradient descent (SGD) differs from BGD only in the iteration rate, pa-

rameters are updated once per data point rather than once per epoch. This typically

leads to a noisier trajectory (in loss over time) but faster convergence.

Minibatch Gradient Descent

minibatch gradient descent (MGD) can be though of as a compromise between batch

gradient descent and SGD, wherein parameters update once every nth data point,

where n is a predetermined value; often a smaller power of two (i.e. 32, 64, 128).

The exhibited behaviour in MGD is also a compromise between BGD; it is less

noisy than SGD but is also less likely to get stuck in local minima than BGD.

Adaptive Gradient Algorithm

adaptive gradient algorithm (AdaGrad) (Duchi et al., 2011) is an adaption of SGD,

wherein the learning rate is altered according to the gradient. Starting with a vector
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initialised with zeroes:

G =



0

0

0
...

0


(71)

at each iteration, t, the gradient of the cost function is calculated as per Equation (69),

and then each component of G is updated with the square of the gradient component:

Gt+1,i = Gt,i +

(
∂J

∂ξ
(t)
i

)2

(72)

and then this weighting is used to create an adaptive learning rate based upon an

initial learning weight α:

αt,i =
α√
Gt,i

(73)

Root Mean Square Propagation

root mean square propagation (RMSProp) (Tieleman, 2012) addresses a shortcoming

of AdaGrad; the tendency towards too heavily decreasing the learning rate. RMSProp

is differentiated by finding a moving average of the square of gradient components at

each iteration instead of using the square of gradient components.

E[g2]t+1,i = βE[g2]t,i + (1− β)

(
∂J

∂ξ
(t)
i

)2

(74)

where β is decay rate. This moving average is then used to create an adaptive learning

rate:

αt,i =
α√

E[g2]t+1,i

(75)

Adam

Adam optimisation (Kingma and Ba, 2014) is a widely employed technique which

builds on AdaGrad and RMSProp. In the Adam optimiser, two moment estimates
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are made, one based upon the gradient and one based upon the square of the gradient.

For a pair of decay rates β this is expressed as:

mt+1,i = β1mt,i + (1− β1)gt,i (76)

and:

vt+1,i = β2vt,i + (1− β2)g
2
t,i (77)

and the parameters are then updated based on a learning rate weighted by the two

moment estimates:

ξ
(t+1)
i = ξ

(t)
i − α

mt+1,i√
vt+1,i

(78)

2.3.10 Recurrent Neural Networks

In SLPs and MLPs the relationship between the output is dependent on the input

at that moment in time. However, in real-world scenarios dependencies often ex-

tend across time, and so the output could be influenced by past inputs. To model

these relationships, recurrent neural networks (RNNs) introduce feedback and mem-

ory mechanisms which allow a neural network to draw upon past events.

A simple RNN can be built by the introduction of a hidden state to a neural

network This is a set of activations dependent on the input, as well as previous

activations, as defined below.

ht = f(Wxxt +Whht−1 + b) (79)

Where h is the hidden state. This hidden state can then be introduced into the

previous SLP architecture to create an RNN.

yt = g(Wyht + by) (80)

This produces a series of outputs for a series of inputs. It is possible also to make

a single prediction from a series of inputs by taking only the prediction at the last
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moment of time in the series, as defined below.

y = g(WyhT + by) (81)

2.3.11 Deep Learning

A disruptive trend within the field of machine learning is the increased popularity of

its subfield deep learning.

The deep in deep learning refers to the size of the neural networks used in this

technique, separating input and output with several layers of processing.

A simple deep neural network (DNN) would be to expand the MLP introduced in

Equation (61) to include another layer, as shown below.

h1 = f1(W1x+ b1)

h2 = f2(W2h1 + b2)

y = f3(W3h2 + b3)

(82)

The middle layer, h2, is referred to as a hidden layer. It is named this because it is

entirely abstracted from the inputs and outputs. Increasing the number of layers like

this allows for mapping of more complex relationships between input and output.

The popularity of deep learning escalated with the introduction of AlexNet (Krizhevsky

et al., 2012), which achieved a significant improvement over previous techniques in a

visual object recognition task. Alexnet used five convolutional layers and two fully

connected layers, a comparatively large architecture compared to what previously

would have been applied.

2.3.12 Convolutional Neural Networks

The neural network layers introduced so far have all contained a matrix multiplication

in which the matrix is determined by the size of the inputs and outputs. In terms of

Big O notation, this leads to a complexity of O(Ninput · Noutput). This computation

penalty for large inputs explains the need for heavy dimensionality reduction during
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the feature extraction process, however this approach relies on an ability to extract

relevant features, which is not always possible.

Instead of this, it would be beneficial to have an approach which scales with

input and output size linearly, as this would more easily allow for operating on raw

representations of data. This can be achieved with convolutional layers.

A convolutional layer applies multiple convolutions of part of the input tensor

with a kernel, iterating over the input tensor according to a stride size, a technique

introduced in LeNet (LeCun et al., 1998) for handwritten character recognition. This

can be expressed mathematically. Defining the input to be a tensor, X, which has the

size [m,HX ,WX , CX ] referring to batch size, height, width and number of channels, A

convolution kernel is similarly defined as K, with a size [m,HK ,WK , CX , CY ] where

CY is the number of output channels, and HK and WK are typically small values.

This can be expressed mathematically in terms of a convolution operation with stride

s, where stride is a multiplier applied to the convolution indices.

Y = X ∗s K (83)

where [m,n] iterate over spatial dimensions, k over channels. The output, Y , is

referred to as a set of feature or activation maps.

Equation (83) reveals the source of the computational saving; while in fully con-

nected layers each input element must have Noutput multiplications, here each input

element must only be convolved with a kernel.

Another benefit of this approach over a fully-connected layer is that it introduces

translation invariance as the kernel is slid over the input, and so is able to identify

similar patterns in different parts of the input.

The kernel has a higher number of dimensions than the input; this introduces

an extra dimension in the output such that you obtain different a series of features

maps from one input tensor. This helps convolutional neural networks (CNNs) map

multiple relationships in the data.

Should stride be greater than 1, this will create a reduction in dimensionality due

to a sparsity of input connections; this helps balance the increased computation from

the additional kernel dimension. This also results in each element in the output being
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formed by a larger area in the input, which can be a desirable trait. Equation (83)

was introduced with three dimensional matrices. This is not a requirement however;

it would also be valid to have two dimensional convolution kernel to operate on a two

dimensional input, such that X ∈ Rm×HX×WX and K ∈ RHK×WK×CY , or similarly a

one dimensional filter could be used on an input vector such that X ∈ Rm×NX and

K ∈ RNK×CY .

Strided convolution leads to a slight shrinkage of the width and height dimensions

as there are not enough valid elements at the edges of the input to perform convo-

lutions. To account for this, it is typical to zero pad the input to have the effect of

making HY = HK and WY = HY .

CNNs layers tend to be made of more operations than just the convolution. Typ-

ically proceeding the convolution would be a normalisation operation, to improve

stability in the process by reducing the variability between input tensors. This most

typically would be achieved with batch normalisation, wherein each batch is nor-

malised based upon that batch’s mean and variance. The mean is given as:

µc =
1

mHXWX

∑
b,h,w

Xb,h,w,c (84)

where b, h, c, w are the batch, height, width and channel indices respectively. The

variance is then given as:

σ2
c =

1

mHXWX

∑
b,h,w

(Xb,h,w,c − µc)
2 (85)

These are then used to normalise the input tensor:

X̂ =
X− µ√
σ2 + ϵ

(86)

Where X̂ is the output normalised tensor, and ϵ is a small offset introduced to increase

numerical stability.

There is then a final operation in which learnable scaling and shifting factors γ

and β are applied to the tensor

Y = γX̂+ β (87)
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These factors allow the network to reintroduce a desired scale into the network. This

is particularly important in the context of the next operation applied to the tensor:

the activation function. This would typically be ReLU or one of the other activations

functions introduced in Chapter 2.3.6.

Y = ReLU(X) (88)

Finally, it is also typical to include a pooling operation which reduces the spatial

dimensions of the feature maps. The pooling window, defined by a size of PH × PW ,

slides across the feature map, and for each window, the maximum value is selected.

The output tensor is constructed from these maximum values.

This process helps extract features, as the maximum operation can extract the

most salient value from each pool. Simultaneous to this, it gives another method

of control over feature map size, which is useful in terms of reducing computational

complexity, but also because changing the number of parameters at different parts of

the network can aid in avoiding underfitting or overfitting.

These four operations together make a typical convolutional layer.

Convolution −→ Normalisation −→ Activation Function −→ Pooling

A CNN would then typically cascade many of these convolutional layers together,

before using fully connected layers at the end of the model to combine all the feature

maps, allowing the model to use the entire receptive field for its final predictions.

2.3.13 LSTMs and GRUs

A difficulty encountered in deep learning, particularly when using RNNs, is the van-

ishing gradient problem. This refers to the tendency of gradients to become smaller

as the loss is backpropagated through each layer of the network. In the case of RNNs,

this issue is particularly prevalent as the network’s output depends on previous time

steps, meaning the gradients must be backpropagated through time, not just through

layers. As the gradients are propagated back through many time steps, they are

multiplied by the derivatives of the activation functions at each step. Since these
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derivatives are typically less than 1, this results in the gradients shrinking exponen-

tially, making it difficult for the network to learn long-term dependencies.

To tackle this issue the long short-term memory (LSTM) layer was devised (Hochre-

iter and Schmidhuber, 1997); this being a recurrent layer which uses memory cells and

gates instead of typical feedback loops, which are able to map long term dependencies

without the many iterations which result in vanishing gradients.

Memory cells are stored variables which are updated based on three types of gates:

forget, input and output gates. These are all have a similar definition:

it = σ(Wi[ht−1, x] + bi) (89)

ft = σ(Wf [ht−1, x] + bf ) (90)

ot = σ(Wo[ht−1, x] + bo) (91)

where [i, f, o]t are the hidden gates at the present time step, σ(·) is the sigmoid

function, Wi, Wf , and Wt are matrices of learnable weights with a size of Nh× (Nh+

Nx) where h refers to the hidden units, ht−1 is the hidden state at the previous time

step, and bi, bf , and bo are learnable biases. Due to the sigmoid function, each of

these equations returns a value between 0 and 1. These values are used to determine

the flow of data in and out of the LSTM over time.

First, a candidate cell state is created from the input.

C̃t = tanh (WC)[ht−1, xt] + bC (92)

where WC and bC are learnable weights and biases.

The LSTM’s memory cell state is then updated based upon this this candidate

cell state and the previous cell state, as scaled by the input and forget gates

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (93)

Finally the output, referred to as the hidden state, is created from the hyperbolic

54



tangent of the cell state, scaled by the output gate.

ht = ot ⊙ tanhCt (94)

The cell state, as shown in Equation (92), is what mitigates the issue of vanishing

gradients. As the cell state does not itself contain an activation function, which is the

main cause of the attenuation of gradients, the cell state are able to store gradients

over long durations without attenuation. This allows the model to learn longer term

dependencies.

Compared to conventional RNNs, however, LSTMs significantly increase the com-

plexity in terms of number of parameters and operations involved. The gated recur-

rent unit (GRU) is a recurrent layer also based on gating, which reduces the com-

plexity of LSTMs.

GRUs contain two gates: the update gate and the reset gate. These are calculated

similarly to the gates in LSTMs, but the input and previous hidden states are summed

rather than concatenated.

zt = σ(Wzxt + Uzht−1 + bz) (95)

rt = σ(Wrxt + Urht−1 + br) (96)

where zt is the update gate, and rt is the reset gate, Wz and Wr are learnable weights

for the current input, Uz and Ur are learnable weight matrices for the hidden units

from previous time step, and bz and br are learnable biases. A candidate hidden state

is then created:

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)) (97)

where Wh and Uh are weight matrices for the input and hidden states. Following this

the hidden state is calculated.

ht = (1− zt)⊙ h̃t + zt ⊙ ht−1 (98)
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2.3.14 Regularisation

The complexity of deep learning models causes a great likelihood of overfitting, as

they are capable of very fine details in inputs to output predictions. One method of

mitigating this is to simply reduce the number of parameters during training: this

is achieved with dropout, a technique which sets a certain proportion of the model’s

parameters to zero in the forward pass so that they do not contribute to the cost

function.

Additionally, it is possible to regularise a neural network by summing an additional

term into the loss calculation, typically penalising large parameters. This term can

be introduced to the loss calculation given in Equation (63), as shown below.

L = J(ŷ, y) +R(ξ) (99)

whereR(·) is the regularisation function. This regularisation function could be applied

to all weights in the model as seen here, or only to specific layers. The two most

common regularisation functions are L1 and L2 regularisation, which are defined

below.

L1, or lasso, regularisation penalises based upon the absolute values of the param-

eters.

RL1(ξ) = λ
∑
|ξ| (100)

where λ is a hyperparameter which controls the severity of the penalty.

Meanwhile L2, or ridge, regularisation penalises based upon the square of the

parameters.

RL2(ξ) = λ
∑

ξ2 (101)

This has the effect of more considerably penalising large parameters relative to small

parameters.

Large parameters tend to induce large changes in output based on small changes

to the input, which is why these methods are able to tackle overfitting. However,

aggressive regularisation may just as easily induce underfitting, as the model is pe-

nalised for containing anything but small weights, which are only capable of mapping

basic relationships.
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2.3.15 The Utility of Machine Learning

Many real-world systems are too complex, dynamic, or noisy to be described by

clean, mathematical equations. Attempting to model or handcraft algorithms in

these scenarios can often lead to solutions which are non-robust in real scenarios. It

is in cases like these that machine learning is often best applied: when a scenario

lacks an analytical solution, machine learning can be capable of finding meaningful

hidden patterns in data which can be used to make predictions.

Deep learning furthers this by allowing models to make predictions from high-

dimensional and unstructured representations of data, meaning that it becomes un-

necessary to find features which are optimal for a task.

These capabilities have led to deep learning being widely adopted in many domains

where traditional signal processing techniques were once dominant.

2.3.16 Machine Learning APIs

Software implementation and training of neural networks often happens by using

toolboxes, which typically provide a way of building neural networks through common

types of layers, and their associated parameters, as well as the algorithms for training

and testing models, as well as tuning parameters. Common examples are listed below.

• Tensorflow (Abadi et al., 2016)

• PyTorch (Paszke et al., 2017)

• Scikit Learn (Pedregosa et al., 2011)

• Keras (Gulli and Pal, 2017), integrated into Tensorflow

• Matlab Machine Learning Toolboxes (Paluszek and Thomas, 2016)

2.3.17 Speech Corpi

A significant application of ML is to speech processing, including but not limited

to automatic speech recognition (ASR), speech synthesis, and speaker recognition.

These tasks require use of large datasets of labelled speech data; speech corpi.
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This thesis largely concentrates on speech localisation, and so some of these speech

corpi are introduced.

TIMIT

TIMIT (Garofolo et al., 1992) is a popular speech corpus containing monophonic

speech of 630 speakers of American English. The audio in TIMIT is uncompressed,

however is sampled at 16kHz and is therefore bandlimited to 8kHz.

Librispeech

Librispeech (Panayotov et al. 2015) is a large speech corpus made up of English speech

samples taken from public domain audiobooks. This improves upon TIMIT in terms

of scale, however it is also sampled at 16kHz.

telecommunications and signal processing laboratory (TSP)

The TSP corpus (Kabal, 2002) also consists of English language recordings. As per

TIMIT, these have been deliberately recorded for the dataset. An advantage of this

is that they have been able to evenly split the speakers between male and female,

something which is not true of Librispeech (Garnerin et al., 2021). However, the

dataset suffers in variety, with only 24 speakers being present.

TSP has a higher sampling rate of 48kHz, representing the entire audible spectrum.

2.3.18 Related applications of ML

There exists other audio related tasks which similar to SSL have found success in the

application of deep learning. Some of these are listed below.

Blind Source Separation

Consider an audio signal, with any number of channels. It consists of the sum of some

number of individual sound sources. However once these signals have been summed,

this process is not easily reversed without knowledge of at least some of the original

signals. Blind source separation refers to the task of reversing this sum.

Conventional techniques for this task include independent component analysis

(ICA) (Comon, 1994), and non-negative matrix factorisation (NMF) (Lee and Seung,
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1999), and methods derived from these original methods (Sawada et al., 2019).

This is a field where machine learning, and now especially deep learning, have

been applied widely (Ansari et al., 2023).

Blind source separation and SSL are interlinked by a complementary relationship;

accurate sound localisation can be used to improve sound separation (Nikunen and

Virtanen, 2014), and likewise accurate sound separation can be used to improve sound

localisation (Pu et al., 2021).

Just as BSSL is a subfield of SSL concerning binaural signals, there exists also

a subfield of blind source separation concerning separation within binaural signals

(Alinaghi et al., 2013; Alinaghi et al., 2014)

Computational Auditory Scene Analysis

There is an area of understanding of human audition referred to as auditory scene

analysis (ASA). ASA addresses how humans hear complex auditory scenes, with many

sound sources, each of which themselves which could be described as complex. Hu-

mans have the ability within these scenes to pay selective attention to a sound source

of interest, the cocktail party effect (Cherry, 1953). How humans are able to ma-

nipulate such complex scenes is the basis of research on ASA, which looks at the

underlying mechanisms, including binaural sound localisation, which can allow for

such effects (Bregman, 1994).

computational auditory scene analysis (CASA), then, seeks the same end of com-

plex sound scene understanding, by employing computational versions of the same

underlying functions. Given its inspiration from human audition, it is unsurprising

that this is often, although far from exclusively, achieved using binaural signals; this

leads to BSSL being an important aspect of CASA (Wang and Brown, 2006).

2.4 Review of Binaural Sound Source Localisation Literature

Binaural Sound Source Localisation is an already an established task due to interest

stemming from its possible applications in a number of fields; this chapter looks at

relevant previous work. This begins with an overview of publicly available HRTF

datasets; an important topic due to the frequency of their use in BSSL research, for

which no comprehensive and current overview exists.
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Following this, an overview of the works on the topic of BSSL is given. This

introduces techniques used prior to the emergence of deep learning based approaches,

then gives an exhaustive survey on deep learning approaches to this task, showing

the themes which have emerged from the research.

2.4.1 HRTF Datasets

This work, and other works on BSSL, depend heavily on the use of HRTF measure-

ment datasets for the synthesis of training and testing binaural datasets. To this end,

a short review of published datasets is presented.

Datasets are categorised as consisting of either measurements or simulations. The

measured datasets are further categorised by whether they consist of measurements

of head simulators or human subjects.

For each dataset, some background on the measurement approach is presented,

with any information which could make the HRTF exceptional, and plots of the source

positions found on horizontal and median planes are presented.

Measured Head Simulators

The datasets presented in this subchapter were measured using artificial heads. They

are listed by the institution at which they were measured, owing to the strong signif-

icance of this variable caused by the uniqueness of measurement apparatus between

research institutions, which has a strong influence on the resulting datasets.

It is common for datasets containing multiple subjects to also include HRTFs of

head simulators in the same dataset. Examples of these are listed in Chapter 2.4.1.

Massachusetts Institute of Technology, USA

The MIT KEMAR HRTF Measurements (Gardner, Martin, et al., 1994) consist of

freefield measurements of a KEMAR binaural array, measured with loudspeakers

mounted on a sphere 1.4 metres from the receiver. HRIRs were measured for 710

positions, including the full azimuthal plane, with elevation restricted to -40◦ to +90◦.

These positions are shown in Figure 16. As this was a pioneering HRTF dataset, its

usage in binaural research has been extensive.
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Figure 16: Horizontal and Median Plane Source Positions in MIT KEMAR HRTF Dataset

TH Köln, Germany

Researchers at TH Köln have published multiple sets of HRTFMeasurements. Firstly,

a set of farfield measurements of a KU100 binaural array (Bernschütz, 2013). These

were measured for several sampling configurations, including a set forming a circle on

the horizontal plane with 1◦ sampling spacing, measured by rotating the array with a

turntable, as shown in Figure 18. In addition to this, three full-sphere measurement

grids, measured with a robotic arm with 3 degrees of freedom. These sampling grids

all represented the full sphere, with 2354, 2702, and 16020 sampling positions as

shown in Figure 17.

Figure 17: Horizontal and Median Plane Source Positions in Koln KU100 Spherical HRTF Datasets
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Figure 18: Horizontal and Median Plane Source Positions in Köln KU100 Horizontal Plane HRTF
Dataset

A second set of KU100 HRTF measurements was later published, also including hori-

zontal plane and full sphere sampling configurations, but now for multiple source dis-

tances (Pörschmann et al., 2017). Specifically, spherical grids of 2702 positions were

sampled for four radii in the range 0.5m to 1.5m, and additionally the horizontal-

plane circular sample grid with sampled with 1◦ spacing, was sampled for five radii

from 0.25m to 1.5m (Arend et al., 2016) as shown in Figures 19 & 20.

Figure 19: Horizontal and Median Plane Source Positions in Köln KU100 Nearfield Spherical
HRTF Dataset
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Figure 20: Horizontal and Median Plane Source Positions in Köln KU100 Nearfield Horizontal
HRTF Dataset

Another similarly sampled dataset has been measured containing HRTFs of both a

KU100 and a Head Acoustics simulator, but wearing various types of headwear: a

cap, a helmet, a VR headset, and a pair of over-ear headphones (Pörschmann et al.,

2019).

TU Berlin, Germany

Two sets of HRTF measurements have been published by researchers at TU Berlin.

As at Köln, a multiple distance measurement was also made at TU Berlin, but

of a KEMAR head simulator wearing the large pinnae attachments (Wierstorf et al.,

2011). The measurements were made in circular arrangements on the full horizontal

plane, by rotating the head simulator in 1◦ sampling intervals, which were measured

for four radii: [0.5m, 1m, 2m, 3m], as shown in Figure 21.
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Figure 21: Horizontal and Median Plane Source Positions in TU-Berlin KEMAR HRTF Dataset

The second dataset is of measurements of the FABIAN head simulator previously

introduced in Chapter 2.1.6. These differ from other datasets introduced so far in

that they not only measure for different rotations of sound source, but also measure

for different rotations of the simulator’s head relative to the torso (Brinkmann et al.,

2017). 11 head orientations relative to the torso, which is termed as a head above

torso orientations (HATOs), in the range -50◦ to 50◦. At each of these orientations,

the entire simulator was rotated so as to sample a full sphere sampling grid of 11950

positions. The horizontal and median plane positions for one of these head rotations

are shown in Figure 22.

Figure 22: Horizontal and Median Plane Source Positions in TU-Berlin FABIAN HRTF Dataset
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Club Fritz

Club Fritz is the name given to a round robin study on HRTF measurements in

which a single KU100 head simulator was measured at various institutions with HRTF

measurement apparatus (Katz and Begault, 2007; Andreopoulou et al.; 2015). This

includes 12 measurement sets from 9 institutions:

• IRCAM, France

• University of Maryland, USA

• NASA Ames, USA

• IRCAM, France (#2)

• RWTH Aachen, Germany

• Helsinki University of Technology, Finland

• NHK Science & Technology Research Laboratories, Japan

• NICT, Japan

• Nagoya University, Japan

• Tohoku University, Japan

• IRCAM, France (#3)

• Austrian Academy of Sciences

The only standardised factors between these measurements are the head simulator

itself, and that the measurements should be of freefield HRIRs. Otherwise each insti-

tution used only their typical measurement process, including the sampling positions.

Plots of the source positions on the horizontal plane for all twelve measurement

sets are shown in Figure 23.
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Figure 23: Source Positions on the horizontal plane for Club Fritz HRTFs
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University of Iceland [Viking Dataset]

The Viking dataset contains full-sphere measurements of a KEMAR binaural array.

However, a set of 20 custom pinnae models were attached the mannequin head for

these measurements (Spagnol et al., 2019). 19 of these pinnae were made from moulds

of human subjects, and the last one was made from a mould of the KEMAR’s large

pinnae attachment. A spherical grid of measurements was made in a non-anechoic

room, by rotating the mannequin head around its vertical axis to achieve different

azimuths, and rotating the loudspeaker to achieve different elevations; the positions

being shown in Figure 24. The distance from emitter to receiver was 1m.

The Viking dataset v2 furthers this by using the same moulds, but changing the

material used to create the pinnae models, and taking measurements using the same

measurement rig but in an anechoic chamber (Spagnol et al., 2020).

Figure 24: Horizontal and Median Plane Source Positions in Viking HRTF Dataset

Peking University, PRC [PKU-IOA Dataset]

The PKU-IOA dataset consists of freefield HRTFs measurements of a KEMAR man-

nequin (Qu et al., 2008). These were measured with 1 degree spacing on the horizontal

plane, achieved by rotating the KEMAR, while the elevation plane was sampled with

10◦ increments from -40◦ to 90◦, and each of these spheres was sampled for 8 distances:

20, 30, 40, 50, 75, 100, 130 and 160cm, as shown in Figure 25.

This dataset is notable in that it foregoes the conventional loudspeaker-based

HRTF measurement technique of using loudspeakers as a source, opting instead to

use a spark gap to create an impulse (Qu et al., 2009). This is ideal for measurements
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made in close proximity, as the source aperture of a spark gap is smaller than that of

a loudspeaker, allowing the source to behave more closely to a point-source.

Figure 25: Horizontal and Median Plane Source Positions in Peking University KEMAR dataset

Aalto University, Finland

Marschall et al. (2023) measured a nearfield HRTF dataset, also using a spark gap,

but for a 3D-printed mannequin head with microphones integrated at the mannequin’s

ears. HRTFs were measured for up to 13 azimuths, with this varying for elevation,

and 6 elevations in the range -26◦ to 90◦. This same spherical grid was measured for

radii of 0.2, 0.3, 0.4, and 0.5m, as shown in Figure 26.

Figure 26: Horizontal and Median Plane Source Positions in Aalto University nearfielf HRTF
dataset
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Leibniz University Hannover, Germany

Li et al. (2023) also made multi-distance freefield measurements of a KEMAR, how-

ever theirs differed in that the spatial distance sampling is very dense. The spherical

grid features spacing of 5◦ in both the azimuth and elevation dimensions achieved

by yaw-rotating the mannequin on a turntable, and repositioning the loudspeaker for

elevation.

This was then measured for different radii ranging from 0.2m to 1.1m, with a

sampling density of 0.01m leading to a maximum of 90 distances measured. The

minimum distance was not achievable for all elevations, leading to the spheres for

distances under 0.3m being subsampled. The positions on the horizontal and median

planes are shown in Figure 27.

Figure 27: Horizontal and Median Plane Source Positions in Hannover Nearfield Kemar HRTF
Dataset

University of Oldenburg, Germany Kayser et al. (2009) measured HRIRs of a

B&K HATS in both anechoic and reverberant conditions. Not only were the HATS in-

ear microphones used, but also three-channel microphone arrays on a pair of hearing

aids for a total of eight channels. HRTFs were measured by rotating the HATS on a

turntable and measuring with a single loudspeaker. The number of positions measured

changed depending on the location; in the anechoic chamber the full horizontal plane

was measured in 5◦ increments, for 4 different elevations in the range -10◦ to 20◦

and two different distances: 0.8m and 3m. Further measurements were made in two

offices, a cafeteria and a courtyard; but the spatial sampling is sparse with a combined
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total of 69 BRIRs being measured between these four spaces.

These HRTFs and BRTFs have not been distributed in the SOFA format, and so

are not plotted here.

Thiemann and Par (2019) made measurements of four head simulators, these

being:

• KEMAR

• B&K 4128C HATS

• Head Acoustics HMSII HATS

• DADEC: A prototype HATS with adjustable ear canal (Hiipakka et al., 2010)

The HATSs were measured in an anechoic chamber by rotating an arc upon which

a loudspeaker sits, which could be driven along the arc circumference to change

elevation. The spatial sampling was not entirely uniform, due to a reduction in

sampling at high elevations, but mostly led to sampling of 2◦ in both the azimuthal

and elevation dimensions, as shown in Figure 28.

Figure 28: Horizontal and Median Plane Source Positions in Oldenburg HATS datasets

Another HRTF dataset was also measured at Oldenburg wherein a selection of in-

ear hearing devices were placed in the ear of a human subject, and used to measure

HRTFs from a spherical loudspeaker array (Denk et al., 2018).
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BRIRs

There also exists compilations of BRIRs measured in reverberant spaces. The objec-

tive of these is often for either the auralisation of signals, or in aid of research where

testing under the diffuse field condition is required.

BBC R&D, UK

Pike and Romanov (2017) measured a collection of BRIRs designed specifically for

loudspeaker auralisation, consisting of BRTF measurements of loudspeakers and a

KU100 head simulator in a ITU-R BS.1116 (2015) compliant listening room. Each

set of BRIRs was measured with a different loudspeaker layout, using the layouts

defined in ITU-R BS.2051 (2022).

University of Huddersfield, UK

Bacila and Lee (2019) compiled a set of BRIRs of a KU100 head simulator inside

a concert hall. A single loudspeaker remains in a constant position, while the head

simulator was rotated on a turntable for 100 directions per revolution such that

the horizontal plane is sampled by 3.6◦ increments. This is repeated for 13 different

positions, 12 of which were in a grid equally spaced by 2 metres, with the last position

being closer to the loudspeaker.

University of Surrey, UK

Multiple sets of BRIRs have been published by the University of Surrey.

The IoSR listening room multichannel BRIR dataset (Francombe, 2017) consists

of BRIRs measured in another ITU-R BS.1116 compliant listening room. 24 loud-

speakers, two of which were subwoofers, were arranged into a (9+10+3) configuration

as defined in ITU-R BS.2051, and measurements were taken using a Cortex HATS

which was rotated by one full revolution in 2.5◦ increments.

In aid of work on source separation the same HATS was used in another compi-

lation, but of multiple rooms (Hummersone et al., 2010). Notably, this included also

an anechoic chamber, as well as a medium-sized office, a class room, a large lecture

theatre and a small lecture theatre, all of which had an RT60 of less than 1 second.

Measurements were made by placing a loudspeaker at positions on an arc so as to
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represent the frontal horizontal plane, such that φ was sampled in 5◦ increments for

the range −90◦ < φ < 90◦. Another set of BRIRs were measured using the same

HATS, as well as a KU100, for other work on source separation (Remaggi et al., 2019),

measuring another different four rooms with RT60 values of less than 1 second. The

two head simulators were used exclusively for different rooms.

The SurrRoom dataset (Cieciura et al., 2023) consists of BRIRs, as well as RIR, of

another 7 rooms. These rooms include the same listening room previously measured,

a recording studio, and a selection of offices and classrooms. Rooms were measured

using a KEMAR HATS, with the receiver being placed at five distances in front of the

source, in the range 1m to 3m. The head of the HATS was then rotated to produce

a selection of HATOs in 15◦ steps in the range -45◦ to 45◦

TU Berlin, Germany

Erbes et al. (2015) measured BRIRs in a listening room, of unspecified acoustic qual-

ity. Measurements were made using a KEMAR HATS, measuring 64 loudspeakers

in a square configuration, with a length and width of 4m. Measurements were made

with the mannequin in the center of the array, as well as at an off-centre position.

Princeton University, USA

Qiao et al. (2024) present a set of BRIRs also measured in a listening room, however

this dataset is differentiated from others as rather than the source loudspeakers being

arranged for a standard surround reproduction, or in some spherical arrangement,

the source is a line array of eight loudspeakers. A B&K HATS is translated in [x,y]

positions in front of the line array to create a grid of 11x21 positions in the ranges

[-0.5, 0.5]m and [0.5, 1]m relative to the line array. The HATS is also rotated to 37

azimuthal positions, moving in 5◦ increments from facing left relative to the array, to

facing right.

Multiple Subject Compilations

A series of datasets exist which measure the HRTFs of multiple human subjects, and

also often including head simulators alongside these. These datasets are typically

used in aid of research on HRTF personalisation.
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Austrian Academy of Sciences [ARI Dataset]

The ARI dataset consists of in-ear HRTFs measured in human listeners in a semi-

anechoic chamber (2011). The listener was rotated by 2.5◦ increments within ±45◦,
and 5◦ outside of this range, while an arced loudspeaker array is used to measure

elevations in the range -30◦ to 80◦, as shown in Figure 29. These positions were

measured for 260 listeners.

Figure 29: Horizontal and Median Plane Source Positions in ARI Dataset

University of California, Davis, USA [CIPIC Database]

The CIPIC database (Algazi et al., 2001) is a very commonly used set of HRTFs.

Measurements were made by rotating an arc of loudspeakers around the listeners

interaural axis, rather than the more usual rotation around the vertical axis. This

leads to uniformally sampled changes in elevation rather than azimuth, however as

elevation was not sampled below 45◦, the horizontal plane contains twice the number

of positions as the vertical plane.

The loudspeakers were placed at 5◦ increments, however not the entire hemifield

was sampled, leading to sparser spacing when approaching the interaural axis, as

shown in Figure 30.

The public database consists of HRTFs for 43 human mannequins, as well as two

measurements of a KEMAR wearing the large and small pinnae attachments.
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Figure 30: Horizontal and Median Plane Source Positions in CIPIC Dataset

Tohoku University, Japan [RIEC Dataset]

The RIEC dataset (Watanabe et al., 2014) consists of HRTF measurements taken in

an anechoic chamber by rotating a complete ring of loudspeakers around a listener.

The ring had a radius of 1.5m, and with sampling points spaced by 10◦, which was

then rotated around the vertical axis to sample increments of 5◦, as shown in Figure

31. HRTFs for 107 subjects are currently available in this dataset.

Figure 31: Horizontal and Median Plane Source Positions in RIEC Dataset

RWTCH Aachen University, Germany [ITA Database]

The ITA Database (Bomhardt et al., 2017) consists of freefield HRTFs of 48 listen-

ers. These were sampled by rotating an arc of loudspeakers around a listener in 5◦

increments, the arc containing 64 loudspeakers sampling the vertical plane with 2.5◦
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increments for elevations in the range -70◦ to 88◦.

TU Berlin, Germany [HUTUBS]

Another dataset created at TU Berlin, HUTUBS, is a dataset of anechoic HRTFs and

3D head meshes of 93 human subjects (Brinkmann et al., 2019), and two measure-

ments of the FABIAN head simulator, with repeated measurements of one subject.

Subjects wore in-ear microphones, and were positioned centrally in a vertically orien-

tated ring of loudspeakers of radius of 1.47m. The ring allowed for spatial sampling

of the entire median plane with 10◦ spacing, and was rotated such that the horizontal

plane was also sampled with 10◦ spacing, as shown in Figure 32. Included also are

numerically simulated HRTF based on the subjects’ head meshes, which feature a

much finer sampling grid.

Figure 32: Horizontal and Median Plane Source Positions of measured HRTFs in HUTUBS Dataset

Princeton University, USA [3D3A]

At Princeton, a compilation of HRTFs of 38 subjects was made, together with head

and torso meshes of 31 of the subjects. Subjects were measured by a vertically oriented

arc of loudspeakers, affixed with 9 loudspeakers spaced near-uniformly in the range

-15◦ to 75◦. This arc was then rotated around the listener by increments of 5◦, as

shown in Figure 33.
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Figure 33: Horizontal and Median Plane Source Positions in Princeton 3D3A HRTF Dataset

IRCAM, France

Three HRTF measurement datasets have been published by IRCAM, each consisting

of different measurement apparatus. The Listen database (Warusfel, 2003) consists of

HRTF measurements of 51 subjects. Subjects had their HRTFs measured inside an

anechoic chamber, using a single loudspeaker suspended by crane, while the listener

was rotated on a turntable.

The crane was moved to allow for ten elevation positions equally spaced by 15◦ in

the range -45◦ to 90◦, while the turntable was turned in increments of 15◦ for most

positions, though the very upper elevation positions had sparser sampling, as shown

in Figure 34

Figure 34: Horizontal and Median Plane Source Positions in IRCAM’s Listen Dataset

The binaural listening (BiLi) dataset (Carpentier et al., 2014) measured HRTFs
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of another 54 subjects, also being conducted in an anehcoic chamber. However, these

measurements were performed with a denser sampling grid. Measurements were made

by a pivoting arc of 4 loudspeakers.

The sampling is based on a Gaussian grid, with an elevation range with of -15◦ to

86◦. This ordinarily would not include samples on the horizontal plane, but as these

are required for many HRTFs applications, additional measurements were made at

θ = 0◦. The extra positions measured can be clearly seen on the plotted median plane

positions in Figure 35.

Figure 35: Horizontal and Median Plane Source Positions in IRCAM’s BiLi dataset

Crossmod measures HRTFs of a further 24 listeners. Documentation for these

is limited, but the description within the SOFA files confirms the dataset is also

measured in the IRCAM anechoic chamber. The sampling grid employed is denser

than Listen’s, but sparser than BiLi’s, and features a more heavily sampling of sources

around the horizontal plane, as shown in Figure 36. It is not known if this also employs

an arc of loudspeakers.
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Figure 36: Horizontal and Median Plane Source Positions in IRCAM’s Crossmod Dataset

University of York, UK [SADIE II]

The SADIE II database (Armstrong et al., 2018) consists of anechoic HRTFs and

diffuse-field BRTFs measured of 18 human subjects, as well as a KEMAR and a

KU100 head simulator, as well as some anthropomorphic data. Different sampling

grids were employed for the HRTFs of head simulators and human subjects, as well

as for the BRTFs.

The SADIE II database samples the sphere as to achieve a distribution of multiple

commonly used sampling grids used in ambisonic speaker arrangements (Armstrong et

al., 2017). This is achieved by rotating human listeners next to a static configuration

of loudspeakers sampling a spherical segment. Horizontal and Median plane positions

of this are seen in Figure 37.

Figure 37: Horizontal and Median Plane Source Positions in SADIE Human HRTFs

78



The head simulators were measured using the same apparatus, however the rota-

tion increments were shortened to 1◦, resulting in a much denser sampling grid, as

seen in Figure 38.

Figure 38: Horizontal and Median Plane Source Positions in SADIE Head Simulator HRTFs

The SADIE database is notable in also containing BRTF measurements of the

same subjects. This was completed using a 50 speaker Lebedev grid inside a treated

listening room. This looks particularly sparse in Figure 39 as not all azimuthal and

elevation sampling occurs directly on the horizontal and median planes.

Figure 39: Horizontal and Median Plane Source Positions in SADIE database’s BRTFs

South China University of Technology, PRC

Yu et al. (2018) compiled a nearfield set of HRTF measurements of 56 human sub-

jects, evenly split between male and female. This was achieved by rotating the subject
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within an arc of loudspeakers. The loudspeakers on this arc were adjustable in dis-

tance, to achieve measurements at seven unequally spaced source distances between

0.2m and 1m, as seen in Figure 40

Figure 40: Horizontal and Median Plane Source Positions in SCUT Nearfield HRTFs of Human
Subjects

An additional unreported HRTF measured with the same apparatus exists for the

KEMAR head simulator. This features an additional set of positions on the transverse

plane, as seen in Figure 41.

Figure 41: Horizontal and Median Plane Source Positions in SCUT Nearfield HRTFs of KEMAR
head simulator

Imperial College London, UK [Sonicom]

The Sonicom HRTF dataset (Engel et al., 2023) is currently the largest dataset of
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measured HRTFs, which at the time of writing contains HRTFs for 200 subjects, and

an additional two sets of HRTFs of the KEMAR HATS with the two large and small

pinna attachments. The dataset also includes 3D head meshes of all of the subjects.

Horizontal and Median plane positions are seen in Figure 42.

Figure 42: Horizontal and Median Plane Source Positions in Sonicom HRTFs Dataset

Meta Reality Labs, USA [Sound Sphere 2]

The Sound Sphere 2 HRTF dataset (Warnecke et al., 2024) contains freefield HRTF

measurements of 78 subjects. Measurements were taken in an anechoic chamber

containing a 2m radius arc of 54 loudspeakers spaced by 3◦ elevation increments from

a minimum elevation of −69◦. The subject was rotated within this by 6◦ increments,

resulting in the positions shown in Figure 43.

In addition to the human subjects, three head simulators were measured: a KE-

MAR, a B&K HATS, and a KU100.
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Figure 43: Horizontal and Median Plane Source Positions in Sound Sphere 2 Dataset

2.4.2 Review of Binaural Sound Source Localisation

Sound Source Localisation machinery is a well developed field, with examples of

spaced microphone arrays being applied to acoustic location finding having existed

for over a century (1918). Much of this work on this topic concerns sound source local-

isation by microphone array, but attention to replicating humans’ binaural approach

to sound localisation has also been long established.

This chapter will introduce and give an overview of significant work in the field of

BSSL, with particular emphasis on machine learning based approaches.

Additionally, while comprehensive reviews of sound source localization are already

commonplace (Rascon and Meza, 2017; Liaquat et al., 2021; Desai and Mehendale,

2022), including specifically in relation to applying deep learning (Grumiaux et al.,

2022) to the task, selected works on SSL are still introduced here, selected for their

particular relevance to the research later presented in this work.

Algorithmic and Model Based Approaches to BSSL

Macpherson (1991) introduced a model designed for estimating the azimuth of a

binaural signal, for the purpose of analysing stereo speaker reproduction. A binaural

signal was decomposed by filterbank into 16 bands, and for each of these bands an

ITD and ILD estimate was made. ITD was estimated by finding the maximum of the

interaural cross correlation function (IACCF), and ILD was estimated by measuring
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the ratio of energy in the two channels. Both of these cues, at every frequency band,

were then mapped to an azimuth estimate. This was achieved by making measure-

ments of a KEMAR HATS for different azimuths, and applying the model to these

to find a ground truth. In the case where an ILD maps to multiple possible angles,

an average of the possibilities is made. The many azimuth estimates were reduced

to a single estimate by histogram analysis. The ground truths were made for 10◦ in-

crements in the frontal horizontal plane, though interpolation was employed to allow

for prediction with higher resolution than this. A precedent effect model was also ap-

plied, ignoring ITD measured over 1-6ms from what was identified as an initial onset.

The system was tested first using the same dataset used to create the ground truth,

where unsurprisingly high accuracy was reported, but then also in non-anechoic envi-

ronments. The first reverberant environment was made by surrounding the binaural

array by wooden panels at one metre away. This provided strong early reflections, due

to the low absorption of the material. In this case, the system continued to perform

strongly, only seeing significant error at large azimuths.

The next environment had all reflective surfaces, but further from the binaural

array. This emphasises the later stages of the reverberation; the diffuse tail. In this

case, much poorer performance was reported. The combination of these techniques

suggests the strength of the precedence effect modelling.

Keyrouz et al. (2006) presented a model for binaural localisation in both azimuthal

and elevation planes. For this technique, a database of inverse HRIRs at different

positions was made. The paper describes several methods employed to reduce the

size of the database, including reducing the size of the HRTFs through principal

component analysis. Segments of binaural audio, as measured at the ears of a binaural

array, were then convolved with all of the inverse transfer functions in the database.

From the resulting signals, the correlation between the two channels was found; if

the HRIR in the audio and the inverse filter are well matched then this correlation

will tend towards one; so a location estimate is made based on the filter with the

maximum correlation factor.

These systems were evaluated with binaural audio using the same HRTF set as

used in the model: the MIT Kemar HRTFs (Gardner, Martin, et al., 1994). Depend-

ing upon the degree to which HRTFs used in the inverse filters were reduced, and by
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which techniques, an accuracy of up to 90% was reported, with it also being seen that

errors tended to occur in locations with small distance from the true positions. The

disadvantage of this approach is the large number of convolutions involved; hence the

need to reduce the size of the HRIRs.

An improvement to this approach was then proposed (Keyrouz and Diepold, 2006),

in which complete cancellation of the original sound source is attempted by finding

the ratio of the two channels in the frequency domain; if binaural audio is modelled as

being the convolution product of only audio and a pair of HRIRs, this will leave the

ratio of the HRTFs. A database of the ratios of HRTFs is similarly created, against

which the comparison is made. An improvement in accuracy at smaller lengths was

shown as compared to the first technique.

A further development to this approach was the reduction of the computation cost

by reducing the search to specific regions of interest (Keyrouz, 2011).

This system was then later used as one block of a larger system (Keyrouz, 2014).

This introduces a new process; microphones are placed inside both of the ear canals

but also outside the pinnae on both sides of the head. The HRTF was then found as

the ratio between the transfer functions of the inside and outside microphone. For

both channels, this was correlated with a bank of HRTFs. A DoA estimate was either

given by an average of the locations reported by the three systems, or by probabilistic

model in the form of Bayesian fusion. The system was evaluated under the influence

of both additive noise, and reverberation. It was shown that the combined system

outperforms the individual systems, and that the addition of Bayesian fusion helps

also.

Earlier Machine Learning based Approaches

May et al. (2011) describe training GMMs for the task of azimuthal DoA on the

front horizontal plane, in the presence of reverb. A 20ms window was decomposed by

gammatone filterbank (GFB) into 32 bands, from which ITD and ILD were extracted.

With the aim of achieving robustness, multi-conditional training (MCT) was ap-

plied: in this case specifically meaning the use of BRIRs in the binaural audio sim-
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ulation to create reverberation, and the addition of interfering sound sources to the

mixture.

The type of model was evaluated in a number of experiments. Firstly, altering the

model complexity, which revealed the expected pattern of decreasing error for a larger

model. Secondly, a study on which binaural cues are preferable was performed, which

revealed highest performance for joint ILD and ITD with low pass filter. Thirdly, re-

ceiver position was altered. Through this it was found that multiple source distances

must be considered for robustness to reverberation. Fourth, the GMM was compared

to baseline systems for varying reverb time and number of sources. In all scenarios

the GMM outperformed the more classical approaches. Fifth, the number of acoustic

sources was estimated, by finding the number of peaks in the histogram of probabili-

ties. This showed high performance for lower numbers of sources, particularly in less

reverberant conditions.

May et al. (2015) later proposed another system based on GMM, but with the

addition of a head rotation strategy. Recognising that a system tasked with full hor-

izontal plane localisation when exposed to unknown rooms is likely to falsely output

front-back reversals. Ambiguous azimuth estimations were identified if more peaks are

found in the probability distributions than expected number of sound sources. When

this occurs, the head is yawed by 30◦. Comparison of the probability distributions

prior and post rotation reveal the true peak, as the true source will counterrotate

with respect to the yaw rotation, while the phantom source will rotate with the yaw

rotation.

This strategy was simulated using TU Berlin freefield HRTF measurements of a

KEMAR HATS (Wierstorf et al., 2011), and the Surrey multi-room BRTFs measure-

ments (Hummersone et al., 2010). The system was evaluated on up to three individual

speakers.

The results re-assert the need for MCT, with extremely poor generalisation to

unseen rooms having been observed without it. The efficacy of the head rotation

strategy was assessed on the basis of quadrant error rate; being the rate at which the

system falsely localises with an error of larger than 90◦. The head rotation strategy

reveals a reduction of these errors by around 5%; which while significant, seems to
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be far less important than a well trained static model, as MCT reduces these same

errors by 30%.

Further evaluation of this concept was reported by Ma et al. (2015c), where BRIR

measurements of a KEMAR were made in rooms for this purpose. New rotations

strategies are employed: rotating until facing the most likely source, this being justi-

fied by the observance of this behaviour in humans (Perrett and Noble, 1997), rotating

towards the likely source but by a fixed maximum rotation, and rotating randomly.

Additionally, this rotation was broken into multiple steps, rather than happening

instantaneously. This was also evaluated for 1 to 3 speakers.

The results further support the use of a head rotation strategy. Of the proposed

strategies, large (60◦) yaw rotations towards the most likely target were preferred. It

was shown that multiple step head rotations are preferred, as well as longer duration

rotations.

Deep Learning based Binaural Sound Source Localisation

Ma et al. (2015b) further developed upon the work with GMMs and head rotations

(May et al., 2015; Ma et al., 2015c) by the use of a feedforward DNN to perform

DoA estimation as replacement of the GMMs. They proposed the use of a DNN

trained upon frequency banded binaural cues; namely the IACCF and an ILD value.

Frequency bands were made through GFB decomposition, and a separate DNN was

trained at each frequency band. An azimuth estimate was then made by maximising

the combined softmax outputs at all frequency bands.

This was then also tested with the same MCT approach described by May et al.

(2011), and the head rotation strategy described by May et al. (2015). The system

was compared to the previously described GMMs.

Across all testing conditions a limited but consistent improvement in performance

is seen. The head rotation strategy also improves the results of the DNN based system

compared with the GMM based system.

Performance of the same system was later reported using a different set of BRIRs

measured for the full horizontal plane (Ma et al., 2017). These results concur with

what was already reported, of improved performance when using DNN, MCT when

training, and employment of the head rotation strategy.
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Lovedee-Turner and Murphy (2018) looked at application of machine learning to

estimate the DoA of a sound source, but also the DoA of the source’s reflections as

measured in a BRIR.

In the experiment, anechoic HRIRs from the SADIE II dataset (Armstrong et al.,

2018) with added noise are converted directly into feature maps; first through GFB

decomposition, and then the finding of frequency-banded IACCF and ILD. These

were then used to train a cascade-correlation neural network; a form of adaptive

neural network in which during training new units are added and trained to maximise

correlation with the residual error of the network. This was reported to achieve better

accuracy than a more typical MLP.

To evaluate whether this model could then be used for reflections, a dataset was

made in an anechoic chamber where BRIR was recorded for head simulator, with a

loudspeaker as emitter, and a reflective surface was mounted in the chamber to give

a single reflection of known DoA; as calculated with ISM. This was done with both a

KEMAR 45BC Head Simulator, and a KU100.

The direct path IR was separated from the reflection by windowing around iden-

tified peaks in the signal. 144 of these BRIRs were generated, representing source

positions and reflections on the full horizontal plane. The results are compared to a

baseline of estimating DoA based on ITD as found through IACCF.

The system reported a large improvement over the baseline method, particularly

for front-back confusions which was reduced from baseline 50% to 0% and 1.39% for

the direct sound, and 2.78% and 9.03% for the reflected sound: these two figures

representing the two head simulators used for evaluation.

Vecchiotti et al. (2019) introduced an influential model, which estimates DoA

directly from the raw waveform, rather than employing feature extraction techniques.

Two systems were introduced: one in which an audio signal was decomposed using

GFB and fed into non-trained convolutional layers, and one where Binaural audio was

created using the Surrey BRIR dataset (Hummersone et al., 2010), convolved with

speech signals from the TIMIT database (Garofolo et al., 1992). Several training

sets were created, an anechoic one, and training sets including all but one of the test
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rooms, which was repeated to allow for testing on each of the four rooms.

The results of the anechoic set showed significant overfit to the anechoic condition

for WaveLoc-CONV, with around 40◦ of error for all rooms, and lesser overfit for

WaveLoc-GTF with around 10◦ of error.

For the reverberant training sets, this is reduced to around 2◦ for both systems,

WaveLoc-CONV outperforming WaveLoc-GTF on three of the four rooms. This sug-

gests a tendency for CNNs to overfit on anechoic data, and for this to be significantly

worsened if the input layer is unrestricted.

Xu et al. (2019) proposed a CNN based system for localising sound sources in the

front hemifield of the horizontal plane in reverberant conditions.

The system extracts binaural cues using a cochlear model named the ’cascade of

asymmetric resonators with fast-acting compression’ cochlear system, originally pro-

posed by Lyon (2017). This models frequency banding, nonlinear and feedback effects

of the cochlear. The medial superior olive (MSO) is modelled by cross-correlation,

and onsets are detected, at which point a correlogram is created from the previously

described cochlear models, in a way that somewhat mimics the precedence effect.

These correlograms are used as the input of a relatively shallow CNN, with two

convolutional layers.

A reverberant binaural dataset consisting of speech taken from the Austalk database

(Estival et al., 2014) was combined with BRIRs from an office. This same dataset

was used to train and test a similar model, which applies extreme learning machine

(ELM) to the correlograms rather than CNN. This system was used as a baseline.

The results show a noteworthy increase in performance from the CNN to the ELM,

with localisation error being reduced from 19.1◦ to 3.7◦.

Zhou et al. (2019) also applied CNNs to BSSL, training CNNs on a feature matrix

made from the IACCF of GFB derived frequency bands. The binaural audio for this

was created by filtering of speech taken from the CHAINS speech corpus (Cummins

et al., 2006) with BRIRs of two sources: measured BRIRs from the Surrey dataset

(Hummersone et al. which were used exclusively for testing, 2010) as well as ISM

synthesised BRIRs using HRIRs taken from the MIT KEMAR dataset (Gardner,
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Martin, et al., 1994) which were used for both training and testing. The binaural

data consisted of source positions on the frontal hemifield of the azimuthal plane, as

per the Surrey BRIRs. Additionally white noise is added to the testing dataset, at

various levels.

Particularly high accuracy was reported when the system was tested on the syn-

thetic BRIRs, with root mean square localisation error (RMSLE) ranging from 1◦-2◦

depending on reverb time and signal-to-noise ratio (SNR). More notably, however,

this performance decreases only to 3◦ when trained and tested on unknown rooms.

Wang et al. (2019) and then Wang et al. (2020) addressed the task of localising

in the mismatched HRTF condition; that is when the HRTFs used in the training

dataset differ to those used in the evaluation dataset. To address this, training data

was clustered into groups of a more similar HRTF.

Binaural audio was created by combining speech taken from the TIMIT corpus

with HRTFs taken from the CIPIC and RIEC databases. Only positions on the frontal

horizontal plane were considered. From these, IACCF and ILD were extracted and

used as cues for localisation.

Clustering was achieved by means of affinity propagation; a clustering method

which differs from the more common k-means clustering by not requiring the number

of clusters to be specified in advance and by using message passing between data

points to identify exemplars and form clusters. For the clustering, a similarity matrix

was created based on the localisation accuracy of the DNN when trained and evaluated

on every combination of HRTF. From each cluster, a single HRTF was selected,

and finally these selected HRTFs were used to train the DNN, with the rationale of

reducing complexity while still allowing for full generalisation.

As a baseline, the system was compared against conventional cross-correlation

based localisation, the model based methods proposed by Raspaud et al. (2009) and

Pang et al. (2017), and the similar DNN proposed by Ma et al. (2017). An improve-

ment of localisation accuracy was reported over the baselines.

To address the issue of front-back confusion in BSSL systems, Jiang et al. (2020)

proposed an alternative architecture fusing a CNN responsible for distinguishing front-
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back hemifield, and a DNN responsible for giving an azimuth estimate which is trans-

formed into the correct hemifield based on the result of the CNN.

The model was trained on a truncated IACCF curve, and an ILD estimate, of

binaural audio. The binaural audio was created through convolution of speech sam-

ples with BRIRs taken from the AIR dataset (Jeub et al., 2009), and additive noise

was introduced through noise samples taken from the NOISEX-92 dataset (Varga and

Steeneken, 1993). High localisation accuracy was reported in anechoic and noisy con-

ditions, but performance suffered in reverberant conditions. Proof is shown, however,

of the relative success of the CNN in resolving front-back confusion, with this being

improved over baseline systems.

Zhao et al. (2021) proposed a DNN based system, trained on typical binaural cues

but evaluated in conditions of low SNR. Binaural audio is decomposed by GFB, and

then at each frequency band converted into interaural cues: ITD, ILD, interaural

phase difference (IPD) and interaural coherence (IC). ITD and IC were used by a

deep belief network (DBN) to localise the correct quadrant, as to resolve front-back

confusion, while all four cues were input to a DNN tasked with azimuthal estimation

within that quadrant. Training and testing was split into two experiments, one looking

at SNR and one at reverberation. For the first test, binaural audio is created by

combination of speech samples with the MIT KEMAR database (Gardner, Martin,

et al., 1994). Different noise samples were added to the signals, at SNR ranging from

20dB(SNR) to -10dB(SNR). Models from three other works were used as a baseline

(Wu et al., 2016; Zhang and Liu, 2015; Ma et al., 2017). A slightly higher level of

localisation error is reported over the baseline systems.

The model was then also tested in reverberant conditions, using BRIRs measured

at Surrey (Hummersone et al., 2010) and TU Berlin (Ma et al., 2015a). In this case

too, a higher robustness to reverberation is reported over the baseline systems.

The methods up to now use neural networks in the DoA estimation stage of

binaural sound localisation, either predicting from features or the raw binaural audio.

Another possible approach, however, is to leverage neural networks in turning binaural

audio into more useful features for a more conventional sound localiser on which to
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perform localisation.

Yang et al. (2021a) presented such an approach, wherein the direct path relative-

transfer function is predicted from binaural audio. This is a common feature used

in array based SSL; in the context of BSSL it refers to the relative transfer function

of the two HRIRs. Reverberation and noise would reduce the efficacy of such an

approach, so a first stage of monaural speech enhancement takes log-spectrograms of

raw speech, and applies bidirectional long short-term memory (BiLSTM) to directly

predict a clean log-spectrogram.

A binaural enhancement stage separately processes intensity and phase matrices

with convolutional layer, before concatenation and use of LSTM for the transfer

function prediction.

A DoA estimate was given by matching the predicted transfer function to a ground

truth.

A testing dataset was created by creating BRIRs by ISM simulation using HRTFs

from the MIT Kemar datset. This was done for the frontal horizontal plane. These

BRIRs are then combined with speech from the TIMIT corpus. In addition, noise

from the NOISEX-92 Database (Varga and Steeneken, 1993) are added to the signals.

The system was compared against two neural network based models of SSL (Pak

and Shin, 2019; Chakrabarty and Habets, 2019). An increase in performance was

reported over the baseline methods.

More extensive testing of the same approach was later reported (Yang et al.,

2021b); with some changes to the model such as the use of more convolutional layers in

the binaural enhancement stage, and the replacement of LSTM with GRU. A notable

change in the experimental method was the introduction of an HRTF mismatch;

BRIRs for training and testing are now created using HRTFs from the CIPIC database

(Algazi et al., 2001). The results in the mismatched condition were strong, with little

reduction in accuracy being seen.

Further testing was also undertaken using real binaural recordings, taken from the

LOCATA dataset (Tang et al., 2019); for which the proposed model also outperformed

the baseline methods.

Massicotte et al. (2022) introduced an LSTM based system. The system performed

feature extraction on binaural audio by way of wavelet scattering, a form of signal
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decomposition by wavelet transform (Andén and Mallat, 2014). This was used to train

and test two separate LSTM layers, and subsequent regression created estimations

for azimuth and elevation.

The system was trained on speech data from the TIMIT database combined with

HRTF of the KEMAR mannequin taken from the CIPIC database.

They reported high levels of accuracy, however the system was only tested in the

context of SNR, and the influence of reverberation was not considered.

O’Dwyer and Boland (2022) trained a DNN for BSSL when using multiple HRTFs,

but using a novel technique of sorting data in order to achieve better performance.

Binaural audio was created by combining speech samples from the McGill TSP

database (Kabal, 2002) with HRTFs from the CIPIC database (Algazi et al., 2001).

The features extracted from this were ILD, the IACCF, and gammatone-frequency

cepstral coefficients (GFCCs); which were used to train a DNN.

O’Dwyer and Boland (2022) assessed the performance of DNNs trained with one

HRTF when tested using other HRTFs from the database. The poor performance

typically associated with the mismatched HRTF condition was seen in this case.

Additionally, it was observed that performance was not equal for all mismatched

HRTFs. Based upon the fact that performance seems to be higher for similar HRTFs,

O’Dwyer and Boland (2022) proposed clustering into groups of similar HRTFs, and

training and testing within these clusters. Clustering was enabled by means of the

affinity propagation algorithm (AP) algorithm. The result of this was a very small

decrease in performance for known HRTFs, but a significant increase in performance

for unknown HRTFs.

Inspired by the efficacy of CNNs, but wishing to find a less computationally com-

plex solution, Phokhinanan et al. (2023) proposed the use of vision transformer. The

vision transformer (Dosovitskiy et al., 2020) breaks an image into smaller tensors,

named patches, with embedded information about original position in the image.

Each of the patches passes through a self-attention mechanism, and feedforward neu-

ral network. In the proposed model, binaural audio is turned into ILD and IPD matri-

ces by taking STFT of the binaural audio, and finding the ratio of the log-magnitude
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and phase of the two channels. Rather than embedding patches as squares, vertical

lines of value are used so as to represent frequency bins.

A training dataset was made by using HRTFs from the MIT KEMAR database,

(Gardner, Martin, et al., 1994) for source positions in the frontal azimuthal plane.

These were combined with utterances taken from the TIMIT spech corpus (Garofolo

et al., 1992). Noise was then added to the signals, using noise signals taken from the

NOISEX-92 dataset (Varga and Steeneken, 1993).

The system was evaluated in two scenarios: for a testing dataset with varying

levels of unseen noise, and a dataset with both varying levels of unseen noise and

unknown speakers. Under these conditions, it outperformed a baseline of a CNN

trained for the same task.

Following from this, Phokhinanan et al. (2024) proposed another similar system,

but for the task of BSSL in the mismatched HRTF condition. The newly proposed

system uses addition feature representations: matrices of the real and imaginary

parts of the two signals, and a new architecture wherein each of the four features has

a unique encoder block. The training and testing datasets were similarly made using

speech from TIMIT and noise from NOISEX-92, but HRTFs from CIPIC (Algazi

et al., 2001) were used for training, while HRTFs from the RIEC dataset (Watanabe

et al., 2014) were used for testing.

The system was tested under three conditions; common HRTFs but mismatched

noise-types, mismatched HRTFs but common noise types, and both mismatched

HRTFs and noise. The results again showed an improvement over the baseline. A

significant reduction in accuracy was seen in the mismatched HRTF condition for

both the proposed and baseline systems.

Geva et al. (2024) also proposed a novel hybrid model, training a network on both

time-domain waveform data and TF-domain spectrograms.

They created a dataset using HRIRs measured for 24 source directions, and con-

volved these with music taken from the MUSDB18 dataset; a dataset of mixed music

and individual channel stems intended for music source separation tasks (Rafii et al.,

2017).

A two branch CNN was used, in which one branch 11,025 sample long sections

of time-domain binaural audio was input into four 1D convolutional layers, and in
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the other spectrograms of size [129, 127, 2] were input into four 2D convolutional

layers. These were then concatenated, and the output layer was a three element

vector predicting Cartesian coordinates of the loudspeakers.

They used the Vecchiotti et al. (2019) system as a baseline. Geva et al. (2024) re-

ported high levels of accuracy, with an average angular error of 0.24◦. This compares

to the reported 19.07◦ of error found from retraining and testing the baseline system

on this work’s dataset.

One potential issue in speaker estimation, is that speech tends not to be con-

tinuous, and in these moments of silence a DoA estimator is more likely to give an

erroneous estimation.

To address this, Varzandeh et al. (2024) proposed the integration of a voice activity

detector (VAD), detecting when speech is occurring. In the study, three baseline

systems were use; these being CNNs trained upon the generalised cross correlation

phase transform (GCC-PHAT) of the binaural signal, the magnitude and phase of

the CPS of the binaural signal, and the real and imaginary parts of the CPS of the

binaural signal. These baseline systems are augmented by the probability that speech

is occurring as determined by VAD, such that no DoA estimate is made while speech

is not likely to be occurring.

These baseline systems were compared against the proposed systems, which com-

bine the previously described feature representations with another input; a periodicity

cue named the periodicity degree, which was originally proposed for other applica-

tion (Chen and Hohmann, 2015), wherein the signal is decomposed by a filterbank

of comb filters with different delays so as to identify different fundamental periods

in the signal, and the feature representation extracted is the mean amplitude of the

filtered signals.

The systems were trained on binaural audio made by convolution of speech signals

taken from the TIMIT corpus with HRIRs taken from the Oldenburg HATS HRTFs

(Kayser et al., 2009). Noise was added to this to make SNR in the range of -5dB to

20dB. Testing was done under two conditions: static and moving sound sources. In

both cases, HRIRs are replaced with BRIRs measured in non-anechoic conditions.

The proposed systems outperformed the baselines. Of the tested feature repre-
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sentations, GCC-PHAT performed most strongly in all conditions.

Distance Estimation in Binaural Sound Source Localisation

Yiwere and Rhee (2017) tested a model designed for joint distance estimation and

azimuthal direction estimation in reverberant conditions; however the range of az-

imuths was limited to just the three directions 0◦, 30◦ and 60◦, and four distances

1m, 1.5m, 2m and 3m. The system consisted of a DNN trained on the IACCF of the

binaural signal.

Notably, for training and testing data was captured with in-situ recording. Sound

samples, which are stated to include speech from the TIMIT corpus (Garofolo, 1993)

as well as unreported samples, are played back through a loudspeaker at the previ-

ously described positions, and stereo recordings are taken from a spaced microphone

pair. This, notably, is not a binaural array; however this may not be of significant con-

sequence as ILD and monaural cues are not considered by this model. This method

of creating audio data accounts for the small amount of positions measured in the

dataset.

This was carried out for three rooms. The model was trained independently on

room 1, room 2, and rooms 2 & 3 combined. These combinations were then tested

separately on room 1, 2 and 3. The reported results mostly show the predicted

pattern, of being higher when the training dataset contains audio from the same

room as in the testing dataset; except for the model trained on rooms 2 & 3 still

reported higher accuracy on room 1, suggesting favourable acoustic conditions.

Given the small number of source locations, it is difficult to draw conclusion from

the classification accuracy of this system as even high accuracy represents less well

performing localising than other previous models. However, this does suggest that

IACCF may be a viable cue for distance estimation as well as azimuth estimation.

O’Dwyer et al. (2019) investigated the use of typical ML approaches to BSSL for

the purpose of estimating distance.

Binaural audio was created through the measurement of BRIRs of a KEMAR

HATS for two different azimuths; 0◦ and 30◦ and three 1m spaced distances from 1m

to 4m. This notably is outside of the near-field, so the system will not be able to
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interpret distance from changes in binaural cues.

A variety of features were extracted: ITD, as being determined by the peak of the

IACCF, broadband ILD, IACCF, average energy of GFB decomposed signals, and

mel-frequency cepstral coefficients (MFCCs). These cues were used to train DNNs

both separately, and in combination.

Unsurprisingly it was found that combination of all features performed best. In-

dividually, the IACCF and the MFCCs performed best when φ = 0◦ but gammatone

energies performed better when φ = 30◦.

El-Mohandes et al. (2023) investigated deep BSSL on ‘earable’ devices; those

being electronic devices worn at the ears such as earbuds and headphones. In this

case, the HRTF is dependent upon the listener’s head. To avoid HRTF mismatch,

they proposed a lightweight HRTF measurement procedure in which a mobile phone

is used as an emitter. Binaural audio used for training was then created based on

these HRTF measurements representing a full sphere of source positions.

The binaural audio was used to create gammatone-frequency cepstrums (GFCs),

and an IACCF. The GFC was used as input to a branch of convolutional layers, the

IACCF was interpreted by a branch of dense layers. The branches were concatenated

by further dense layers. The output is a prediction of both azimuth and elevation.

Loss is calculated as the great-circle distance between the predicted and true spherical

locations.

Two training schemes were proposed; subject-dependent where all weights are

trained from scratch from the users’ unique HRTFs, and subject-adapted where the

network was first trained on a generalised dataset, the weights of the layers in the

individual branches were frozen and only the weights of the post-fusion layers are

updated for the data from individualised HRTF. These were compared to a baseline

of subject-independent data; the generalised training dataset.

The two proposed training schemes show a significant improvement over the base-

line of a generalised dataset, showing the importance of individualised cues for BSSL.

This performance is likely skewed heavily by cone-of-confusion errors, which would

not have been present in the most popular work on BSSL with HRTF mismatch

(Wang et al., 2020) as they restrict to only the front horizontal plane.
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The proposed subject-adaptive training scheme did not perform well when train-

ing the model on individualised HRTFs.

It is not only head rotation which can provide potential cues useful for BSSL;

listener position translations also will have their own dynamic effects. Krause et al.

(2024a) studied their potential use in a full position BSSL system estimating distance

as well as DoA.

The authors trained a two branch convolutional recurrent neural network (CRNN),

with branches representing two forms of audio representation: spectral features, and

motion-based features. The spectral features consisted of mean magnitude spec-

trogram, IPD, and ILD. The motion-based features consisted of the listener’s head

rotation, represented with quaternions, as well as the listener’s position, represented

with Cartesian coordinates. The branches consist of 2D convolutional layers, and

are concatenated before use of bidirectional gated recurent unit (BiGRU) layer. The

system as first tested on separate datasets of where the listener is static, with rotating

head, and with listener translation, all of which is trying to localise a single speaker.

A large number, 2500, of synthesised room configurations were used in the study for

reverb.

In a test only performing DoA estimation, localisation error was reduced by the

inclusion of head rotation, and substantially reduced by the inclusion of listener trans-

lation and head rotation.

Works on Sound Source Localisation for Hearing Aids

As previously established, Hearing Aids greatly benefit from the ability to localise

sound sources, since this allows for selective beamforming to try to replicate the

cocktail party processing effect that is damaged in hearing impaired listeners (Noble

and Gatehouse, 2006). These systems may not be true BSSL systems, since it is not

uncommon for microphone arrays to be appended to each hearing aid to assist the

beamforming part of the processing. However, in the context of the human head,

these sensors are still near coincident, and so analysis of binaural cues for localisation

is still similar to conventional BSSL.

Courtois et al. (2014) proposed a system specific to hearing aids, supposing that
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at the time common statistical approaches would not be possible on the devices ow-

ing to memory constraints. Instead of this, they recommend exploiting the radio

transmission of a worn-microphone’s audio to the receiver hearing aids, and using the

difference in transmission time in order to calculate ITD.

Goli and Par (2023) proposed a CNN trained on TF representation of sound at

each microphone in hearing aid based array. The matrix is created by GFB decompo-

sition, followed by half-wave rectification and square rooting of the signal in a method

meant to induce nonlinearity in an emulation of human audition. Inspired by its use

in other fields (Sainath et al., 2015; Park and Yoo 2020), Goli and Par (2023) tested

whether learnable parameters in the GFB provide better localisation accuracy; an

approach previously seen in Vecchiotti et al. (2019).

It was found that the learnable GFB does improve localisation, but only if the

parameters are initialised with parameters based on typical GFB.

The system was tested in three different rooms, and at differing levels of SNR.

It was seen that the system is able to generalise to other rooms, with the expected

behaviour of reducing accuracy owing to increasing reverb time and decreasing SNR.

The proposed system is able to outperform a baseline system of a MLP trained on

GCC-PHAT features: though this would not be expected to work well for near-

coincident channels, as in this case of monaural array.

The authors also compared results of using all microphones on both ears, deemed

a binaural array, and only microphones on one ear, deemed a monaural array. The

system is still able to perform monaurally, but loses robustness to reverberation and

noise.

It is notable, however, that the proposed system uses a relatively large TF-

representation, with a size of [2205, 32,M ] where M is the number of microphones.

Computationally, this may not be an efficient approach if such large matrices are

required.

2.4.3 State of the Field in Binaural Sound Source Localisation

From the works listed, some general trends can be seen, as outlined below.
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Bias towards Speech Localisation

There is a very strong emphasis on DoA estimation of speech as a sound source. There

are several reasons why this may be the case: speech is likely the most impactful

application of sound localisation, as a source of audio there is an abundance of large

scale speech datasets, and speech as a signal is complex, and tasks which work well

for speech do often generalise well to other forms of audio.

Pivot to CNN and CRNN

Original application of DNN regularly saw use of handcrafted features. The trend

now is towards end-to-end systems, with convolutional layers generally replacing this

feature extraction process. Within this is another trend, increasing usage of recurrent

layers with the architecture of a CNN.

Bias towards Azimuth Estimation

A large bias towards azimuth estimation over other forms of localisation is seen. A

reality of this is that BSSL will always be more accurate when doing so due to the

importance of binaural cues only valid for changes on the horizontal plane.

Sound Localisation as a Classification Task

Coordinates are continuous values, however in spite of this BSSL is often treated as

a classification task.

Single Source Localisation

Some noteworthy study on multi-speaker localisations have been seen, but since the

field’s pivot towards CNN, total emphasis has been placed on providing DoA estimates

for single listeners.
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3 Research Aims and Design

3.1 Aim & Objectives

The primary aim of this work is to assess the utility of deep learning for the task of

binaural sound source localisation.

To enable this, the following objectives were set out:

• Survey and assess existing literature on binaural sound source localisation, iden-

tifying gaps existing in current literature

• Design a framework for experimentally evaluating deep neural network perfor-

mance on the task of binaural direction of arrival (DoA)-estimation

• Benchmark existing techniques of preparing binaural datasets for binaural sound

source localisation tasks in different conditions

• Propose and evaluate new techniques for preparing binaural data for unexplored

acoustic conditions

• Investigate convolutional neural network architectures for the task of binaural

sound source localisation

• Summarise findings and propose areas for future work

3.2 Methodology

This thesis investigates the task of binaural DoA estimation using deep neural net-

works by conducting experiments on the preparation of simulated binaural datasets,

the conversion of binaural datasets into feature representations, the choice of deep

neural network architecture, and dataset pre-processing in pursuit of better general-

isation.

The method is separated into four distinct phases, corresponding to the four fol-

lowing chapters.
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Localising in Simulated Acoustic Environments: To uncover areas of particu-

lar challenge with regard to simulated acoustic data, an approach is taken in which a

deep neural network trained on anechoic binaural data is tested with various different

types of alterations. From these results particularly challenging acoustic environments

are uncovered.

Feature Representations: Comparative experiments are conducted to assess dif-

ferent feature representations. Firstly, magnitude-based features are compared under

controlled conditions, with consistent datasets, training regimes, and model struc-

tures. This process is then extended to a broader range of phase and time-based

cues, also using controlled comparisons to isolate the effects of the feature choice.

Deep Learning Architectures: Network architectures are evaluated through con-

trolled comparative analysis in which datasets, training process, and model size are

fixed while the architectural design is varied. This phase investigates the relative

merits of different convolutional and recurrent designs for binaural localisation.

Mismatched Anechoic Condition: This phase presents an investigation into a

previously underdeveloped part of binaural sound source localisation (BSSL). This

is achieved by first demonstrating experimental proof of the existence of this issue,

before proposing possible solutions to this issue and confirming the efficacy of the

proposed solutions through comparison with a baseline.
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4 Localising in Simulated Acoustic Environments

4.1 BSSL with Convolutional Neural Networks

In Binaural Sound Source Localisation, high accuracy can be achieved under ideal

conditions: that being a sound scene in which there is no reverberation, additive

noise, or interfering sources. This ideal scenario, however, is an impossibility in the

real world; any useful system also needs to perform with these degradations present.

This chapter will introduce the different acoustic features that can affect perfor-

mance, and show the effect varying them has upon classification accuracy. Through

this experimental analysis it will be shown which areas need to be focused upon.

The models introduced in this chapter were implemented, trained, and evaluated

using the MATLAB Deep Learning Toolbox. All datasets were also generated in

MATLAB, with the addition of the SOFA Toolbox MATLAB API, which is used for

handling head-related impulse responses (HRIRs) throughout this thesis.

4.2 The Ideal Condition

To establish the challenges associated with the task of binaural sound source locali-

sation (BSSL), direction of arrival (DoA) estimation in the ideal condition first needs

to be considered. To do this, a simple convolutional neural network (CNN) will be

trained and tested with audio data which has been simulated in the ideal condi-

tion. This will effectively show the accuracy of a BSSL system operating inside of an

anechoic chamber.

4.2.1 CNN

To build a system, the actual design of the CNN itself needs consideration.

In order to minimise complexity, a single-branched CNN was employed. The result

of this being that only one feature representation could be input to the system. Due

to this, it was decided that magnitude would be used as it is theoretically possible to

localise in the full azimuthal field based on monaural cues alone.

As this and following chapters are largely concerned with the data being used to

train and test models, rather than the model architecture itself, the design parameters
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of the CNN are chosen due to their success in initial exploratory experimentation.

A CNN of three layers was employed, each of these layers containing Convolution,

Batch Normalisation and a ReLu activation function. This architecture is shown in

Table 3. The growth pattern of increasing filter sizes and numbers through the layers

is a typical approach for CNNs, batch normalisation is used to improve stability and

max pooling is employed to restrain the size of the activations.

Table 3: CNN Architecture

Layer Hyperparameters

Input Layer (300, 6, 2)

2D Convolution (2,2),8

Batch Normalisation

ReLu

Max Pooling (2,2)

2D Convolution (8,8),16

Batch Normalisation

ReLu

Max Pooling (2,2)

2D Convolution (16,16),32

Batch Normalisation

ReLu

Fully Connected Layer 72

The input layer parameter size was dictated by the dataset, and the 72 classes at

the output correspond to the classes expanded upon in the following chapter.

4.2.2 Dataset and Training

The first consideration was which DoAs should be used in training and testing of

the system. Azimuth is a continuous scale, in this case ranging from −180◦ to 180◦,

however the classifier inherently will quantise this as it only has a finite number of

possible outputs. This can be approached by either limiting our data to a finite set
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of azimuthal positions, or by turning the full azimuthal plane into a series of ’bins’

in the manner of a histogram.

For example if a CNN with 32 classes in its output layer was used, and these

classes are evenly distributed among the full azimuthal plane such that the classes

can be thought of representing:

φn = −180◦,−170◦, ..., 170◦ (102)

or alternatively as representing 32 10◦ wide ’bins’, such that:

bin1 ⇒ −180◦ ≤ φ1 < −170◦

bin2 ⇒ −170◦ ≤ φ2 < −160◦

...

bin32 ⇒ 170◦ ≤ φ32 < 180◦

(103)

While the second case may be a more useful way of thinking about these classifiers

in the real world, where azimuth is a continuous scale which the classifier inherently

has to quantise, under experimental conditions data can also be quantised such that

only the azimuths shown in Equation (102) are used in the training and testing of

the system.

This is advantageous as it reduces the number of HRIRs used, which are time-

consuming to measure leading to databases tending to be limited in their number of

DoA positions. This becomes even more advantageous when binaural room impulse

responses (BRIRs) are considered later in this chapter.

In both cases, however, it should also be clear that there will be a trade-off between

accuracy and computational resources. Increasing the number of classes reduces the

azimuth bin size allowing the classifier to be more precise, however, in order to have

the same amount of training files per class, the total number of training data files

must increase.

In reality, as the distance between each DoA has decreased, and therefore the head-

related transfer functions (HRTFs) have become more alike, the amount of training

files per class needed to achieve the same level of classification accuracy will need to
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increase. Or, in other terms as the azimuth bin size has been reduced the classifier

needs to be more accurate in order to select the new smaller azimuthal range.

In response to this trade-off, it was decided that 72 classes would be used, repre-

senting 5◦ increments:

φn = −180◦,−175◦,−170◦, ..., 170◦, 175◦ (104)

This has the advantage of improved comparison with other works that have also

classified using 5◦ steps. The head, as it pertains to HRTFs, is a linear time-invariant

(LTI) system. This means that binaural recordings do not need to be made with

a dummy head microphone, but can instead be virtually created by convolving an

audio signal with the impulse response (IR) of a dummy head. Under these ideal

conditions, these can be represented as:

xL,R[n, φ] = s[n] ∗ hrirL,R[n, φ] (105)

where L,R are the channels left and right, s[n] is the audio signal and hrir[n, φ] is

the HRIR. What needs to be considered is what audio is to be used as the signal, and

how the HRIRs are to be created. Given that the azimuth has been discretised, and

the channel can be thought of as a dimension to our data, this is re-expressed:

xφ[n, i] = s[n] ∗ hrirφ[n, i]

i = {L,R}
(106)

The choice of original audio signal used is likely to be significant in terms of

generalisation, but in order to simplify experimentation in this and later chapters it

was decided only one type of audio should be used. In Chapter 2.4 it was identified

that significant interest in BSSL comes broadly with the end aim of localising and

separating speech from background noise. Given this possible application, and that

it will allow for fairer comparison with other systems, a heavy emphasis on localising

speech is found in this work, and so speech is used as the audio signal. Specifically,

speech is taken from the Librispeech corpus (Panayotov et al., 2015) which contains

English speech recordings taken from audiobooks, with a sample rate of 16kHz.
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Sample rates of 16kHz are commonly seen in speech corpi for practical reasons,

and so is a trait that the task of speaker localisation has inherited, however it does

impose a Nyquist limit of 8kHz on the dataset. This is seen as acceptable in this

case as in speech, most energy is below this limit, and the salient localisation cues

are at lower frequencies, however it should be noted that audio above 8kHz is used

by humans to resolve the cone of confusion and so a negative impact is possible.

HRIR recordings of a KEMAR mannequin were used, which were taken from the

Sadie II Database (Armstrong et al., 2018).

Having combined the HRIRs with the audio through convolution, so that now

different versions of the same audio exist for 72 source locations, the audio is split

into smaller sections. It was found during exploratory experiments that changing

the length of the audio clip, and therefore the x-dimension in the subsequent time-

frequency (TF)-Matrix has no significant effect upon the classification accuracy, and

so a short length of 100mS (1600 samples) was chosen.

Rather than windowing the signal as a complete system may do, the audio was

instead cut into 100mS files. This was done to achieve better generalisation for a

given size of dataset, since no overlapping audio allows for a greater range of speech

recordings.

CNNs are designed to be used with inputs of two or three dimensions in the same

manner as an image file, the stereophonic audio files created, however, only exist in

two: time and channels. Due to this the time series signals needs to be processed to

create TF-matrices. This is achieved through use of a short-time fourier transform

(STFT). The STFT was introduced in Equation (39) in Chapter 2.2, this is shown

here for the specific case where azimuth and channels are considered:

Xφ[m,ω, i] =
∞∑

n=−∞

xφ[n, i]w[n−mH]e−jωn (107)

This yields a matrix of complex numbers, which was changed into a spectrogram

through taking the magnitude:

spectrogram{xφ[n, i]} = |Xφ[m,ω, i]| (108)

106



However, with regard to BSSL this spectrogram contains a large inefficiency: a large

proportion of the frequency dimension ω is dedicated to the highest frequencies, which

differs to human hearing which perceives frequency logarithmically. This can be

improved upon with a conversion to the mel-scale: a perceptual scale closer to that

of human hearing.

mel-spectrogram{xφ[n, i]} = |Xφ[N,ω, i]| ·M [ω, k] (109)

where M is a matrix made from a filterbank made up of triangular overlapped filters

spaced across frequencies according to the Mel scale:

m = 2595 log(1 +
ω

1400π
) (110)

This process was completed for 100 seconds of audio, yielding 1000 TF-Matrices

per source direction, and 72,000 matrices in total to be used in training. This training

set was then randomly split 80%-20% into training and validation files. The CNN was

trained using stochastic gradient descent (SGD) with an initial learn rate of 0.0001,

for a maximum of 50 epochs but was manually stopped at 17 epochs because loss was

approaching zero.

4.2.3 Testing Method

The trained CNN was then used to classify audio taken from a new testing dataset.

The testing set was created using precisely the same method as employed for the

training set, but using audio files taken from a later part of the speech corpus. This

was undertaken to yield 300 audio files, and then matrices, at each source position

for a total of 21,600 files.

The CNN was then used to classify these files. The first metric recorded was the

Classification accuracy, which shows the ratio between successful and unsuccessful

classifications (where 1 or 100% is completely successful).

Classification Rate =
Correct Classifications

N
(111)

The next metric is the Front-Back Confusion Rate, which was designed to show
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the degree to which errors were caused by Front-Back Confusions.

This is achieved by mirroring the target value, YTest, to represent the front-back

mirror value.

However, if the rate was then taken at this point in the same manner as clas-

sification rate, there would be two issues: Firstly, classifications in the bins adja-

cent to the front-back mirror would not count as front-back confusions, which would

lead to misleading results as the front-back confusions would become lower in situa-

tions where the system is more conventionally inaccurate. Secondly, the cases where

YTest = Mirrored{YTest}, being at YTest = ±90◦, correct classifications would be

counted as front-back confusions.

To account for these issues, an algorithm was developed which introduced wider

limits around Mirrored{YTest} and ignores those false positives.

Algorithm 1 Front-Back Confusion Algorithm

YM Test ←Mirrored{YTest}
YUL ← YM Test + 10◦

YLL ← YM Test − 10◦

if YTest ̸= −90◦ ± 10◦ ∧ YTest ̸= 90◦ ± 10◦ then
if YM Test ≥ YLL ∧ YM Test ≤ YUL then

Front-Back Confusion
else

No Confusion
end if

else
No Confusion

end if

Having applied Algorithm 1 to all testing files, the rate is simply:

Front Back Confusion Rate =
Front Back Confusions

N
(112)

These two metrics give insight into the performance of classification, however it is

important to remember that the output of the classifier is a number on a continuous

scale. To gain insight into the degree to which incorrect classifications are incorrect,
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the root mean square error (RMSE) was also calculated.

RMSE =

√∑N
n=1(YPred[n]− YTest[n])2

N
(113)

This alone, however, would induce a higher level of error than it should owing to

the circular nature of the results.

Consider the case YTest = −180◦ and YPred = 175◦. Calculating the error using

the difference as per Equation (113) would suggest 355◦ of error, however the distance

between these two DoAs is actually 5◦ as 180 = −180◦.
To tackle this, if YTest and YPred are in different halves of the azimuthal plane, the

degrees adjusted to by ±360◦ to the nearer point. This circular error is referred to as

root mean square localisation error (RMSLE).

Algorithm 2 Algorithm for making RMSLE circular

if |YPred − YTest| > 180◦ then
if YTest < 0◦ then

YTest ← YTest + 360
else

YTest ← YTest − 360
end if

end if

Finally, given that the RMSLE could potentially be disproportionately affected by

front-back confusions, since these will tend to induce high degrees of error, another

metric which will be referred to as RMSLE with Mirroring is used.

RMSLE with Mirroring constrains all results to a 180◦ azimuthal plane through

mirroring, so as to effectively eliminate all front-back confusions.

Having applied Algorithm 3 to all testing files, a value for RMSLE with Mirroring

can be calculated using Equation (113).

4.2.4 Results

The results of training and evaluating the CNN on the anechoic training and testing

datasets are shown in Table 4.
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Algorithm 3 Mirroring Algorithm for RMSLE with Mirroring Metric

if YTest < −90◦ ∨ YTest > 90◦ then
YTest ←Mirrored{YTest}

end if
if YPred < −90◦ ∨ YPred > 90◦ then

YPred ←Mirrored{YPred}
end if

Table 4: Results from training and testing a CNN in ideal conditions

Classification Accuracy 99.91%

Front-Back Confusion Rate 0%

RMSLE 0.2◦

RMSLE with Mirroring 0.2◦

4.2.5 Discussion

It can be seen in Table 4 that the system shows exceptional performance, approaching

perfect. This result, however, lacks real-world utility as it the acoustic conditions are

unrealistic; it must also be established whether such a system is able to generalise to

other conditions.

4.3 Diffuse Noise

Audio, as a medium, is very prone to the unintended inclusion of noise. This can be

added to a signal through a variety of ways such as electric interference, from quan-

tisation during analogue-to-digital conversion, or perhaps most significantly through

the recording of unwanted noise in an acoustic environment. It is at this point, how-

ever, that it needs to be pointed out that in the task of sound localisation not all of

these types of noise are the same. If one considers the process of making a binaural

recording noise inflicted upon the signal after the point of transduction will not have

had any directional cues imparted upon it, which in this work is referred to as diffuse

noise.

Typically in other audio signal processing tasks such as automatic speech recog-

nition (ASR), the more significant challenge is unwanted sounds which have been
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recorded from the acoustic environment, such as a passing car. As these sounds em-

anate from their own DoA, they shall be recorded with binaural cues, and so need to

be thought of a separate problem, one which will be explored later in this chapter.

In this sub-chapter, a CNN which has been trained in ideal conditions shall be

tested using audio which has had diffuse noise added to the signal, to show the relation

between diffuse noise and system performance.

4.3.1 Testing Sets

As previously mentioned, the CNN previously trained under ideal conditions was used

in this experiment, and so the only new element of the method is the synthesis of the

testing set.

Each testing set will also consist of 300 files for each source direction, however in

this case there were ten different testing sets to represent 10 different levels of signal-

to-noise ratio (SNR). These levels represented 12 dB increments starting at 0dB, and

ending at 108dB: these numbers being chosen to represent the full range from noise

equalling signal in amplitude, to the theoretically lowest possible audible noise floor.

The testing set was generated in the same manner as described in Chapter 4.2.2,

but prior to the Fourier transform, a pink noise signal generated on each iteration,

and scaled to the correct value, was added to the signal. Pink noise was chosen as

avoid for bias towards higher octave bands, as pink noise contains equal energy per

octave.

To scale the signals, both the noise and speech signal were normalised to −6dB
to avoid the sum’s total exceeding full-scale, and then the noise was scaled by the

inverse of the SNR value. This alone, however, would not yield the right result as

while normalising to −6dB for the noise would also yield a dB(root mean square

(RMS)) value of −6dB, for the speech, however, the peak amplitude will be much

higher than the RMS. The dataset was tested to see on average what the difference

between peak and RMS is for the speech samples, finding a value of −14.46dB. To

account for this, then, the noise was also scaled by −14.46dB. The noise was then

added to the speech, signal normalised back to 0dB, and spectrograms created.

The CNN was used to classify each testing set individually, and the same metrics as

the previous sub-chapter were compiled. These are presented as plots with signal-to-
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noise ratio on the x-axis, and a line of best fit created through polynomial regression

has been added for each result.

4.3.2 Results

The following figures show the results of testing the CNN trained in the ideal condi-

tions tested with data with diffuse noise added. Figure 44 shows the classification rate

plotted against SNR, Figure 45 shows the front-back confusion rate plotted against

SNR, and Figure 46 shows the RMSLE plotted against SNR.

Figure 44: Classification Rate with respect to
SNR

Figure 45: Front-Back Confusion Rate with
respect to SNR

Figure 46: RMSLE with respect to SNR

4.3.3 Discussion

From Figures 44-46 it is immediately noticeable that despite the CNN not being

trained for such a task, its performance in the presence of diffuse noise is still fairly

robust, with a noticeable effect only being found for SNRs below 24dB. Even at SNR

of 0dB, classification accuracy is still in excess of 80%, though the RMSLE of 30◦
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suggests these errors are not tightly clustered around the target azimuth, despite the

low incidence of front-back confusions.

Plotting the results as a histogram for individual azimuths can provide more

insight into these errors. The classifier shows different behaviour at different azimuths;

of the azimuths with higher levels of error, three behaviours can be highlighted, which

are as follows.

It can be seen in Figure 47 that the errors are somewhat distributed normally

around the target azimuth, however outliers explain the relatively high RMSLE value.

Figure 47: Classification Results for φ = −110◦ and 0dB(SNR)

Meanwhile, Figure 48 shows a clearly double peaked distribution, with one peak at

the true azimuth and one at close to the front-back mirror.

Figure 48: Classification Results for φ = 40◦ and 0dB(SNR)

This behaviour is unremarkable in that it was hypothesised and then occurred.

What is significant is that the front-back reversal behaviour has occurred at a much

lower rate than expected, with more error being incurred by the previous factor and

the error shown in Figure 49.
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Figure 49: Classification Results for φ = −20◦ and 0dB(SNR)

Figure 49 shows to some degree the previous two errors, but also another error worth

highlighting, being the spurious peak around 170◦. It was found that this error

sometimes occurred regardless of target azimuth. It is likely when the CNN is having

difficulty classifying, some unknown bias forces this error, unfortunately inducing a

high degree of error. This effect is also visible in Figure 48.

It can be seen that the RMSLE with Mirroring metric follows about half of RM-

SLE, despite lack of front-back confusions. This is not overly surprising, as constrain-

ing the full azimuthal field from a total of 360◦ to 180◦ halves that possible error,

though another suggestion is that the errors which do occur are somewhat randomly

distributed, rather than clustered around a peak.

4.4 Interfering Sound Source

As introduced in Chapter 4.3, from the perspective of BSSL unwanted noise can occur

in two varieties: diffuse, or from a distinct sound source. This sub-chapter will show

the result of attempting to classify a testing set using a CNN, trained under ideal

conditions, in the presence of a second interfering sound source.

4.4.1 Method

The same CNN trained under ideal conditions was also used for this test, with the

testing set again being changed.

It is hypothesised that for noise with the HRTF applied, the presence of these

monaural cues shall change the reaction of the CNN, and so for a given SNR level,
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the result will not be the same. To this end, the type of noise needs more careful

consideration as the degree to which the audio is similar to the training set will

probably alter this effect.

With this in mind, it was decided to test for two different types of noise: a

second speech signal, and a noise signal. Both these signals are tested at noise levels

corresponding to the SNR values in the previous sub-chapter. This can be thought of

as SNR here too, but is referred to instead as the ratio between sound source levels.

The only difference, then, in the testing set generation is the manner in which

the interfering sound sources are synthesised. For the noise signal, pink noise was

generated and then convolved with a randomly selected HRIR. This random selection

does leave a 1/72 chance that the noise is coincident with the original sound source,

as there are 72 possible DoAs in this test, however this is adequately small to be

considered negligible. The noise was then scaled in the same manner as the diffuse

noise, and summed to the speech signal.

For the speech signal, ten segments of speech were taken from a much later point

of the speech corpus. For each (primary) audio file, one of the ten speech files were

again chosen at random, and convolved with an HRIR also chosen at random. This

was then normalised to the same level as the primary audio file, and then scaled by

the intended ratio. The resulting audio could then be transformed into spectrograms.

The CNN was then used to classify the testing sets. The results are shown on

plots with the sound source level ratio on the x-axis, with both signals being shown

on each plot, except for RMSLE which for clarity is still separated between two plots.

4.4.2 Results

The following figures show the results of testing the CNN trained in the ideal condi-

tion, tested with data with directional noise added. Figure 50 shows the classifica-

tion rate plotted against SNR, Figure 51 shows the front-back confusion rate plotted

against SNR, and Figure 52 shows RMSLE plotted against SNR.
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Figure 50: Classification Rate with respect to
interfering sound level ratio

Figure 51: Front-Back Confusion Rate with
respect to interfering sound level ratio

Figure 52: RMSLE for interfering pink noise
with respect to interfering sound level ratio

Figure 53: RMSLE for interfering speech with
respect to interfering sound level ratio

4.4.3 Discussion

The most immediately noticeable finding here is that both the interfering sound

sources, at equivalent sound levels, have a much more detrimental effect upon sound

localisation than diffuse noise does.

Additionally, it is clear that the accuracy of the system actually performs better

under the presence of an interfering speech signal rather than an interfering noise

signal. This is surprising, since given that the CNN has been trained using speech, it

seems logical that the system would erroneously output the azimuth of the interfering

sound source more often for speech than noise.

The presence of this sort of error is supported by the classification accuracy being

approximately 50% when the two speech levels are equal in level which is what would

be expected, however, for the pink noise accuracy is below even that at approximately

30%, suggesting the system is suffering some sort of more severe error.
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Given that the second source azimuths are randomly distributed, plotting a his-

togram is unhelpful, since while it does show the error being randomly distributed it

is unclear if this is due to the localiser identifying the HRIR of the second source, or

just general error.

Figure 54: Histogram showing classifier output at azimuth of −25◦ for an interfering pink noise at
0dB

To gain further insight, another testing set was created where the azimuth of the

second sound source is always 40◦.

Figure 55: Histogram showing classifier output at azimuth of −25◦ for an interfering pink noise at
0dB with azimuth of 40◦

From Figures 54 and 55 it can be seen that indeed, to a certain degree the random dis-

tribution was being caused by the classifier identifying the secondary source’s HRTF,

however other spurious errors do remain.

Figure 56 contains a better demonstration of how the accuracy for the pink noise

signal has dropped below 50%, with a second peak not just being seen around 40◦,

but at other random positions.
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Given this behaviour, we can therefore expect that in the presence of a second

source the effects of bad SNR, as well as of a competing sound source, will in fact

sum to create even greater error.

Figure 56: Histogram showing classifier output at azimuth of −45◦ for an interfering pink noise at
0dB with azimuth of 40◦

Looking at the equivalent situation for the speech signal, in Figure 57, it can be seen

that similar behaviour occurs but the number of mis-classifications are fewer.

Figure 57: Histogram showing classifier output at azimuth of −45◦ for an interfering pink noise at
0dB with azimuth of 40◦

4.5 Noise Mixture

Realistic sound environments would not contain just one interfering sound source,

but a mixture of different sound sources of different energy. An environment like this

is made up of interfering sound sources, so expecting similar results is a reasonable

hypothesis, however as the number of sound sources is increased the resulting mixture

of sound will become closer to that of diffuse noise.
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This sub-chapter will test the performance of the CNN using testing data contain-

ing such a noise mixture, with varying SNR and number of sources. This will show

whether the cocktail party phenomenon is implicit, or if such behaviour needs to be

learned by the model.

4.5.1 Method

The fundamental component of the noise mixture was sound sources made by com-

bining pink noise with an HRIRs of random azimuth, achieved in precisely the same

way as in Chapter 4.4.1. This however was done for Q number of sound sources. Each

of the sound sources for every mixture was normalised to a random level between 0

and 1, and summed into the mixture. The entire mixture was then normalised to the

required levels to represent SNRs of 0dB, 12dB, 24dB, 36dB.

yL,R[n] = BSNR(

Q∑
q=1

Arand(pink[n] ∗ hrirL,R[n, φrand]))

Q = 1, 2, 3, ..., 10

B = 1, 0.25, 0.0063, 0.0016

(114)

Where y[n] is the resulting noise mixture, Q is the number of sound sources, φrand

is a random azimuth, Arand is a random number between 0 and 1, and pink[n] is a

randomly generated pink noise signal.

Each of these noise mixtures can then combined with the same training files used

in previous chapters.

xL,R[n, φ] = (s[n] ∗ hrirL,R[n, φ]) +D(yL,R[n]) (115)

where D is the inverse of the average level of the speech combined with the HRIRs.

4.5.2 Results

The following figures show the results of testing the CNN trained in the ideal con-

dition, tested with data with noise mixtures added. Figure 58 shows the classifica-

tion rate plotted against SNR, Figure 59 shows the front-back confusion rate plotted

119



against SNR, and Figure 60 shows RMSLE plotted against SNR.

Figure 58: Classification Accuracy for Testing
Set with Noise Mixtures of varying levels and
Number of Sources

Figure 59: Confusion Rate for Testing Set with
Noise Mixtures of varying levels and Number of
Sources

Figure 60: RMSLE for Testing Set with Noise Mixtures of varying levels and Number of Sources

4.5.3 Discussion

There is one obvious factor uncovered in the results: that the number of sound sources

in the noise mixture has no significant influence on the performance of the system. It

should be noted at this point, that the anechoic conditions may have caused influence

here, with it being possible that a different relationship would be seen if each of the

sound sources also had reflections arriving at the sensor, thus more closely resembling

completely diffuse noise.

Given this, then, it can be concluded that if a system needs to display ’cocktail-

party’ like behaviour, where it is able to ignore unwanted elements of a sound scene,

this behaviour would need to be explicitly taught to the system.
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4.6 Mismatched HRTFs

In need of consideration is whether a system is only intended to be used for a specific

sensor, or whether it should be able to operate using the HRTFs of different binaural

arrays. The latter is referred to as the Mismatched HRTF condition, and this sub-

chapter shall show the results of the CNN’s DoA estimation in this condition.

4.6.1 Method

Six additional HRIRs were taken from the SADIE II database, being the subjects

H3-H8. While the database contains more subjects than this, they do not include

HRIRs for the azimuths and elevation combinations being used in these tests, and so

to avoid having to use interpolation are not used. H3-H8 are all human subjects, and

so should all have unique HRTFs from not only each other, but from the mannequin

head as well.

The HRIRs were then combined with the same audio files as in the rest of the

chapter to create a test set of 300 files per azimuth per head. These were again

transformed into mel-spectrograms, and the same CNN used to attempt to classify.

4.6.2 Results

Given the discrete nature of the independent variable, these results are shown in

column charts, with no line of best fit. Figures 61, 62, and 63 show classification rate,

front-back confusion rate, and RMSLE for the different HRTFs

Figure 61: Classification Rate for different
HRTFs

Figure 62: Front-Back Confusion Rate for dif-
ferent HRTFs
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Figure 63: RMSLE for different HRTFs

4.6.3 Dicussion

In Figures 61-63 it can be clearly seen that the classification rate under the mismatched-

HRTF condition is extremely poor. Noticeably, despite such a low instance of correct

classifications, a high rate of front-back confusions is present, beyond the 5% figure

expected had the classifications been completely random. This is insightful in show-

ing that front-back confusions can be problematic in BSSL with CNN, despite the

previous tests an additive noise not inducing such errors.

Given the very low performance, it is possible to conclude that these systems will

not be suitable for use on different sensors unless particular attention is devoted to

this problem.

4.7 Reverb Time

In the previous sub-chapters a commonly encountered pattern is that increasingly

adverse acoustic conditions, such as an increasing noise level, result in lower level

of classification performance. It is a reasonable hypothesis, then, that an increasing

reverberation time, RT , will have a similar effect. To test this, an experiment was

conducted in the same manner of previous sub-chapters where a system is trained

upon an anechoic dataset, and then tested upon data which has been combined with

a binaural array’s impulsed response in a reverberant room; a BRIR.
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4.7.1 Training Dataset

The anechoic dataset for training the system was constructed in the same manner

as for the anechoic dataset constructed in Chapter 4.2.2, however a different set of

HRIRs were needed to be used, as the HRIRs need to match the binaural array and

distance coordinates used in the BRIRs. In this case, that being Subject-21 from the

CIPIC HRTF database (Algazi et al., 2001), being a KEMAR mannequin with small

pinnae. The CIPIC database, however, at 0◦ elevation only contains HRIRs for 50

azimuths, which are also spaced by 5◦ but do not include all of the previously used

azimuths. The azimuths available can be seen in Figure 64

Figure 64: Source directions available in in CIPIC database

Accordingly, the dataset was constructed for 50 azimuths, and although this will

mean that such a system will not be able to localise any of these missing directions,

the effect upon the metrics being used to assess these systems will not be significant.

As per Chapter 4.2.2, 1000 audio files per source direction were created.

4.7.2 Testing Dataset

To create the testing dataset, audio files were combined with BRIRs. Since no dataset

of BRIRs recorded for sources in the full azimuthal field is known to be publicly

available, BRIRs were instead generated using the image source method (ISM). ISM

was used rather than wave based due to practical restraints, as accurately rendering

unique room geometries for all combinations of source and receiver would have been
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a resource-intensive task to achieve with finite element method (FEM). To achieve

this, an existing library which employs the ISM was used (Mandel, 2013) to generate

the BRIRs.

BRIRs were generated for an arbitrary room size of [4, 4, 3] metres. Four BRIRs

were generated for this one room size so as to achieve an RT of 0.5, 1, 1.5, 2 seconds,

where RT is RT60, the length of time taken for reverberation to attenuate by −60dB.

These times were chosen so as to represent a realistic range of reverb times from dull

to lively.

This was achieved by altering the room’s boundaries’ absorption coefficients which

would result in these target reverb times, as calculated by the Sabine equation:

RT =
0.161V∑N
n=1 Sn.αn

(116)

where V is the volume of the room, N is the number of boundaries, Sn is the surface

area of a boundary, and α is the absorption coefficient of that boundary. A set of

uniform absorption coefficients for a room, therefore, can be calculated with:

α =
0.161V

(
∑

Sn).RT

(117)

The Sabine equation for predicting reverberation time is a less accurate formula-

tion than the Eyring equation, due to an underestimation of energy loss (Stephenson,

2012). In this case, the simpler Sabine formulation is still used as the accuracy is

not seen as of high importance, as it is the general relationship between reverb time

and accuracy which reveals insight into robustness of the system, and the arbitrary

reverb times used are not of particular significance.

The BRIRs were then convolved with the same 300 audio files used in previous

testing sets, to create four sets of testing files representing the different reverb times.

4.7.3 Results

The classification accuracy, front-back confusion rate, and RMSLE are plotted against

reverb time in Figures 65-66.
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Figure 65: Classification Accuracy & Front-Back Confusion Rate with respect to RT for a model
trained on anechoic binaural audio

Figure 66: RMSLE with respect to RT for model trained on anechoic binaural audio

4.7.4 Discussion

In Figures 65 - 66 it can clearly be seen that the system performs extremely poorly in

the presence of the reverb, rarely correctly classifying. Notably it also does not seem

to show correlation between reverb time and performance, despite the increasingly

difficult acoustic conditions. This is reminiscent of previous tests where the model

has failed to generalise, such as in the mismatched-HRTF condition.

4.8 Changing Reverb Time, without the Generalisation Chal-

lenge

To test whether the poor performance is the result of poor generalisation, the previous

testing set is used to test a new model, one that is trained on training data created

using the same BRIRs as the testing set.
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4.8.1 Training Dataset

The same speech files from described in Chapter 4.2.2 are used to create the dataset,

however rather than being convolved with HRIRs, the speech files were convolved

with each of the BRIRs.

4.8.2 Results

The classification accuracy, front-back confusion rate, and RMSLE are plotted against

reverb time in Figures 67 & 68.

Figure 67: Classification Accuracy & Front-Back Confusion Rate with respect to RT for a model
trained using matched BRIRs

Figure 68: RMSLE with respect to RT for a model trained using matched BRIRs

4.8.3 Discussion

It is unsurprising that the model using a training dataset which includes BRIRs

shows an increased performance, however the difference is stark with the system

now approaching 100% accuracy. Notable also is that the results now show the
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expected inverse proportionality between RT and accuracy. This further supports the

hypothesis that the challenge when using BRIRs is not just the increased complexity

from the spatial domain, but that the model is unable to generalise for different

BRIRs in the same way that it cannot generalise for different HRIRs.

4.9 Effect of Changing Room Dimensions

Rather than testing the effect of changing the RT , the effect of changing the room by

altering its dimensions was tested next. This was undertaken to expose whether this

generalisation issue is tied to the length of RT .

This was achieved by training two models on the same testing set, one trained on

anechoic data and one trained on some of the rooms present in the testing dataset.

4.9.1 Training & Testing Datasets

BRIRs

To create the BRIRs, ISM was once again applied. However, instead of changing the

absorption coefficients of each room to vary reverb time, an RT of 0.5 seconds was

used in all cases. To make each room unique each room was given unique dimensions,

made from three randomly generated integers between 1-10, representing metres.

These dimensions are shown in Table 5. Uniform absorption coefficients were once

again calculated so as to achieve an RT of 0.5s.

Table 5: Room Dimensions for 10 Room Dataset

Room Number 1 2 3 4 5 6 7 8 9 10

Width (m) 9 5 3 9 4 6 10 4 7 1

Length (m) 7 9 5 1 5 4 3 1 8 6

Height (m) 6 2 6 7 9 3 5 10 9 2

Anechoic Training Dataset

The anechoic dataset described in Chapter 4.7 is also appropriate for this experiment,

the model trained using that dataset.
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Rooms 1-5 Training Dataset

To show the effect training a model on some but not all of the rooms, a training

dataset containing files which used BRIRs from the first 5 rooms was created. To

achieve this, the same 1000 speech samples used in the anechoic training dataset were

combined with each of BRIRs for Rooms 1-5, yielding a total of 5000 audio files per

azimuth: 250,000 in total. These were then transformed into spectrograms.

The same model was trained on this training dataset for 100 epochs using a SGD

optimiser.

Testing Dataset

The testing dataset was created by convolving the same 300 speech samples from

previous experiments with all 10 of the sets of BRIRs, and the performance metrics

for each of these testing sets were calculated.

4.9.2 Results

The classification accuracy, front-back confusion rate, and RMSLE are plotted against

room number in Figures 69, 70 & 71, where for each room two different bars denote

the two training datasets used to train the models: Anechoic and Rooms 1-5.

Figure 69: Classification Accuracy for different
rooms when trained using anechoic data

Figure 70: Confusion Rate for different rooms
when trained using anechoic data
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Figure 71: RMSLE for Different Rooms when trained using Anechoic Data

4.9.3 Discussion

From Figures 69 and 71, it can be seen that as expected the anechoic dataset per-

formed poorly on all ten rooms, meanwhile the dataset trained on rooms 1-5 per-

formed convincingly on the observed rooms, but poorly on the unobserved rooms. It

is very clear that there is still a generalisation issue: the anechoic data trained model

achieves very poor performance on all of the models, and the model trained on rooms

1 to 5 achieves very good performance on those rooms, but poor performance on the

rest of the rooms.

It is notable that the performance of the model trained with reverberant data

does achieve slightly better performance than the anechoically trained one on rooms

it has not observed, suggesting improved generalisation would be possible through

increasing the number of rooms the model learns from. However, this could also be

simply due to the training dataset for this model just being larger causing a longer

training process.

4.10 Training with Natural Binaural Data

This issue of the models not generalising to different room impulse responses (RIRs)

has thus far only been substantiated using synthetic data. A reasonable hypothesis,

then, is that this behaviour is caused in some way by the process of synthesising

BRIRs, rather than it being a true phenomenon.

To test this hypothesis, datasets for training and testing were also created using
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recorded BRIRs in real rooms.

4.10.1 Training & Testing Datasets

The BRIRs were taken from the Surrey BRIR dataset (Hummersone et al., 2010).

This dataset contains BRIRs of 4 different rooms and an anechoic space, the BRIRs

of the four rooms were used. The reverb times of these rooms can be seen in Table 6.

Table 6: Reverb Time of Rooms in the Surrey BRIR Database

Room Number 1 2 3 4

RT60 0.32 0.47 0.68 0.89

Notably, the Surrey BRIRs do not contain recordings for the entire azimuthal

field, but are restrained to the frontal hemifield, such that:

−90◦ ≤ φ ≤ 90◦ (118)

This means that performance with regard to front-back confusion cannot be measured.

However, the BRIR dataset was nonetheless used as no dataset of recorded BRIRs in

multiple rooms is known to the researcher.

Thus, only the BRIRs for the source directions in Figure 64 which are in frontal

field were used, a total of 25 source directions. This can be seen in Figure 72.

Figure 72: Source directions taken from Surrey Database
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The training dataset was created by convolving the BRIRs of the first two rooms

with the same 1000 audio files used previously, so a total of 2000 files per source

direction.

Similarly, the testing dataset was created by combining the same 300 audio files

as in the previous experiments with all the BRIRs of all four rooms at the 25 different

source directions.

4.10.2 Results

Figure 73 & 74 show classification accuracy and RMSLE for the model trained on

rooms 1 and 2 of the Surrey BRIRs, and evaluated with all four rooms.

Figure 73: Classification Accuracy for Differ-
ent Rooms when trained using Natural Binaural
Data

Figure 74: RMSLE for Different Rooms when
trained using Natural Binaural Data

4.10.3 Dicussion

From both the results for classification accuracy and RMSLE a similar behaviour

can be seen, the model is able to achieve high performance for the rooms to which

the neural networks have been exposed, and much poorer performance for the ones

to which they have not. This differs from the results seen when training with the

synthetic binaural data only in that the accuracy for the unknown rooms is slightly

higher, despite the total number of rooms in the training set being lower. This does

suggest this effect is slightly mitigated when using real BRIRs rather than synthesised

ones, but the degree of this effect is not significant.
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4.11 Training with larger numbers of BRIRs

It has been established that CNNs have particular difficulty localising in unknown

locations. Given that this is a generalisation issue, a reasonable hypothesis is that

increasing the total number of rooms in the training set will increase the generalisation

performance as this is typical behaviour in CNN models. This hypothesis, therefore,

was tested.

4.11.1 Training and Testing Dataset

A larger number of BRIRs were created by generating more room geometries. This

was achieved through the same method described in Chapter 4.9.1, using the same

range of 1-10 metres. This was undertaken for create 68 room geometries. For each

of these room geometries, 3 sets of BRIRs for reverb times of 0.5, 1 and 1.5 seconds,

also achieved by uniformly altering the absorption coefficients. These BRIRs were

then equally split into training and testing, such that 34 is dedicated to each.

For the training dataset each of the 50 DoAs, the same 1000 audio files were

convolved with the BRIRs of the three reverb times for the 34 room geometries

dedicated training, as well as the anechoic HRIRs. The testing dataset was similarly

made by combining the same 300 audio files with the BRIRs of the three reverb times

for the 34 room geometries dedicated to testing, along with the anechoic HRIRs.

In addition, another testing dataset was created in which the 300 audio files were

convolved with the BRIRs of the 34 room geometries used in training. This means

that there are two testing datasets, one containing rooms known to the model in that

it has been trained on these, and one containing rooms unknown to the model.

4.11.2 Results

Results are presented in terms of reverb time, for both the testing datasets of known

rooms and unknown rooms so as to represent the level of generalisation. This is

plotted for the metrics classification accuracy, front-back confusion rate and RMSLE

in Figures 75-77.
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Figure 75: Classification Accuracy for Differ-
ent Rooms when trained using a large number
of BRIRs

Figure 76: Confusion Rate for Different Rooms
when trained using a large number of BRIRs

Figure 77: RMSLE for Different Rooms when trained using a large number of BRIRs

4.11.3 Discussion

It can be seen that as compared to the previous test with the network trained on

five rooms, the difference between performance on known rooms and unknown rooms

has been greatly reduced. This does point to increasing the generality of the training

datasets as a possible solution to this problem, however it exposes another issue with

this approach: a significant drop of performance from close to 100% performance

among known rooms to around 20-40% classification accuracy.

This is likely due to the reduction in training data per room, a necessary reduction

to avoid inflated training times or resources. This hypothesis is supported by the

disproportionately high performance when RT = 0, which is likely high due to all of

the data for this reverb time being created with the same HRIR, as opposed to BRIR,

effectively massively increasing the amount of training data available for that room.
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4.12 Conclusion

In this chapter, the first CNN model has been presented, trained using data created

in the ideal condition, and tested using testing sets containing data created under a

variety of acoustic conditions. The testing method which will be reused throughout

this work was also introduced.

Through demonstration and discussion of results, some conclusions have already

become self-evident: Except under extreme conditions, noise that is both diffuse or

directional does not present the challenge that it does in other audio related tasks

such as ASR.

Conditions relating to generalisation, however, pose a significant problem. It was

seen that a system trained on one HRTF will not generalise at all for other HRTFs.

Though it is helpful to be aware of this, the rest of this work will not exercise effort

in finding a solution to the mismatched HRTF condition.

From the results shown in this chapter from experiments on using reverberation

it was seen that realistic reverberation environments cause an issue for BSSL systems

which use CNN as the model is unable to localise in unknown rooms, that is rooms

for which the BRIR has not been included in the training data.

With a view to this, models developed in this work need to be tested upon binaural

audio which has been created using rooms which are not known to the trained model,

so as to avoid an unrealistic view of how well the model would perform in real acoustic

spaces.

A solution to this form of overfit has been proposed; simply increasing the number

of known rooms. However due to finite computing resources the degree to which this

will be able to be employed without sacrificing general performance is limited.

A common theme throughout the results of experiments in this chapter is that

front-back confusion does not pose a significant challenge to the system in most

circumstances, and that errors, when they do occur, tend to be more random. This

in particular is notable, as often previous works often will constrain the azimuthal

field to 180◦ either to avoid front-back confusion or because of the HRIRs databases

available: this suggests, however, that this restriction is not necessary and wherever

possible working with the full azimuthal field is encouraged.

Finally the success of using only a magnitude spectrum input for a CNN to localise
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needs to be pointed out. This will be addressed more fully in a later chapter, but

when complexity needs to be reduced so as to improve training and testing times,

this is an option which shall be reused throughout this work.

This chapter has introduced the framework by which deep-DoA estimation under

a variety of conditions will be tested: training and testing datasets are created using

speech and HRTFs and processed into a useful representation, a model is defined, and

trained on the data, and then evaluated with the data set using a series of metrics:

classification accuracy, front-back confusion, RMSLE, and RMSLE with mirroring.
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5 Feature Representations

5.1 Magnitude Features

The convolutional neural networks (CNNs) in previous chapters have concerned the

effect of changing the raw audio signal’s content to achieve generalisation, but did

not address the processing of the signal applied in creation of a time-frequency (TF)-

Matrix.

While such literature exists for feature extraction for deep neural networks (DNNs)

(O’Dwyer et al., 2018), there is a gap in existing literature concerning the effect upon

localisation accuracy of changing the type of feature a CNN is trained on.

To address this, this chapter shows the method and results of an attempt to

benchmark the localisation accuracy for different feature representations.

5.1.1 Magnitude Features

Four different magnitude spectra are considered: mel-spectrograms, mel-frequency

cepstrums (MFCs), gammatonegrams, and gammatone-frequency cepstrums (GFCs).

The mel-spectrogram presents a time-series signal as a matrix of values with di-

mensions representing time and frequency by means of a short-time fourier transform

(STFT). However, as opposed to a linear-frequency spectrogram, the frequency is log-

arithmically scaled. This scaling more closely mimics human pitch perception, and

allows for a higher amount of relevant information to be included in the spectrogram

due to a greater emphasis on lower frequencies.

The MFC is a modification of the spectrogram, where a discrete cosine transform

(DCT) is applied to the spectrogram to create something similar to but distinct from

a spectrum; a cepstrum. Accordingly, it has retained the mel-frequency weighting

of the mel-spectrogram. The mel-frequency cepstral coefficients (MFCCs), of which

the MFC is composed, do not provide a particularly helpful visual representation of

an audio signal, but have been widely employed as a feature for machine learning,

particularly in speech recognition, where they are found to produce better results

(Tiwari, 2010).

The gammatonegram calculates an intensity matrix similar to a mel-spectrogram,
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but having used a gammatone filterbank to discretise in the frequency dimension.

The gammatone filterbank is a series of gammatone filters which have a frequency

response reminiscent of the filtering that occurs within the cochlea. Due to this, they

are used in models of the auditory system, as well as in features for CNNs in tasks in

speech processing (Pour et al., 2014).

The GFC creates a cepstrum in a manner identical to the MFC, but by applying

the DCT to create a cepstrum from a gammatonegram rather than a mel-spectrogram.

The work presented in this chapter is also described in the publication ‘Comparison

of Performance in Binaural Sound Source Localisation using Convolutional Neural

Networks for differing Feature Representations” (Reed-Jones et al., 2023).

The models presented in this chapter were developed, trained and tested using the

MATLAB Deep Learning Toolbox. Dataset generation was performed using MAT-

LAB.

5.1.2 Binaural Dataset

A binaural dataset was created by combining speech utterances taken from the Lib-

rispeech corpus with head-related transfer functions (HRTFs) from, and binaural

room transfer function (BRTF) made with, the CIPIC database KEMAR mannequin

measurements.

For the training dataset, a total of 2000 speech samples were created by cutting

200 speech files from the corpus into 10 100ms sections. An additional 100 samples

were created for the testing dataset by cutting another 100 speech files from the

dataset into a single 100ms section. This is summarised in Table 7.

Table 7: Speech Files used in Magnitude Features experiment

Librispeech Files No. 100mS Sections Total

Training 200 10 2000

Testing 100 1 100

BRIRs were generated through image-source simulation, for ten rooms with di-

mensions randomly generated in the range of 1-10m.
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For each of these room dimensions, three sets of BRTFs were created with altered

absorption coefficients of the boundaries, such that according to the Sabine equation

(116) the room had reverb times of

T60 = [0.5, 1, 1.5]seconds (119)

The Sabine equation is used over the Eyring formula in this case for the same rea-

son previously outlined; by grouping data reverb times the aim is to find a general

relationship between performance and reverb time, rather than a prediction of per-

formance at specific reverb time.

The length of the binaural room impulse responses (BRIRs) was truncated by the

T60 value, and the maximum reflection order was not truncated. This was carried out

for the 50 azimuthal directions on the horizontal plane seen in the CIPIC database.

Of these 30 resulting sets of BRTF, half were used for training, and half were used

for testing.

In addition to this, the head-related impulse responses (HRIRs) taken directly

from the CIPIC database were directly used, representing T60 = 0. In reality this is

an approximation, as the HRIRs measured in the CIPIC database are not entirely

anechoic. Noise mixtures were created through the method introduced in Chapter

4.5 of convolving BRIR of random directions. This was carried out for the training

set with pink noise, and with a sample of room noise for the testing dataset.

The resulting noise mixtures were then scaled so as to achieve an signal-to-noise

ratio (SNR) of:

dB(SNR) = [0, 12, 24, 36] (120)

Each of the speech files was convolved with one of the BRIRs, and summed with one

of the noise mixtures, to leave an equal distribution among reverb time and noise

level. This is represented in Table 8.
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Table 8: Distribution of training files per each source direction in magnitude fea-
tures experiment

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 6.25% 6.25% 6.25% 6.25%

0.5 6.25% 6.25% 6.25% 6.25%

1 6.25% 6.25% 6.25% 6.25%

1.5 6.25% 6.25% 6.25% 6.25%

This was carried out for each of the 50 source directions, leading to a total of

1,600,000 training audio files (44.44 hours of audio), and 80,000 testing audio files

(2.22 hours of audio).

5.1.3 TF Matrices

The training and testing audio datasets were then further processed into datasets

containing four different types of magnitude TF matrices on which the CNN is to be

tested and trained. As previously introduced, these four representations are:

• Mel-Spectrogram

• Mel-Frequency Cepstrum

• Gammatonegram

• Gammatone-Frequency Cepstrum

A definition of the mel-spectrogram has already been given in Equation (109). In

this case, the spectrogram was created using window with a length of 465 samples,

and an overlap length of 256 samples which led to the time domain being quantised

to six samples. Meanwhile, the mel-filterbank was made up of 300 triangular bands

in the range 100Hz to to 8kHz. This is summarised in Table 9.
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Table 9: Mel-Spectrogram Parameters

Parameter Value

Window Length 465

Overlap 256

N. frequency bands 300

Lowest Frequency 100 Hz

Highest Frequency 8000 Hz

The MFC is created through applying a DCT to the log of a mel-spectrogram.

This differs from the cepstrum introduced in Chapter 2.2 as it does not use an inverse

fourier transform (IFT). Rather than transformation to the quefrency domain, this

instead finds discrete coefficients representing periodicity. Since this approach is also

useful in the context of cepstral analysis, it is also considered a cepstrum.
MFCC1

MFCC2

...

MFCCN

 = DCT

{
M1

M2

...

MN


}

(121)

The gammatonegram is similar in conception to the mel-frequency spectrogram, dif-

fering only in that gammatone filters are not the same as mel filters. Gammatone

filters are made from impulse responses derived by taking the product of a cosine and

a gamma distribution term (Patterson et al., 1992).

gam(t) =
tn−1 cos (ωct+ ϕ)

e2πbt
(122)

where n is the order, ϕ is phase shift, f is the centre frequency and b is the band-

width. The frequencies and bandwidths of the filters are conventionally determined

by the equivalent rectangular bandwidth (ERB) scale (Moore and Glasberg, 1983).

Gammatone filterbanks are akin to how the cochlea decomposes frequency, which is

the original application they were proposed for (Johannesma, 1972).

The creation of a gammatonegram is achieved similarly to the mel-spectrogram,

by finding the product of the frequency domain responses of the binaural signal and
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the filters at each window. These filters values are also log scaled.
G1

G2

...

GN

 = log(
∑(

|YL,R[k, φT ]|.


GAM1[k]

GAM2[k]

...

GAMN [k]


)
) (123)

The GFC is conceptually identical to MFC, but applying the same DCT to a gam-

matonegram rather than a mel-spectrogram.
GFCC1

GFCC2

...

GFCCN

 = DCT

{
G1

G2

...

GN


}

(124)

These four methods were applied to all training and testing datasets.

5.1.4 Model & Training

The same three layer CNN model was used to train on all four datasets, consisting

of three convolutional layers with filters of increasing size. This is shown in Table 10.

The architecture of this model is similar to that used in Chapter 4.1, differing only

in the length of the output vector.
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Table 10: CNN Architecture

Layer Hyperparameters

Input Layer (300, 6, 2)

Convolution Layer (2,2),8

Batch Normalisation

ReLu

Max Pooling 2,2

Convolution Layer (8,8),16

Batch Normalisation

ReLu

Max Pooling 2,2

Convolution Layer (16,16),32

Batch Normalisation

ReLu

Dense Layer 50

stochastic gradient descent (SGD) training was employed using a learn rate of 0.001,

and each model was trained for a period of 200 epochs.

5.1.5 Results

The CNNs were all then used to classify the corresponding testing datasets of TF-

matrices. The classification rate, confusion rate, and root mean square localisation

error (RMSLE) as defined in Chapter 4.2.3 are shown for each individual combination

of RT60 and SNR. Averages are also plotted for both RT60 and SNR. The classifi-

cation rate per reverb time and SNR for the four feature representations are shown

in Tables 11 - 14, with averages being plotted against reverb time and signal to noise

ratio in Figures 78 & 79.

The same arrangement of results is repeated for front-back confusion rate in Tables

15-17 and Figures 80 & 81, as well as for RMSLE in Tables 19 - 22 and Figures 82 &

83.
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Classification Rate

Table 11: Classification rate for Mel Spectro-
gram

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 69.3% 84.6% 93.7% 97.4%

0.5 24.7% 27.7% 29% 29.3%

1 23.3% 25.7% 25.9% 26.3%

1.5 21.2% 23.3% 22.4% 22.2%

Table 12: Classification rate for MFC

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 42.9% 54.4% 62.2% 66%

0.5 8.1% 9.2% 9.8% 9.5%

1 8.4% 8.9% 8.9% 9.0%

1.5 7.4% 8.4% 7.6% 7.4%

Table 13: Classification rate for Gammatonegram

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 73.8% 87.3% 92.7% 94.3%

0.5 21.8% 24.7% 25.6% 25.5%

1 20.6% 23.3% 22.7% 22.7%

1.5 19.6% 21.2% 20.3% 20.4%

Table 14: Classification rate for GFC

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 41.6% 50.6% 55.4% 58%

0.5 8.3% 8.9% 8.9% 9.1%

1 8.3% 9.2% 9% 8.3%

1.5 8.1% 8.3% 8.7% 8.3%

Figure 78: Classification Rate with respect to
Reverb Time

Figure 79: Classification Rate with respect to
Signal to Noise Ratio
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Confusion Rate

Table 15: Confusion Rate for Mel Spectrogram

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 2.3% 0.8% 0.2% 0.06%

0.5 3.2% 3.3% 2.5% 2.7%

1 3.1% 2.9% 3% 2.9%

1.5 3.2% 3.1% 2.9% 3.2%

Table 16: Confusion Rate for MFC

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 4.6% 5% 4.5% 3.9%

0.5 5.7% 5.8% 5.8% 5.6%

1 5.7% 5.1% 5.4% 5.1%

1.5 5.6% 5.7% 5.4% 5.6%

Table 17: Confusion Rate for Gammatonegram

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 2.5% 1.5% 0.8% 0.8%

0.5 3.4% 3.2% 3.3% 2.8%

1 3.4% 3.4% 3.1% 3.1%

1.5 3.2% 3.4% 3.4% 3.7%

Table 18: Confusion Rate for GFC

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 5.9% 6.1% 5.7% 5.6%

0.5 5.8% 5.5% 5.3% 5.7%

1 5.4% 5.6% 5.6% 5.5%

1.5 5.2% 5.8% 6.1% 5.3%

Figure 80: Confusion Rate with respect to Re-
verb Time

Figure 81: Classification Rate with respect to
Signal to Noise Ratio
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RMSLE

Table 19: RMSLE for Mel Spectrogram

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 44.5◦ 27.7◦ 16◦ 7.76◦

0.5 70.5◦ 67.2◦ 66.6◦ 66◦

1 72.7◦ 69.3◦ 71.3◦ 68.1◦

1.5 74.4◦ 73.7◦ 73.4◦ 74.8◦

Table 20: RMSLE for MFC

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 60.5◦ 51.1◦ 44.1◦ 40.4◦

0.5 87◦ 84.8◦ 84.2◦ 85.1◦

1 87.6◦ 84.2◦ 84.6◦ 84.9◦

1.5 87.6◦ 88.1◦ 88.7◦ 88.5◦

Table 21: RMSLE for Gammatonegram

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 42.7◦ 27.3◦ 15.6% 14.1◦

0.5 70.9◦ 69◦ 67.1◦ 66.3◦

1 74.1◦ 70.7◦ 72.1◦ 71.3◦

1.5 74.9◦ 75◦ 74.8◦ 74.9◦

Table 22: RMSLE for MFC

Signal to Noise Ratio (dB)

RT60 (S) 0 12 24 36

0 60.3◦ 51◦ 45◦ 43.9◦

0.5 86.4◦ 83.7◦ 84.7◦ 84.5◦

1 87.9◦ 85.9◦ 87.1◦ 86.2◦

1.5 87.9◦ 88.7◦ 88.6◦ 87.9◦

Figure 82: RMSLE with respect to Reverb
Time

Figure 83: RMSLE with respect to Signal to
Noise Ratio

5.1.6 Discussion

Looking particularly at the classification rate with respect to reverb time, shown in

Figure 78, significantly better performance is seen in the anechoic condition. This is

due to the overfit to observed rooms established in Chapter 4.6.3. It is unsurprising

that that particular performance characteristic is retained, as the models in this

chapter are similar to those in Chapter 4.6.3, and although the type is varied they
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remain trained just on log-magnitude matrices. This is deemed acceptable for this

test, as only comparison between the feature types is of importance, but suggests what

is already presumed that magnitude feature representations alone are not suitable for

binaural sound source localisation (BSSL).

Among both classification rate, and RMSLE, a preference is seen towards using the

log-magnitude values directly, rather than using cepstral coefficients. This confirms

the apparent conventional wisdom of the field, as currently MFC and GFC for use by

CNN are not typical.

Comparison of the two filterbank types, however, is not so revealing with the per-

formance seen for mel-spectrogram and gammatonegram not having any significant

difference, which is seen also for MFC and GFC. This suggests no apparent prefer-

ence for gammatone decomposition, which is notable as this is very typical for deep

binaural direction of arrival (DoA) estimation.

5.2 Phase and Temporal Features

Up to this point approaches taken have only made use of magnitude based feature

representations. This is a näıve approach, as interaural time difference (ITD) is a

salient cue for binaural sound localisation in humans. This chapter explores the

use of time delay estimates and phase information in binaural DoA estimation with

CNN, in a similar way to how the use of magnitude features was previously explored;

through the processing of a single binaural dataset by a number of feature extraction

methods, from which CNNs were trained.

5.2.1 Previous Work

There is a strong emphasis on using ITD for binaural sound source localisation with

several likely reasons: low-frequency ITD is known to be the most salient cue in

human binaural sound localisation (Wightman and Kistler, 1992) showing evolution

has deemed this to be the most reliable cue. This idea is supported further by the

supposition that early mammalian hearing systems relied solely upon interaural level

difference (ILD) for sound localisation, and mechanisms for ITD based localisation

were developed later (Grothe et al., 2010).
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ITD interpretation is identical to the popular time difference on arrival (TDOA)

based estimation techniques used in microphone array based sound source localisation

(SSL); Rascon and Meza’s (2017) review on SSL in robotics suggests cross-correlation

based TDOA estimation to be the most common approach taken.

While combining ITD and ILD is an early (Macpherson, 1991) and persistent

theme in binaural sound localisation, solely ITD based analysis can still be used as a

model of human localisation (Fazi and Hamdan, 2018; Simón et al., 2018) preferred

over ILD for its more general applicability (Pulkki and Hirvonen, 2005), though this

reduces validity to only low frequencies.

Within machine learning based BSSL, ITD based upon the maxima of the inter-

aural cross correlation function (IACCF) can be used as a feature (May et al., 2011;

Ma et al., 2015a), or the entire IACCF can be used (Ma et al., 2017). The more

recent but dominant trend is training directly from the phase spectrum of the signal

(Vecchiotti et al., 2019), leaving the neural network to interpret the binaural cues.

Notably, it is not typical to bandlimit the signal when doing so. High frequency

interaural phase difference (IPD) can become ambiguous due to spatial aliasing and

it has been shown that at high frequencies humans cannot necessarily detect changes

to a signal’s relative phase (Wightman and Kistler, 1989), however it is also true that

for high frequency signals the relative time of arrival of the amplitude envelope is still

detectable. Neural networks may be able to make use of this cue.

The models presented in this sub-chapter were developed, trained and tested using

the Tensorflow library for Python. Dataset generation, however, was still performed

using Matlab.

5.2.2 Binaural Dataset

For this experiment, a dataset of binaural audio was created from which all of the

subsequent datasets were trained. This dataset was created by combining BRIRs

with speech and noise. However, there are some differences to the datasets generated

for the magnitude features experiments detailed in Chapter 5.1.

This dataset makes use of the telecommunications and signal processing laboratory

(TSP) corpus rather than TIMIT; which allowed for the use of a higher sample rate,

resolving potential reductions in performance due to missing high frequency monaural
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cues.

A different set of BRIRs were generated for this experiment: 327 rectilinear room

geometries were created by randomly generating three numbers scaled from 1-10

representing the length, width, and height dimensions of the room in metres. The

absorption of the walls was made from uniform and randomly generated coefficients

to create a room with an RT60 within the range 0.2 to 1.5 seconds.

For each of these rooms, the listener’s head was placed at exactly the centre,

and BRIRs were generated for the 50 source positions present in the CIPIC HRTF

database.

These BRIRs were all truncated to a length of 0.5 seconds regardless of RT60

value. While this does have the effect of eliminating an accurate representation of

the reverberation’s decaying tail, it increases the total number of BRIRs which can

be generated, hence the larger number of rooms present in this dataset compared

to previous experiments. As the later part of a BRIR is diffuse in nature, it is

presumed that the addition of noise achieves a similar effect on the performance of

DoA estimation.

The corpus consists of approximately 1400 speech recordings. Of these, 1200 were

used for creating training data, and 50 were used for creating validation data. For

the training dataset, one second sections of each of these 1200 files was independently

convolved with BRIRs of all 50 source directions, for a randomised room geometry

of the first 300 rooms. The 50 validation files were convolved with the BRIRs of the

remaining 27 room geometries.

Noise mixtures were created by the same method used in previous experiments

of convolving a noise source with 1-10 BRIRs of the same room geometry at random

source directions. For the training data, this noise source was pink noise, while for

validation data, this was an ambient sound recording taken from freesound. These

noise mixtures were randomly scaled to the range -24 to -60 dBFS.

5.2.3 Model & Training

In addition to use of a single binaural dataset, model training was controlled for

all tests concerning preparation of phase and time based cues through minimum

variability between tests. For these tests, a CNN with four convolutional layers with
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an equal number of equally sized kernels was used, as shown in Table 23. This was

used as it was found that not including growth through the system was helpful for

avoiding overfit.

Table 23: CNN Model used in Phase and Time cues testing

Layer Hyperparameters

Input Shape Variable

2D Convolution (3,3), 16

Max Pooling (2,2)

2D Convolution (3,3), 16

Max Pooling (2,2)

2D Convolution (3,3), 16

Max Pooling (2,2)

2D Convolution (3,3), 16

Dropout 0.5

Dense 50

Notably, also deployed in this model is the use of a kernel regulariser, employed in

order to help penalise overfitting. In this case, L2 regularisation was employed, with

a regularisation value of λ = 0.01.

The input shape could alter between experiments due to the nature of the data.

To train, the audio dataset was split into batches, each containing 13 seconds of audio,

where each second of audio would eventually be split into 10 feature representations

such that each of the batches in fact contained 130 data points.

The network was trained using an Adam optimiser (Kingma and Ba, 2014), with

a learning rate of 1e−3 as well as well as a decay rate of 1e−3.

5.2.4 Phase vs IPD

As previously established, a trend in BSSL is to train systems directly on the phase

spectrum of some binaural audio. There are some different methods for preparing the

phase signal for this, but one notable question is whether to train the system directly
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on the phase spectra of the two channels leaving the system to interpret the ITD for

itself, or whether to take the IPD of the signal and train the system on this.

As per previous chapters, classification of two-dimensional matrices was focused

on here. In this test, generating these matrices was again achieved through STFTs of

the training and testing audio datasets. This was carried with the parameters shown

in Table 24.

Table 24: STFT parameters used in Phase vs IPD test

Parameter Value

Window Type Hanning

Window Size 512

Hop Size 256

This produced matrices of the size [257, 2] of complex values. These were then turned

into Phase spectra of the same size:

ϕL,R[m,ω] = ∠{XL,R[m,ω]} (125)

where X[m,ω] is the complex spectra. This was turned into IPD spectra by finding

the signed angular distance between the two phase signals.

IPDL,R = ∠
(
ej(ϕL−ϕR)

)
(126)

It is important to note that the phase has not been unwrapped before finding the

difference. The model was then trained and tested on the resulting matrices.

Results

The metrics classification accuracy, front-back confusion rate, RMSLE and mirrored-

RMSLE for the phase and IPD matrix based representations are shown for each

individual reverb time in the Tables 25 - 28, and the three metrics classification

accuracy, front-back confusion and RMSLE are plotted against reverb time in Figures

84-86.
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Table 25: Accuracy for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 43.1% 37.3% 34.04%

Phase 56% 24.2% 33.3%

Table 26: Confusion Rate for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 2.2% 1.2% 1.2%

Phase 0.1% 1.4% 1.4%

Table 27: RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 61.6◦ 65.9◦ 71◦

Phase 30.3◦ 55.5◦ 58.2◦

Table 28: Mirrored RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 45.2◦ 51.5◦ 58.4◦

Phase 26.3◦ 40.5◦ 46.3◦

Figure 84: Classification Accuracy plotted
against reverb time for IPD and Phase cues

Figure 85: Front-back confusion rate plotted
against reverb time for IPD and Phase cues

Figure 86: The RMSLE plotted against reverb time for IPD and Phase cues

Discussion

The results in Chapter 5.2.4 show the difference in performance between CNNs trained

on 3D phase matrices and 2D IPD matrices made directly from the complex values

with no other processing.
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It can be seen in Figure 86 that according to the reported RMSLE, using 2D phase

matrices is preferable to finding the IPD, with improved performance being seeing at

all three reverb times. It should be noted however that in Figure 86 the gradient of

the curve representing phase is steeper, suggesting that the phase representation may

be less robust to reverberation.

5.2.5 Unwrapped Phase

Phase can be ambiguous due to its value always being constrained to the range

0 ≤ ϕ ≤ 2π, leading to phase ambiguity as delays beyond this range are wrapped

back into the original range; this is particularly prescient for higher frequencies of the

signal.

One possible solution to this is to use an unwrapping algorithm. Phase unwrapping

algorithms detect phase discontinuities larger than a certain threshold, and adjust the

signal accordingly

∆ϕcorrected[n] =


∆ϕ[ω]− 2π if ∆ϕ[ω] > π

∆ϕ[ω] + 2π if ∆ϕ[ω] < −π

∆ϕ[ω] otherwise

where

∆ϕ[ω] = ϕ[ω]− ϕ[ω − 1]

(127)

A threshold of π is used here, but this is not necessary and can be altered depending

on result. This can then be turned into an unwrapped signal through a cumulative

sum.

ϕunwrapped[ω] = ϕ[0] +
ω∑

n=1

∆ϕcorrected[n] (128)

This phase unwrapping is applied to each of the frequency axes of the phase

spectra found in Equation (125), to find a new spectra of unwrapped phase values

ϕunwrapped,{L,R}[m,ω].

This is also used to make a new IPD spectra:

IPDunwrapped[m,ω] = ϕunwrapped,L[m,ω]− ϕunwrapped,R[m,ω] (129)
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These two methods were applied to create two new sets of training and testing

datasets, upon which the neural network was trained and tested.

Results

From testing the models with the evaluation sets, the metrics for accuracy, front-

back confusion rate, RMSLE and Mirrored-RMSLE are shown in Tables 29-32, while

classification accuracy is plotted against reverb time in Figure 87.

Table 29: Accuracy for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 1.4% 1.7% 1.3%

Phase 4.5% 3.7% 3%

Table 30: Confusion Rate for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 2% 2.7% 3.4%

Phase 4.5% 3.7% 3%

Table 31: RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 101.7◦ 99◦ 101.3◦

Phase 87◦ 83.6◦ 83.4◦

Table 32: Mirrored RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 73.9◦ 99◦ 101.3◦

Phase 47.1◦ 51.4◦ 52.2◦

Figure 87: Classification Accuracy plotted against time for evaluation of unwrapped phase and
IPD feature representations

Discussion

The results presented in Chapter 5.2.5 show performance of CNN trained and tested

on matrices of unwrapped phase, and IPD based on unwrapped phase.

153



Tables 29-32 show very poor performance, with phase achieving only slightly bet-

ter performance than random guessing, and IPD achieving below even that. This

strongly suggests that unwrapping alone, at least for this style of CNN, greatly re-

duces the chances of the neural network being able to converge.

One possible reason for this is the much larger range of values seen in unwrapped

phase, and that these ranges greatly vary between datapoints. Such data can lead to

exploding gradients, leading to the system not converging during training.

5.2.6 Unwrapped Phase with Normalisation

Given the hypothesis that unwrapped phase may lead to exploding gradients due to

large ranges of values, one possible solution may be normalise the values. To test

this, the same training and testing dataset as in Chapter 5.2.5 was used, but with

the difference that for each data point was normalised to the range 0-1.

Doing this leads to an invalid representation since it hides information relating to

the absolute phase difference between the signals, which is important if such a system

is expecting to be able to interpret ITD. If, however, the shape of the unwrapped

phase curve is of significance, this approach is likely to yield better results than those

reported in Chapter 5.2.5, which is of significance and so still tested.

Results

From evaluating the models with the testing sets, the metrics accuracy, front-back

confusion rate, RMSLE and Mirrored-RMSLE are shown in Tables 33-36, while clas-

sification accuracy is plotted against reverb time in Figure 88.
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Table 33: Accuracy for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 4.8% 3.6% 2.7%

Phase 4% 3.5% 3.2%

Table 34: Confusion Rate for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 9.9% 8.2% 8.1%

Phase 3.8% 5.8% 7.2%

Table 35: RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 85.7◦ 89.6◦ 89.3◦

Phase 83.5◦ 83.6◦ 83.3◦

Table 36: Mirrored RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 57.8◦ 62◦ 62.7◦

Phase 52.3◦ 56.4◦ 56.4◦

Figure 88: Classification Accuracy plotted against time for evaluation of unwrapped phase and
IPD with normalisation feature representations

Discussion

The results in Chapter 5.2.6 show the performance of CNN trained on unwrapped

phase matrices which have been normalised to 0-1 at every data point.

Some degree of improvement is seen in these results compared with the unwrapped

phase with no normalisation. The degree to which this is significant is limited, as it

is still significantly worse than directly using the still-wrapped phase. It may be that

the more manageable value range leads to a system which can more easily converge,

however this form of feature representation is inherently compromised and not worth

pursuing further.
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5.2.7 Sine Scaled Unwrapped Phase

Another way in which to re-scale input data to a more restricted range is to use a

nonlinear scaling function; in this case this is achieved simply by using a sine function.

It is first aimed to rescale the data such that it falls within half a revolution of

a sinusoid, specifically in the region −π
2
to π

2
. For the case of IPD, reasonable high

limits can be found as the IPD of the signal at the extreme lateral positions φ = −90◦

and φ = 90◦. This value is found from the HRTF directly, and used to rescale the

signals to a range of −π
2
to π

2
.

ϕrescaled =
π

2
· ϕ

ϕMax

(130)

This is carried out for both for 2D phase and IPD matrices. After scaling, a sine

function is applied

X = sin(ϕrescaled) (131)

doing this rescales the values nonlinearly in a way which may or may not be beneficial,

but significantly also means that values which greatly exceed the proposed scaling

factor in either positive or negative direction get rescaled back into the range 0-1.

These values may lose meaning; however they are less likely to cause issues in the

training process than excessively large values.

Results

From evaluating the models with the testing sets for sine-scaled unwrapped phase

and IPD representations, the metrics accuracy, front-back confusion rate, RMSLE

and Mirrored-RMSLE are shown in Tables 37-40, while RMSLE is shown plotted

against reverb time in Figure 89.
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Table 37: Accuracy for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 48.3% 27.2% 35.3%

Phase 65.2% 18.6% 40.7%

Table 38: Confusion Rate for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 0.8% 3.3% 2.9%

Phase 0% 0.8% 0.2%

Table 39: RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 50.8◦ 56.5◦ 53.9◦

Phase 55.6◦ 75.8◦ 79.8◦

Table 40: Mirrored RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 28.4◦ 36.6◦ 40.6◦

Phase 49◦ 62.6◦ 68.7◦

Figure 89: RMSLE plotted against time for evaluation of unwrapped phase and IPD with sine-
scaling feature representations

Discussion

The results presented in Chapter 5.2.7 show the performance of CNN trained and

tested with unwrapped phase and IPD matrices, rescaled by the maximum IPD, and

having had a sine function applied.

The results here are an improvement of the previous form of rescaling the data,

normalisation. However, while the results are now approaching that seen by unpro-

cessed phase, they are still outperformed.

Recalling that this method rests on an assumption which is valid for IPD, but not

for 2D phase matrices, it is unsurprising that a larger difference between phase and

IPD is seen here. It is unexpected, however, that the 2D phase matrices are able to

achieve a higher level of classification accuracy than IPD at some reverb times. This
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is not seen in the plot of RMSLE however, the more valid performance metric of the

two.

5.2.8 Sine Scaled Phase

One of the effects of the sinusoid function is a scaling of the values, in a way that

a neural network may find beneficial. It is checked then, whether applying a sine

function directly to the still-wrapped phase can cause a relative improvement in per-

formance.

XPhase = sin(ϕ) (132)

A notable property of Equation (132) is its similarity to the imaginary part of the

original complex matrix X:

Im{X} = |X| sin(ϕ) (133)

The removal of the magnitude term |X| means that Equation ( 132) represents the

normalised imaginary part of X. For the IPD, the sine function is applied prior to

the finding of the difference.

XIPD = sin(ϕL)− sin(ϕR) (134)

Results

From evaluating the models with the testing sets for sine-scaled phase and IPD rep-

resentations, the metrics accuracy, front-back confusion rate, RMSLE and Mirrored-

RMSLE are shown in Tables 37-40, while RMSLE is shown plotted against reverb

time in Figure 89.
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Table 41: Accuracy for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 56.3% 27.2% 34.9%

Phase 66.9% 29.9% 44.2%

Table 42: Confusion Rate for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 1.9% 0.6% 1.2%

Phase 0% 0.3% 0%

Table 43: RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 44.2◦ 46.2◦ 55.3◦

Phase 45.4◦ 70.3◦ 74.9◦

Table 44: Mirrored RMSLE for IPD and Phase

Reverb Time

Cue 0.5 1 1.5

IPD 28.3◦ 36.3◦ 41.3◦

Phase 38.5◦ 54.9◦ 66.1◦

Figure 90: RMSLE plotted against time for evaluation of phase and IPD with sine-scaling feature
representations

Discussion

The results presented in Chapter 5.2.8 show the performance of CNN trained and

tested on still-wrapped phase and IPD matrices, modified by a sine function.

The performance seen in this test, while preferable to some previous methods,

does not improve over directly using the phase. This is conclusive: rescaling of the

phase matrices is not justified.

5.2.9 Downsampled Frequency-Banded IACCFs

Introduced in Chapter 2.2.1 was the idea of using cross correlation to estimate the

ITD of a binaural signal. A reasonable assumption, then, is that cross-correlation

could be used as a cue for binaural DoA estimation.
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This has commonly been seen in conjunction with multi-layer perceptron (MLP)

architectures, in which the cross-correlation is directly input to fully-connected layers

(Ma et al., 2015b; O’Dwyer and Boland, 2022). Its use in conjunction with 2D

convolutional layers however has not been seen, with IPD typically being used instead.

Due to this, it is tested whether it is possible to prepare cross correlation signals

such that they are able to outperform IPD as a cue.

The first method which was tested was to calculate only one cross-correlation

function per audio file, extract the part of the signal relevant to ITD, and split into

frequency bands through a filterbank.

The 100ms audio file was firstly truncated to the first 10ms; the reason for doing

so is using the section of audio is overly computationally expensive: the number of

operations is proportional to the product of the length of the signal and the number of

lags calculated. The number of lags is truncated based upon an assumption presented

in the following paragraph, but to further aid with data generation times the signal

length was also reduced. Moving operations into the frequency domain would have

eliminated this signal length factor, however when doing so it is not possible to

truncate lags to the desired range at the time of the cross-correlation operation.

The cross correlation of the signal was then taken, to give the curve RLR:

Rlr[m] = bl[n] ⋆ br[n] (135)

Where m is the discrete lag, and l and r refer to left and right. The convention

of capitalising these indices is broken here to avoid confusion with R, the cross-

correlation. Relative to the length of the signal, 10ms, the length of maximum possible

ITDs are small. This means that only part of the signal Rlr[m] is relevant to ITD.

Based upon an estimate that maximum ITD of the KEMAR head simulator is

less than 800µS, an assumption made based on measurements presented as part of

the SADIE II database (Armstrong et al., 2018), the range of lags for which Rlr[m]

relevant is given as:

−0.0008 < τ < 0.0008 (136)

or, equivalently:

− Fs

1250
< m <

Fs

1250
(137)

160



For the sampling rate of 44100 used in binaural dataset, this results in Rlr[n] being

truncated to a total length of 71 samples.

71 samples represents a much greater width than the 16 samples caused by the

windowing in the STFT of previous tests. While performance with the full 71 sam-

ples was later tested, firstly the performance with a reduced 16 samples was tested,

created through a downsampling of the signal; an anti-aliasing filter is present in this

downsampling process.

Now the resulting downsampled signal was split into frequency bands through use

of a gammatone filterbank (GFB). The GFB was created with 257 filters, representing

a range of 20Hz to 20kHz.

Cross correlation, and finite impulse response (FIR) filtering are linear time-

invariant (LTI) operations, and accordingly the order of operations yields equivalent

results.

With this, a matrix of the dimensions [16, 257] has been created representing time

lag by frequency. This is used as the input to the CNN.

Results

From evaluating the models with the testing sets for downsampled frequency-banded

IACCF representations, the metrics accuracy, front-back confusion rate, RMSLE and

Mirrored-RMSLE are shown in entirely within Table 45, while RMSLE is shown

plotted against reverb time in Figure 91.

Table 45: Evaluation Results for Downsampled Frequency-Banded IACCF Repre-
sentations

Reverb Time

Metric 0.5 1 1.5

Accuracy 10.2% 8% 6.3%

Confusion Rate 9% 9.4% 7.9%

RMSLE 73.1◦ 80.1◦ 79.4◦

Mirrored RMSLE 40.5◦ 47.5◦ 48.9◦
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Figure 91: RMSLE plotted against time for evaluation of downsampled frequency-banded IACCF
representations

Discussion

The results presented in Chapter 5.2.9 show the performance of CNN trained and

tested on matrices made from frequency banded and downsampled IACCFs.

The significant result found here, is that the performance of this system is much

lower than those trained with phase or IPD matrices. This supports the trend of

moving away from using IACCFs with the introduction of CNN into the field; and

suggests that this type of representation is not being overlooked.

5.2.10 Wideband Frequency-Banded IACCFs

Following from the test performed in Chapter 5.2.9, a similar test is performed but

without the downsampling stage, leaving matrices of the size [71,257]. As the size of

the matrix has by necessity increased to achieve this, the total size of the training

dataset was halved; this is both as a penalty to allow for better comparison between

tests, but also because the number of datapoints in the training dataset had been

determined originally based on the size of each.

Results

From evaluating the models with the testing sets for wideband frequency-banded

IACCF representations, the metrics accuracy, front-back confusion rate, RMSLE and

Mirrored-RMSLE are shown in entirely within Table 46, while RMSLE is shown

plotted against reverb time in Figure 92
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Table 46: Evaluation Results for Wideband Frequency-Banded IACCF Representa-
tions

Reverb Time

Metric 0.5 1 1.5

Accuracy 12.6% 7.3% 9.4%

Confusion Rate 11.6% 12.2% 8.8%

RMSLE 66.6◦ 69.5◦ 69.4◦

Mirrored RMSLE 39.5◦ 43.7◦ 46◦

Figure 92: Classification Accuracy plotted against time for evaluation of wideband frequency-
banded IACCF representations

Discussion

The results presented in Chapter 5.2.10 show the performance of CNN trained and

tested on frequency-banded IACCF matrices, but without any downsampling.

Despite the much larger sized matrices, the results are only slightly improved

over the downsampled matrices. This shows that while this downsampling did create

some loss in accuracy, it is not to blame for the relatively poor performance of IACCF

derived matrices for binaural DoA estimation with CNN.

5.2.11 IACCF derived TF-Matrix

An alternative method was tested, being to create a TF-Matrix, akin to a spectro-

gram, but by finding individual matrix elements through the ITD prediction method

derived from IACCF.
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In order to achieve this, prior to the cross correlation being made, the signal was

windowed with a hanning window. The window had a size of 512 samples, and a

hopsize of 256 was used, equivalent to the window used in the creation of STFTs in

phase tests.

For each of the resulting windowed sections of audio, exactly the same method as

Chapter 5.2.9 was employed to create the IACCF Rlr[m], and it was also reduced to

the samples relevant for binaural DoA estimation, but then the additional stage of

finding the argmax of the IACCFs was employed.

ITD = argmax(Rlr[m]) (138)

This was carried out for every window, at every frequency band, and the resulting

ITD estimates were collated in a matrix of the size [16, 257].

Results

From evaluating the models with the testing sets for IACCF derived TF-matrix rep-

resentations, the metrics accuracy, front-back confusion rate, RMSLE and Mirrored-

RMSLE are shown in entirely within Table 47, while RMSLE is shown plotted against

reverb time in Figure93

Table 47: Evaluation Results for IACCF derived TF-Matrix Representations

Reverb Time

Metric 0.5 1 1.5

Accuracy 1.9% 1.7% 2.1%

Confusion Rate 5.4% 4.1% 4.1%

RMSLE 103.4◦ 105.3◦ 107.5◦

Mirrored RMSLE 71.8◦ 75.5◦ 76.7◦
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Figure 93: RMSLE plotted against time for evaluation of IACCF derived TF-Matrix representa-
tions

Discussion

The results in Chapter 5.2.11 show the performance of CNN trained and tested on

matrices derived by maximising IACCF curves for different frequency bands at dif-

ferent windows. It can be seen that this is a negative result; the accuracy is 1/N and

as such the system is randomly guessing. This is proof of the ineffectiveness of this

approach. Based on this, it is supposed that taking the maximum of the correlation

signal removes the information important for robust sound localisation.

5.2.12 Low-Frequency IACCF derived TF-Matrix

Duplex theory suggests that ITD is only significant at lower frequencies. Based on

this, it is hypothesised that one way to improve the results of the TF-Matrix would

be to reduce the range of frequencies.

New TF-matrices are made by reducing the maximum cutoff frequency of the

filterbank to 1500Hz, however the number of filters is maintained to give a much

denser sampling over the new smaller range.

Results

From evaluating the models with the testing sets for low-passed IACCF derived TF-

matrix representations, the metrics accuracy, front-back confusion rate, RMSLE and

Mirrored-RMSLE are shown in entirely within Table 48, while RMSLE are shown

plotted against reverb time in Figure 94
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Table 48: Evaluation Results for low-passed IACCF derived TF-Matrix Representa-
tions

Reverb Time

Metric 0.5 1 1.5

Accuracy 1.9% 1.8% 1.4%

Confusion Rate 4.9% 4.9% 4.6%

RMSLE 104.5◦ 105.3◦ 106◦

Mirrored RMSLE 72.2◦ 73.2◦ 74.8◦

Figure 94: RMSLE plotted against time for evaluation of low-passed IACCF derived TF-Matrix
representations

Discussion

The results in Chapter 5.2.12 show the performance of CNN trained and tested with

frequency band limited matrices made of frequency banded IACCFs. It can be seen

that this creates no improvement over the results reported in Chapter 5.2.11. Given

the performance of this, and all other IACCF based matrices, it is concluded that

IACCF is not suitable for use with 2D convolution layers as compared with training

the model with directly with the phase.

5.2.13 Comparison with Magnitude

It is of interest to determine whether localising with phase gives better or worse

performance than localising with magnitude of a signal; however direct comparison

between the results reported in this Chapter with results in Chapter 5.1 is not possible
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owing to the differences in dataset and training conditions. To this end the binaural

dataset was also turned into log-magnitude and ILDs matrices.

The log-magnitude matrix was created by taking the logarithm of the absolute of

the complex matrix

MagL,R[m,ω] = log10(|XL,R[m,ω]|) (139)

Meanwhile, the ILD matrix was found by taking the difference of the logarithms of

the magnitudes of the two channels.

ILDL,R[m,ω] = log(|XL[m,ω]|)− log(|XR[m,ω]|) (140)

The resulting training matrices were used to train the same CNN architecture, which

was then tested on the generated testing matrices.

Results

From evaluating the models with the testing sets for ILD and magnitude representa-

tions, the metrics accuracy, front-back confusion rate, RMSLE and Mirrored-RMSLE

are shown in Tables 49-52, while RMSLE is shown plotted against reverb time in

Figure 95.

Table 49: Accuracy for ILD and Mag.

Reverb Time

Cue 0.5 1 1.5

ILD 52.1% 34.9% 57%

Magnitude 56.4% 45.8% 50.5%

Table 50: Confusion Rate for ILD and Mag.

Reverb Time

Cue 0.5 1 1.5

ILD 0.2% 3.6% 0%

Magnitude 0.2% 3% 1.4%

Table 51: RMSLE for ILD and Mag.

Reverb Time

Cue 0.5 1 1.5

ILD 39.6◦ 30.4◦ 35.5◦

Magnitude 39.6◦ 30.5◦ 39.4◦

Table 52: Mirrored RMSLE for ILD and Mag.

Reverb Time

Cue 0.5 1 1.5

ILD 26.9◦ 23◦ 27.4◦

Magnitude 24.4◦ 19.2◦ 30.5◦

167



Figure 95: RMSLE plotted against time for evaluation of ILD and Magnitude representations

Discussion

The results in Chapter 5.2.13 show the performance of CNN trained and tested with

magnitude and ILD matrices of the same STFT complex values used for phase and

ILD matrices, for the purposes of comparison.

It can be seen that performance is similar to that of using phase, but with a

slightly lower RMSLE being reported. This is a significant result, as typically ITD

is preferred over ILD in binaural sound localisation systems; however it seems in the

case of CNN based DoA estimation, the magnitude of HRTFs seems to be the slightly

stronger cue.

5.2.14 Real and Imaginary Part

A similar approach is after performing Fourier transform on the signal to convert into

the frequency domain, rather than finding the magnitude and phase of the complex

matrices instead taking the real and imaginary parts. Each of the real and imaginary

parts contain information that relates both to the magnitude and phase of the systems:

this test will show whether this can still meaningfully interpreted by a CNN. The two

matrices are simplistically defined below.

Re(XL,R[m,ω])

Im(XL,R[m,ω])
(141)

Results

From evaluating the models with the testing sets for real and imaginary part repre-
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sentations, the metrics accuracy, front-back confusion rate, RMSLE and Mirrored-

RMSLE are shown in Tables 53-56, while RMSLE is shown plotted against reverb

time in Figure 96.

Table 53: Accuracy for Real and Imaginary

Reverb Time

Cue 0.5 1 1.5

Real 45.0% 42.8% 38.2%

Imaginary 43.6% 42.1% 38.4%

Table 54: Confusion Rate for Real and Imaginary

Reverb Time

Cue 0.5 1 1.5

Real 4.34% 3.16% 2.42%

Imaginary 4.68% 4.68% 2.98%

Table 55: RMSLE for Real and Imaginary

Reverb Time

Cue 0.5 1 1.5

Real 49.5◦ 51.4◦ 51.0◦

Imaginary 49.8◦ 51.8◦ 51.5◦

Table 56: Mirrored RMSLE for Real and Imagi-
nary

Reverb Time

Cue 0.5 1 1.5

Real 40.9◦ 43.1◦ 44.5◦

Imaginary 40.9◦ 43.3◦ 45.0◦

Figure 96: RMSLE plotted against time for evaluation of real and imaginary parte representations

Discussion

From all the sets of results presented in Tables 53 - 56 and Figure 96 it can be

seen that when training and testing with the real or imaginary parts of the complex

matrices, there is no significant difference between using either the real or imaginary

part of the complex binaural signal for classification. This is unsurprising, as neither

of these parts of the signal hold special significance with regard to localisation cues;

the binaural and monaural cues are spread among both the real and imaginary parts.
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Comparing these results with other results with those presented in Figure 95

it can be seen that performance is quite comparable but slightly worse than using

the magnitude of the complex signal. Comparing with Figure 86 reveals a general

improvement over localising with phase, with the exception of at low reverb times

owing to the much steeper gradient in the reverb performance.

These results certainly do not negate the idea of using real and imaginary parts of

the complex signal in replacement of phase and magnitude as performance is similar,

however, there similarly is not a strong justification that they would be preferred.

5.3 Conclusion

This chapter addressed the use of different feature representations for the task of BSSL

using CNNs. Chapter 5.1 addressed the relative performance of difference magnitude

matrix feature representations of binaural audio for deep binaural DoA estimation

using CNN. This was achieved by comparing four types of feature representation;

mel-spectrogram, gammatonegram, MFC and GFC.

Comparison of the results shows a preference for the spectrogram representations

of sound, but at the same time no preference can be well established between the

different approaches to filterbank coefficients, despite the emphasis on GFB in litera-

ture due to its similarity to human cognition. Chapter 5.2 addressed the performance

of CNN when trained and tested with a variety of phase or IACCF based represen-

tations of binaural signals. Additionally, these were compared to the time-frequency

magnitude of the HRTF.

The most significant finding, is that directly using unprocessed phase is the opti-

mal strategy tested, with the other proposed processing not providing improvement.

Use of matrices derived from IACCF in the context of DoA estimation by CNN

is dismissed owing to poor performance.

There is evidence to suggest that when training CNN on phase and magnitude of

the Fourier transform of a binaural signal, it is in fact the magnitude which is the

more dominant cue. Additionally, it has been shown that similar performance can

be achieved when using the real or imaginary parts of the signal, in lieu of phase or

magnitude.
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6 Deep Learning Architectures

Chapters 4 & 5 have introduced good practice with regard to generating datasets for

the task of binaural direction of arrival (DoA) estimation. It is prudent to accompany

this with insight into selection of model for this task.

This chapter contains three experiments on the theme of deep learning model ar-

chitectures for binaural DoA estimation. Chapter 6.1 benchmarks the performance of

1D and 2D convolutional layers in convolutional neural networks (CNNs) for binaural

sound source localisation (BSSL), Chapter 6.2 introduces a rationale for using con-

volutional recurrent neural networks (CRNNs) in BSSL, Chapter 6.3 compares the

performance of CRNNs relative to CNNs, Chapter 6.4 compares the use of different

types of recurrent layer in CRNN models for BSSL, and finally Chapter 6.5 makes

overall conclusions.

6.1 1D vs 2D Convolution

Up to this point, the CNNs presented in this work have been built with 2D convolu-

tional layers, and as such expect matrices upon which to train and test.

No obvious justification for doing so has yet been presented. While this extra

dimension could present an extra cue, such as time (as in the case of short-time fourier

transform (STFT) based input), CNNs are not necessarily capable of interpreting this,

due to their quality of translation invariance.

While 2D Convolutional layers are not exceptional in BSSL (Xu et al., 2019; Pang

et al., 2019), 1D convolutional layers which learn directly from the magnitude and

phase of the system are common also (Vecchiotti et al., 2019). The reduction of

dimensionality allows for a greater number of samples, and therefore more detail, in

the existing dimension which could be of greater benefit. Here, a comparison of these

two approaches is undertaken to understand the relative advantage of each approach.

This is achieved by the creation of a binaural dataset with reverberant conditions, for

speech on the horizontal plane, and the subsequent training and testing of the two

differing systems on the data.

The models presented in this chapter were developed, trained and tested using

the Tensorflow library for Python, while the dataset generation was performed in
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MATLAB.

6.1.1 Binaural Dataset

The binaural dataset described in Chapter 5.2.2 was also used in this experiment.

This consisted of binaural room impulse responses (BRIRs) synthesised for 327 dif-

ferent rectilinear rooms, which were then combined with speech from the telecom-

munications and signal processing laboratory (TSP) Corpus, as well as summed with

additive noise which itself was also binauralised, to create 60,000 second-long training

files, and another 5000 second-long files used for testing.

6.1.2 Feature Representations

1-Dimensional

From each of the audio files described in Chapter 6.1.1, 10 phase and magnitude

spectra were extracted. This was achieved by reducing the full signal to ten segments

containing 4410 samples, and for each of these the FFT was taken to give the vector

of complex frequency domain numbers.

This was reduced to the first 2206 samples to represent frequencies of only up to

Nyquist frequency. From this, the logarithm of the absolute of the complex vector

was taken to give two vectors representing magnitude, and the angle of the complex

vector was taken to give two channels of phase.

2-Dimensional

The two-dimensional matrix was created by STFT. The sample ten sub-segments of

audio were further windowed by a moving window determining the time-dimension

of the spectrogram. This window had a length and hop size chosen such that the

window length, and therefore number of frequency domain samples, is one tenth of

the one dimension vector, and the hop size was chosen so as to create an x-dimension

of 10.
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Table 57: STFT Parameters

Parameter Value

Window Length 440

Hop Size 400

Doing this closely approximated the total number of samples in the matrix to the

vector, with the matrix containing a total of 2210 samples.

As in the case of the vector, a magnitude matrix was created by taking the log of

the absolute of the time-frequency (TF)-Matrix separately for the two channels, and

a phase matrix was created by taking the angle of the complex matrix.

6.1.3 Models and Training

The two models were designed to match each other; although the fundamental change

in architecture complicates this. For the two dimensional matrices, 2D Convolution

layers with (3, 3) sized kernels, and max pooling layers with (2, 2) kernels were em-

ployed as seen in Table 58. This is similar in design to the model used in Chapter

5.2, with the flat architecture also being employed to avoid overfit.
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Table 58: Model for localisation of with 2D Matrices

Phase Branch Magnitude Branch

Layer Hyperparameters Layer Hyperparameters

Input Layer (221, 10, 2) Input (221, 10, 2)

2D Convolution (3,3), 16 2D Convolution (3,3), 16

Batch Normalisation Batch Normalisation

Max Pooling (2,2) Max Pooling (2,2)

2D Convolution (3,3), 16 2D Convolution (3,3), 16

Batch Normalisation Batch Normalisation

Max Pooling (2,2) Max Pooling (2,2)

2D Convolution (3,3), 16 2D Convolution (3,3), 16

Batch Normalisation Batch Normalisation

Max Pooling (2,2) Max Pooling (2,2)

2D Convolution (3,3), 16 2D Convolution (3,3), 16

Dropout 0.5

Dense, Softmax 72

While for the 1D inputs, these 2D layers were replaced with 1D convolution layers

with 3 sample kernel size, and 1D max pooling with 2 sample kernel size, as seen in

in Table 59.
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Table 59: Model for localisation of with 1D Vectors

Phase Branch Magnitude Branch

Layer Hyperparameters Layer Hyperparameters

Input (2207, 2) Input (2207, 2)

1D Convolution 3, 16 1D Convolution 3, 16

Batch Normalisation Batch Normalisation

Max Pooling 2 Max Pooling 2

1D Convolution 3, 16 1D Convolution 3, 16

Batch Normalisation Batch Normalisation

Max Pooling 2 Max Pooling 2

1D Convolution 3, 16 1D Convolution 3, 16

Batch Normalisation Batch Normalisation

Max Pooling 2 Max Pooling 2

1D Convolution 3, 16 1D Convolution 3, 16

Dropout 0.5

Dense, Softmax 72

The two models were both trained using an Adam optimiser with identical pa-

rameters, as shown in Table 60.

Table 60: Adam Optimiser Parameters for 1D vs 2D test

Parameter Value

Rate 1e-3

Decay 1e-3

The models were trained for a total of 400 epochs.

6.1.4 Results

Results are presented for the two systems for the metrics classification accuracy,

confusion rate and root mean square localisation error (RMSLE)
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Classification Accuracy

Results of evaluation with the testing dataset using the classification accuracy for the

two models are displayed for all reverb times in Table 61, and plotted against reverb

time in Figure 97.

Table 61: Classification Accuracy for 1D vs 2D test

RT60

Model 0.5 1 1.5

1D 48.7% 44.3% 41.2%

2D 50.5% 47.6% 43.8%

Figure 97: Classification Accuracy at different Reverb Times for 1D and 2D models

Confusion Rate

Results of evaluation with the testing dataset using the front-back confusion for the

two models are displayed for all reverb times in Table 62, and plotted against reverb

time in Figure 98.

Table 62: Confusion Rate for 1D vs 2D test

RT60

Model 0.5 1 1.5

1D 2.7% 3.5% 2.8%

2D 2.1% 2.6% 1.4%
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Figure 98: Confusion Rate at different Reverb Times for 1D and 2D models

RMSLE

Results of evaluation with the testing dataset using the RMSLE for the two models

are displayed for all reverb times in Table 63, and plotted against reverb time in

Figure 99.

Table 63: RMSLE for 1D vs 2D test

RT60

Model 0.5 1 1.5

1D 53.9◦ 54.1◦ 55.4◦

2D 50.5◦ 48.6◦ 49.5◦

Figure 99: RMSLE at different Reverb Times for 1D and 2D models
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6.1.5 Discussion

In Tables 61 - 63 and Figures 97 - 99 a clear preference for 2D convolution layers

is observed, the 2D model outperforming 1D for all metrics at all reverb times, and

regardless of number of epochs trained. Given this result, an emphasis on 2D convo-

lution layers, and preparation of matrices for such, is continued throughout the rest

of this work.

6.2 Introduction to Convolution Recurrent Neural Networks

Sound radiates from physical entities. The result of this is that the position of sound

sources cannot show random behaviour over time, something which can be exploited

by BSSL systems. This a strong rationale for the use of recurrence in BSSL models,

as when we consider a sound source either moving or remaining still, this behaviour

is predictable over time.

Much of the work concerning the use of CNNs for BSSL does not consider this

cue over long ranges of time, instead treating oncoming audio as a series of mutually

independent DoA estimation problems (Xu et al., 2019; Zhou et al., 2019), despite the

promising employment of recurrence in CNNs used for array based sound localisation

(Adavanne et al., 2018). Later works do use recurrent layers, typically gated recurrent

unit (GRU), in the context of a static sound localisation problem (Yang and Zheng,

2024), as well as in the context of trying to exploit dynamic cues through listener

head rotation (Garćıa-Barrios et al., 2022) and movement (Krause et al., 2024a).

While the motivation for their inclusion is presumably improved performance, the

degree to which this is true has not explicitly been studied. This chapter endeavours

to do this through comparison of the performance of systems which do and do not

include recurrent layers, as well as a comparison of performance between systems

using different forms of recurrent layer.

The models presented in this chapter were developed, trained and tested using

the MATLAB Deep Learning Toolbox, and the dataset generation was performed in

MATLAB.
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6.3 Convolutional Recurrent Neural Networks compared to

Convolutional Neural Networks

The results in this sub-chapter were also presented in Reed-Jones et al. (2024b)

6.3.1 Introduction

Given the previously stated rationale, when trained on the same dataset with compa-

rable parameters, a CRNN should be able to outperform a CNN at the task of BSSL.

This hypothesis was tested experimentally, by comparing the ability of a CNN and a

CRNN to localise static speech.

6.3.2 Binaural Audio Dataset

The same method of creating binaural sound scenes out of speech and noise sources as

used in previous experiments was also employed for this experiment, using the TSP

corpus for speech. To reflect the higher sample rate of the TSP corpus compared

to TIMIT, a new set of BRIRs was generated. This was achieved using the same

head-related impulse response (HRIR) of the KEMAR mannequin taken from CIPIC

(Algazi et al. 2001), converted into BRIRs using the same image source method (ISM)

library. This was undertaken for 100 rectilinear rooms with dimensions in the range

of 1-10m. The absorption value was altered so as to achieve an RT60 between 0 and

1.5 seconds in length.

1000 audio samples taken from the corpus were used for training. Each of these

was downsampled to 44.1kHz to match CIPIC’s sampling rate, and then convolved

with a random room from each of the 50 source directions. The resulting 50,000 audio

files were then all truncated to 1 second in length.

Additionally, a noise mixture was added to the signal. This was again achieved

through the summation of a series of BRIRs of random source directions convolved

with pink noise. The resulting mixture was randomly scaled with a target signal-to-

noise ratio (SNR) between 0 and 36 deciBels.

For the testing set BRIRs 10 room dimensions were generated, and for each of

these sets of dimensions 3 sets of BRIRs were generated to achieve the target reverb
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times of:

TR60 = [0.5, 1, 1.5]seconds (142)

The same process was undertaken with the noise mixture, with the pink noise replaced

by ambient sound recordings, with the resulting mixture being scaled so as to achieve

SNR values of:

SNR = [0, 12, 24, 36]dB(SNR) (143)

All possible combinations of TR60 and dB(SNR) were applied to another 100 speech

files taken from the same corpus, yielding a total of 1600 audio files.

6.3.3 Feature Representations

The binaural dataset was then turned into two features representing phase and mag-

nitude in the time-frequency domain. Two matrices were generated per 100ms of the

original audio, so 10 pairs of matrices for each sequence.

For magnitude, this was achieved through the gammatone decomposition method

described in Chapter 5.1. In this case, however, only 147 bands were used. A Hann

window with a length 425 samples, and an overlap of 256 samples, yielded a matrix

with the dimension [147, 19, 2]

For the phase representation, no auditory filtering was applied. Instead, a STFT

was performed using the same window, and the output was downsampled to 147

frequencies. The angle of this was taken, and one channel was subtracted from the

other, then projected onto a unit circle, to give a matrix representing interaural phase

difference (IPD) of the size [147, 19].

6.3.4 Feature Processing CNNs

The approach to CRNNs taken was to separate the system into distinct parts based

on a two-stage training process, the parts being two CNNs trained on the training

dataset, and a recurrent neural network (RNN) trained on the activations at the final

convolution layer of the CNNs when classifying the training data. The CNNs can be

thought of as a feature extraction processor, which is used to process the training and

testing data.
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The CNNs both have an almost identical design, differing only in the input layer

size. This employs a flat architecture of three layers with eighteen 6×6 sized kernels;

as per previous experiments this flat architecture is employed to avoid overfit. The

Table 64: CNN to be adapted into Convolutional Layers

Layer Hyperparameters
Input Layer
2D Convolution (6,6), 18
Batch Normalisation
Relu
Max Pooling (2,2)
2D Convolution (6,6), 18
Batch Normalisation
Relu
Max Pooling (2,2)
2D Convolution (6,6), 18
Batch Normalisation
Relu
Dense 50

CNNs were then trained on one frame of each sequence in the training set, using

stochastic gradient descent (SGD) with a learning rate of 0.01 for a period of 100

epochs.

These CNNs were then used to classify the training set, and for each pair of

matrices the activations at the final convolution layer was concatenated into sequences

of the size (5184, 10)

6.3.5 RNN

The RNN trained on the activations was one with a shallow design, consisting of a

single recurrent layer: a bidirectional long short-term memory (BiLSTM) containing

200 hidden units. The RNN was trained using SGD for 200 epochs with a learning

rate of 0.0001
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Table 65: CRNN Classifier

Layer Hyperparameters
Input (5184, 10)
BiLSTM 200
Dense 50

6.3.6 Baseline CNN

As opposed to the two CNNs already introduced, the CNN actually used as a baseline

in this experiment is in fact a single layer perceptron (SLP) trained on these same

activations. This is rightly called a CNN as it consists of the same layers as a typical

CNN architecture, but with the added peculiarity that different parts of the network

were trained separately.

Table 66: Baseline Classifier

Layer Hyperparameters

Input (5184, 1)

Dense 50

This SLP was trained using the same optimisation algorithm as the RNN.

6.3.7 Results

Performance for the BiLSTM and the baseline CNN according to the metrics ac-

curacy, front-back confusion, RMSLE and Mirrored RMSLE are presented averaged

across all reverb times and noise levels in 67. Additionally, RMSLE is plotted against

reverb time in Figure 100, and against signal-to-noise ratio in Figure 101.

Table 67: Performance metrics from entire testing dataset

Accuracy Front-Back Confusion RMSLE RMSLE (Mirrored)
BiLSTM 81.15% 0.52% 13.28 7.06
Baseline 76.49% 1.7% 23.15 10.3
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Figure 100: RMSLE plotted with respect to
reverb time

Figure 101: RMSLE plotted with respect to
signal-to-noise ratio

6.3.8 Discussion

The results presented in Chapter 6.3.7 compare the relative performance of the use

of a BiLSTM layer in a CNN with a baseline fully connected layer.

On all of the reported metrics in Table 67 a relative improvement of performance

in the CRNN is seen over the baseline. The reported classification accuracy only

improves by approximately 5%; however this corresponds to a 10◦ improvement in

RMSLE, nearly halving the error. This suggests that use of CRNN not only improves

correct classifications, but reduces the amount of error in incorrect classifications.

While front-back confusions were not exceptionally high in the baseline, they are

reduced in the CRNN. Looking at the mirrored RMSLE reveals that this is not a

significant contribution to the RMSLE; more likely a reduction in large spurious

errors has been seen. Looking at the system’s performance with respect to reverb

time and SNR in Figures 100 & 101, a reduction in the gradient of the line is seen in

the CRNN, suggesting an increase in the robustness of the system.

6.4 Comparison of Convolutional Recurrent Neural Network

Architectures

The findings presented in this sub-chapter were also published in Reed-Jones et al.

(2024a)

An important question currently missing from the literature is what type of re-

current layer is suitable. GRU and bidirectional gated recurent unit (BiGRU) have

been applied elsewhere, but it should be established if either of these are preferred,
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or if long short-term memory (LSTM) and BiLSTM can achieve better performance.

To do this, a comparison was undertaken where four RNNs were trained on the same

activations described in Chapter 6.3.4.

The four RNNs had the same shallow design as seen in Table 65, with the recurrent

layer being replaced in each case. All four used 200 hidden units. This is shown in

recurrent layer in Table 68, in which the recurrent layer is substituted with GRU,

BiGRU, LSTM and BiLSTM during the experiment.

Table 68: The RNN architecture used in the comparison experiment

Layer Hyperparameters
Input (5184, 10)
Recurrent Layer 200
Dense 50

Each of these RNNs was trained on the training set of activations using SGD with

a learning rate of 0.0001 over a period of 200 epochs.

6.4.1 Results

Results are presented first in a general comparison of the four models for the four

metrics classification accuracy, front-back confusion, RMSLE and mirrored RMSLE

averaged across all noise levels and reverb times in Table 69. These are then also

presented for each individual combination of reverb time and signal-to-noise ratio in

Table 70.

In addition to this, RMSLE is also plotted in Figures 102 & 103.

Table 69: Performance metrics from entire testing dataset

Accuracy Front-Back Confusion RMSLE RMSLE (Mirrored)

GRU 70.53% 1.64% 35.18◦ 20.2◦

BiGRU 70.48% 1.53% 35.94◦ 20.62◦

LSTM 71.62% 1.47% 34.19◦ 19.54◦

BiLSTM 72.67% 0.01% 34.04◦ 19.3◦
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Table 70: Complete results for all recurrent layers

GRU

Noise Level

RT60 0 12 24 36

0.5 67.9◦ 20.2◦ 9.1◦ 8.2◦

1 64.6◦ 17◦ 10.4◦ 9.7◦

1.5 64.4◦ 18.5◦ 16.1◦ 16.3◦

BiGRU

Noise Level

RT60 0◦ 12◦ 24◦ 36◦

0.5 70.1◦ 19.9◦ 7.6◦ 5.7◦

1 66.6◦ 18.2◦ 9.8◦ 8.3◦

1.5 66.2◦ 19◦ 14.1◦ 14.5◦

LSTM

Noise Level

RT60 0 12 24 36

0.5 67.5◦ 19.5◦ 12.7◦ 11.2◦

1 64.8◦ 17.5◦ 10.6◦ 9.6◦

1.5 66.2◦ 17.1◦ 11.3◦ 11.2◦

BiLSTM

Noise Level

RT60 0 12 24 36

0.5 66.6◦ 18.5◦ 10.5◦ 9.9◦

1 62.8◦ 17.6◦ 11.9◦ 9.3◦

1.5 62.7◦ 16.4◦ 11.3◦ 10.3◦

Figure 102: Localisation Error of different re-
current layers with respect to TR60

Figure 103: Localisation Error of different re-
current layers with respect to SNR

6.4.2 Discussion

The results in Chapter 6.4.1 show the relative performance of four types of recurrent

layer: GRU, BiGRU, LSTM, BiLSTM.
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In overall performance, as seen in Table 69, the difference between all the layers is

very slight, with a total difference between the highest and lowest RMSLE only 1.14◦.

This makes drawing conclusion on a favoured layer questionable, as all seem capable

of similar performance; and larger or different datasets may easily yield different

results.

What is seen, however, is a slight preference towards bidirectional layers of single

directional layers, and a preference for LSTM over GRU. This is despite the relative

popularity of GRU in literature on using CRNN for BSSL (Garćıa-Barrios et al., 2022;

Krause et al., 2024a; Krause et al., 2024b).

It can be seen in Table 70 that significantly higher level of error are seen when

the SNR is at 0dB. This significantly skews the results and leads to the errors of over

30◦ seen in Table 69, when in reality at lower noise level the RMSLE is near-always

below 20◦.

One shortcoming of this study is the use of static sound sources. These were used

to align to the general, but not complete, emphasis on static speaker localisation

identified in the current state of the field. Movement of the speaker, however, is both

likely, and a significant temporal cue in the context of BSSL.

6.5 Conclusion

In this chapter, experiments were undertaken to provide insight into choice of deep

learning model architecture for the task of BSSL. In Chapter 6.1, the performance of

1D and 2D convolutional layers in CNNs were compared: it was found that the use

of 2D convolutional layers is preferable.

Chapters 6.3 & 6.4 presented experiments on using CRNNs for BSSL. In Chapter

6.3 a CRNN containing a BiLSTM layer was compared to a baseline CNN system, and

in Chapter 6.4 the recurrent layers LSTM, BiLSTM, GRU, BiGRU were compared

for their relative performance when used in a CRNN trained for for BSSL.

The most significant conclusion is a clear preference for performing BSSL with CRNN

over CNN. This shows the trend in conventional sound source localisation (SSL)

towards CRNN is correct for the case of BSSL as well.

In comparing the types of layers, a very soft preference is given towards BiLSTM,
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however the significance of this is questionable and does not suggest a strong case for

using LSTM based layers over GRU based layers.
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7 Mismatched Anechoic Condition

Reconsider the model of spatial hearing, for a speaker on the horizontal plane in the

freefield.

yL,R[n, φ] = s[n] ∗ hrirL,R[n, φ] + η[n] (144)

where y[n] is the reproduced signal, which should be akin to pressure at ears, s[n] is

the speech signal, and η[n] is the additive noise.

In using measured head-related impulse responses (HRIRs) to create binaural

audio using this model another inaccuracy arises; measured HRIRs do differ from the

true HRIR. These differences are likely to arise from:

• Room effects

• Measurement apparatus

• Measurement and processing method

• Unintended noise in measurement

‘Anechoic room effects’ is somewhat oxymoronic; however it is a valid observation as

no rooms, including anechoic chambers, are truly anechoic. These effects can effec-

tively be thought of as noise which has been convolved with the signal, or convolutive

noise. Expanding the model with this knowledge therefore gives:

yL,R[n, φ] = s[n] ∗ hrirL,R[n, φ] ∗ ς[n] + η[n] (145)

where ς[n] is the convolutive noise.

Another helpful distinction should be made at this point: some sources of con-

volutive noise will vary with position, while some will be present throughout a mea-

surement dataset.

Consider anechoic condition experiments, such as those presented in Chapter 4,

but also those found in the literature review, Chapter 2.4: it is typical that a training

and testing dataset will be created from convolving HRIRs of different direction of

arrivals (DoAs) with monophonic sound sources, mismatch between the training and
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testing data is introduced only through ensuring different speech samples are used

between the training and testing datasets.

Typically it is only studies which specifically address the mismatched head-related

transfer function (HRTF) condition that deviate from this (Wang et al., 2019; Wang

et al., 2020; Qian et al., 2022). This leads to an issue that even when performance is

high, it is not necessarily true that the system is identifying DoA based upon the true

HRIR, it may instead be identifying differences based upon the position dependent

convolutive noise. Furthermore, group convolutive noise in an HRTF dataset could

have the effect of rendering a dataset not robust to other datasets, and therefore real

data.

This is an issue that has previously been identified by Hammond (2021), who

termed it the mismatched anechoic condition, as differences between different datasets

are effectively an equivalent problem to mismatched HRTFs.

It should also be noted that this is of relevance to non-anechoic systems. As previ-

ously established, most experimentation into binaural DoA estimation in the diffuse

field uses room simulation to create reverberant environments. The reflections in this

reverberation were typically created through convolution-delayed and weighted ver-

sions of the original signal with HRIRs taken from the original signal. Studies which

have used real binaural room impulse response (BRIR) measurements are less prone

to this error, however there will still be common characteristics amongst measurement

apparatus and method which are not found outside of those measurements.

This chapter, then, addresses binaural DoA estimation in the mismatched anechoic

condition, profiling performance of systems trained on only one set of HRTF, as well

as the proposal and analysis of data augmentation methods designed to mitigate this

issue.

The models presented in this chapter were developed, trained and tested using the

Tensorflow library for Python, while the dataset generation was performed in Matlab.

7.1 The ‘Club Fritz’ HRTF dataset

To study the effects of the mismatched anechoic condition, it is helpful to have a com-

pilation of anechoic measurements of the same head simulator. This exists in ‘Club
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Fritz’, the name given to a round-robin study of HRTF measurements of a KU100

head simulator, from which 12 sets of HRTFs measurements have been published

(Katz and Begault, 2007). The institutions involved have been described in Chapter

2.4.1.

The HRTF measurements in Club Fritz are consistent only in that the same

receiver is used in every instance. Beyond this, there can be mismatch in the Source

Positions measured, the acoustic source, the impulse type, and more.

Theoretically for farfield measurements the binaural cues interaural time difference

(ITD) and interaural level difference (ILD) should remain consistent across datasets

for measurements taken at the same azimuth and elevation, as it is the head alone

that is responsible for these cues. To demonstrate this, the ITD below 1500Hz, and

the ILD in the range 11.25-12.75kHz are plotted with respect to azimuthal angle on

the horizontal plane for all measurement sets, as seen in Figure 104.

Figure 104: ITD of Horizontal Plane measurements in Club Fritz

While there is a strong trend seen between all measurement sets, a small amount

of deviation in ITD between measurements is seen in Figure 104. Some of this is

constant offset, which may have been caused by an offset in the rotation of the

head, but there are also a pair of HRTFs measurements that have a lower maximum

ITD than that seen in other measurement sets. These two HRTFs, being the ones

measured at the University of Maryland and NASA, which both used loudspeakers

on a measurement arc with a radius of only 0.9m. This is below what is normally

seen as the requirement to meet the farfield assumption for binaural measurement,

and is the most likely reason for this reduction in ITD.
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Figure 105: ILD of Horizontal Plane measurements in Club Fritz

While the expected trend is still seen in ILD, the data is much noisier and the

differences between measurement datasets is much larger. This is to be expected, as

ILD is much more likely to change owing to measurement noise, and because ILD is

considered at higher frequencies, small differences in position between measurements

are likely to become more noticeable.

Given that binaural cues do not remain entirely consistent between the measure-

ments, it is also unlikely that monaural cues will be consistent. Recalling that monau-

ral cues refer to the differences in the magnitude at different frequencies for different

positions, it is possible to see if this is different between different measurement sets

through the plotting of the common transfer function (CTF) of each measurement

set; the CTF being the part of the HRTFs which is common for all DoAs. This,

ideally, would be identical in all measurement sets. The CTF is found simply by

finding the average of all the magnitudes of HRTFs in a set:

CTF[ω] =
1

K

k∑
k=1

|HRTFk[ω]| (146)

where k is an index representing different DoAs.
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Figure 106: CTFs of different measurement sets in Club Fritz

Figure 106 shows the CTFs of the HRTFs found in Club Fritz. It can be seen

that the difference is quite large. This is to say that the measurement conditions can

greatly affect binaural cues.

7.2 Localisation Performance in the Mismatched Anechoic

Condition

No study has been conducted showing the effects of training and testing binaural DoA

estimators on mismatched anechoic HRTF datasets. To fill in this gap, therefore, a

study was undertaken in which a convolutional neural network (CNN) was trained

on a set of HRTF measurements of a specific head simulator, and then tested using

different unmatched HRTF measurements of head simulator.

To test sound localisation ability in the mismatched anechoic condition, training

and testing datasets were created using the HRIRs in the Club Fritz dataset.

7.2.1 Training and Testing Datasets

Binaural datasets were created by convolution of the Club Fritz HRIRs with speech

taken from the telecommunications and signal processing laboratory (TSP) corpus.

Due to source positions being determined by the measurement apparatus, they are not

common between the measurement datasets, as was shown in Figure 23 in Chapter

2.4.1. For this test, for a true representation of this task, it is necessary to avoid

interpolation and so the choice of azimuthal positions is not obvious. Table 71 shows

that many of the source HRTF sets divide the horizontal plane by a multiple of 36.

As these datasets sample the horizontal plane with equal spacing, and none begin on
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a number differing from 0◦, a 10 degree spacing will allow for perfect coverage of 10

of the 12 HRIRs.

Table 71: Number of Horizontal Plane Source Positions of every HRTF set in Club
Fritz

HRTF Number 1 2 3 4 5 6 7 8 9 10 11 12

No. Positions 72 58 36 72 144 36 72 72 72 36 60 90

HRTF set 11 equally samples the horizontal plane in 60 points, leading to 6◦ spacing,

and so has very few common DoAs with the other sets. Given this difference, this set

is completely ignored in this and following tests.

As previously established, two of the HRIRs do not meet the farfield condition

and that has an effect on binaural cues. Given this, these two HRIRs, numbers 2 and

3, are also ignored for these tests. This has the added benefit that all 9 remaining

HRTFs contain all 36 target DoAs.

Speech samples were taken from the TSP dataset. The first 1000 files of over a

second in length in the dataset were shortened to 1 second in duration. Each of these

second long sections were then convolved with the 36 HRIRs, of all 9 HRIRs sets.

A further 100 files were used to create testing dataset, with these files again being

shortened to 1 second segments, and convolved with all possible combinations of

azimuthal direction and HRIR.

The resulting binaural audio was then used to create magnitude and interaural

phase difference (IPD) matrices.

Per each 1 second clip, 10 100ms sections are used to create 10 pairs of matrices.

These are created through short-time fourier transform (STFT) of the audio, using a

rectangular window of 440 samples, which was moved with a hop size of 440 samples.

From these complex matrices, the magnitude and phase was taken to give two matrices

per audio clip with the size [221, 10, 2]

Efficient dimensionality reduction was desired, leading to the choice to use an equal

window size and hop size. Given that this results in no overlap between windows, a

rectangular windowing function was used to window the signal. The benefit in terms

of dimensionality reduction was seen as favourable compared to possible spectral

artefacts caused by this type of windowing.
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Table 72: STFT parameters for creating feature representations

Parameter Value

Sampling Rate 48kHz

Window Size 440

Hop Size 440

The result is feature representations for all 9 sets of training, validation and testing

data each representing a unique HRTF from the Club Fritz dataset

7.2.2 Model, Training and Testing

A two-branched CNN was trained and tested on the resulting data. This consisted

of four 2D Convolution layers per branch, as seen in Table 73. This model is almost

identical to the 2D convolution model used in Chapter 6.1, changing only in the length

of the output vector. This was used for the same reason, for its ability to avoid overfit

as compared to CNN with growing filter sizes. This model was trained independently

Table 73: CNN for localisation in mismatched anechoic condition

IPD Branch Magnitude Branch
Layer Hyperparameters Layer Hyperparameters
Input (221, 10, 2) Input (221, 10, 2)
2D Convolution (3,3), 16 2D Convolution (3,3), 16
Batch Normalisation Batch Normalisation
Max Pooling (2,2) Max Pooling (2,2)
2D Convolution (3,3), 16 2D Convolution (3,3), 16
Batch Normalisation Batch Normalisation
Max Pooling (2,2) Max Pooling (2,2)
2D Convolution (3,3), 16 2D Convolution (3,3), 16
Batch Normalisation Batch Normalisation
Max Pooling (2,2) Max Pooling (2,2)
2D Convolution (3,3), 16 2D Convolution (3,3), 16
Dropout 0.5
Dense, Softmax 36

on all 9 sets of training data, using an Adam optimiser for a period of 100 epochs, as

seen in Table 74.
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Table 74: Adam Optimiser Parameters for mismatched anechoic test

Parameter Value

Rate 1e-5

Decay 1e-3

This created 9 trained models representing each of the training datasets. Each of

these models were then used to localise all 9 testing datasets, such that there were

9× 9 sets of results in total.

7.2.3 Results

Results, in the form of classification accuracy, root mean square localisation error

(RMSLE), and confusion rate are first presented in the form of a cross performance

matrix, representing every combination of training and testing dataset.

The metrics are scaled from black to red with maximum ranges possible for each,

according to the following ranges

Classification Accuracy 0 to 1

RMSLE 0◦ to 180◦

Confusion Rate 0 to 1

This is shown in Figure 107.

Figure 107: Inter-Measurement set Performance Matrices for CNN Trained on HRTFs in Club
Fritz
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In addition to this, performance is presented for every model when tested on all

unseen HRTF datasets, being the positions in Figure 107 not on the main diagonal.

This is shown in Table 75.

Table 75: Average Performance of CNN in mismatched anechoic condition

Model 1 2 3 4 5 6 7 8 9 Avg.

Accuracy 52.8% 49.4% 51.2% 60% 52.6% 61.7% 62.6% 51.4% 39.4% 53.5%

RMSLE 45.6◦ 49.9◦ 47.9◦ 46.1◦ 51.8◦ 49.4◦ 42.9◦ 54.1◦ 47.9◦ 48.4◦

Confusion 12.2% 14.1% 14.1% 12.5% 10.8% 11.2% 8.9% 12.2% 9.2% 11.7%

7.2.4 Discussion

From the results reported in Figure 107 and Table ??, it can clearly be seen that

if the CNN is trained on one HRTF set, it is not guaranteed to generalise to other

measured HRTFs of the same head, despite these theoretically being identical.

For every model under test, the reported accuracy is perfect when tested with bin-

aural data made with that same series of HRTF measurements; however examples of

a model well predicting the azimuth of binaural data created with another measure-

ments dataset are very infrequent; there just appear to be some pairs of measurement

sets that are well matched.

Figure 107 reveals some clustering in the results, particularly with the first three

sets of HRTFs results which are completely able to generalise to each other, and

entirely unable to generalise to other other sets of HRTFs. Some models, such as 5

and 9 seem particularly poor at generalising to all other models.

Compared to previous tests, the reported confusion rate here is large, with a

reported average front-back reversal rate of 16%. This shows that similar but different

measurements have the potential to lead to front-back reversal, which is particularly

problematic and likely is a large contributor to the very large RMSLE seen. This issue,

as per many issues encountered in deep DoA estimation, as well as machine learning

in general, can be categorised as a problem of overfit. It is, however, a problem of

overfit that is often overlooked in research on deep learning based binaural sound

source localisation (BSSL)
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7.3 Increasing Number of HRTFs

It has been established that the issue of localising in the mismatched anechoic condi-

tion is an issue of overfit. Given this, it would make sense that increasing the number

of HRTF measurements sets is a potential solution to this issue.

To assess this possible solution, two tests were undertaken wherein the number of

HRTFs present in the training dataset is increased to 2, 4 and then 8, these numbers

being chosen to make the dataset more easily divisible. The method and results for

both of these tests are presented in this sub-chapter.

7.3.1 Training Datasets

Three sets of training datasets were made for this test, for training with two, four, and

eight HRTFs. The HRTFs included in each test were in the range n ≤ hrtfn < n+ 2

for two HRTFs, n ≤ hrtfn < n + 4 for four HRTFs and n ≤ hrtfn < n + 8 where

numbers above 9 are wrapped back to 1 (so that 10 == 1). This is described fully in

Table 76.

Table 76: Distribution of HRTFs between training datsets for increased HRTFs
testing

Set 1 2 3 4 5 6 7 8 9 10 11

2 HRTFs 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-1

4 HRTFs 1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-1 10-2 11-3

8 HRTFs 1-8 2-9 3-10 4-11 5-1 6-2 7-3 8-4 9-5 10-6 11-7

These HRTFs were convolved with the same speech samples used in baseline tests

including only one HRTF: however, the number of speech samples used is reduced

such that each speech sample is independently convolved with every HRIR, but the

total final number of samples remains identical. This distribution is shown in Table

77.
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Table 77: Number of speech samples per DoA in training set for each test

Set Speech

Samples

HRTFs Total per

DoA

Absolute

Total

Baseline 1000 1 1000 36,000

2 HRTFs 500 2 1000 36,000

4 HRTFs 250 4 1000 36,000

8 HRTFs 125 8 1000 36,000

Both these new training datasets were used to train the same model used in baseline

experiment described in Table 73, which was also trained on the training datasets for

the same duration with identical training parameters as the baseline.

7.3.2 Model, Training & Testing

The same model and training parameters as used in Chapter 7.2.2 was used to train

the 11 models based on the created training datasets. These were then tested on the

exact same dataset as described in Chapter 7.2.1, so as to allow for direct comparison

in the results measured on only one HRTF from the baseline system.

7.3.3 Results

Cross Performance Matrices are presented individually for 2, 4 and 8 HRTFs in Figs.

108-110. Additionally, average performance when evaluated on mismatched testing

dataset is shown in Table 78.
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Figure 108: Inter-Measurement set Cross Performance matrices for CNN Trained on 2 HRTFs in
Club Fritz

Figure 109: Inter-Measurement set Cross Performance matrices for CNN Trained on 4 HRTFs in
Club Fritz

Figure 110: Inter-Measurement set Cross Performance matrices for CNN Trained on 8 HRTFs in
Club Fritz
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Table 78: Average Performance for each Model when Increasing Number of HRTFs
Trained On

1 2 3 4 5 6 7 8 9 Avg.

2
H
R
T
F
s Accuracy 47.2% 47.0% 78.8% 55.4% 58.4% 58.8% 57.5% 50.2% 65.8% 57.7%

RMSLE 49.3◦ 51.8◦ 20.9◦ 49.3◦ 45.0◦ 48.5◦ 43.5◦ 42.0◦ 31.1◦ 42.4◦

Confusion 49.3◦ 51.8◦ 20.9◦ 49.3◦ 45.0◦ 48.5◦ 43.5◦ 42.0◦ 31.1◦ 42.4◦

4
H
R
T
F
s Accuracy 69.4% 75.9% 76.1% 48.4% 54.9% 53.4% 80.0% 67.0% 54.4% 64.4%

RMSLE 29.0◦ 23.0◦ 21.9◦ 50.9◦ 42.8◦ 43.2◦ 20.6◦ 37.0◦ 46.3◦ 35.0◦

Confusion 3.8% 3.0% 2.8% 14.5% 12.1% 11.5% 1.8% 6.0% 7.4% 7.0%

8
H
R
T
F
s Accuracy 46.3% 88.8% 85.0% 92.1% 83.8% 76.1% 93.6% 87.0% 72.7% 80.6%

RMSLE 15.3◦ 18.7◦ 18.0◦ 16.7◦ 21.5◦ 21.6◦ 11.2◦ 15.5◦ 39.0◦ 19.7◦

Confusion 1.5% 1.8% 1.8% 1.6% 3.0% 2.1% 0.7% 1.0% 5.7% 2.1%

7.3.4 Discussion

The results presented in Chapter 7.3.3 show the performance of CNNs trained on

increasing numbers of different HRTF measurement sets of a single binaural array.

The expected trend is revealed: increasing the number of HRTF measurement

sets also allows the model to better generalise to other unknown measurement sets.

Looking only at the cross performance matrices could be misleading, as a much larger

proportion of the entire matrix becomes covered by models being tested on already

seen HRTF measurement sets. Table 78, which only includes the results of unknown

results, confirms this is not the case however, and that increasing the number of

HRTFs does improve generalisation.

Even in the case of maximum number, 8 HRTFs, the system still cannot perfectly

generalise to other HRTF measurements; two systems still report a large degree of

error, model number 1 and 6. It should be noted however, that these two models are

tested solely on data made with HRTF sets 9 & 5, the two sets previously identified

as generalising poorly to the other sets. In this case, increasing the number of HRTF

has the downside that it reduces the statistical significance of the testing dataset.

Comparing these results of increased number of HRTFs to the case with single, it

is seen that performance in fact decreases when increased to two HRTFs. This is not
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the general trend, but shows that data complexity is still a concern and there can be

potential for doing more harm than good.

7.4 Converting HRTFs to Directional Transfer Functions

In the introduction of this chapter, the differences between HRTFs measurements was

shown through the use of CTF; the average transfer function across all frequencies in

the measurement set shown in Figure 106. Given that this difference is known, it is

possible to use this as an equalisation filter, under the presumption that taking away

these differing common elements will better align the HRTFs.

This creates a transfer function which is termed the directional transfer function

(DTF). It is a technique used in spatial audio, under a similar assumption that the

CTF describes the unwanted parts of the signal

DTF[ω, r, θ, φ] =
HRTF[ω, r, θ, φ]

CTF[ω]
(147)

This method is similar to the diffuse-field equalisation technique commonly applied to

HRTF measurements, also equalises the HRTFs by the inverse of the average, however

this is more typically executed using the root mean square (RMS) of the HRTFs:

Heq[ω, r, θ ϕ] =
HRTF[ω, r, θ, φ]√
1
K

∑k
k=1 |HRTFk[ω]|2

(148)

Given this similarity, it is important to note then that no such equalisation has already

been applied to the HRTFs distributed as part of the Club Fritz study.

7.4.1 Method

An implementation of this taken from the auditory modelling toolbox (Majdak et al.,

2022) was applied to the all of the sets of HRTFs. The new resulting sets of DTFs

were used to create training and testing datasets in a way exactly identical to that

described in Chapter 7.2. Furthermore, it was tested whether doing this for increased

number of measurement sets leads to a similar trend as that presented in chapter

7.3.3, and so the number of DTFs is increased in an exactly identical manner.
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Table 79: Number of speech samples per DoA in training set for each test

Set Speech

Samples

DTFs Total per

DoA

Absolute

Total

1 DTF 1000 1 1000 36,000

2 DTFs 500 2 1000 36,000

4 DTFs 250 4 1000 36,000

8 DTFs 125 8 1000 36,000

7.4.2 Results

Cross Performance matrices are presented individually for 1, 2, 4 and 8 DTFs in Figs.

111-114. Additionally, performance when evaluated on mismatched testing data is

seen in Table 80.

Figure 111: Inter-Measurement set Cross Performance matrices for CNN Trained on DTFs
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Figure 112: Inter-Measurement set Cross Performance matrices for CNN Trained on 2 DTFs

Figure 113: Inter-Measurement set Cross Performance matrices for CNN Trained on 4 DTFs

Figure 114: Inter-Measurement set Cross Performance matrices for CNN Trained on 8 DTFs
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Table 80: Average Performance across models trained on DTFs of Club Fritz

1 2 3 4 5 6 7 8 9 Avg.

1
D
T
F Accuracy 47.9% 47.5% 51.4% 41.2% 46.7% 55.6% 50.1% 48.6% 28.9% 46.4%

RMSLE 50.2◦ 53.5◦ 47.0◦ 68.9◦ 52.8◦ 53.8◦ 50.9◦ 53.1◦ 53.3◦ 53.7◦

Confusion 14.0% 15.0% 14.8% 17.7% 11.4% 12.1% 11.1% 15.1% 15.0% 14.0%

2
D
T
F
s Accuracy 42.8% 43.3% 68.8% 50.8% 55.4% 53.8% 53.9% 43.7% 60.5% 52.5%

RMSLE 52.7◦ 55.9◦ 32.1◦ 53.5◦ 50.7◦ 51.1◦ 44.0◦ 52.1◦ 35.8◦ 47.5◦

Confusion 16.4% 16.6% 6.2% 15.6% 13.3% 12.4% 13.2% 14.5% 6.1% 12.7%

4
D
T
F
s Accuracy 61.0% 70.4% 72.8% 41.5% 52.6% 49.8% 78.3% 67.9% 46.6% 60.1%

RMSLE 37.2◦ 25.3◦ 25.2◦ 59.2◦ 40.6◦ 46.0◦ 19.8◦ 37.9◦ 51.8◦ 38.1◦

Confusion 6.3% 5.5% 4.1% 17.2% 12.8% 14.5% 1.9% 6.4% 10.9% 8.9%

8
D
T
F
s Accuracy 45.9% 93.5% 88.2% 92.7% 85.4% 72.5% 93.0% 89.7% 77.6% 82.1%

RMSLE 16.0◦ 8.2◦ 13.0◦ 14.8◦ 17.3◦ 21.8◦ 6.0◦ 7.3◦ 36.0◦ 15.6◦

Confusion 0.9% 0.7% 0.9% 1.7% 1.4% 2.0% 0.4% 0.3% 6.7% 1.7%

7.4.3 Discussion

The results in Chapter 7.4.2 show performance on CNN trained and tested on DTFs

created from HRTFs in the Club Fritz dataset.

Comparing Table 80 to Tables 76 and 75 reveals only a small change in perfor-

mance between use of HRTFs and DTFs, with HRTFs slightly outperforming DTFs

for low counts of measurement datasets, and DTFs slightly outperforming HRTFs

for higher counts of measurement datasets. This suggests that the difference between

measurement datasets leading to lack of generalisation is not well described within

the differences in CTFs, and that these differences are not relevant at all. Based on

this it is concluded that conversion to DTF is not necessary.

7.5 Augmentations to HRTFs for Improved Performance

The most obvious solution to this issue would be the solution most typically applied to

most overfit issues in deep learning: increase the quantity and variety in the training

data. For anechoic HRTFs however, this is difficult: if it is supposed that the model

is too heavily fitting to artefacts in the individual HRTF measurements, then it is
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difficult to acquire more of these as generally only one set of measurements of a

subject is published. If the issue is differences between measurement datasets as a

whole, then a similar problem exists that there are not enough institutions which

have measured HRTFs to create adequate variety.

One solution may be to augment the HRTFs in ways that reduce the models’

ability to overfit to misleading information.

7.5.1 Horizontal Plane Mirroring

The human head (and consequently the HRTF) are very close to but not exactly

symmetrical, meaning the binaural cues in sound sources of positions reflected by the

median plane are close to a perfect additive inverse, and the monaural cues are almost

exactly identical.

This information is used to justify measuring the full horizontal plane, rather than

only half the plane as split by the median plane. However, in this case it creates an

opportunity for an augmentation; if HRTFs from one half of the median plane are

mirrored onto the other half, it is possible to create two sets of HRTFs from one set

of measurements.

This idea has previously been applied in deep learning with HRTFs (Pauwels and

Picinali, 2023), but in the context of a test only looking at monaural cues, addressing

the suitability of mismatched HRTF datasets for deep learning tasks in general.

Method

The augmentation is achieved by mirroring sources about the median plane. What

this means exactly, is that the horizontal plane is split into two halves down the

median plane. For one dataset HRIRs on the left half of the plane are original

measurements, and HRIRs on the right half of the plane are the channel reversed

version of the measurements on the left half. The two positions directly in front and

behind of the listener were not altered.

This was then repeated again but such that the right half retains original mea-

surements, and the left half now contains a channel reversed version of the right

half.
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These two new sets of HRTFs are then used to create training dataset for each

of the original HRTF measurements of exactly equal size to those in Chapter 7.2.1.

This was achieved by using the same speech samples, but alternating which of the

two HRTFs from the augmented sets are used for convolution for each audio file.

The same model as described in Table 73 was trained using the same parameters

described in Table 74 for the same period of 100 epochs.

Results

The cross performance matrix for models trained on horizontal plane mirroring aug-

mented datasets are shown in Figure 115.

Figure 115: Mismatched Anechoic Condition Cross Performance matrices for CNN Trained on
HRTF with Horizontal Plane Mirroring

Average performance is presented compared with change (∆) of performance com-

pared to the baseline of a single HRTF, as seen in Table 81

Table 81: Average Performance for CNN Trained on HRTFs with Horizontal Plane
Mirroring

Model 1 2 3 4 5 6 7 8 9 Avg.

Accuracy 52.0% 51.1% 52.4% 48.3% 51.1% 58.5% 53.8% 51.5% 32.7% 50.2%

∆ 4.0% 3.6% 1.0% 7.1% 4.4% 2.8% 3.7% 2.9% 3.8% 3.7%

RMSLE 44.5◦ 49.7◦ 42.9◦ 58.1◦ 51.5◦ 51.2◦ 47.7◦ 51.3◦ 51.3◦ 49.8◦

∆ -5.7◦ -3.9◦ -4.1◦ -10.8◦ -1.3◦ -2.6◦ -3.2◦ -1.8◦ -2.0◦ -3.9◦

Confusion 13.7% 13.3% 14.5% 15.4% 10.6% 11.0% 10.4% 14.9% 11.7% 12.8%

∆ -0.4% -1.6% -0.3% -2.3% -0.8% -1.1% -0.6% -0.2% -3.4% -1.2%
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Discussion

Chapter 7.5.1 shows the results of training CNNs with the horizontal mirroring aug-

mentation, tested under the mismatched anechoic condition.

Table 81 shows that performance over the baseline of a single HRTF causes an

average 3.9◦ improvement in RMSLE. This modest improvement suggests there may

be some benefit to the horizontal mirroring method. Unfortunately, however, as

binaural audio is 2 channels, it is only possible to perform this augmentation once

per HRTF. This, however, can still help exaggerate the diversity of small collections

of HRTF measurements.

7.5.2 Horizontal-Plane Interpolation

Given the apparent improvement of performance it is supposed that there may be

other methods to manipulate existing data in a set of HRTFs such that small differ-

ences are encountered, leading to potential increases in generalisation.

It is recalled that one of the hypothesised reasons a for lack of generalisation in the

mismatched anechoic condition is that CNNs may overfit to convolutive noise found in

individual HRTF measurements. Based upon this, it is proposed to augment HRTFs

by creating new HRTFs with equivalent binaural and monaural cues, but without

using the original HRTF which contains the convolutive noise.

This was achieved by interpolation between the HRTFs which straddle the target

HRTF on the horizontal plane. For example, in a measurement set where the hor-

izontal plane is sampled by 10◦ increments, supposing it is desired to augment the

HRTF in the position φ = 30◦. This would be achieved by interpolating between the

HRTFs found at φ = 20◦ and φ = 40◦.

This interpolation is done in the frequency domain, applying linear interpolation

to the magnitudes and phase of the signal.

|HRTFaug1[ω, 30
◦]| = |HRTF[ω, 20

◦]|+ |HRTF[ω, 40◦]|
2

∠HRTFaug1[ω, 30
◦] =

∠HRTF[ω, 20◦] + ∠HRTF[ω, 40◦]
2

(149)

This could then be continued to higher orders, by interpolating the next two most
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distant positions on the horizontal plane; in this example being 10◦ and 50◦.

|HRTFaug2[ω, 30
◦]| = |HRTF[ω, 10

◦]|+ |HRTF[ω, 50◦]|
2

∠HRTFaug2[ω, 30
◦] =

∠HRTF[ω, 10◦] + ∠HRTF[ω, 50◦]
2

(150)

To test the efficacy of this augmentation, new sets of HRTFs are created using the

proposed augmentation technique for every existing HRTF measurement set, up to

an order of 7, being the maximum possible with the number of HRTF sets available.

These were then used in conjunction with the original measurements to create training

dataset of 2, 4, and 8 sets of HRTFs made from one original set of measurements.

Results

Cross Performance Matrices are presented individually for 2, 4 and 8 HRTFs in Figs.

116-118. Additionally, average performance when evaluated on mismatched testing

dataset is shown in Table 82.

Figure 116: Mismatched Anechoic Condition Cross Performance matrices for CNN Trained on
HRTF augmented once with Horizontal Plane Interpolation
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Figure 117: Mismatched Anechoic Condition Cross Performance matrices for CNN Trained on
HRTF augmented three times with Horizontal Plane Interpolation

Figure 118: Mismatched Anechoic Condition Cross Performance matrices for CNN Trained on
HRTF augmented seven times with Horizontal Plane Interpolation
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Table 82: Average performance for CNNs trained with horizontal plane interpola-
tion

1 2 3 4 5 6 7 8 9 Avg.

S
e
t
o
f
2 Accuracy 45.2% 44.8% 44.1% 37.1% 45.7% 50.2% 47.1% 42.0% 25.1% 42.3%

RMSLE 53.6◦ 58.9◦ 59.3◦ 67.5◦ 54.7◦ 55.9◦ 45.3◦ 57.6◦ 51.8◦ 56.0◦

Confusion 14.7% 14.2% 11.8% 14.9% 11.8% 13.9% 9.1% 15.1% 14.2% 13.3%

S
e
t
o
f
4 Accuracy 45.1% 45.0% 46.4% 41.1% 43.7% 51.9% 48.8% 44.8% 25.5% 43.6%

RMSLE 52.5◦ 57.2◦ 55.9◦ 60.6◦ 57.9◦ 55.7◦ 44.9◦ 52.8◦ 49.8◦ 54.2◦

Confusion 14.7% 13.5% 11.4% 12.3% 11.7% 13.9% 9.3% 13.8% 14.1% 12.7%

S
e
t
o
f
8 Accuracy 45.9% 44.3% 49.6% 38.0% 46.4% 52.4% 50.0% 44.3% 27.4% 44.2%

RMSLE 52.0◦ 59.2◦ 49.9◦ 64.3◦ 54.1◦ 55.7◦ 44.1◦ 54.2◦ 52.5◦ 54.0◦

Confusion 15.2% 15.5% 11.0% 14.5% 11.5% 13.5% 9.6% 15.6% 14.5% 13.4%

Discussion

Looking at Table 82, little improvement in performance is seen as the number of

augmentations is increased. This suggests no discernible improvement to general-

isation when using this augmentation technique. Based on this, this approach is

not recommended. This also suggests the hypothesis that convolutive noise in single

measurements is the cause of a lack of generalisation may not be correct.

7.5.3 Vertical Plane Interpolation

One possible cause of the lack of improvement in the horizontal-plane interpolation

method is that all of these positions are eventually still included in the training

dataset.

To test this, another similar augmentation scheme was proposed, in which in-

stead of interpolation on the horizontal plane, the multi-dimensional nature of these

datasets were leveraged, and instead the DoA representing next larger and smaller

elevation to 0◦ at the desired azimuth was chosen.

|HRTFaug1[ω, 0, φ]| =
|HRTF[ω, ϑ, φ]|+ |HRTF[ω,−ϑ, φ]|

2

∠HRTFaug1[ω, 0, φ] =
∠HRTF[ω, ϑ, φ] + ∠HRTF[ω,−ϑ, φ]

2

(151)
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where ϑ is some offset to θ based on the next available θ value in the sampling grid.

This was also repeated for multiple orders, creating sets of [2, 4, 8] unique sets of

HRTFs per original measurement set.

Results

Cross Performance Matrices are presented individually for 2 and 4 HRTFs in Figs.

119-120. Additionally, average performance when evaluated on mismatched testing

datasets is shown in Table 83.

Figure 119: Mismatched Anechoic Condition Cross Performance matrices for CNN Trained on
HRTF augmented once with Vertical Plane Interpolation

Figure 120: Mismatched Anechoic Condition Cross Performance matrices for CNN Trained on
HRTF augmented three times with Vertical Plane Interpolation
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Table 83: Average performance of CNN trained on dataset augmented with the
vertical plane interpolation technique

1 2 3 4 5 6 7 8 9 Avg.

S
e
t
o
f
2 Accuracy 47.7% 45.9% 43.9% 42.2% 43.9% 52.2% 49.7% 44.7% 32.4% 44.7%

RMSLE 47.5◦ 52.3◦ 54.2◦ 59.4◦ 57.5◦ 54.5◦ 46.7◦ 52.8◦ 52.9◦ 53.1◦

Confusion 15.6% 15.1% 11.9% 13.9% 10.4% 14.0% 8.4% 14.6% 12.0% 12.9%

S
e
t
o
f
4 Accuracy 44.8% 46.7% 43.5% 41.4% 45.4% 52.8% 47.8% 43.7% 30.2% 44.0%

RMSLE 51.1◦ 51.8◦ 55.6◦ 64.7◦ 55.3◦ 54.9◦ 52.6◦ 56.4◦ 53.5◦ 55.1◦

Confusion 14.0% 15.5% 12.9% 13.9% 11.7% 13.1% 10.8% 14.5% 13.1% 13.3%

Discussion

It can be seen in Table 83 that the vertical plane approach offers no improvement

over the horizontal plane approach. This confirms the negative result, that this

interpolation based approach to HRTF augmentation is not suitable for improving

generalisation of CNN for BSSL in the mismatched anechoic condition.

7.6 Conclusion

In this chapter, a short study has been conducted on the efficacy of binaural DoA-

estimation using CNNs. It was found that CNNs trained on data made with a single

HRTF measurement set, generalise very poorly to other HRTF measurement sets. It

was shown that this could be mitigated by increasing the number of measurement

sets, however this would require a similar round-robin set of measurements to be

conducted on other binaural arrays to replicate.

A method of altering the HRTFs was proposed, being to find and remove the

common part of the transfer function. This did not achieve an improvement.

Following this some methods of augmenting HRTFs were proposed; creating new

positions with horizontal plane mirroring, horizontal plane interpolation and verti-

cal plane interpolation. Of these methods, horizontal plane interpolation provided

the only increase in performance, however this method is limited in that for each

measurement set only one augmentation can be achieved.

The mismatched anechoic condition is a challenging barrier in deep-DoA estima-

tion, which has typically been ignored in previous work in the field.
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8 Conclusions and Further Work

This work has looked at Binaural direction of arrival (DoA) estimation by use of

convolutional neural networks (CNNs), based on the trend towards this approach in

the field of binaural sound source localisation (BSSL). To assess the suitability of this

approach, and to move towards more optimal implementation of CNNs in generalised

scenarios, a series of experiments was performed analysing localisation performance

in scenarios identified as significant in a literature review.

• Localisation of single speaker

• DoA Estimation on the full horizontal plane

• Localisation in the presence of the reverberation of unseen rooms

• Localisation in the presence of unseen noise mixtures

• Localisation which can be generalised beyond single sets of head-related transfer

function (HRTF) measurements

Based on this, experimental work was carried out on the following areas.

Localising in Simulated Acoustic Environments

A study of how different types of acoustic environments affect a simple CNN trained

on magnitude of short-time fourier transform (STFT) domain binaural audio was

undertaken. These tests included diffuse noise, interfering sound sources, additive

noise and simulation of it,the mismatched HRTF condition, and reverberation time.

A significant pattern is identified, in which some types of acoustic degradation,

particularly those which can be considered additive noise, cause some reduction in

performance, while some acoustic conditions pose significant generalisation issues.

It was found here that CNNs tasked with binaural DoA estimation generalise very

poorly to unknown rooms, and this is a more significant challenge than the actual

level of reverberation.

Another notable conclusion here is that binaural room impulse responses (BRIRs)

synthesised through image source method (ISM) work as a good proxy for performance

of real measured BRIRs.
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Feature Representations

It was identified that previously little attention has been placed on different types of

magnitude-frequency domain feature representations, and the significance of changing

the approach.

Through comparative analysis, it was found that using log-spectrograms is a rea-

sonable approach, as compared to cepstra. Additionally it was found that the type of

filterbank used in STFTs is of little significance. Attention was then placed on phase

and time based feature representations, following a similar technique of comparative

analysis between different approaches in controlled conditions.

The significant findings were that unwrapping phase does not improve perfor-

mance, that phase is significantly preferred to cross-correlation derived representa-

tions, and that 2D phase matrices are preferred over interaural phase difference (IPD)

matrices. It was also found that the magnitude of STFT domain binaural audio is

the salient representation, not phase.

Deep Learning Architectures

It was tested whether 1D or 2D convolutional layers, and their correspondingly shaped

inputs, are preferred.

It was shown here that 2D representations are capable of achieving better per-

formance. Following this the increasing trend towards convolutional recurrent neural

network (CRNN) was scrutinised, as it had not yet been established in literature

whether the introduction of recurrent layers is capable of improving performance in

BSSL. It was found that that this is the case, with CRNNs being able to outperform

CNNs.

Building on this another comparison was performed investigating the preferred

type of recurrent layer for use in BSSL. Out of long short-term memory (LSTM),

bidirectional long short-term memory (BiLSTM), gated recurrent unit (GRU) and

bidirectional gated recurent unit (BiGRU), a soft preference for BiLSTM is estab-

lished.

Mismatched Anechoic Condition

It was identified that much of the previous work on BSSL evaluates systems using the
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HRTFs from the measurement set as the training data, which is potentially hiding a

large generalisation issue.

The heavy degree to which CNNs are not able to generalise to other measurement

sets was established, and some methods of dealing with this were proposed beyond

increasing the number of HRTF measurements: removal of the common transfer

function (CTF) from the HRTFs, augmentation by mirroring of source positions, and

two novel augmentation schemes where new HRTFs are created through selective

interpolation.

It was shown that data plurality is still the most significant factor towards robust

localisation under the mismatched anechoic condition, but that some improvement

through augmentation is possible.

The total of these findings advances understanding towards robust binaural DoA

estimation, as overlooked and ignored issues of generalisation in CNN based DoA

estimation are now better understood.

The main conclusion taken from the research in this thesis is that deep learning

based binaural DoA estimation, as presented in previous publications where simu-

lated data is used as a proxy for real-world implementation, is fundamentally limited

by the bottleneck of generalising to conditions otherwise unseen in the datasets. Im-

provement towards this aim can be made through more careful consideration of the

training data, feature representations, and the model design; it is the recommenda-

tion of this thesis that future work in the pursuit of robust binaural DoA estimation

concentrates on utilising realistic binaural datasets.

8.1 Areas for Future Work

This work establishes the importance of two large and under-explored generalisa-

tion issues encountered while using convolutional neural networks for binaural sound

source localisation: generalising to unknown room impulse responses, and to unknown

measurements of a known binaural array (the mismatched anechoic condition). In

both cases, the most effective solution to this has been shown to be increasing the

number of known conditions in the dataset, however this comes at the expense of

increased data complexity which may lead to a general worsening of performance.
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A recommended area of future work is to further explore signal processing ap-

proaches to mitigate these factors in the dataset. Humans ability to localise sound

in reverberant environments is aided through an ability to differentiate between a

direct path’s wavefront and the reflections, in what is known as the precedence ef-

fect. A plausible hypothesis is that precedence effect modelling can help mitigate the

generalisation issue; which needs to be tested.

Solutions to mitigate the issue of generalising to unknown measurements sets were

proposed in Chapter 7, however most of these results were negative. A clear area for

future work is the proposal of more augmentation methods which could be used in aid

of this scenario. A reasonable hypothesis given the behaviour found in this section,

is that a set of equalisation filters which could be applied to HRTF sets could aid in

this.

A shortcoming of the framework applied in this work is that sound sources are

always presumed to be non-moving. This is an unrealistic assumption for real sound

sources. Moving sound sources have been considered in previous work, but there has

not been significant effort in making these trajectories realistic. Another possible area

for future work would be the realistic modelling of these trajectories, and investigating

of relevant effects of this.

A criticism of this work is that it has concentrated solely on trends existing in the

niche field of BSSL, ignoring more general trends seen in deep learning in general, and

applied to other audio fields. The sudden increase in works applying CNNs to BSSL

in 2019 came eight years after the publication of AlexNet (Krizhevsky et al., 2012)

and the popularity of CNNs in other fields. In 2017 transformers were introduced

(Vaswani, 2017), and have been getting introduced to new applications since then;

following the same trend, it would be reasonable to assume that transformer based

architectures will also come to dominate the field of BSSL. There is evidence of this

process: a transformer based model has achieved best localisation results in the sound

localisation challenge in detection and classification of acoustic scenes and events

(DCASE) for 2022-2024 (Wang et al., 2022). A now important study is to test the

application of transformer based architectures to BSSL.

This thesis concentrates on BSSL under other conditions: matched binaural array,

on the horizontal plane, and of speech. A useful continuation of this work would be
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to apply the same testing framework to BSSL in the mismatched-HRTF condition,

to median plane or full spherical DoA estimation, and finally to sound sources which

are not speech.

8.2 Closing Remarks

The research presented in this thesis investigates use of CNN architectures for the

task of BSSL. This is achieved by identifying and scrutinising, and expanding upon

current trends on existing literature on the task of BSSL. This approach gives insight

into the task of BSSL from the perspective of the data, which is not necessarily present

in the more typical literature on the topic where novel systems are introduced and

evaluated. Conclusions drawn in this thesis can be used for more effective study of

BSSL in future work.
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