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Abstract

Women have a lower age-matched cardiovascular risk than men, largely due to estrogen’s
protective role in endothelial function. While exercise improves vascular health, acute vascular
responses are influenced by factors such as age, fitness level, metabolic status, and exercise
modality. In premenopausal women, fluctuations in estrogen levels during the menstrual
cycle may further affect vascular reactivity. Here, we review current evidence on acute
exercise-induced vascular responses in women, emphasizing menstrual phase influences
and key biomarkers such as flow-mediated dilation (FMD), along with others including
vascular conductance and pulse wave velocity (PWV). Despite limited and heterogeneous
evidence, shear-induced vascular responses, (including FMD) following acute exercise, appear
to be relatively stable across menstrual cycle phase, suggesting that strict phasic control
may not always be necessary. However, future high-quality studies are needed to further
clarify this response. In contrast, other vascular assessments that rely more heavily on neural
components—such as vascular conductance and PWV—show greater estrogen sensitivity.
Nonetheless, the inconsistencies between studies again underscore the need for future research
with hormonal verification. Morever, adequate sample sizes, and standardized exercise
protocols will improve both consistency and help develop and promote the inclusion of
women in vascular research.

Keywords: vascular responses; endothelial function; flow-mediated dilation; estrogen;
menstrual cycle; acute exercise

1. Introduction
It is well established that premenopausal women—those still experiencing regular

menstrual cycles—have a lower incidence of cardiovascular disease compared to age-
matched men, a difference largely attributed to the protective effects of estrogen on cardio-
vascular health [1], particularly through its influence on endothelial function—an important
early indicator of cardiovascular risk [2].

Regular physical activity improves endothelial function and reduces cardiovascular
risk [2]. However, sex-based differences in vascular adaptations to exercise remain poorly
understood. Male and female sex hormones appear to differentially regulate endothelial
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and vascular smooth muscle function, potentially resulting in distinct exercise-induced
vascular responses [3–6].

The acute effects of exercise on endothelial function are less well understood and
appear to be influenced by factors such as age, health status, fitness level, and exercise
parameters, including the intensity, duration, and volume of exercise [7]. Understanding
these vascular responses can help predict individual adaptations and reveal vascular
plasticity [8].

Given estrogen’s key role in vascular regulation [3,5], most studies involving women
test participants during the early menstrual phase (days 1–7) to reduce hormonal variabil-
ity [9,10]. However, premenopausal women experience cyclical fluctuations in estrogen,
with both high and low estrogen phases throughout the menstrual cycle [11]. As such,
limiting research to the early phase may restrict the inclusion of women and overlook
important physiological responses. This narrative review examines vascular responses
(changes on vascular function) to acute exercise across menstrual phases to promote greater
inclusivity and precision in future research.

2. Estrogen and Its Impact on the Endothelium
The endothelium, a monolayer of cells lining blood vessels, plays a crucial role in

regulating vascular homeostasis by releasing vasoactive substances, most notably nitric
oxide (NO). NO is a key vasodilator that maintains vascular tone, supports endothelial
integrity, and promotes cardiovascular health. Increased NO bioavailability enhances
vasodilation, protects against endothelial dysfunction, and lowers cardiovascular risk [2].

Estrogen, particularly 17β-estradiol, promotes NO synthesis by stimulating endothe-
lial nitric oxide synthase (eNOS) expression via estrogen receptor alpha (ERα), or by
inducing eNOS phosphorylation through PI3K/Akt signaling [12]. Moreover, it reduces
oxidative stress [1] and enhances the function of endothelial progenitor cells (EPCs), con-
tributing to endothelial cell proliferation and facilitating vascular repair [13].

These effects contribute to sex differences in vascular function, fluctuating with
hormonal shifts throughout the menstrual cycle [14] and changing with age [15]. Pre-
menopausal women generally exhibit superior endothelial function compared to age-
matched men [16] likely due to estrogen’s vascular protective properties [1]. Indeed,
flow-mediated dilation (FMD), a non-invasive assessment of NO-dependent endothelial
function [17], is generally higher in premenopausal women compared to age-matched
men [16,18], while some studies also suggest an increase from the early (low estrogen) to
late follicular (high estrogen) phase, aligning with peak estrogen levels [18–21]. A more
detailed discussion of these phases will follow in the subsequent section.

The onset of menopause (the final menstrual period) reduces estrogen levels, leading to
lower NO bioavailability and increasing oxidative stress [1,15]. Estrogen loss also elevates
sympathetic activity and α-adrenergic vasoconstriction, raising blood pressure both at rest
and during exercise in postmenopausal women (normally defined as ≥12 months without
menstruation) [22], affecting arterial compliance. Moreover, postmenopausal women often
exhibit reduced arterial compliance and endothelial function [16,23–26] compared to pre-
menopausal women. Endothelial function tends to decline shortly after menopause, due to
reduced estrogen levels [27], and this decline may continue throughout the menopausal
transition. While lower levels are often reported in late menopause, the most pronounced
drop appears to occur between the pre-menopause and early menopause stages [26].

Estrogen therapy in postmenopausal women appears to mitigate some of the above
adverse effects [28], helping improve FMD and lower oxidative stress [27], particularly
when combined with exercise training [29,30]. However, the cardiovascular effects of
estrogen therapy remain contentious, as delayed initiation may elevate cardiovascular risk,
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whereas early intervention appears protective [28,31]. Notably, the route of administration,
type, dosage, and combination with progestins all significantly influence the therapy’s
outcomes [32].

3. Menstrual Phases Overview and the Physiological Effect of the Phases
on Endothelial Function

A typical 28-day menstrual cycle consists of three phases: (a) the follicular phase
(~days 1–13), (b) ovulation (~day 14), and (c) the luteal phase (~days 15–28), each char-
acterized by distinct hormonal fluctuations [11]. Briefly, during the early follicular phase,
estrogen and progesterone levels are initially low (~days 1–7), with estrogen gradually
rising as ovulation nears (~days 8–13), while progesterone remains low. Around ovu-
lation (~day 14), estrogen drops slightly while levels of luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) increase significantly [33]. In the luteal phase (~days
4–6 post-LH peak; ~days 15–22 of a typical menstrual cycle), progesterone rises sharply
after ovulation, while estrogen shows a slight decrease but remains relatively high. In the
later part of the luteal phase (~days 8–13 post-LH peak; ~days 23–28 of a typical menstrual
cycle), progesterone declines, and estrogen levels rise again. These hormonal fluctuations
throughout the menstrual cycle are illustrated in Figure 1. It is, however, crucial to ac-
knowledge that despite this “text-book” description, there exists considerable inter- and
intra-individual variability in menstrual cycle length and hormonal profiles.

Figure 1. Hormonal Fluctuations Across the Menstrual Cycle: Estrogen, Progesterone, Follicle-
Stimulating Hormone (FSH), and (Luteinizing Hormone) LH Dynamics. Throughout the menstrual
cycle, FSH gradually increases during the follicular phase, reaching a peak just before ovulation,
and then declines. LH remains relatively low until a dramatic surge occurs around the time of
ovulation. Estrogen rises progressively during the follicular phase, peaking just prior to ovulation,
before dipping and experiencing a secondary rise during the luteal phase. Progesterone remains
low in the follicular phase, then increases sharply after ovulation, peaking in the luteal phase, and
ultimately declines.

Hormonal fluctuations can impact vascular function [34]. Estrogen rises from the
early to the late follicular phase (~days 7–14), improving endothelial function, as shown
by enhanced FMD or elevated NO levels [18–21,35,36]. During ovulation, endothelial



Sports 2025, 13, 210 4 of 12

integrity is maintained despite a slight estrogen drop [37]. In the early luteal phase,
reduced estrogen may impair vascular function, evidenced by decreased FMD and arterial
distensibility [21,37]. As progesterone rises, it may counteract estrogen’s effects, with
one study even showing similar FMD during the mid-luteal phase (days 23–25) and
early follicular phase [38]. However, vascular function may improve in the mid- to late
luteal phase [21,39,40]. Overall, the above studies suggest that vascular function may be
modulated by estrogen levels, with potential antagonism from progesterone.

Discrepancies exist, with some studies showing no phase effects on the vasculature
[32,41–43]. Moreover, a meta-analysis [34] reports a slight increase in endothelial function
from early to late follicular phases, with no significant microvascular changes during the
luteal phase. These discrepancies may reflect cycle-to-cycle variability [44], complicating
the identification of phase-dependent vascular effects.

4. Vascular Responses to Acute Exercise
Regular exercise benefits endothelial health [2], but the acute effects of a single session

can vary, showing improvement, impairment, or no change, depending on exercise type,
intensity, participant health, and timing of assessment [7]. Briefly, a single bout of moderate-
intensity exercise generally increases endothelial function, while higher intensity exercise
may induce oxidative stress resulting in transient decrease in endothelial function before
returning to baseline levels, particularly in individuals with cardiovascular risk factors
compared to young healthy individuals. More details about how these parameters affect
acute vascular responses have been analyzed in the following resources [7,45,46].

Although most of the studies assessing endothelial function in response to acute
exercise are conducted in men, some studies showed superior vascular responses following
acute bout of exercise in premenopausal women compared to age-matched men [47–49].
Furthermore, moderate-intensity exercise reduced circulating CD62E+ microparticles (an
endothelial damage marker) in women but not in men [50]. Additionally, Doonan et al. [51]
reported a higher arterial stiffness (as measured by pulse wave velocity; PWV) in men
compared to premenopausal women. However, some studies report distinct findings, such
as Hwang et al. [52] who observed impaired brachial artery FMD in women post-exercise,
and Shenouda et al. [53] who found no significant changes in brachial artery FMD in
either sex.

While there is evidence of baseline differences in vascular responses between post-
menopausal women and both premenopausal women and age-matched men, as well as
differences in vascular adaptations to exercise training [3,5,6], data on vascular responses
to acute exercise remain limited. For example, Yoo et al. [54] found that brachial artery
FMD was reduced after acute exercise in men but remained unchanged in postmenopausal
women, suggesting a potential protective effect despite menopause. Earlier studies within
women report that although FMD declines from pre- to postmenopausal status at base-
line, acute moderate-intensity exercise can still enhance FMD—often to a greater extent
in postmenopausal than premenopausal women [55,56]. In contrast, Serviente et al. [57]
reported that perimenopausal women showed enhanced brachial artery FMD and reduced
inflammatory markers post-exercise, while postmenopausal women showed no FMD im-
provement and increased platelet-derived microparticles, suggesting estrogen decline may
impair these responses [6,27].

A major confounder in studying vascular responses is menstrual cycle phase, which
influences endothelial function through hormonal fluctuations [34] and thereby affects acute
exercise responses. However, many of the studies mentioned above either fail to report cycle
phase [47,52] do not control for it [50], or assess women in only the follicular phase [48,49,51,53].
Such methodological inconsistencies limit the generalizability of findings, increasing variability
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in sex-specific research outcomes. This highlights a critical need for enhanced standards of
practice in women’s health research [58].

The following section reviews vascular responses to acute exercise across menstrual
cycle phases in premenopausal women.

5. Acute Exercise in Females and Menstrual Phases
This section shifts the focus to premenopausal women, examining how hormonal

fluctuations during different menstrual phases impact vascular responses to acute exercise.
While we recognize the value of a systematic review approach, we opted for a narrative
review due to the limited number of relevant studies and considerable heterogeneity in
study designs, exercise protocols, participant characteristics, and vascular assessment
methods. This section includes studies examining vascular responses to acute exercise in
premenopausal females across different menstrual cycle phases, using protocols such as
handgrip, leg extension, resistance exercise, and cycling. The studies summarized below
and in Table 1 examine how hormonal fluctuations influence exercise-induced increases
in blood flow and vasodilation [2], along with other measures such as arterial stiffness
and vascular conductance. Table 1 also notes whether participants had cardiovascular risk
factors (e.g., obesity), which can affect vascular responses.

Although FMD is commonly used to assess vascular endothelium responses, as it
reflects NO-mediated vasodilation [17], we have identified only a limited number of
studies that have utilized this measure for acute exercise across the menstrual cycle. Two
notable studies, by D’Urzo et al. [41] and Khaksar et al. [59], examined whether estrogen
fluctuations affect FMD during distinct follicular sub-phases. Specifically, D’Urzo et al. [41]
assessed brachial artery FMD during the early (days 2–7) and late follicular phases (days
13–14), while Khaksar et al. [59] employed a similar timeline, comparing days (1–5) with
days (10–14). Despite hormonal divergence, both studies reported no significant differences
in FMD, suggesting that estrogen alone may have limited influence on endothelial function
in response to acute exercise.

In addition to FMD, Weggen et al. [60] examined vascular responses (blood flow and
arterial diameter changes), using passive leg movement and handgrip exercise in young
healthy women during the early (days 1–7) and late (days 12–14) follicular phases. The
authors also measured vascular conductance, accounting for mean arterial pressure. Both
protocols showed no significant menstrual cycle effects on blood flow, dilation, or vascular
conductance, consistent with earlier findings. Similarly, Limberg et al. [40] found no
menstrual phase differences in forearm blood flow and vascular conductance during steady-
state dynamic exercise. Furthermore, Shiozawa et al. [61] observed no phase-dependent
variations in vascular responses assessed via celiac artery blood flow and conductance
during moderate-intensity knee-extension exercise across the follicular (days 1–4) and luteal
(days 18–22) phases in young healthy women. Gonzales et al. [62] investigated forearm
blood flow and vascular conductance across the follicular (days 7–14) and luteal (days 18–24)
phases using dynamic handgrip exercise, paired either with a placebo or with L-citrulline
supplementation (a non-essential amino acid that serves as a substrate for eNOS) [63]. In
the study, L-citrulline supplementation raised plasma arginine levels, suggesting potential
vascular benefits, but did not significantly alter forearm blood flow across menstrual phases
or improve vascular responses compared to placebo. Together, these findings indicate that
menstrual cycle phase has minimal impact on vascular responses to low- to moderate-
intensity exercise.

Restaino et al. [64] compared forearm blood flow and forearm vascular conductance
(FVC) in obese women and healthy controls. During early menstruation (~days 1–5), obese
women showed lower blood flow and conductance at rest and during isotonic handgrip
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exercise to exhaustion. However, these vascular responses improved in the proliferative
phase (1 week after the early menstruation phase: typically, ~5–12 days, no direct hormonal
measurements were conducted), suggesting rising estrogen levels have a protective effect.
The findings imply obesity may impair vascular responses to acute exercise [7] while higher
estrogen levels in the early menstruation phase may help moderate these effects [3,5].

Given the limited data in FMD and/or other measures such as exercise-induced blood
flow, which are heavily related to endothelium and NO bioavailability [17,41], we also
reviewed studies using alternative vascular measures such as PWV, a reliable measurement
of arterial stiffness [65]. These measurements are strongly influenced by neural regulation,
making them sensitive to blood pressure changes.

Okamoto et al. [66] found that high-intensity resistance training increased PWV 30
and 60 min post-exercise during the follicular phase (days 1–5) but not in the luteal phase
(days 20–24) in healthy premenopausal women. This suggests that higher estrogen levels
in the luteal phase may reduce exercise-induced blood pressure spikes, possibly through
enhanced NO production [5,6] and by counteracting sympathetic nervous system (SNS)
activation during resistance exercise. Unlike low-to-moderate aerobic exercise, resistance
training may cause sharp, immediate blood pressure spikes [67] partly due to vessel
compression, the Valsalva maneuver, and a strong exercise pressor reflex [68,69]. These
surges can overactivate the SNS, raising PWV, but higher estrogen levels are linked to
reduced SNS activity, potentially lessening these effects [70].

Park et al. [71] assessed central vascular conductance using thoracic impedance cardio-
graphy during cycling at 60% VO2max in the early follicular (days 2–4) and late ovulation
(days 10–13) phases. They found total vascular conductance decreased in the early follicular
phase but improved during ovulation. Importantly, unlike the above studies that assessed
vascular conductance locally via blood flow, this study measured systemic conductance
using cardiac output, which limits interpretation of changes in exercised muscles and local
vasodilation. Hormone levels were not directly measured; however, these differences may
be explained by estrogen’s influence on autonomic nervous system regulation, where lower
estrogen during early follicular phase promotes sympathetic nervous system activation
and peripheral vasoconstriction.

In summary, vascular responses assessed by endothelium-dependent measures such
as FMD or shear-rate dilation (e.g., passive leg or handgrip) appears to remain stable across
the menstrual cycle during moderate-intensity exercise. However, vascular responses
measured by methods more reliant on neural regulation and arterial pressure, such as PWV
or vascular conductance, particularly during high-intensity exercise and resistance training,
which are likely associated with increased sympathetic activity, may be modulated by
estrogen. This protective effect likely reflects estrogen’s influence on autonomic function
and vascular tone.

Table 1. Summary of Studies Investigating Menstrual Phase Effects on Vascular Responses to Exercise.

Study Participants’ Menstrual Phase
and Assessment Exercise Protocol Outcome

Measures
Measurement

Timing Key Findings

D’Urzo et al.,
2018 [41]

Healthy
premenopausal
women (n = 12)

Early Follicular
(Days 2–7); Late
Follicular (Days

13–14); Hormonal
levels via blood

samples

Handgrip MVC
for 6 min (1 s

on/5 s off)

FMD Baseline, each
minute for 6 min

No phase
differences in

vascular
responses.

Restaino et al.,
2022 [64]

Healthy (n = 20),
and obese (n = 9)
premenopausal

women

Early menstrual
phase (~Days

1–5); Proliferative
Phase (~Days

7–12); Hormonal
levels via blood

samples

Handgrip:
2 minwarm-up,

increase
(0.25 W/min)
until failure

FVC Final 15 s of
exercise

Reduced blood
flow in obese

women during
early menses;
improved in
proliferative

phase
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Table 1. Cont.

Study Participants’ Menstrual Phase
and Assessment Exercise Protocol Outcome

Measures
Measurement

Timing Key Findings

Okamoto et al.,
2017 [66]

Healthy
premenopausal
women (n = 9)

Follicular (Days
1–5); Luteal (Days
20–24); Hormonal
levels via blood

samples

Warm up, bench
press (80% 1RM,

5 × 5), biceps curl
(70% 1RM,

5 × 10)

PWV Baseline, 30 min,
60 min

post-exercise

Increase PWV at
30- and 60

minpost-exercise
in follicular phase

only.

Gonzales et al.,
2020 [62]

Healthy
premenopausal
women (n = 24)

Follicular (Days
7–14); Luteal
(Days 18–24);

Hormonal levels
via blood samples

Handgrip (10%
MVC, 5 min);

Citrulline
supplementation

(6 g/day for
7 days) vs.

placebo

FVC, FBF, Plasma
Arginine

Baseline, last 30s
of exercise

No phase
differences or

citrulline effects
on vascular
measures.

Weggen et al.,
2023 [60]

Healthy
premenopausal
women (total
n = 21; n = 11
measured in
two phases)

Early Follicular
(Days 1–7); Late
Follicular (Days

12–14); Hormonal
levels via blood

samples

Passive leg
movement (PLM);

handgrip (3 kg,
6 kg, 3 min each)

Vascular
conductance,
blood flow

(femoral and
brachial)

Baseline, during
(PLM) or last

minute each stage
(handgrip)

No phase
differences in

vascular
responses.

Park et al.,
2017 [71]

Healthy
premenopausal
women (n = 10)

Early Follicular
(Days 1–4); Late
Follicular (Days

10–13)
Calendar-based

tracking

2 minwarm-up;
30 min cycling
60% VO2peak

Total vascular
conductance

5, 10, 15 min
post-exercise

Higher total
vascular

conductance in
late follicular

phase.

Shiozawa et al.,
2023 [61]

Healthy
premenopausal
women (n = 11)

Early Follicular
(Days 1–4);

Mid-Luteal (Days
18–22); Menstrual

phase via
Ovulation

Predictor Kit

Dynamic leg
exercise at 30%

HRR, 4 min

Celiac artery
blood flow and

vascular
conductance

Baseline, every
1 min during

exercise

No phase
differences in

vascular
responses.

Limberg et al.,
2010 [40]

Healthy
premenopausal
women (n = 9)

Early Follicular
(Day 3 ± 0.3);

Early Luteal (Day
15 ± 0.8);

Hormonal levels
via blood samples

Handgrip 15%
and 30% MVC

7 min;
Phenylephrine or
clonidine infusion
during final 3 min

FBF, FVC Baseline,
continuously

during exercise,
prior and during

infusions

No phase
difference at
baseline and

during exercise
prior infusions.
Vasoconstrictor

response to
clonidine was

lower in the early
luteal phase

compared to the
early follicular
phase at 15%

MVC.

MVC, maximum voluntary contraction; FMD, flow-mediated dilation; 1RM, 1 repetition maximum; FVC, forearm
vascular conductance; FBF, forearm blood flow; PLM, passive leg movement; VO2peak, peak volume oxygen
uptake; HRR, heart rate reserve.

6. Potential Mechanisms
Although estrogen levels fluctuate across the menstrual cycle, acute moderate-intensity

exercise does not significantly alter endothelial function between phases. In contrast, central
hemodynamic measures like PWV and vascular conductance are more sensitive to these
changes, showing stronger responses when estrogen is high. During exercise, vascular
tone reflects a balance between vasodilation—partly via increased NO bioavailability—and
vasoconstriction from sympathetic activation. Estrogen supports this balance by enhancing
NO availability [12] and reducing sympathetic activity [70].

In terms of autonomic regulation and sex-based differences, premenopausal women
generally experience lower levels of muscle sympathetic nerve system (SNS)-induced vaso-
constriction compared to men [72], a disparity often attributed to higher estrogen levels.
However, this protective effect seems to diminish following menopause, resulting in vascu-
lar responses that more closely align with those observed in men [22,72–74]. Within the
menstrual cycle, elevated estrogen levels during the luteal phase have been associated with
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reduced sympathetic neural activity [70]. Notably, Chidambaram et al. [75] demonstrated
that despite an increase in circulating renin-angiotensin system components, vasoconstric-
tive responses at the tissue level may be attenuated during the luteal phase (days 15–24)
compared to the follicular phase (days 3–6), which could explain the vasodilatory effect
observed in some studies in the luteal phase.

Exercise modality and intensity also influence acute endothelial responses. High-
intensity exercise and resistance training stimulate the SNS and increase endothelin-1
levels (a vasoconstrictive agent), which can override vasodilatory mechanisms and impair
vascular responses [76]. However, during phases of elevated estrogen, the hormone may
counteract these adverse effects, as observed in Okamoto et al. [66]. In contrast, low- to
moderate-intensity aerobic exercise typically adopts a more balanced autonomic response,
promoting vasodilation without relying heavily on estrogen for regulation [40]. However,
current methodological limitations challenge the interpretation of study findings. Notably,
the common practice of estimating menstrual cycle phases rather than employing direct
hormonal profiling introduces significant validity concerns, underscoring the critical need
for more rigorous research methodologies [77]. Overall, current evidence on acute exercise-
induced vascular responses across the menstrual cycle is limited and primarily focused on
dynamic exercise, particularly handgrip, which restricts our ability to assess the effects of
different exercise modalities. As exercise type and intensity may differentially influence
vascular responses [7], future research should aim to standardize protocols, modalities, and
intensities while incorporating phase-specific considerations.

Moreover, inter-individual variability in menstrual cycle length and hormonal fluctua-
tions further complicates the interpretation of vascular responses to exercise. The duration
and hormonal profile of menstrual cycles can vary significantly, particularly in estradiol
levels, which exert an influence on endothelial function. Indeed, Liu et al. [44] observed
that intra-individual variability in estradiol levels across cycles contributes to inconsistent
endothelial responses, making it quite challenging to draw definitive conclusions based on
a single cycle.

7. Conclusions
The current body of research reveals important but nuanced relationships between

menstrual cycle phase and vascular responses to exercise. Although the number of studies
is limited and methodologies vary, current evidence, particularly regarding shear-induced
responses such as FMD, generally suggests stable vascular outcomes across the menstrual
cycle. This may indicate that strict control of menstrual phase is not always necessary
in certain contexts, which could help improve the generalizability of exercise studies in
women. However, further high-quality research is needed to confirm these observations.
In contrast, measures with stronger neural mediation, specifically vascular conductance
and PWV, generally demonstrate greater estrogen sensitivity. Phases with higher estrogen
levels are linked to improved blood pressure and arterial stiffness; therefore, standardizing
cycle timing or including measured hormone levels as covariates may enhance accuracy
and interpretation. Nonetheless, significant inconsistencies exist across investigations,
likely due to small sample sizes, lack of hormonal verification phase, and varied exercise
protocols, limit firm conclusions. Additionally, substantial inter-individual variability
in menstrual cycle length and hormonal fluctuations, further complicates phase-specific
interpretations. To advance the field, future studies should use hormonal verification of
menstrual phases, ensure adequate sample sizes, standardize exercise protocols, and adopt
longitudinal designs to capture within-subject variability across multiple cycles.
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Abbreviations
The following abbreviations are used in this manuscript:

1RM One Repetition Maximum
EPCs Endothelial Progenitor Cells
ERα Estrogen Receptor Alpha
eNOS Endothelial Nitric Oxide Synthase
FBF Forearm Blood Flow
FMD Flow-Mediated Dilation
FSH Follicle-Stimulating Hormone
FVC Forearm Vascular Conductance
HRR Heart Rate Reserve
LH Luteinizing Hormone
MVC Maximum Voluntary Contraction
NO Nitric Oxide
PI3K/Akt Phosphoinositide 3-Kinase/Protein Kinase B
PLM Passive Leg Movement
PWV Pulse Wave Velocity
SNS Sympathetic Nervous System
VO2peak Peak Volume of Oxygen Uptake
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