@1 LIVERPOOL
JOHN MOORES

UNIVERSITY

LIMU Research Online

Bellfield, RAA, Rendon Hormiga, P, Olier, |, Lotto, RR, Jones, ID, Lip, GYH and
Ortega-Martorell, S

Al-driven clustering and visualization of electrocardiogram signals to enhance
screening for atrial fibrillation: The supermarket/hypermarket opportunistic
screening for atrial fibrillation study

https:/iresearchonline.ljmu.ac.ukl/id/eprint/26753/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Bellfield, RAA, Rendon Hormiga, P, Olier, |, Lotto, RR, Jones, ID, Lip, GYH
and Ortega-Martorell, S ORCID logoORCID: https:/lorcid.org/0000-0001-
9927-3209 (2025) Al-driven clustering and visualization of electrocardiogram
sianals to enhance screenina for atrial fibrillation: The
LIMU has developed LIMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@I|jmu.ac.uk

http://researchonline.ljmu.ac.uk/


http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Al-driven clustering and visualization of

‘ M) Check for updates

electrocardiogram signals to enhance screening for
atrial fibrillation: The supermarket/hypermarket
opportunistic screening for atrial fibrillation study

Ryan A.A. Bellfield, PhD,"? Pablo Rendon Hormiga, MSc, Ivan Olier, PhD,"?
Robyn Lotto, PhD,** Ian Jones, PhD,*“ Gregory Y.H. Lip, MD,*”

Sandra Ortega-Martorell, PhD"*

From the 'Data Science Research Centre, Liverpool John Moores University, Liverpool, United Kingdom,
2Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores
University and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom, >Escuela Colombiana

de Ingenieria Julio Garavito, Bogota, Colombia, *School of Nursing and Advanced Practice, Liverpool
John Moores University, Liverpool, United Kingdom, and *Danish Center for Health Services

Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.

BACKGROUND Atrial fibrillation (AF) is the most common
arrhythmia worldwide, associated with an increased risk of serious
health issues. As its prevalence rises, health care systems face sig-
nificant challenges, including escalating treatment costs and the
inherent difficulties of detecting AF, particularly in paroxysmal
cases where symptoms are intermittent.

OBJECTIVE This study investigates the application of unsuper-
vised machine learning, specifically generative topographic map-
ping (GTM), to support AF screening and risk stratification.

METHODS The supermarket/hypermarket opportunistic screening
for atrial fibrillation study deployed single-lead electrocardiogram
(ECG) sensors (MyDiagnostick) embedded in supermarket trolley
handles across 4 sites in Northwest England. This community-
based approach successfully engaged the public in opportunistic
AF screening. However, diagnosis was limited by reliance on tran-
sient ECG recordings. To improve analysis, we selected a subset of
97 ECG traces (78 for training and 19 for testing) reviewed by a
consultant cardiologist, comprising AF (n = 23), possible AF (n
= 9), and normal rhythm (n = 65). From these, 477 20-second
ECG snippets were extracted to train the GTM model.

RESULTS The GTM generated interpretable membership maps,
clustering ECG snippets into visually distinct regions with similar
features. These maps enable clinicians to explore heart rhythm
dynamics over time and track patient trajectories across risk states.

CONCLUSION This study demonstrates the potential of our
proposed methodology to uncover latent patterns in ECG data,
providing deeper insights into individual heart rhythm patterns
and supporting more nuanced AF risk assessment and the overall
effectiveness of AF detection and management. By embedding
interpretable artificial intelligence in screening tools, we aimed
to improve early detection and reduce the clinical burden of AF.

KEYWORDS Generative topographic mapping; Artificial intelli-
gence; Machine learning; Atrial fibrillation; Screening; Detection

(Heart Rhythm 07 2025;6:1601-1612) © 2025 Heart Rhythm Soci-
ety. Published by Elsevier Inc. This is an open access article under
the CCBY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Atrial fibrillation (AF) is the most common arrhythmia dis-
order worldwide, with its presence being associated with a
higher risk of strokes, heart failure, and other conditions. '
Additional challenges related to AF include the increasing
cost of treatment, a burden expected to intensify as the prev-
alence of AF continues to rise in the coming years.” The
detection of AF is inherently challenging, particularly in

cases of paroxysmal AF, where the arrhythmia manifests
intermittently. Diagnosis frequently relies on the arrhythmic
episodes being recorded on an electrocardiogram (ECG) dur-
ing a monitoring period, complicating detection unless the
individual presents with persistent AF.”

One approach to mitigating this issue is through system-
atic screening, a process that aims to identify the likelihood
of disease in individuals who appear asymptomatic. This
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m Innovative screening approach: we developed a novel
method using single-lead electrocardiographic (ECG)
data from sensors embedded in the handles of super-
market trolleys for the opportunistic screening of
atrial fibrillation (AF), the most common arrhythmia
worldwide, associated with an increased risk of serious
health issues.

m Application of generative topographic mapping (GTM):
we used GTM, an unsupervised artificial intelligence
(AI) and machine learning (ML) technique, to develop
and probabilistic model and generate interpretable
“membership maps” for the visualization of ECG signal
patterns.

m Utilization of a unique dataset: as part of the super-
market/hypermarket opportunistic screening for atrial
fibrillation study, we recorded 118 single-lead ECGs,
producing 477 ECG snippets that were subsequently
used to train the GTM model.

m Enhanced visual interpretability: we generated inter-
pretable visualizations that cluster ECG snippets with
similar features, enabling clinicians to analyze patient
trajectories and monitor transitions between distinct
cardiac rhythm states.

m Clinical relevance: we demonstrated that AI-driven
membership maps can facilitate real-time identifica-
tion of individuals at risk of AF, providing a trans-
parent and accessible tool for detecting subtle
variations in heart rhythm.

m Community-based implementation: we highlighted
the feasibility of using AI/ML methodologies for
opportunistic AF screening in community settings,
enhancing public engagement with health technology.

m Advances in AF management: we provided evidence
that integrating unsupervised AI/ML techniques into
AF detection can support personalized management
strategies, addressing the challenges of identifying
paroxysmal and asymptomatic cases.

method facilitates the early detection of potential conditions,
enabling timely medical intervention that may not have been
sought otherwise.”” Studies such as SAFE,” STROKE-
STOP,” LOOP,” SEARCH-AF,” and GUARD-AF"’ have
demonstrated the effectiveness of various AF screening
methods, reporting enhanced detection rates and reduced
adverse clinical outcomes.

Despite these advances, several reviews of different AF
screening methods have been unable to support widespread
implementation, primarily owing to the limited number of
randomized controlled trials'' showing inconsistencies in
study designs, which hinder meaningful comparisons.'” In
addition, the effectiveness of traditional screening in health

care settings or through pharmacy interventions may be con-
strained by several factors. For example, individuals from
lower socioeconomic groups are often less likely to engage
with health care professionals, and there is a perceived
inconvenience for asymptomatic individuals, who may be
less motivated to participate in screening initiatives.”"”

The supermarket/hypermarket opportunistic screening
for atrial fibrillation (SHOPS-AF) study aimed to assess
the feasibility of using an embedded MyDiagnostick
single-lead ECG sensor in the handles of shopping trolleys
in 4 supermarkets in Northwest England."” These provided
a single-lead ECG recording for AF screening in the commu-
nity as people shopped in supermarkets that contained resi-
dent pharmacists.'” The study successfully demonstrated
that the public is willing to engage with AF screening
when it is conveniently integrated into their regular routine.
It also yielded promising results in detecting AF among par-
ticipants.

Artificial intelligence (AI), more specifically machine
learning (ML), has been used in screening programs to assist
health care professionals in assessing an individual’s risk of
the targeted disease. In the context of AF screening, AI/ML
has been primarily used to develop predictive models aimed
at a more accurate and efficient detection of AF."*'® These
models have demonstrated significant potential to enhance
screening accuracy through techniques such as
convolutional neural networks (CNNs). By minimizing the
need for human intervention, these approaches could
facilitate the screening of a larger population, thereby
increasing overall detection rates of AF.

AI/ML has also been used to optimize AF screening. The
study by Adeniji et al'’ used multiple logistic regression to
prioritize which ECGs should be reviewed, thereby reducing
the overall number of ECGs requiring screening. Their
approach demonstrated a reduction in workload while main-
taining AF detection accuracy. However, both methods have
their limitations.

For example, AI/ML approaches that use “black box”
models, such as CNNs, may not yield interpretable results,”’
potentially undermining health care professionals’ trust in
the algorithm’s efficacy. Second, some of the studies listed
earlier attempt to incorporate a degree of interpretability, us-
ing methods such as gradient-weighted class activation maps
(Grad-CAM)."” However, these techniques are applied post
hoc and offer only a limited insight into the model’s
decision-making processes. Grad-CAM can also be prone
to erroneously highlighting areas of the input as important,”’
which further contributes to the distrust associated with this
approach. Another common theme across all the aforemen-
tioned studies is their reliance on supervised learning tech-
niques.

Unsupervised learning methods (also under the umbrella
of AI/ML) offer significant advantages over traditional bi-
nary predictions by uncovering hidden patterns and struc-
tures within data without requiring labeled training
examples, thereby facilitating the discovery of new sub-
groups and clinically relevant phenotypes.””” In addition,
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this approach enables more nuanced data representation
through techniques such as clustering and dimensionality
reduction, enhancing interpretability and deepening the un-
derstanding of complex datasets.

In this study, we aimed to develop an unsupervised Al/
ML methodology that provides interpretable visualizations
to assist clinicians in screening for AF. This objective will
be achieved using generative topographic mapping (GTM),
a probabilistic ML technique that compresses data into a
lower-dimensional space. In particular, we will build upon
the methodology outlined by Bellfield et al*’ to enhance
the delineation of groups generated by the model.

Methods
Data description

Data description and selection

The data used within this study are a subset taken from the
dataset collected as part of the SHOPS-AF study.'” The
embedded MyDiagnostick medical device in the handles of
supermarket trolleys recorded a single-lead ECG tracing
for a participant as they held on to the handle while shopping.
The device illuminated a red light if the participant’s ECG
was thought to be AF. When AF was detected, these partic-
ipants were reviewed by a pharmacist who performed a
manual pulse reading and referred the participant to a consul-
tant cardiologist for further cardiac assessment.

The data collected by the medical device are stored as
PDFs, as shown in Figure 1A. The data subset used for
this analysis consisted of ECGs collected from SHOPS-AF
that were selected after the study to be reviewed by a consul-
tant cardiologist to confirm the diagnosis of the ECG to give
a ground truth, whether this be sinus rhythm or AF, as
opposed to using the reading from the medical device as
the sole diagnosis.

Data preprocessing

Given that the ECGs were stored in PDF format, we opted to
use the raw signals instead of the PDFs for 2 primary rea-
sons. First, our analysis focused on features extracted from
the ECG signals, which are considerably easier to obtain
from the raw data than from image files. Second, existing
literature indicates that using extracted signals, particularly
when recordings are sufficiently long, is more effective for
ML applications than relying on images of ECG signals.”’
To digitize the signal, we applied the waveform extraction
methodology outlined by Bellfield et al’' to extract every
“row” of the ECG from the PDF, which were then stitched
together to form 1 long ECG waveform. Examples of the
digitized signals are presented in Figure 1B.

Once the signal was extracted, we capped its length at 60
seconds and divided the waveform into multiple snippets us-
ing a sliding window of 20 seconds with a 75% overlap (5-
second stride length), as illustrated in Figure 2. This method

A Heart rate : 78

Paper speed : 25 mm/s
AF score : 0 Gain : 10 mm/mV
AF detected : No Recorded : 21/05/2021 10:38
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Figure 1
that were used in the analysis. AF = atrial fibrillation.

Page 1 of 1

A: Displays the data in the PDF format directly collected from the medical device. B: Displays the digitized waveforms extracted from the PDFs
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ECG PDF 20s snippets
Extract 1 ; Assess ECG quality
£ ignal l and extract features
= _signats _/\.,\r/\ /M 1
Extracted features from the ECG:
1 0s-20s
2 5s-25s
Figure 2  Outlines the workflow to go from the original ECG in PDF format to the extracted features that will be used for model development. ECG = elec-
trocardiogram.

generated a maximum of 9 snippets for each ECG signal.
There were several reasons for adopting this approach: first,
it serves as a form of data augmentation to enhance the data-
set size, a common strategy for optimizing ML models dur-
ing training. Second, and more critically, AF may not be
present throughout the entire ECG signal, often occurring
only in specific segments. By splitting the ECG into snippets,
we can isolate the regions that exhibit AF.

Once the snippets were generated, we assessed their qual-
ity to ensure that they were sufficiently robust to yield mean-
ingful clinical insights. To this aim, we used the “Neurokit2”
Python package” to automatically evaluate the quality of the
snippets, excluding any that were not classified as excellent
from further analysis.

Then, key features were extracted from the signals in each
snippet relating to various aspects of the heart variability of
the ECG, again using the NeuroKit2 package. The full work-
flow is illustrated in Figure 2. We then applied a correlation
threshold of 0.9 to remove highly correlated variables and all
variables with a missingness percentage of >30% to achieve
the final modeling dataset. The list of variables used for this
analysis is presented in Table 1.

Ethical considerations

The ethical review has been granted by Liverpool John
Moores University’s University Research Ethics Committee.
The study was undertaken in compliance with the research
protocol. During phase 1, verbal consent was obtained
upon recruitment, with written consent secured for those
with an abnormal sensor recording whose personal data
would be required for onward referral for 12-lead ECGs.
For the qualitative substudy (phase 2), written consent was
obtained from all participants. The research adheres to rele-
vant ethical guidelines.

Clustering methodology
GTM

The methodology developed as part of this study uses,
at its core, the GTM probabilistic data clustering unsuper-
vised ML algorithm designed for clustering and analyzing
data.>>*® GTM works in a latent space, often set to be 2-

dimensional (2D), which helps simplify and visualize the
data. The latent grid consists of a uniform grid of nodes,
and the algorithm assumes that the data we observe (for
our study, features extracted from the ECG snippets) are
generated by mapping this simplified space onto the
higher-dimensional data space where the original data
exist. This mapping is achieved using the function in
equation 1:

y=Wo(u) )

where u is a point in the L-dimensional latent space, W is a
matrix containing parameters that control the mapping, and
® consists of S basis functions ®g, which for the standard
GTM (used in this study) are radially symmetric Gaussians.
For the full details on how the methodology is derived,
please refer to the original publications.”**’

In practice, GTM calculates the probability that each
set of features (eg, features extracted from the ECG snip-
pets) belongs to each node in the latent space. The data
are then assigned to the node with the highest probabil-
ity, a process called “mode projection.” This approach re-
duces the risk of unrelated data points being grouped
together. Given that the latent space is 2D, the results
can be displayed as a 2D map, referred to as the “mem-
bership map.”

An important advantage of GTM is that each node in
the latent space corresponds to a reference vector in the
original data space. These reference vectors serve to sum-
marize the key characteristics of the data assigned to
each node. This allows the user to interpret how specific
features influence data assignment to different nodes. As
a result, the methodology provides valuable insights into
the relationships between features and patterns in the
data.

GTM magnification factors

In an ideal scenario, latent nodes generated as part of the
GTM approach that are closer together will be mapped to
points that are close together in the data space, ensuring
that data that share similar characteristics reside in the
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Table 1  Details all the heart variability variables extracted from the ECG signals using the Neurokit2 package that were included for model
development
Variable type Variable name Variable description

HRV_MedianNN
HRV_MadNN
HRV_Prc20NN
HRV_Prc8ONN
HRV_pNN50
HRV_pNN20
HRV_MinNN
HRV_HTI
HRV_TINN
HRV_HF
HRV_HFn
HRV_PIP
HRV_PSS
HRV_PAS
HRV_SD1SD2

Time domain

Frequency domain

HR fragmentation

Characteristics of the
Poincaré plot geometry
HRV_(SI
HRV_CVI
HRV_CSI_Modified

HRV_GI
HRV_PI
HRV_C1d
HRV_SD1d
HRV_C2d
HRV_SD2d
HRV_SD2a
HRV_Cd
DFA and multifractal DFA HRV_DFA_alphal
HRV_MFDFA_alphal_Width
HRV_MFDFA_alphal_Peak

HRV_MFDFA_alphal_Mean
HRV_MFDFA_alphal_Max

HRV_MFDFA_alphal_Delta
HRV_MFDFA_alphal_Asymmetry

HRV_MFDFA_alphal_Fluctuation
HRV_ApEn

HRV_ShanEn

HRV_FuzzyEn

HRV_CD

Indices of complexity

HRV_HFD
HRV_KFD
HRV_LZC

RR interval - median

RR interval - mean absolute deviation

RR interval - 20th percentile

RR interval - 80th percentile

RR interval - absolute difference % above 50 ms

RR interval - absolute difference % above 20 ms

RR interval - minimum

HRV triangular index

RR interval distribution approximation

High-frequency spectral power

Normalized high frequency

Percentage of inflection points of the RR intervals series

Percentage of short segments

Percentage of RR intervals in alternation segments

The ratio between short- and long-term fluctuations of the RR
intervals

(CSI

Cardiac vagal index

Modified CSI obtained by dividing the square of the longitudinal
variability by its transverse variability

Guzik’s index

Porta’s index

Contributions of HR decelerations to short-term HRV

Short-term variance of contributions of decelerations

Contributions of HR deceleration to long-term HRV

Long-term variance of contributions of decelerations

Long-term variance of contributions of accelerations

Total contributions of HR decelerations to HRV

Monofractal DFA of the HR signal, corresponding to short-term
correlations

Width of the singularity spectrum, which quantifies the degree of
multifractality

Value of the singularity exponent corresponding to the peak of the
singularity dimension

Multifractal DFA - mean of singularity exponents

Mean of the maximum and minimum values of the singularity
exponent

Vertical distance between the singularity spectrum where the
singularity exponents are at their minimum and maximum

The asymmetric ratio corresponds to the centrality of the peak of
the spectrum.

The h-fluctuation index

The approximate entropy measure of HRV

Shannon entropy

Fuzzy entropy of a signal

Correlation dimension - a lower-bound estimate of the fractal
dimension of a signal

Higuchi's fractal dimension

Katz's fractal dimension

Lempel-Ziv complexity

Please refer to the Neurokit2 documentation for further information.?*

CSI = cardiac sympathetic index; DFA = detrended fluctuation analysis; ECG = electrocardiogram; HR = heart rate; HRV = heart rate variability.

same area of the membership map. However, when using a
latent space whereby the nodes lie on a uniform grid, areas
of the latent space may be distorted to optimize the fit of
the manifold to the data space. This in turn can result in
the visualization of the membership map not fully capturing
the actual separations as seen in the data space.

One solution to this, proposed by the original devel-
opers of GTM, is to use the concept of magnification fac-
tors.”® Magnification factors are derived using techniques
taken from differential geometry. As previously
mentioned, GTM defines a smooth mapping from a latent
space to the original data space using the function
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defined in equation 1. The magnification factor describes
how the area of an infinitesimal rectangle at a point in
the latent space, for example, one of the predefined no-
des, transformed to infinitesimal volumes in the higher-
dimensional data space.”” For the full derivation, please
refer to the original publication.”® What this translates
to is that higher magnification factors show areas of
high distortion during the projection, which corresponds
to areas where data are sparse, with the reverse being
true for lower magnification values. These can be as-
sessed visually by superimposing the magnification fac-
tors onto the membership map generated from GTM
and using a gray color scale to represent the values of
the factors

Macrocluster generation using magnification factors
Let us consider for a moment that the nodes in the GTM
latent space are microclusters of the original dataset. These
are useful because they provide a way of visualizing the
key underlying relationships within the data. However, one
drawback is that these visualizations of microclusters may
be too granular for practical use.’” Several studies have pro-
posed approaches to further aggregate these microclusters
into macrocluster partitions that can be interpreted more
easily. 22930

The methodological contribution of this paper focuses on
extending the original macroclustering methodology out-
lined by Bellfield et al.”> They first used GTM to assign
data to nodes in the latent space. Then, agglomerative

Generate
magnification
factor plot

Generate
neighbourhood
constraints

hierarchical clustering was performed on the reference vec-
tors, which were subsequently mapped to their correspond-
ing latent nodes to generate the macroclusters. Our
contribution focuses specifically on improving the macro-
cluster generation aspect of this methodology to provide
more accurate, better-defined aggregations. We do this by
implementing a constrained hierarchical clustering of the
reference vectors to preserve the latent node neighborhoods
within macrocluster boundaries. Although constrained hier-
archical clustering has previously been applied to GTM mac-
rocluster generation, as in Vellido et al,z(’ who used a simple
neighborhood constraint that included all immediate sur-
rounding nodes while restricting merges with non-
neighboring nodes, our approach introduces a more flexible
and data-driven definition of neighborhoods.

In particular, the novelty of our method lies in first
defining neighborhoods in the latent space using magnifi-
cation factors and unsupervised k-nearest neighbors
(KNN), rather than relying on a fixed topological
constraint. Given a set of points U={uj,up, -, u;, } in
R", unsupervised KNN defines, for every point u;, the
KNNs based on the smallest distance.”’~ In our case,
each point u; resides in R3, defined by the latent node co-
ordinates and the magnification factor calculated at that
point. Euclidean distance was used to evaluate the distance
between pairs of points. KNN was set to look for the 5
closest neighbors, enabling the construction of nuanced
neighborhoods that incorporate the local information en-
coded by the magnification factors.”’ Once neighborhoods

Membership map

Data
Macro-clusters
00 |
: GTM 00 v o0 o +Cluster 1
s=e L
Macro-cluster ® ® +Cluster 2
. . . generator +Cluster 3
O Cluster 4

Reference maps:
[ ] o

Figure 3

Interpretation and

further understanding

Proposed artificial intelligence—based methodology that builds on the approach in 23. The modification to the approach is contained within the green

dashed box and demonstrates how the magnification factors are generated from the GTM model, used to identify neighborhood constraints, which are then used
to influence the hierarchical clustering applied to the reference vectors. GTM = generative topographic mapping.
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were defined for each latent node, they were mapped to
their corresponding reference vectors in the original data
space. These neighborhoods were then used as constraints
in the hierarchical clustering process. From this point, the
methodology follows that of Bellfield et al”’ to generate
the macroclusters in the latent space, with the full process
detailed in Figure 3.

Leveraging macroclusters for ECG screening

GTM calculates the probability of each data point (ie, fea-
tures extracted from each ECG snippet) belonging to each
latent node, formally known as responsibilities. Consid-
ering the responsibilities instead of the mode projections al-
lows us to consider the full probability distribution of the
data in the latent space. For our use case, each ECG will
be represented by a nonzero number of snippets extracted
from the longer signal. Averaging the responsibilities for
all snippets relating to an ECG provides the probability dis-
tribution for the entire ECG. Once obtained, for each mac-
rocluster, the total responsibility for all nodes assigned to it
can be calculated. In practice, this means that, for an ECG,
we see which macrocluster best represents that ECG and
assign it to that cluster, in a very similar way to mode pro-
jection. This is useful because we can analyze the key char-
acteristics of each macrocluster to understand what defines
each of them, an approach used previously to define clini-
cally relevant AF phenotypes,23 identify differences in
censorship between countries,”” and market segmenta-
tion.”” By understanding which diagnostic class best repre-
sents each macrocluster, this can then be assigned to the
ECG and used alongside the visualizations to help inform
the clinician performing the screening.

A

¢

Py P P ® ° ® 4

Figure 4

ECG Snippets
in Cluster
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Results

Membership map and reference vectors

Applying the data preprocessing steps to the clinically re-
viewed subset of ECGs from the full SHOPS-AF dataset,
we had a total of 617 ECG snippets taken from 97 ECGs,
where 477 snippets (from 78 ECGs) were used for training
the GTM model with 140 snippets (from 19 ECGs) being
used to validate the GTM macroclusters. Of the 78 training
ECGs, 21 were diagnosed as AF, 8 were diagnosed as
possible AF, and the remaining 49 were diagnosed as normal
sinus rhythm, henceforth referred to as “normal.” For ECGs
used for testing, 2 were diagnosed as AF, 1 as possible AF,
and the remaining 16 as normal. Of the 2 ECGs reserved
for testing, 1 was diagnosed as AF, and the other as normal.
For the parameters of the GTM model, we used an 8 X 8
latent space, 9 radial basis functions arranged in a 3 X 3
grid, a regularization term of 1, and a width parameter of 0.8.

The membership map generated by the GTM when
trained on the 477 ECG snippets using these set parameters
is presented in Figure 4A. This map visualizes the latent
space containing a compressed representation of the entire
original data space. Each point on the map represents a
node containing at least 1 ECG snippet, with the size of
the point indicating the number of ECG snippets in the
node: the larger the node, the more snippets have been as-
signed to it.

A selection of the reference maps extracted from the
GTM model trained on the features extracted from the 477
ECG snippets (all reference maps are contained in
Supplemental Figure 1 in the Supplementary Material) is
presented in Figure 4B. These maps display how each vari-
able affected what latent node an ECG snippet would be as-
signed to, allowing the user to interpret the model’s decision
making. Each point within the reference maps corresponds to

B

Proportion of RR Ratio between short and

Intervals over long term fluctuations of
20ms RRIntervals
q
il
@
@
4 1
@ q
® 0 @
—=re-9 - = - T —=e
Medium RR Minimum RR
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J
[}
+—=pr o009 ¢ e = —

A: Membership map representing the latent space generated from the generative topographic mapping model trained on the features extracted from

the athlete’s ECG rhythm strips. B: A selection of reference map visualizations demonstrating how 4 of the variables used to train the generative topographic
mapping affect the cluster distribution in the latent space. ECG = electrocardiogram.
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the node in the exact location in the membership map. The
color scheme for the reference maps was chosen so that
the points that are redder highlight that ECG snippets as-
signed to that node had a higher value for that variable. On
the flip side, the grayer a point is, the ECG snipper assigned
to the node had a lower value for that variable. For example,
using the top left plot in Figure 4B, we can see that ECG
snippets with a higher proportion of RR intervals of >20
ms were assigned to nodes on the right-hand side of the
membership map.

Magnification factors and macroclusters

Magnification factors

The magnification factor plot generated from the trained
GTM, as described in section 2.2.2, using a gray-scale repre-
sentation, is presented in Figure 5. This visualization pro-
vides a representation of how the latent manifold distorts
when projected and fitted to the data. Lighter areas of this
visualization demonstrate the regions with low distortion
in the mapping, with the darker gray corresponding to re-
gions that experienced high distortion in the same mapping.

Macroclusters
By applying the methodology defined in this study, we were
able to generate 5 macrocluster regions within the GTM
latent space, as shown in Figure 6A and 6B. Each macroclus-
ter contains nodes and by extension ECG snippets that share
similar characteristics. These clusters can also be further
analyzed by looking at the distribution of diagnoses within
the latent space, as shown in Figure 7. From these visualiza-
tions, we can derive definitions for each of the clusters: clus-
ters 1 and 5 relate to AF ECG snippets, clusters 2 and 3 relate
to normal ECG snippets, and cluster 4 relates to possible AF
ECG snippets.

The top 3 plots in Figure 7 show how the different macro-
clusters relate to the 3 different diagnoses present within the
dataset.

Figure 5

Validating screening effectiveness

The 140 snippets were projected onto the existing latent
space using the trained GTM, with the responsibilities for
the ECG snippets relating to a single ECG aggregated to
get 19 individual ECG probability distributions. From these,
we then calculated the total responsibility for each macro-
cluster, with the ECG being assigned to the macrocluster
with the highest value. Referring to Figure 6 for reference,
an ECG was considered to be AF if the macrocluster it
was assigned to was either 1 or 5 (the red or the orange
cluster), possible AF if the macrocluster assigned was cluster
3 (the pink cluster), and normal if the macrocluster assigned
was either cluster 2 or 3. Assigning the clusters this way and
comparing the predicted label with the actual generated an
overall accuracy of 74%. The full breakdown can be viewed
in the confusion matrix in Figure 8.

Visualizing an individual participant’s trajectory

By collating the node locations associated with sequential
ECG snippets derived from a single, continuous recording,
and arranging them in chronological order, we enable the
visualization of the temporal evolution of a participant’s
ECG. The ECG snippet macrocluster assignment can then
be validated by looking back at the original ECG PDF and
evaluating the ECG between the start and end points of the
snippet. Figure 9 shows this using the 2 test ECGs projected
onto the macrocluster regions determined using the training
data. The trajectory where the participant’s ECG was diag-
nosed as normal is presented in Figure 9A, with Figure 9B
containing the trajectory where the participant’s ECG was
diagnosed as AF. Alongside the membership map projec-
tions, we also show the overall probability distribution for
ECG, displayed in the bottom left of Figure 9A and 9B.
Given that GTM at its core is a probabilistic model, we
can calculate for every point the probability that the data
were generated from every latent node,”” essentially display-
ing the soft clustering performed by GTM. By averaging the
probability distributions for each snippet from an ECG, we

Magnification map calculated from the trained generative topographic mapping. Light areas of this map correspond to areas of low distortion during

mapping, with the darker areas relating to areas of high distortion during the mapping.
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can generate a probability distribution per ECG to see which
latent nodes were most likely to have generated it.

Discussion

The methodological approach proposed in this paper has the
potential to enhance decision making in AF screening by
providing a comprehensive assessment and characterization
of ECG signals, with a particular emphasis on specific re-
gions within the membership map. By capturing subtle
signal variations and analyzing their trajectories, our
approach offers deeper insights into individual heart rhythm
patterns that may be overlooked by traditional screening
methods. This refined analysis facilitates a more accurate
evaluation of electrophysiological abnormalities and im-
proves risk stratification, enabling clinicians to identify
high-risk patients more effectively.

Moreover, the insights gained from this method can
support personalized treatment strategies, allowing for
tailored interventions that align with the unique character-
istics of each patient’s condition. This could be achieved
by projecting new, unseen ECGs into the latent space,
generating the appropriate visualizations, and matching
their trajectory to similar known examples to identify suc-
cessful treatment strategies that could be applied. Ulti-
mately, this approach aims to enhance the overall
effectiveness of AF detection and management, leading
to improved clinical outcomes and more efficient use of
health care resources. The visualizations generated using
this approach convey far more nuanced detail than a bi-
nary positive or negative result and in turn hold signifi-
cant promise for widespread community screening
initiatives. For example, it could be seamlessly integrated
into everyday environments such as supermarkets, where
accessibility and convenience could drive early detection
on a population-wide scale. By bridging advanced Al/
ML methodologies (such as the one proposed) with clin-

ical practice, we aspire to contribute to more effective
detection of AF in diverse patient populations.

The traditional application of AI/ML in improving AF
screening focuses on developing deep learning models,
such as CNNs, to predict whether or not an ECG signal
shows AF.""'® These models perform this task very
well, with areas under the curve ranging from 0.8'% to
0.87'" and accuracies up to 98.1%.'* Even though classi-
fication tasks addressed using these techniques have their
merits, they can never be correct 100% of the time (as
is the case with all ML models). The black-box nature
of these approaches means that once a prediction has
been provided, there is no real way to truly understand
how and why the model has arrived at this decision, which
in turn can affect the trust shown to the model by clinical
experts. Researchers have attempted to interpret their
models using post hoc approaches such as Grad-CAM'’;
however, this approach is known to highlight nonimpor-
tant areas of the input as important, potentially strength-
ening the distrust in the model.

Our approach directly addresses these issues through
several key improvements. First, by presenting all model
decisions in clear, interpretable visualizations, users can
understand the rationale behind each decision. Second,
we established a robust methodology for generating mac-
rocluster regions with precise boundaries, enhancing the
clarity and reliability of the model’s outputs. Third, we
have shown that even though this methodology was not
trained using diagnostic information, it was still able to
classify the ECGs with reasonable accuracy. Even though
the accuracy may not be in line with other metrics re-
ported in the literature, these models were trained specif-
ically for the task of detecting AF. In addition, our
approach managed to classify all normal ECGs with
100% accuracy, which is crucial for a screening environ-
ment because it further builds trust in the approach while
substantially reducing the number of ECGs that need to
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Figure 7  The top 3 plots display the ECG diagnoses overlaid on the membership map. The bluer a region is, the larger the percentage of ECG snippets in each

node that came from an ECG diagnosis with the outlined condition. AF = atrial fibrillation; ECG = electrocardiogram.

receive additional attention. Finally, our approach links
each model decision back to the original data, providing
users with a platform to override the decision if they
deem it inaccurate, thus ensuring greater control and trust
in the model’s outputs.

The work by Adeniji et al'’ also addressed the issues out-
lined earlier using a fully interpretable multiple logistic
regression model. Rather than generating a binary predic-
tion, they prioritized ECG screening to reduce the workload
on clinical experts. However, a notable limitation of their
approach was that, despite analyzing long-form ECGs over
several weeks, they required all ECGs to be collated before
ordering could be performed. In contrast, our approach
facilitates real-time application as ECG data are collected,
enabling faster decision making and potentially improving
screening accuracy. This immediacy in processing not only

streamlines the workflow for clinicians but also enhances
the overall efficiency of the screening process.

Limitations

Our proposed methodology has several limitations that
should be acknowledged and addressed through further
research. The first limitation of our approach is that we
used features extracted from the ECG snippets rather
than the raw ECG signals. This feature extraction process
can be tedious and introduces an additional layer of poten-
tial errors into the analysis. Another potential limitation
lies in the GTM algorithm’s reliance on Gaussian distribu-
tions, which may struggle to accommodate outliers in the
data. Consequently, this can lead to data being condensed
into a smaller area of the latent space, potentially failing
to capture the underlying relationships within the data
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adequately. Future analyses could address this issue by
using t-GTM, an alternative to standard GTM that uses
t-distributions, which are less sensitive to outliers.””

In addition, a limitation of our proposed methodology is
that the number of macroclusters and the values of k used
in the unsupervised KNN are selected manually. In addition,
the demographic of the data collected and analyzed in
this study is relatively small, comprising shoppers from
Northwest England who use supermarkets for their pur-
chases. To gain a comprehensive understanding of the bene-
fits and generalizability of our approach, further testing

A
Normal ECG

®
®

os 1 2 3 “ 5 ™

Figure 9

would need to be conducted using data from a broader demo-
graphic. Finally, detection and confirmation of AF are only
the first step of the clinical evaluation, characterization,
and holistic management of AF,*>*® which are not addressed
in our study.

Conclusion

The methodology proposed in this study offers a prom-
ising advancement in AF screening by providing a
nuanced approach to ECG analysis that extends beyond
traditional classification models. By integrating interpret-
able visualizations and a robust clustering framework,
this approach addresses some of the limitations of existing
AI/ML models, such as the opacity and occasional unreli-
ability of their decision-making processes. Unlike conven-
tional deep learning models, which often present AF
predictions in an unexplainable “black-box” format, our
approach allows clinicians to observe model decisions
transparently, supporting a clearer rationale for each
diagnosis. Furthermore, the capacity for real-time analysis
facilitates timely clinical decision making, optimizing the
screening workflow and potentially improving patient
outcomes.

Although this method demonstrates significant potential,
we recognize limitations that future research should address,
such as refining feature extraction methods, accommodating
data outliers, and expanding testing across diverse popula-
tions. Nonetheless, this work marks a critical step toward
bridging advanced ML techniques with clinical practice, ul-
timately aiming to enhance AF detection accuracy, foster
trust among clinical experts, and support personalized,
effective patient care.

AF ECG

3,5,6,7,8

os 1 2 3 ™ ™

Displays the final output from our proposed methodology. Each ECG is projected onto the trained membership map to see where each snippet is

assigned and how the model’s decision changes over time. A probability distribution is also produced alongside this projection to provide the user with the area
of the membership map most responsible for generating that ECG. Alongside the projections, the actual PDF ECG is provided with the highlighted sections to
allow the user to check the model’s cluster assignments. A: Shows the output for an ECG recorded from a participant diagnosed as normal. B: Shows the output
for the ECG recorded on a participant diagnosed as having AF. AF = atrial fibrillation; ECG = electrocardiogram.
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