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BACKGROUND Atrial fibrillation (AF) is the most common 
arrhythmia worldwide, associated with an increased risk of serious 
health issues. As its prevalence rises, health care systems face sig
nificant challenges, including escalating treatment costs and the 
inherent difficulties of detecting AF, particularly in paroxysmal 
cases where symptoms are intermittent.

OBJECTIVE This study investigates the application of unsuper
vised machine learning, specifically generative topographic map
ping (GTM), to support AF screening and risk stratification.

METHODS The supermarket/hypermarket opportunistic screening 
for atrial fibrillation study deployed single-lead electrocardiogram 
(ECG) sensors (MyDiagnostick) embedded in supermarket trolley 
handles across 4 sites in Northwest England. This community- 
based approach successfully engaged the public in opportunistic 
AF screening. However, diagnosis was limited by reliance on tran
sient ECG recordings. To improve analysis, we selected a subset of 
97 ECG traces (78 for training and 19 for testing) reviewed by a 
consultant cardiologist, comprising AF (n 5 23), possible AF (n 
5 9), and normal rhythm (n 5 65). From these, 477 20-second 
ECG snippets were extracted to train the GTM model.

RESULTS The GTM generated interpretable membership maps, 
clustering ECG snippets into visually distinct regions with similar 
features. These maps enable clinicians to explore heart rhythm 
dynamics over time and track patient trajectories across risk states.

CONCLUSION This study demonstrates the potential of our 
proposed methodology to uncover latent patterns in ECG data, 
providing deeper insights into individual heart rhythm patterns 
and supporting more nuanced AF risk assessment and the overall 
effectiveness of AF detection and management. By embedding 
interpretable artificial intelligence in screening tools, we aimed 
to improve early detection and reduce the clinical burden of AF.

KEYWORDS Generative topographic mapping; Artificial intelli
gence; Machine learning; Atrial fibrillation; Screening; Detection

(Heart Rhythm O2 2025;■:1–12) © 2025 Heart Rhythm Society. 
Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Atrial fibrillation (AF) is the most common arrhythmia dis
order worldwide, with its presence being associated with a 
higher risk of strokes, heart failure, and other conditions.1

Additional challenges related to AF include the increasing 
cost of treatment, a burden expected to intensify as the prev
alence of AF continues to rise in the coming years.2 The 
detection of AF is inherently challenging, particularly in 

cases of paroxysmal AF, where the arrhythmia manifests 
intermittently. Diagnosis frequently relies on the arrhythmic 
episodes being recorded on an electrocardiogram (ECG) dur
ing a monitoring period, complicating detection unless the 
individual presents with persistent AF.3

One approach to mitigating this issue is through system
atic screening, a process that aims to identify the likelihood 
of disease in individuals who appear asymptomatic. This 
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method facilitates the early detection of potential conditions, 
enabling timely medical intervention that may not have been 
sought otherwise.4,5 Studies such as SAFE,6 STROKE
STOP,7 LOOP,8 SEARCH-AF,9 and GUARD-AF10 have 
demonstrated the effectiveness of various AF screening 
methods, reporting enhanced detection rates and reduced 
adverse clinical outcomes.

Despite these advances, several reviews of different AF 
screening methods have been unable to support widespread 
implementation, primarily owing to the limited number of 
randomized controlled trials11 showing inconsistencies in 
study designs, which hinder meaningful comparisons.12 In 
addition, the effectiveness of traditional screening in health 

care settings or through pharmacy interventions may be con
strained by several factors. For example, individuals from 
lower socioeconomic groups are often less likely to engage 
with health care professionals, and there is a perceived 
inconvenience for asymptomatic individuals, who may be 
less motivated to participate in screening initiatives.3,13

The supermarket/hypermarket opportunistic screening 
for atrial fibrillation (SHOPS-AF) study aimed to assess 
the feasibility of using an embedded MyDiagnostick 
single-lead ECG sensor in the handles of shopping trolleys 
in 4 supermarkets in Northwest England.13 These provided 
a single-lead ECG recording for AF screening in the commu
nity as people shopped in supermarkets that contained resi
dent pharmacists.13 The study successfully demonstrated 
that the public is willing to engage with AF screening 
when it is conveniently integrated into their regular routine. 
It also yielded promising results in detecting AF among par
ticipants.

Artificial intelligence (AI), more specifically machine 
learning (ML), has been used in screening programs to assist 
health care professionals in assessing an individual’s risk of 
the targeted disease. In the context of AF screening, AI/ML 
has been primarily used to develop predictive models aimed 
at a more accurate and efficient detection of AF.14–18 These 
models have demonstrated significant potential to enhance 
screening accuracy through techniques such as 
convolutional neural networks (CNNs). By minimizing the 
need for human intervention, these approaches could 
facilitate the screening of a larger population, thereby 
increasing overall detection rates of AF.

AI/ML has also been used to optimize AF screening. The 
study by Adeniji et al19 used multiple logistic regression to 
prioritize which ECGs should be reviewed, thereby reducing 
the overall number of ECGs requiring screening. Their 
approach demonstrated a reduction in workload while main
taining AF detection accuracy. However, both methods have 
their limitations.

For example, AI/ML approaches that use “black box” 
models, such as CNNs, may not yield interpretable results,20

potentially undermining health care professionals’ trust in 
the algorithm’s efficacy. Second, some of the studies listed 
earlier attempt to incorporate a degree of interpretability, us
ing methods such as gradient-weighted class activation maps 
(Grad-CAM).17 However, these techniques are applied post 
hoc and offer only a limited insight into the model’s 
decision-making processes. Grad-CAM can also be prone 
to erroneously highlighting areas of the input as important,21

which further contributes to the distrust associated with this 
approach. Another common theme across all the aforemen
tioned studies is their reliance on supervised learning tech
niques.

Unsupervised learning methods (also under the umbrella 
of AI/ML) offer significant advantages over traditional bi
nary predictions by uncovering hidden patterns and struc
tures within data without requiring labeled training 
examples, thereby facilitating the discovery of new sub
groups and clinically relevant phenotypes.22,23 In addition, 

KEY FINDINGS

■ Innovative screening approach: we developed a novel 
method using single-lead electrocardiographic (ECG) 
data from sensors embedded in the handles of super
market trolleys for the opportunistic screening of 
atrial fibrillation (AF), the most common arrhythmia 
worldwide, associated with an increased risk of serious 
health issues.

■ Application of generative topographic mapping (GTM): 
we used GTM, an unsupervised artificial intelligence 
(AI) and machine learning (ML) technique, to develop 
and probabilistic model and generate interpretable 
“membership maps” for the visualization of ECG signal 
patterns.

■ Utilization of a unique dataset: as part of the super
market/hypermarket opportunistic screening for atrial 
fibrillation study, we recorded 118 single-lead ECGs, 
producing 477 ECG snippets that were subsequently 
used to train the GTM model.

■ Enhanced visual interpretability: we generated inter
pretable visualizations that cluster ECG snippets with 
similar features, enabling clinicians to analyze patient 
trajectories and monitor transitions between distinct 
cardiac rhythm states.

■ Clinical relevance: we demonstrated that AI-driven 
membership maps can facilitate real-time identifica
tion of individuals at risk of AF, providing a trans
parent and accessible tool for detecting subtle 
variations in heart rhythm.

■ Community-based implementation: we highlighted 
the feasibility of using AI/ML methodologies for 
opportunistic AF screening in community settings, 
enhancing public engagement with health technology.

■ Advances in AF management: we provided evidence 
that integrating unsupervised AI/ML techniques into 
AF detection can support personalized management 
strategies, addressing the challenges of identifying 
paroxysmal and asymptomatic cases.
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this approach enables more nuanced data representation 
through techniques such as clustering and dimensionality 
reduction, enhancing interpretability and deepening the un
derstanding of complex datasets.

In this study, we aimed to develop an unsupervised AI/ 
ML methodology that provides interpretable visualizations 
to assist clinicians in screening for AF. This objective will 
be achieved using generative topographic mapping (GTM), 
a probabilistic ML technique that compresses data into a 
lower-dimensional space. In particular, we will build upon 
the methodology outlined by Bellfield et al23 to enhance 
the delineation of groups generated by the model.

Methods
Data description

Data description and selection
The data used within this study are a subset taken from the 
dataset collected as part of the SHOPS-AF study.13 The 
embedded MyDiagnostick medical device in the handles of 
supermarket trolleys recorded a single-lead ECG tracing 
for a participant as they held on to the handle while shopping. 
The device illuminated a red light if the participant’s ECG 
was thought to be AF. When AF was detected, these partic
ipants were reviewed by a pharmacist who performed a 
manual pulse reading and referred the participant to a consul
tant cardiologist for further cardiac assessment.

The data collected by the medical device are stored as 
PDFs, as shown in Figure 1A. The data subset used for 
this analysis consisted of ECGs collected from SHOPS-AF 
that were selected after the study to be reviewed by a consul
tant cardiologist to confirm the diagnosis of the ECG to give 
a ground truth, whether this be sinus rhythm or AF, as 
opposed to using the reading from the medical device as 
the sole diagnosis.

Data preprocessing
Given that the ECGs were stored in PDF format, we opted to 
use the raw signals instead of the PDFs for 2 primary rea
sons. First, our analysis focused on features extracted from 
the ECG signals, which are considerably easier to obtain 
from the raw data than from image files. Second, existing 
literature indicates that using extracted signals, particularly 
when recordings are sufficiently long, is more effective for 
ML applications than relying on images of ECG signals.21

To digitize the signal, we applied the waveform extraction 
methodology outlined by Bellfield et al21 to extract every 
“row” of the ECG from the PDF, which were then stitched 
together to form 1 long ECG waveform. Examples of the 
digitized signals are presented in Figure 1B.

Once the signal was extracted, we capped its length at 60 
seconds and divided the waveform into multiple snippets us
ing a sliding window of 20 seconds with a 75% overlap (5- 
second stride length), as illustrated in Figure 2. This method 

Figure 1 A: Displays the data in the PDF format directly collected from the medical device. B: Displays the digitized waveforms extracted from the PDFs 
that were used in the analysis. AF 5 atrial fibrillation.
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generated a maximum of 9 snippets for each ECG signal. 
There were several reasons for adopting this approach: first, 
it serves as a form of data augmentation to enhance the data
set size, a common strategy for optimizing ML models dur
ing training. Second, and more critically, AF may not be 
present throughout the entire ECG signal, often occurring 
only in specific segments. By splitting the ECG into snippets, 
we can isolate the regions that exhibit AF.

Once the snippets were generated, we assessed their qual
ity to ensure that they were sufficiently robust to yield mean
ingful clinical insights. To this aim, we used the “Neurokit2” 
Python package24 to automatically evaluate the quality of the 
snippets, excluding any that were not classified as excellent 
from further analysis.

Then, key features were extracted from the signals in each 
snippet relating to various aspects of the heart variability of 
the ECG, again using the NeuroKit2 package. The full work
flow is illustrated in Figure 2. We then applied a correlation 
threshold of 0.9 to remove highly correlated variables and all 
variables with a missingness percentage of .30% to achieve 
the final modeling dataset. The list of variables used for this 
analysis is presented in Table 1.

Ethical considerations
The ethical review has been granted by Liverpool John 
Moores University’s University Research Ethics Committee. 
The study was undertaken in compliance with the research 
protocol. During phase 1, verbal consent was obtained 
upon recruitment, with written consent secured for those 
with an abnormal sensor recording whose personal data 
would be required for onward referral for 12-lead ECGs. 
For the qualitative substudy (phase 2), written consent was 
obtained from all participants. The research adheres to rele
vant ethical guidelines.

Clustering methodology
GTM

The methodology developed as part of this study uses, 
at its core, the GTM probabilistic data clustering unsuper
vised ML algorithm designed for clustering and analyzing 
data.25,26 GTM works in a latent space, often set to be 2- 

dimensional (2D), which helps simplify and visualize the 
data. The latent grid consists of a uniform grid of nodes, 
and the algorithm assumes that the data we observe (for 
our study, features extracted from the ECG snippets) are 
generated by mapping this simplified space onto the 
higher-dimensional data space where the original data 
exist. This mapping is achieved using the function in 
equation 1:

y 5 WΦ(u) (1) 

where u is a point in the L-dimensional latent space, W is a 
matrix containing parameters that control the mapping, and 
Φ consists of S basis functions ΦS, which for the standard 
GTM (used in this study) are radially symmetric Gaussians. 
For the full details on how the methodology is derived, 
please refer to the original publications.25,27

In practice, GTM calculates the probability that each 
set of features (eg, features extracted from the ECG snip
pets) belongs to each node in the latent space. The data 
are then assigned to the node with the highest probabil
ity, a process called “mode projection.” This approach re
duces the risk of unrelated data points being grouped 
together. Given that the latent space is 2D, the results 
can be displayed as a 2D map, referred to as the “mem
bership map.”

An important advantage of GTM is that each node in 
the latent space corresponds to a reference vector in the 
original data space. These reference vectors serve to sum
marize the key characteristics of the data assigned to 
each node. This allows the user to interpret how specific 
features influence data assignment to different nodes. As 
a result, the methodology provides valuable insights into 
the relationships between features and patterns in the 
data.

GTM magnification factors
In an ideal scenario, latent nodes generated as part of the 
GTM approach that are closer together will be mapped to 
points that are close together in the data space, ensuring 
that data that share similar characteristics reside in the 

Figure 2 Outlines the workflow to go from the original ECG in PDF format to the extracted features that will be used for model development. ECG 5 elec
trocardiogram.
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same area of the membership map. However, when using a 
latent space whereby the nodes lie on a uniform grid, areas 
of the latent space may be distorted to optimize the fit of 
the manifold to the data space. This in turn can result in 
the visualization of the membership map not fully capturing 
the actual separations as seen in the data space.

One solution to this, proposed by the original devel
opers of GTM, is to use the concept of magnification fac
tors.28 Magnification factors are derived using techniques 
taken from differential geometry. As previously 
mentioned, GTM defines a smooth mapping from a latent 
space to the original data space using the function 

Table 1 Details all the heart variability variables extracted from the ECG signals using the Neurokit2 package that were included for model 
development

Variable type Variable name Variable description

Time domain HRV_MedianNN RR interval – median
HRV_MadNN RR interval – mean absolute deviation
HRV_Prc20NN RR interval – 20th percentile
HRV_Prc80NN RR interval – 80th percentile
HRV_pNN50 RR interval – absolute difference % above 50 ms
HRV_pNN20 RR interval – absolute difference % above 20 ms
HRV_MinNN RR interval – minimum
HRV_HTI HRV triangular index
HRV_TINN RR interval distribution approximation

Frequency domain HRV_HF High-frequency spectral power
HRV_HFn Normalized high frequency

HR fragmentation HRV_PIP Percentage of inflection points of the RR intervals series
HRV_PSS Percentage of short segments
HRV_PAS Percentage of RR intervals in alternation segments

Characteristics of the 
Poincaré plot geometry

HRV_SD1SD2 The ratio between short- and long-term fluctuations of the RR 
intervals

HRV_CSI CSI
HRV_CVI Cardiac vagal index
HRV_CSI_Modified Modified CSI obtained by dividing the square of the longitudinal 

variability by its transverse variability
HRV_GI Guzik’s index
HRV_PI Porta’s index
HRV_C1d Contributions of HR decelerations to short-term HRV
HRV_SD1d Short-term variance of contributions of decelerations
HRV_C2d Contributions of HR deceleration to long-term HRV
HRV_SD2d Long-term variance of contributions of decelerations
HRV_SD2a Long-term variance of contributions of accelerations
HRV_Cd Total contributions of HR decelerations to HRV

DFA and multifractal DFA HRV_DFA_alpha1 Monofractal DFA of the HR signal, corresponding to short-term 
correlations

HRV_MFDFA_alpha1_Width Width of the singularity spectrum, which quantifies the degree of 
multifractality

HRV_MFDFA_alpha1_Peak Value of the singularity exponent corresponding to the peak of the 
singularity dimension

HRV_MFDFA_alpha1_Mean Multifractal DFA – mean of singularity exponents
HRV_MFDFA_alpha1_Max Mean of the maximum and minimum values of the singularity 

exponent
HRV_MFDFA_alpha1_Delta Vertical distance between the singularity spectrum where the 

singularity exponents are at their minimum and maximum
HRV_MFDFA_alpha1_Asymmetry The asymmetric ratio corresponds to the centrality of the peak of 

the spectrum.
HRV_MFDFA_alpha1_Fluctuation The h-fluctuation index

Indices of complexity HRV_ApEn The approximate entropy measure of HRV
HRV_ShanEn Shannon entropy
HRV_FuzzyEn Fuzzy entropy of a signal
HRV_CD Correlation dimension – a lower-bound estimate of the fractal 

dimension of a signal
HRV_HFD Higuchi’s fractal dimension
HRV_KFD Katz’s fractal dimension
HRV_LZC Lempel-Ziv complexity

Please refer to the Neurokit2 documentation for further information.24

CSI 5 cardiac sympathetic index; DFA 5 detrended fluctuation analysis; ECG 5 electrocardiogram; HR 5 heart rate; HRV 5 heart rate variability.
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defined in equation 1. The magnification factor describes 
how the area of an infinitesimal rectangle at a point in 
the latent space, for example, one of the predefined no
des, transformed to infinitesimal volumes in the higher- 
dimensional data space.29 For the full derivation, please 
refer to the original publication.28 What this translates 
to is that higher magnification factors show areas of 
high distortion during the projection, which corresponds 
to areas where data are sparse, with the reverse being 
true for lower magnification values. These can be as
sessed visually by superimposing the magnification fac
tors onto the membership map generated from GTM 
and using a gray color scale to represent the values of 
the factors

Macrocluster generation using magnification factors
Let us consider for a moment that the nodes in the GTM 
latent space are microclusters of the original dataset. These 
are useful because they provide a way of visualizing the 
key underlying relationships within the data. However, one 
drawback is that these visualizations of microclusters may 
be too granular for practical use.30 Several studies have pro
posed approaches to further aggregate these microclusters 
into macrocluster partitions that can be interpreted more 
easily.23,29,30

The methodological contribution of this paper focuses on 
extending the original macroclustering methodology out
lined by Bellfield et al.23 They first used GTM to assign 
data to nodes in the latent space. Then, agglomerative 

hierarchical clustering was performed on the reference vec
tors, which were subsequently mapped to their correspond
ing latent nodes to generate the macroclusters. Our 
contribution focuses specifically on improving the macro
cluster generation aspect of this methodology to provide 
more accurate, better-defined aggregations. We do this by 
implementing a constrained hierarchical clustering of the 
reference vectors to preserve the latent node neighborhoods 
within macrocluster boundaries. Although constrained hier
archical clustering has previously been applied to GTM mac
rocluster generation, as in Vellido et al,29 who used a simple 
neighborhood constraint that included all immediate sur
rounding nodes while restricting merges with non- 
neighboring nodes, our approach introduces a more flexible 
and data-driven definition of neighborhoods.

In particular, the novelty of our method lies in first 
defining neighborhoods in the latent space using magnifi
cation factors and unsupervised k-nearest neighbors 
(KNN), rather than relying on a fixed topological 
constraint. Given a set of points U5{u1; u2;⋯; ul; } in 
Rn, unsupervised KNN defines, for every point ui, the 
KNNs based on the smallest distance.31,32 In our case, 
each point ui resides in R3, defined by the latent node co
ordinates and the magnification factor calculated at that 
point. Euclidean distance was used to evaluate the distance 
between pairs of points. KNN was set to look for the 5 
closest neighbors, enabling the construction of nuanced 
neighborhoods that incorporate the local information en
coded by the magnification factors.31 Once neighborhoods 

Figure 3 Proposed artificial intelligence–based methodology that builds on the approach in 23. The modification to the approach is contained within the green 
dashed box and demonstrates how the magnification factors are generated from the GTM model, used to identify neighborhood constraints, which are then used 
to influence the hierarchical clustering applied to the reference vectors. GTM 5 generative topographic mapping.
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were defined for each latent node, they were mapped to 
their corresponding reference vectors in the original data 
space. These neighborhoods were then used as constraints 
in the hierarchical clustering process. From this point, the 
methodology follows that of Bellfield et al23 to generate 
the macroclusters in the latent space, with the full process 
detailed in Figure 3.

Leveraging macroclusters for ECG screening
GTM calculates the probability of each data point (ie, fea
tures extracted from each ECG snippet) belonging to each 
latent node, formally known as responsibilities. Consid
ering the responsibilities instead of the mode projections al
lows us to consider the full probability distribution of the 
data in the latent space. For our use case, each ECG will 
be represented by a nonzero number of snippets extracted 
from the longer signal. Averaging the responsibilities for 
all snippets relating to an ECG provides the probability dis
tribution for the entire ECG. Once obtained, for each mac
rocluster, the total responsibility for all nodes assigned to it 
can be calculated. In practice, this means that, for an ECG, 
we see which macrocluster best represents that ECG and 
assign it to that cluster, in a very similar way to mode pro
jection. This is useful because we can analyze the key char
acteristics of each macrocluster to understand what defines 
each of them, an approach used previously to define clini
cally relevant AF phenotypes,23 identify differences in 
censorship between countries,33 and market segmenta
tion.29 By understanding which diagnostic class best repre
sents each macrocluster, this can then be assigned to the 
ECG and used alongside the visualizations to help inform 
the clinician performing the screening.

Results
Membership map and reference vectors
Applying the data preprocessing steps to the clinically re
viewed subset of ECGs from the full SHOPS-AF dataset, 
we had a total of 617 ECG snippets taken from 97 ECGs, 
where 477 snippets (from 78 ECGs) were used for training 
the GTM model with 140 snippets (from 19 ECGs) being 
used to validate the GTM macroclusters. Of the 78 training 
ECGs, 21 were diagnosed as AF, 8 were diagnosed as 
possible AF, and the remaining 49 were diagnosed as normal 
sinus rhythm, henceforth referred to as “normal.” For ECGs 
used for testing, 2 were diagnosed as AF, 1 as possible AF, 
and the remaining 16 as normal. Of the 2 ECGs reserved 
for testing, 1 was diagnosed as AF, and the other as normal. 
For the parameters of the GTM model, we used an 8 ⨉ 8 
latent space, 9 radial basis functions arranged in a 3 ⨉ 3 
grid, a regularization term of 1, and a width parameter of 0.8.

The membership map generated by the GTM when 
trained on the 477 ECG snippets using these set parameters 
is presented in Figure 4A. This map visualizes the latent 
space containing a compressed representation of the entire 
original data space. Each point on the map represents a 
node containing at least 1 ECG snippet, with the size of 
the point indicating the number of ECG snippets in the 
node: the larger the node, the more snippets have been as
signed to it.

A selection of the reference maps extracted from the 
GTM model trained on the features extracted from the 477 
ECG snippets (all reference maps are contained in 
Supplemental Figure 1 in the Supplementary Material) is 
presented in Figure 4B. These maps display how each vari
able affected what latent node an ECG snippet would be as
signed to, allowing the user to interpret the model’s decision 
making. Each point within the reference maps corresponds to 

Figure 4 A: Membership map representing the latent space generated from the generative topographic mapping model trained on the features extracted from 
the athlete’s ECG rhythm strips. B: A selection of reference map visualizations demonstrating how 4 of the variables used to train the generative topographic 
mapping affect the cluster distribution in the latent space. ECG 5 electrocardiogram.
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the node in the exact location in the membership map. The 
color scheme for the reference maps was chosen so that 
the points that are redder highlight that ECG snippets as
signed to that node had a higher value for that variable. On 
the flip side, the grayer a point is, the ECG snipper assigned 
to the node had a lower value for that variable. For example, 
using the top left plot in Figure 4B, we can see that ECG 
snippets with a higher proportion of RR intervals of .20 
ms were assigned to nodes on the right-hand side of the 
membership map.

Magnification factors and macroclusters

Magnification factors
The magnification factor plot generated from the trained 
GTM, as described in section 2.2.2, using a gray-scale repre
sentation, is presented in Figure 5. This visualization pro
vides a representation of how the latent manifold distorts 
when projected and fitted to the data. Lighter areas of this 
visualization demonstrate the regions with low distortion 
in the mapping, with the darker gray corresponding to re
gions that experienced high distortion in the same mapping.

Macroclusters
By applying the methodology defined in this study, we were 
able to generate 5 macrocluster regions within the GTM 
latent space, as shown in Figure 6A and 6B. Each macroclus
ter contains nodes and by extension ECG snippets that share 
similar characteristics. These clusters can also be further 
analyzed by looking at the distribution of diagnoses within 
the latent space, as shown in Figure 7. From these visualiza
tions, we can derive definitions for each of the clusters: clus
ters 1 and 5 relate to AF ECG snippets, clusters 2 and 3 relate 
to normal ECG snippets, and cluster 4 relates to possible AF 
ECG snippets.

The top 3 plots in Figure 7 show how the different macro
clusters relate to the 3 different diagnoses present within the 
dataset.

Validating screening effectiveness
The 140 snippets were projected onto the existing latent 
space using the trained GTM, with the responsibilities for 
the ECG snippets relating to a single ECG aggregated to 
get 19 individual ECG probability distributions. From these, 
we then calculated the total responsibility for each macro
cluster, with the ECG being assigned to the macrocluster 
with the highest value. Referring to Figure 6 for reference, 
an ECG was considered to be AF if the macrocluster it 
was assigned to was either 1 or 5 (the red or the orange 
cluster), possible AF if the macrocluster assigned was cluster 
3 (the pink cluster), and normal if the macrocluster assigned 
was either cluster 2 or 3. Assigning the clusters this way and 
comparing the predicted label with the actual generated an 
overall accuracy of 74%. The full breakdown can be viewed 
in the confusion matrix in Figure 8.

Visualizing an individual participant’s trajectory
By collating the node locations associated with sequential 
ECG snippets derived from a single, continuous recording, 
and arranging them in chronological order, we enable the 
visualization of the temporal evolution of a participant’s 
ECG. The ECG snippet macrocluster assignment can then 
be validated by looking back at the original ECG PDF and 
evaluating the ECG between the start and end points of the 
snippet. Figure 9 shows this using the 2 test ECGs projected 
onto the macrocluster regions determined using the training 
data. The trajectory where the participant’s ECG was diag
nosed as normal is presented in Figure 9A, with Figure 9B 
containing the trajectory where the participant’s ECG was 
diagnosed as AF. Alongside the membership map projec
tions, we also show the overall probability distribution for 
ECG, displayed in the bottom left of Figure 9A and 9B. 
Given that GTM at its core is a probabilistic model, we 
can calculate for every point the probability that the data 
were generated from every latent node,23 essentially display
ing the soft clustering performed by GTM. By averaging the 
probability distributions for each snippet from an ECG, we 

Figure 5 Magnification map calculated from the trained generative topographic mapping. Light areas of this map correspond to areas of low distortion during 
mapping, with the darker areas relating to areas of high distortion during the mapping.
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can generate a probability distribution per ECG to see which 
latent nodes were most likely to have generated it.

Discussion
The methodological approach proposed in this paper has the 
potential to enhance decision making in AF screening by 
providing a comprehensive assessment and characterization 
of ECG signals, with a particular emphasis on specific re
gions within the membership map. By capturing subtle 
signal variations and analyzing their trajectories, our 
approach offers deeper insights into individual heart rhythm 
patterns that may be overlooked by traditional screening 
methods. This refined analysis facilitates a more accurate 
evaluation of electrophysiological abnormalities and im
proves risk stratification, enabling clinicians to identify 
high-risk patients more effectively.

Moreover, the insights gained from this method can 
support personalized treatment strategies, allowing for 
tailored interventions that align with the unique character
istics of each patient’s condition. This could be achieved 
by projecting new, unseen ECGs into the latent space, 
generating the appropriate visualizations, and matching 
their trajectory to similar known examples to identify suc
cessful treatment strategies that could be applied. Ulti
mately, this approach aims to enhance the overall 
effectiveness of AF detection and management, leading 
to improved clinical outcomes and more efficient use of 
health care resources. The visualizations generated using 
this approach convey far more nuanced detail than a bi
nary positive or negative result and in turn hold signifi
cant promise for widespread community screening 
initiatives. For example, it could be seamlessly integrated 
into everyday environments such as supermarkets, where 
accessibility and convenience could drive early detection 
on a population-wide scale. By bridging advanced AI/ 
ML methodologies (such as the one proposed) with clin

ical practice, we aspire to contribute to more effective 
detection of AF in diverse patient populations.

The traditional application of AI/ML in improving AF 
screening focuses on developing deep learning models, 
such as CNNs, to predict whether or not an ECG signal 
shows AF.14–18 These models perform this task very 
well, with areas under the curve ranging from 0.818 to 
0.8717 and accuracies up to 98.1%.14 Even though classi
fication tasks addressed using these techniques have their 
merits, they can never be correct 100% of the time (as 
is the case with all ML models). The black-box nature 
of these approaches means that once a prediction has 
been provided, there is no real way to truly understand 
how and why the model has arrived at this decision, which 
in turn can affect the trust shown to the model by clinical 
experts. Researchers have attempted to interpret their 
models using post hoc approaches such as Grad-CAM17; 
however, this approach is known to highlight nonimpor
tant areas of the input as important, potentially strength
ening the distrust in the model.

Our approach directly addresses these issues through 
several key improvements. First, by presenting all model 
decisions in clear, interpretable visualizations, users can 
understand the rationale behind each decision. Second, 
we established a robust methodology for generating mac
rocluster regions with precise boundaries, enhancing the 
clarity and reliability of the model’s outputs. Third, we 
have shown that even though this methodology was not 
trained using diagnostic information, it was still able to 
classify the ECGs with reasonable accuracy. Even though 
the accuracy may not be in line with other metrics re
ported in the literature, these models were trained specif
ically for the task of detecting AF. In addition, our 
approach managed to classify all normal ECGs with 
100% accuracy, which is crucial for a screening environ
ment because it further builds trust in the approach while 
substantially reducing the number of ECGs that need to 

Figure 6 Derived subgroups of athletes using data extracted from their ECG snippets. A: Membership map with a uniform size for the microclusters to show 
the distribution of the macrocluster regions. B: The size of the microclusters in the membership map, dictated by the number of ECG snippets assigned to it. 
ECG 5 electrocardiogram.
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receive additional attention. Finally, our approach links 
each model decision back to the original data, providing 
users with a platform to override the decision if they 
deem it inaccurate, thus ensuring greater control and trust 
in the model’s outputs.

The work by Adeniji et al19 also addressed the issues out
lined earlier using a fully interpretable multiple logistic 
regression model. Rather than generating a binary predic
tion, they prioritized ECG screening to reduce the workload 
on clinical experts. However, a notable limitation of their 
approach was that, despite analyzing long-form ECGs over 
several weeks, they required all ECGs to be collated before 
ordering could be performed. In contrast, our approach 
facilitates real-time application as ECG data are collected, 
enabling faster decision making and potentially improving 
screening accuracy. This immediacy in processing not only 

streamlines the workflow for clinicians but also enhances 
the overall efficiency of the screening process.

Limitations
Our proposed methodology has several limitations that 
should be acknowledged and addressed through further 
research. The first limitation of our approach is that we 
used features extracted from the ECG snippets rather 
than the raw ECG signals. This feature extraction process 
can be tedious and introduces an additional layer of poten
tial errors into the analysis. Another potential limitation 
lies in the GTM algorithm’s reliance on Gaussian distribu
tions, which may struggle to accommodate outliers in the 
data. Consequently, this can lead to data being condensed 
into a smaller area of the latent space, potentially failing 
to capture the underlying relationships within the data 

Figure 7 The top 3 plots display the ECG diagnoses overlaid on the membership map. The bluer a region is, the larger the percentage of ECG snippets in each 
node that came from an ECG diagnosis with the outlined condition. AF 5 atrial fibrillation; ECG 5 electrocardiogram.
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adequately. Future analyses could address this issue by 
using t-GTM, an alternative to standard GTM that uses 
t-distributions, which are less sensitive to outliers.34

In addition, a limitation of our proposed methodology is 
that the number of macroclusters and the values of k used 
in the unsupervised KNN are selected manually. In addition, 
the demographic of the data collected and analyzed in 
this study is relatively small, comprising shoppers from 
Northwest England who use supermarkets for their pur
chases. To gain a comprehensive understanding of the bene
fits and generalizability of our approach, further testing 

would need to be conducted using data from a broader demo
graphic. Finally, detection and confirmation of AF are only 
the first step of the clinical evaluation, characterization, 
and holistic management of AF,35,36 which are not addressed 
in our study.

Conclusion
The methodology proposed in this study offers a prom
ising advancement in AF screening by providing a 
nuanced approach to ECG analysis that extends beyond 
traditional classification models. By integrating interpret
able visualizations and a robust clustering framework, 
this approach addresses some of the limitations of existing 
AI/ML models, such as the opacity and occasional unreli
ability of their decision-making processes. Unlike conven
tional deep learning models, which often present AF 
predictions in an unexplainable “black-box” format, our 
approach allows clinicians to observe model decisions 
transparently, supporting a clearer rationale for each 
diagnosis. Furthermore, the capacity for real-time analysis 
facilitates timely clinical decision making, optimizing the 
screening workflow and potentially improving patient 
outcomes.

Although this method demonstrates significant potential, 
we recognize limitations that future research should address, 
such as refining feature extraction methods, accommodating 
data outliers, and expanding testing across diverse popula
tions. Nonetheless, this work marks a critical step toward 
bridging advanced ML techniques with clinical practice, ul
timately aiming to enhance AF detection accuracy, foster 
trust among clinical experts, and support personalized, 
effective patient care.

Figure 8 Confusion matrix showing the performance of our approach 
when predicting normal, possible AF, and AF electrocardiograms. AF 5 

atrial fibrillation.

Figure 9 Displays the final output from our proposed methodology. Each ECG is projected onto the trained membership map to see where each snippet is 
assigned and how the model’s decision changes over time. A probability distribution is also produced alongside this projection to provide the user with the area 
of the membership map most responsible for generating that ECG. Alongside the projections, the actual PDF ECG is provided with the highlighted sections to 
allow the user to check the model’s cluster assignments. A: Shows the output for an ECG recorded from a participant diagnosed as normal. B: Shows the output 
for the ECG recorded on a participant diagnosed as having AF. AF 5 atrial fibrillation; ECG 5 electrocardiogram.
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