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Abstract 

This study investigated the relationship between isokinetic muscle strength metrics, 

landing biomechanics, and their asymmetries, in females. Twenty-three female team 

sport athletes completed unilateral forward drop landings, and isokinetic muscle 

strength assessment of the knee extensors and flexors, on both limbs. Discrete 

two-dimensional kinematics of the trunk, hip, knee, and ankle in the sagittal and fron-

tal plane and peak GRF were recorded during the drop landings. Novel, task-specific 

isokinetic strength metrics related to the landing task, such as peak concentric and 

eccentric torque, angle specific torque (AST), functional range and traditional/func-

tional ratios were quantified. Asymmetry for kinematic and muscle strength data were 

quantified based on the individual variability of the task and the population mean and 

smallest worthwhile change. Functional concentric flexor range explained 15–18% of 

the variance in peak frontal trunk (P = 0.003) and hip motion (P = 0.007) and 22% in 

peak frontal knee motion (P = 0.005), when combined with the functional flexion ratio. 

Peak eccentric extensor torque explained 13–14% of the variance in peak sagittal 

hip (P = 0.014) and knee (P = 0.009) motion. Asymmetry in concentric extensor AST 

explained 28% of the variance in peak knee frontal plane asymmetry (P = 0.010), 

however the direction of asymmetry was rarely present on the same side for kine-

matic and strength variables. Novel and task specific isokinetic strength metrics 

explained small but significant variances in sagittal and frontal plane landing kinemat-

ics and asymmetry, which have previously been related to ACL injury risk.

Introduction

Anterior Cruiciate Ligament (ACL) injuries are amongst the most burdensome injuries 
in female team sports [1], resulting in high rates of hospital admission [2] and requir-
ing a median recovery time of 10 months [1]. The majority of ACL injuries in female 
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team sports are non-contact in nature (53–87%), and often occur during a landing, 
cutting or deceleration movement [3], with landing being the most reported mech-
anism [3,4]. Within the same sport, females are ~ 2–3-fold more likely to sustain an 
ACL injury compared with males, and non-contact ACL injuries are higher in amateur 
compared with elite-level female athletes (0.27 vs. 0.10 per 1000 player-hours) [5]. 
Lower limb strength and landing biomechanics have been prospectively linked with 
non-contact ACL injury risk in female athletes [6], and improvements in these factors 
can reduce injury risk [7]. Accordingly, further exploration of the association between 
lower limb strength and landing biomechanics in amateur female athletes may help 
inform more effective injury prevention strategies in this cohort.

Previous literature has explored the biomechanical mechanisms of non-contact 
ACL injuries in female athletes, using multiple 2D camera angles at the time of injury 
[4,8]. Knee abduction was the most common mechanism observed (75–88%), often 
accompanied by trunk lateral flexion toward the injured limb, hip adduction, and a 
knee-dominant landing strategy characterized by limited flexion at the trunk, hip, and 
ankle [9]. Prospectively, greater lateral flexion of the trunk [10,11], knee abduction 
[10,11] and vertical GRF [11] during a landing task, for example, can differentiate 
between athletes who are at greater risk of sustaining an ACL injury. Research has 
therefore employed single leg landings off a raised platform [12,13] to examine the 
biomechanics of landing as a screening method for lower limb injuries, which offer 
greater insights into ACL injury risk factors compared with double leg landings [14]. 
Such screening methods have demonstrated some ability to identify high risk athletes 
[15], and demonstrate similar landing biomechanics to a forward vertical jump [16]. 
The assessment of sagittal and frontal landing kinematics with 2D motion capture 
also offers a field friendly assessment of injury risk, which has shown good to excel-
lent agreement with 3D motion capture [17].

Strength of the quadriceps and hamstrings have been prospectively linked to 
ACL injury risk [18], as these muscles are the main antagonists (i.e., loaders) and 
agonists (i.e., supporters) of the ACL during landing tasks [19]. For example, the 
hamstring-to-quadricep ratio is related to greater knee loading during a landing task 
[13] and an increased risk of ACL injury [18]. Whilst conflicting evidence suggests the 
hamstring-to-quadricep ratio is not an independent risk factor of ACL injuries [20], the 
angular velocities typically employed (60°.s−1) do not mimic those observed during 
forward landings tasks (188.9 ± 220.6°.s−1 at peak vertical GRF) [21]. The assessment 
of eccentric torque, angular specific torque, functional torque range (the angular 
range at which a percentage of peak torque is maintained) and functional ratios have 
also been recommended for injury screening in team sport athletes [20,22,23]. For 
example, the quadriceps primarily perform eccentric work and the hamstring perform 
concentric work during the initial phase of a landing [24], which can be quantified as a 
functional flexion ratio. Assessment of the functional flexion ratio [25], torque in more 
extended knee positions [20,23] and functional torque range [23] may better reflect 
the movement patterns/muscle actions commonly observed during landing actions, 
when ACL injuries typically occur.
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Limb preference, referred to as the preferred limb for a given motor task, and limb asymmetry can also influence ACL 
injury risk in females. Specifically, female athletes are more likely to injury their left/ non-preferred ACL compared with 
the right/ preferred limb [26] which has been partly attributed to kinematic and strength asymmetries between limbs. 
For example, reduced sagittal plane range of motion in the hip and knee joints has been observed in the non-preferred 
compared with the preferred leg [27] and quadricep strength asymmetries of >15% increase peak vertical GRF during 
landing in the ACL reconstructed limb compared with the non-injured limb [28]. Whilst these reports identify the potential 
mechanisms of limb asymmetry on ACL injury risk, the use of arbitrary asymmetry thresholds (e.g., > 10–15%) has been 
critiqued [29] in favour of an individualised approach to asymmetry. Briefly, considering the individual variability of a task 
(CV%) as well as the population mean and smallest worthwhile change, can help determine meaningful asymmetry in the 
context of the specific population and metric assessed [30]. Literature assessing asymmetries in females has also focused 
on an injured population, comparing the injured and non-injured limb to inform rehabilitation [31]. Assessment of kine-
matic and strength asymmetries and their association in uninjured female athletes might better inform preventative injury 
programmes.

Whilst the literature highlights the importance of landing kinematics, muscular strength and asymmetry, these factors 
have typically been examined in isolation. Greater understanding of the interaction between risk factors is needed to 
develop a comprehensive athlete risk profile and plan effective prevention interventions [32]. The aims of the present 
study were twofold. Firstly, to identify the extent to which novel measurements of isokinetic muscle strength explain vari-
ance in landing biomechanics and secondly, to quantify muscle strength asymmetries, landing biomechanics asymmetries 
and the variance they explain. It was hypothesized that novel isokinetic variables, more relevant to the landing task (i.e., 
functional ratios, angle specific torques and functional range), will explain some of the variance in single leg landing bio-
mechanics, more so than traditional isokinetic variables (e.g., hamstring-to-quadricep ratio).

Methods

Subjects

A total of 23 females (age: 22.2 ± 3.8 years; stature: 1.67 ± 0.1 m; mass: 65.6 ± 6.6 kg) participated in the study. An a prior 
power analysis determined a minimum sample size of 19 was required to detect a moderate two-tailed correlation (r = 0.6) 
with 80% power at a type I error of 0.05, based on reported associations between quadricep strength and knee kinematics 
(r = 0.64) [33]. All subjects took part in a competitive team sport at least once per week (netball, football, rugby, hockey, or 
volleyball) and had at least 6 months previous playing experience. Subjects also had no previous history of knee sur-
gery and/or no lower limb injuries in the past 6 months. The subject’s preferred leg was determined by asking which leg 
they would use to kick a ball [34,35]. All subjects provided written informed consent to take part in the study. This project 
received ethical approval from the University of Chester Faculty of Medicine and Life Sciences Research Ethics Commit-
tee (1849-22-CO-SES), and all procedures were conducted according to the Declaration of Helsinki. The start and end of 
the recruitment period for this study was from 06/05/2022–06/04/2023.

Design

In a repeated measures design, subjects performed unilateral forward drop landings on both limbs. Thereafter, an assess-
ment of isokinetic muscle strength of the knee extensors and flexors was taken on both limbs. All testing was conducted in 
one visit.

Landing biomechanics

Eighteen reflective markers were attached onto the subject’s greater tuberosity of the humeral head, trochanter major, ante-
rior superior iliac spine, medial and lateral femoral condyles, distal tibia, medial and lateral malleolus, and 5th metatarsal 
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head on both sides of the body. Two markers were placed at the midpoint of the lateral and medial femoral condyles on the 
patella. Subjects then performed a standardised warm-up consisting of several double-leg squats and countermovement 
jumps and familiarized themselves with the landing task by performing 3 practice repetitions on both limbs.

Subjects then performed 7 unilateral forward drop landings alternating between the right and left leg [17]. Subjects 
began standing unilaterally on a 30 cm high box, dropped forward to a target half of their body height on the same leg, 
maintaining balance on one foot for 2 s for the trial to be successful [17]. A trial was deemed unsuccessful if the subject’s 
non-support leg touched the ground, or if they lost balance during the test. The middle five successful trials were used for 
analysis [36,37]. During each landing sagittal and frontal plane movements were simultaneously captured with two digital 
video cameras (Quintic high speed camera GigE Live, Quintic, United Kingdom) sampling at 100 fps, positioned ~ 3 m to 
the front and side of the landing zone at a height of ~1 m. GRF data were captured using one embedded force platform 
(Kistler, 9281 CA, Switzerland), sampling at 1200 Hz.

Isokinetic muscle strength

Isokinetic knee extensor and flexor concentric and eccentric peak torque at 180°.s−1 was assessed using a dynamometer 
(Biodex Medical, System 4, New York, USA) on both limbs. Prior to testing, all subjects performed a submaximal isokinetic 
warm up consisting of 10 extension-flexion repetitions at 120°.s−1. Thereafter, subjects performed 5 maximal concentric 
extension and flexion efforts at 180°.s−1 for familiarization and after a 2-minute rest period, performed 5 maximal concen-
tric extension and flexion efforts at 180°.s−1 [23], across an approximate range of motion of 90–100 degrees. The familiar-
ization and assessment of 5 maximal eccentric extension and flexion efforts then took place in the same format, across 
an approximate range of motion of 85–95 degrees, following a warmup of 5 submaximal eccentric repetitions at 120°.s−1. 
The eccentric torque limit for flexion and extension was set to 2.5 and 2 multiples of peak concentric torque, based on 
pilot testing, respectively. Subjects were verbally encouraged throughout and instructed to extend (“kick out”) and flex 
(“pull back”) as hard and as fast as possible for concentric efforts, and resist/stop the movement as much as possible for 
eccentric efforts. The average range of motion for all participants for concentric and eccentric efforts was 95.1 ± 8.2° and 
87.8 ± 8.2°, respectively.

2D video and GRF data processing

For the 2D video analysis, reflective markers were automatically digitised using Quintic software (Quintic Biomechanics 
v31, Quintic consultancy limited, UK). In the sagittal plane, trunk flexion (relative to vertical), hip flexion, knee flexion and 
ankle dorsiflexion angles were calculated. In the frontal plane, knee frontal plane projection angle (FPPA) was calculated 
using the marker on the patella for the knee joint centre, the ASIS markers and the distal tibia, then subtracted from 180° 
and hip adduction was defined as the angle between the bilateral ASIS and the patella, then subtracted from 90° [38]. 
Lateral trunk flexion was calculated as the perpendicular line from the ipsilateral ASIS to the midpoint between the two 
humeral head markers [38].

Data was smoothed using a fourth-order Butterworth low pass filter and Quintic’s recommended cut off frequencies of 
12–24 Hz based on residual analysis of each marker trajectory. Discrete peak variables were quantified over the weight 
acceptance phase of the landing, defined as initial contact to peak knee flexion [39]. Vertical GRF was normalised to sub-
jects’ body weight, filtered with a Butterworth low pass filter with a cut off frequency of 100 Hz.

Isokinetic muscle strength data processing

Torque data was smoothed using a fourth-order Butterworth low pass filter with a 5 Hz cut-off frequency. The isokinetic 
phase of each repetition within 5% of the predetermined constant angular velocity (180°.s−1) was identified and the rep-
etition eliciting the highest peak concentric and eccentric extensor and flexor torque was used for further analysis. Peak 
concentric angular specific torque (AST) at 40° of knee flexion, and the functional range where 85% of peak torque was 
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maintained in a single repetition [23], were calculated and expressed relative to the subject’s body mass. The maximal 
concentric and eccentric hamstring-to-quadricep ratio was calculated by dividing the peak knee flexor torque by the peak 
knee extensor torque for each contraction type. A functional flexion ratio was also calculated as peak concentric flexor 
torque divided by peak eccentric extensor torque [25]. Measures of concentric and eccentric peak torque, AST and func-
tional ratios have previously displayed favourable reliability (ICC > 0.9) at an angular velocity of 60°.s−1 [40].

Statistical analysis

Descriptive statistics (mean ± standard deviation) for all isokinetic muscle strength and landing biomechanics variables 
were calculated. The coefficient of variance was calculated to assess isokinetic muscle strength intra-individual variability 
over two repetitions [41], the peak and second peak repetition, and kinematic/kinetic intra-individual variability over the 5 
landing trials. Group analysis of kinematic, kinetic and strength asymmetry were calculated using the following equation:

 Asymmetry index (absolute) = [(A – B) / (Max A, B)] x 100 

Were A is the value of interest on the preferred leg and B is the non-preferred leg [29].
Individual asymmetry was also assessed and only those with asymmetry indexes greater than both the intra-limb vari-

ability (using the highest CV between the preferred/non-preferred leg) and the threshold for moderate asymmetry (calcu-
lated as the group mean plus the smallest worthwhile change [SWC; 0.2 * between-subject SD]), were considered to have 
meaningful asymmetry [29,30]. Data on intra-limb variability are provided in S1 and S2 Tables.

Pearson correlation coefficients and 95% confidence intervals (using the Fisher Z transformation), with Bonferroni- 
adjusted P values were calculated to assist in the initial screening of isokinetic muscle strength predictor variables, by 
selecting correlations of R > 0.3. Both the preferred and non-preferred legs were included in the correlation yielding a sam-
ple of n = 46. All isokinetic muscle strength variables, excluding peak concentric extensor and flexor torque, which were 
strongly associated with angle specific torque (R ≥ 0.9), were included in the initial screening, yielding 9 pairwise correla-
tions per kinematic variable. Similarly, associations between strength asymmetry with kinematic asymmetry (n = 23) were 
assessed using Spearman’s correlation coefficients and 95% confidence intervals, with Bonferroni-adjusted P values. 
Multiple backwards regression models (n = 4) were applied using selected predictor variables to explain the variance in 
kinematic response variables; peak trunk lateral flexion, peak knee FPPA and flexion angle and peak hip adduction angle 
and corresponding P values were Bonferroni-adjusted. One additional regression model was applied between selected 
predictor variables and peak knee FPPA asymmetry. Only muscle strength variables with R > 0.3 were used as potential 
predictor variables in the regression models, to reduce potential overfitting [42]. The F probability for variable entry was 
set at 0.05 and for variable removal was set at 0.10. Assumptions of the regression models were met. The alpha level for 
statistical significance was set at 0.05 level.

Results

Isokinetic muscle strength

Muscle function data on the preferred and non-preferred legs are presented in Table 1. A total of 22 out of 23 subjects indi-
cated they preferred the right side and mean asymmetry ranged from 6–16% across isokinetic muscle strength variables. 
Individual isokinetic muscle strength data are available in S3 File.

Landing biomechanics

Table 2 demonstrates landing biomechanics measures for the preferred and non-preferred legs. Mean asymmetry (%) 
ranged from <5% for knee flexion to >20% for peak knee abduction, hip adduction and trunk lateral flexion. Individual 
landing biomechanics data are available in S3 File.
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Functional concentric flexor range, functional flexion ratio, peak eccentric extensor torque and concentric extensor AST 
were the only strength variables to display correlations of R > 0.3 with landing kinematic variables (S1 File). These vari-
ables were incorporated into the relevant regression model. Functional concentric flexor range and functional flexion ratio 
explained 22% of the variance in peak knee FPPA and functional concentric flexor range explained 15–18% of the vari-
ance in peak frontal plane trunk and hip motion (Table 3). Peak eccentric extensor torque explained 14% of the variance 
in sagittal knee flexion angle.

Peak concentric extensor AST asymmetry and peak eccentric flexor torque asymmetry were the only strength asymme-
try variables to display correlations of R > 0.3 with peak knee FPPA asymmetry (S2 File). Asymmetry in concentric exten-
sor AST explained 28% of the variance in peak knee frontal plane projection angle asymmetry (Table 4).

Individual asymmetry for knee concentric extensor AST and knee FPPA are presented in Fig 1. Six of the eight subjects 
displaying meaningful asymmetry in knee extensor AST also displayed meaningful asymmetry in knee FPPA. Of these 
six subjects, only three demonstrated a stronger leg (positive asymmetry for knee extensor AST) combined with reduced 
knee FPPA (negative asymmetry) showing the direction of asymmetry was highly individual and task specific.

Discussion

This study aimed to assess the relationship between isokinetic muscle strength metrics, landing biomechanics, and their 
asymmetries. In line with the first aim of the study, functional concentric flexor range and functional flexion ratio were the 

Table 1. Measures of muscle strength on the preferred and non-preferred leg and asymmetry.

Preferred 
leg

Non- 
preferred 
leg

Average Asym-
metry (%)

Individuals 
with mean-
ingful 
asymmetry
(% [n])

Peak concentric extensor torque (N.m.kg−1) 1.65 ± 0.30 1.58 ± 0.24 6.5 ± 5.3 26 [n = 6]

Functional concentric extensor range (°) 42.0 ± 6.2 42.3 ± 6.2 11.9 ± 10.6 30 [n = 7]

Angle specific concentric extensor torque (N.m.kg−1) 1.35 ± 0.27 1.30 ± 0.24 10.1 ± 8.4 35 [n = 8]

Peak concentric flexor torque (N.m.kg−1) 0.87 ± 0.23 0.83 ± 0.17 9.3 ± 7.7 26 [n = 6]

Functional concentric flexor range (°) 47.9 ± 8.4 52.5 ± 7.7 16.1 ± 12.4 35 [n = 8]

Angle specific concentric flexor torque (N.m.kg−1) 0.82 ± 0.21 0.77 ± 0.14 11.2 ± 8.3 30 [n = 7]

Peak eccentric extensor torque (N.m.kg−1) 2.65 ± 0.65 2.57 ± 0.69 9.2 ± 9.1 22 [n = 5]

Peak eccentric flexor torque (N.m.kg−1) 1.84 ± 0.46 1.65 ± 0.39 13.8 ± 12.7 30 [n = 7]

Peak concentric hamstring to quadricep ratio (%) 52.4 ± 8.8 52.8 ± 8.7 8.9 ± 6.9 44 [n = 10]

Peak eccentric hamstring to quadricep ratio (%) 71.0 ± 14.3 67.6 ± 19.6 16.0 ± 14.0 35 [n = 8]

Functional flexion ratio (%) 34.3 ± 11.2 34.3 ± 11.0 14.5 ± 9.4 30 [n = 7]

https://doi.org/10.1371/journal.pone.0326882.t001

Table 2. Landing kinematics and kinetics for the preferred and non-preferred leg and asymmetry.

Preferred leg Non- 
preferred leg

Mean Asym-
metry (%)

Individuals with mean-
ingful Asymmetry (% [n])

Peak knee flexion (°) 115.04 ± 10.71 116.33 ± 11.54 4.77 ± 3.53 30 [n = 7]

Peak knee FPPA abduction (°) 18.34 ± 7.73 17.53 ± 5.39 22.51 ± 12.89 39 [n = 9]

Peak hip flexion (°) 127.42 ± 14.74 126.91 ± 15.77 5.73 ± 4.40 39 [n = 9]

Peak hip adduction (°) 18.48 ± 6.36 15.57 ± 4.52 21.30 ± 18.23 39 [n = 9]

Peak ankle dorsiflexion (°) 92.92 ± 6.81 95.78 ± 8.43 4.83 ± 3.84 35 [n = 8]

Peak trunk lateral flexion (°) 13.84 ± 4.02 12.26 ± 3.00 24.88 ± 14.86 30 [n = 7]

Peak GRF (BW) 4.17 ± 0.56 4.23 ± 0.72 7.46 ± 6.23 13 [n = 3]

https://doi.org/10.1371/journal.pone.0326882.t002

https://doi.org/10.1371/journal.pone.0326882.t001
https://doi.org/10.1371/journal.pone.0326882.t002
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main isokinetic muscle strength variables to explain small (22%) but significant variance in knee frontal plane motion. 
Reported associations between hamstring muscle activity and knee FPPA have previously been varied, with one study 
demonstrating a significant relationship [43] and another finding no relationship [44]. The hamstrings act to unload the 
ACL when the knee is flexed more than ~20° [45] and ACL strain is significantly correlated to knee abduction angles [10]. 
Consequently, it is somewhat expected that maintaining higher strength through a range of knee flexion and high eccen-
tric hamstring strength relative to concentric quadricep strength, explains some variance in knee FPPA. This also aligns 
with a higher ACL shear force reported during a landing task in females with lower peak knee flexor peak torque [13]. The 
functional concentric flexor range also explained some variance (15–18%) in frontal plane hip and trunk motion, which 
is consistent with the weak associations between lower extremity strength and trunk frontal motion reported in young 
athletes following ACL reconstruction [46]. Muscle weakness in distal segments can increase centre of mass displacement 
and lead to increased trunk motion during balance tasks [47]. Thus, a reduced range of knee flexion, where participants 
are still able to maintain strength, might lead to increased frontal motion at the hip and trunk as they attempt to stabilize 
their body during the landing task. The small variance explained likely reflects the influence of other muscle strength, and 
kinematic factors, as decreased hip abductor, extensor and external rotator strength [48] and hip external rotation range 
of motion [49] have been reported to predispose athletes to knee abduction during single leg landings. Further analysis of 
the present data also revealed 49% of the variance in knee FPPA was explained by peak hip adduction angle and peak 
GRF (S3 Table). Collectively, these data support the assessment of a player’s ability to maintain knee flexor strength over 
a given range of motion (i.e., functional range) at high angular velocities for injury screening [23] and also highlights the 
need for a multifactorial approach.

Novel and task specific metrics also explained a small proportion of variance (14%) in sagittal knee motion, whilst other 
metrics (e.g., hamstring to quadricep ratio) did not. Specifically, peak eccentric extensor torque was the only isokinetic 
variable to explain some variance in peak knee flexion. Previous literature has shown associations between leg strength 

Table 3. Multiple regression model summary of the association between independent variables  
with peak frontal trunk, hip, and knee angle and peak hip and knee flexion angle.

R2 Adjusted R2 F Statistic P Value

Peak knee frontal plane projection 
angle

1. Functional concentric flexor 
range

2. Functional flexion ratio

0.217 0.180 5.950 0.020

Peak hip adduction angle
1. Functional concentric flexor 

range

0.153 0.133 7.929 0.028

Peak lateral trunk flexion
1. Functional concentric flexor 

range

0.183 0.164 9.853 0.012

Peak knee flexion angle
1. Peak eccentric extensor torque

0.144 0.125 7.431 0.036

https://doi.org/10.1371/journal.pone.0326882.t003

Table 4. Multiple regression model summary of the association between independent asymmetry  
variables with peak knee frontal plane projection angle asymmetry.

R2 Adjusted
R2

F Statistic P Value

Peak knee frontal plane projection angle asymmetry
1. Peak concentric extensor AST asymmetry

0.276 0.241 7.989 0.010

https://doi.org/10.1371/journal.pone.0326882.t004

https://doi.org/10.1371/journal.pone.0326882.t003
https://doi.org/10.1371/journal.pone.0326882.t004
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and sagittal landing kinematics are varied, with some demonstrating no relationship [12], and others displaying significant 
associations between peak knee extensor torque and peak knee flexion angle [33]. However, direct comparisons are diffi-
cult due to differences in the task performed, the population evaluated (healthy vs. ACL reconstruction) and assessment of 
muscle strength variables. Increasing knee flexion motion may reduce the risk of ACL injury in females [50], thus identifi-
cation of isokinetic strength variables related to sagittal motion could help inform injury screening practices. However, the 
small variance explained suggest screening of isokinetic variables related to sagittal motion during a single leg landing 
task should not be based solely on knee extensor isokinetic metrics.

A novel aspect of the study (aim 2) was to assess individual asymmetry in landing kinematics and muscle strength in a 
healthy population. For most isokinetic strength and kinematic variables, approximately one third of the subjects displayed 
meaningful asymmetry. This is lower than recent reports that 69% of females displayed asymmetry in peak extensor 
torque [51], and likely reflects differences in asymmetry cut off. Whilst these data question the comparison of the injured 
limb to the contralateral limb in rehabilitation practice [51], asymmetry in peak knee extensor AST explained a quarter of 

Fig 1. Peak knee concentric extensor AST asymmetry and peak knee FPPA asymmetry for individual subjects.  ASI = asymmetry index. Individ-
ual asymmetry is determined based on intra-individual variability (dashed line) and moderate asymmetry. Darker bars are those displaying asymmetry. 
Positive asymmetry represents the preferred leg exhibited higher values than non-preferred leg, thus negative asymmetry depicts higher values on 
non-preferred leg. Note: Subjects have been ordered from lowest peak extensor AST asymmetry (subject 1) to highest peak extensor AST asymmetry 
(subject 23) for illustrative purposes.

https://doi.org/10.1371/journal.pone.0326882.g001

https://doi.org/10.1371/journal.pone.0326882.g001
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the variance in peak knee FPPA, and still have clinical relevance. Indeed, associations between asymmetry in muscle 
strength and single leg landing variables have previously been reported [46,52] and symmetry in concentric knee exten-
sor torque has been associated with higher maintenance of sports participation after ACL reconstruction [53]. Notably, 
individual peak knee FPPA and knee extensor AST asymmetry data demonstrated great differences between subjects, 
not only with the magnitude of asymmetry but also the direction, with asymmetries rarely being present on the same side 
for kinematic and strength variables. This is consistent with the poor agreement (kappa coefficient: −0.33–0.1) between 
isokinetic strength asymmetry and countermovement jump asymmetry in female football players, indicating that asymme-
try in favour of one limb during one test would unlikely correspond to the same limb in another test [54]. Taken together, 
these data reinforce an individualised approach to reporting asymmetries is warranted [30]. Practitioners should note the 
prevalence of biomechanical asymmetries in female team sport athletes and include comparisons between limbs, as well 
as to baseline values (or normative values), to inform return to sport criteria.

It is important to acknowledge limitations of the study. Firstly, knee FPPA was calculated from automatic 2D analysis, 
using markers and angle definitions in line with previous studies [17,38]. Ideally 3D analysis would be used, although 
2D automatic methods have shown good to excellent agreement with 3D motion capture in knee FPPA [17]. Trial to trial 
intra-limb variability of the kinematic data in the present study was also assessed using CV% and frontal plane kinemat-
ics demonstrated higher variability (S1 Table). However, the chosen approach for quantifying meaningful asymmetry 
incorporates this variance as well as the smallest worthwhile change, meaning this is a more conservative method for 
assessing moderate asymmetry. In addition, while the use of a 30 cm drop height is often used in research assessing 
landing biomechanics [17], this might impose varying demands on athletes of different statures and should be considered 
in future research. The assessment of peak torque at higher angular velocities and during eccentric muscle actions used 
in the present study can also be less favourable [55]. The between repetition intra-limb variability (CV%) for all isokinetic 
strength metrics were assessed (S2 Table), which has previously been used to inform reliability [41]. All isokinetic strength 
metrics demonstrated a CV% of less than 8.5%, which is below the typical increases in average concentric and eccentric 
peak torque (8.5–23.9%) observed after 6 weeks of resistance training in female football players [56]. Finally, the use of 
correlations to identify isokinetic muscle strength predictor variables, ensured a maximum of two predictor variables were 
included in each regression model. Including ten subjects per predictor variable has been recommended in previous litera-
ture [42], thus the number of subjects used in the present study is sufficient to address the study aims.

Conclusion

Due to the lack of standardised isokinetic protocols, we advocate the assessment of novel and task specific isokinetic vari-
ables which better reflect sport specific actions. In particular, the assessment of functional concentric flexor range, func-
tional flexor ratio and eccentric extensor peak torque at high angular velocities (180°.s−1). These variables explain some of 
the variance in frontal and sagittal plane motion during single leg landings, commonly associated with ACL injury risk. The 
small variance explained reaffirms the need for a multifactorial approach to injury screening, as kinematic and kinetic factors 
explained more variance in FPPA compared with isokinetic muscle strength. We also recommend an individualised approach 
for quantifying interlimb asymmetry when designing training programmes or assessing return to sport criteria, specifically the 
use of concentric extensor AST asymmetry, which explained a quarter of the variance in knee FPPA asymmetry.
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