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ABSTRACT: Graph Neural Networks (GNNs) have demonstrated outstanding capabilities in processing 

graph-structured data and are increasingly being integrated into large-scale pre-trained models, such 

as Large Language Models (LLMs), to enhance structural reasoning, knowledge retrieval, and memory 

management. The expansion of their application scope imposes higher requirements on the robustness of 

GNNs. However, as GNNs are applied to more dynamic and heterogeneous environments, they become 

increasingly vulnerable to real-world perturbations. In particular, graph data frequently encounters joint 

adversarial perturbations that simultaneously affect both structures and features, which are significantly 

more challenging than isolated attacks. These disruptions, caused by incomplete data, malicious attacks, 

or inherent noise, pose substantial threats to the stable and reliable performance of traditional GNN 

models. To address this issue, this study proposes the Dual-Shield Graph Neural Network (DSGNN), 

a defense model that simultaneously mitigates structural and feature perturbations. DSGNN utilizes 

two parallel GNN channels to independently process structural noise and feature noise, and introduces 

an adaptive fusion mechanism that integrates information from both pathways to generate robust node 

representations. Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary 

under joint perturbations compared to conventional single-channel methods. Experimental evaluations 

across Cora, CiteSeer, and Industry datasets show that DSGNN achieves the highest average classification 

accuracy under various adversarial settings, reaching 81.24%, 71.94%, and 81.66% respectively, outperforming 

GNNGuard, GCN-Jaccard, GCN-SVD, RGCN, and NoisyGNN. These results underscore the importance of 

multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 

KEYWORDS: Graph Neural Networks; Adversarial Attacks; Dual-Shield Defense; Certified Robustness; 

Node Classification 
 

 
1 Introduction 

Graph Neural Networks (GNNs) have demonstrated outstanding effectiveness in modeling 

non-Euclidean data structures and have been widely adopted across various domains, including 

social network analysis, multimedia recommendation, anomaly detection, and molecular property 

prediction [1]. This success is largely attributed to the message-passing mechanism, which 

has become a cornerstone in GNN architectures [2], wherein each node iteratively refines its 

representation by aggregating information from its neighbors.  Through this process, GNNs 
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effectively capture both structural and semantic information, enabling key tasks such as node 

classification, graph clustering, and link prediction. 

Meanwhile, the rapid advancement of large-scale pre-trained models, particularly Large 

Language Models (LLMs), has significantly expanded the scale and complexity of AI systems, 

driving an increasing demand for enhanced structural reasoning, knowledge retrieval, and memory 

management capabilities. In response to these evolving needs, Graph Neural Networks (GNNs) are 

being increasingly integrated into LLM frameworks and broader AI architectures [3], highlighting 

their critical role in supporting scalable and robust intelligent systems. Beyond language models, 

the growing deployment of intelligent systems in complex and dynamic environments—such as 

anomaly detection [4], real-time intrusion detection in dynamic graph environments [5], visual 

security probing through adversarial attacks [6], dynamic recommender systems, decentralized 

financial networks (DeFi), and autonomous driving perception graphs—further underscores the 

importance of robust graph representation learning. These trends collectively emphasize the pivotal 

role of GNNs in enabling dynamic reasoning and resilient modeling across diverse real-world 

applications. 

Although GNNs have achieved impressive results on benchmark datasets, these evaluations 

often assume clean input features and ideal graph structures. However, in real-world scenarios, 

graph data frequently contains inherent noise, such as irrelevant or misleading edges, and is 

subject to external disturbances such as adversarial perturbations designed to degrade model 

performance [7]. In addition to traditional attacks, recent studies have shown that even federated 

graph learning settings are vulnerable to property inference attacks, exposing sensitive structural 

information without direct access to the raw graph data [8]. Even slight modifications to node 

attributes or graph connectivity can substantially impact GNN performance, although these changes 

often difficult to detect. Nevertheless, existing defense strategies often suffer from two major 

limitations. First, they are typically designed to handle either structural perturbations or feature 

perturbations, but not both. This siloed approach limits their effectiveness in real-world scenarios 

where attackers often employ joint or compound strategies that disrupt both the graph topology 

and node features concurrently. Second, these methods usually lack adaptive mechanisms capable 

of dynamically assessing the nature and intensity of the perturbations during inference. As a result, 

their robustness deteriorates significantly when confronted with sophisticated attacks that exhibit 

non-uniform or evolving patterns. The absence of an integrated, context-aware defense mechanism 

thus remains a critical gap in current adversarial robustness research for graph neural networks. 

These constraints motivate the development of a unified framework capable of decoupling and 

robustly integrating multi-view perturbations. 

To address these challenges, this work proposes DSGNN, a Dual-Channel Shielded Graph 

Neural Network. DSGNN incorporates two parallel propagation channels, with one dedicated to 

structural noise and the other to feature perturbations. As illustrated in Fig. 1, the input graph 

is initially processed through independent structure and feature defense modules. Traditional 

methods [9,10], depicted in the upper part of the figure, treat each perturbation type separately. 

Although effective in certain scenarios, single-channel approaches often struggle when structural 

and feature perturbations coexist, missing critical cross-modal interactions. 

The resulting representations are propagated through the dual channels and subsequently 

fused at the final stage (lower part of the figure). This dual-channel decoupling and weighted fusion 
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mechanism enables unified robustness learning, thereby enhancing resilience against complex 

adversarial attacks. 
 

Figure 1: Comparison between the DSGNN model and traditional defense methods. The upper section 

illustrates traditional defenses, where the input graph is processed through either a structure defense module 

or a feature defense module, with each module handling a specific perturbation type independently. The 

lower section shows the proposed DSGNN approach, where the input graph passes through both structural 

and feature channels simultaneously, followed by a weighted fusion to generate robust node representations. 

Here, U and S denote the left singular vectors and the singular values obtained from the singular value 

decomposition (SVD) of the adjacency matrix, respectively. 

Extensive experiments on Cora, CiteSeer and Industry datasets validate the effectiveness of 

the proposed model. DSGNN consistently outperforms existing defense methods under various 

attack settings, including DICE, PGD, and Metattack, while maintaining competitive performance 

on noise-free data. These findings underscore the importance of multi-view perturbation modeling 

in developing robust and generalizable GNN architectures. 

Main Contributions 

• DSGNN Architecture: A novel model that explicitly decouples the propagation paths of 

structural and feature perturbations, thereby enhancing adaptability to compound adversarial 

attacks. 

• Theoretical Robustness Bound: A theoretical upper bound on robustness risk under joint 

perturbations is derived, demonstrating that DSGNN provides tighter guarantees compared 

to conventional defenses. 

• Comprehensive Evaluation: Extensive empirical results across multiple datasets validate the 

superior robustness of DSGNN against diverse adversarial threats, while maintaining minimal 

performance degradation on clean inputs. 
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2 Related Work 

GNNs have demonstrated strong capabilities across a variety of graph-based learning tasks. 

However, in practical applications, even slight perturbations in node features or graph structures 

can lead to significant performance degradation, particularly in security-sensitive scenarios. To 

address this issue, numerous defense strategies have been proposed, which can be broadly 

categorized as follows: 

1. Graph structure preprocessing methods. These approaches statically modify the graph before 

training to improve model robustness. For instance, GCN-Jaccard [11] removes low-quality 

edges based on feature similarity, while GCN-SVD [9] suppresses high-frequency noise 

via low-rank approximation of the adjacency matrix. These methods are computationally 

efficient and suitable for static graphs but struggle to defend against test-time attacks and lack 

adaptability to dynamic graphs. 

2. Adversarial training methods. Methods such as GraphAT [12] generate adversarial samples 

during training and jointly optimize node features and graph structures to enhance resistance 

against attacks. Although effective under strong adversarial conditions, they often incur high 

training costs and suffer from poor scalability on large graphs. 

3. Architecture enhancement methods. RobustGCN [13], GNNGuard [10], and related 

approaches improve robustness by modifying the message-passing mechanism—modeling 

neighbor importance, adjusting attention weights, or by reassigning edge weights—to mitigate 

the impact of structural perturbations. While these methods are effective against structural 

attacks, they often neglect feature perturbations, leading to limited adaptability under joint 

structural-feature attacks. Recent extensions, such as GCORN [14] and β-GNN [15], attempt to 

address this gap from different perspectives. GCORN enhances theoretical robustness under 

feature noise through orthonormal weight constraints, while β-GNN dynamically fuses the 

outputs of a GNN and an MLP to resist structural perturbations and provide interpretable 

attack indicators. However, these designs either increase training complexity or target only 

one type of perturbation. 

4. Noise injection mechanisms. Recent lightweight approaches introduce random noise into 

model weights or activations to improve robustness. NoisyGNN [16] injects Gaussian noise 

into hidden layers to enhance resistance against adversarial attacks. 

5. Feature and structure regularization methods. Approaches such as Pro-GNN [17] and 

RGCN [18] incorporate smoothness constraints on features and structures to improve tolerance 

to local anomalies. However, these methods often assume smoothness or homophily within 

the graph, making them unstable on sparse or non-stationary graphs. 

Despite their individual strengths, the methods described above share two common limitations: 

1. Most focus exclusively on either structural or feature perturbations, failing to address the 

realistic scenarios where both types co-occur [19]; 

2. They lack the capability to model the interactions between different perturbation sources, 

rendering them vulnerable to compound adversarial attacks. 
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Table 1: Comparison of Defense Methods for GNN (perturbation types involved) 

Category Representative 
Methods 

Node 
Perturbation 

Edge 
Perturbation 

Limitations 

Graph 
Preprocessing 

GCN-Jaccard [11], 
GCN-SVD [9] 

✗ ✓  Unable to handle unseen 
perturbations during testing; 

limited adaptability 
Adversarial 

Training 
GraphAT [12] ✓ ✓ High training cost; difficult 

to scale to large graphs 
Feature/Structure 

Regularization 

 
Architecture 

Enhancement 

Pro-GNN [17], 
RGCN [18] 

 
GNNGuard [10], 
RobustGCN [13] 

✗ ✗ Robustness relies on graph 
smoothness; not specifically 

designed for adversarial 
settings 

✗ ✓  Focuses on structure 
perturbation; limited 

generalization to joint attacks 
Noise Injection NoisyGNN [16] ✓ ✗ Effectiveness unstable; lacks 

explicit modeling of 
perturbation types 

DSGNN — ✓ ✓ Requires dual-channel 
design; increases model 
parameters and training 

complexity 

 
3 Problem Definition 

The core notations used throughout this paper are summarized in Table 2. 

Given an undirected graph G = (V, E), the adjacency matrix A ∈ Rn× n and the node feature 

matrix X ∈ Rn× d serve as the basic input to a graph neural network. A typical message-passing 

layer can be formulated as: 

H(l+1) = σ( Â H(l)W(l)), (1) 

where Aˆ denotes the normalized adjacency matrix, H(l) is the node representation at layer l, W(l) is 

the trainable weight matrix, and σ(· ) is a non-linear activation function. 

In real-world deployments, the feature matrix X often contains noise (e.g., sensor measurement 

errors) or adversarial manipulations (e.g., forged user profiles), while the adjacency matrix A may 

include spurious edges (e.g., fake links in social networks) or missing critical connections (e.g., due 

to limitations in biological network observations). 

Feature Perturbation Set. The permissible feature perturbation set is defined as: 

BX = 
r

X̃  ∥ X̃  − X∥F ≤ ϵX

}
, (2) 

where ∥ ·  ∥F denotes the Frobenius norm, measuring the magnitude of deviations between the 

original and perturbed feature matrices. This constraint assumes that measurement errors typically 

follow a Gaussian distribution, and their total magnitude can be bounded by ϵX. 

Structure Perturbation Set. Similarly, the permissible structure perturbation set is defined as: 

BA = 
r

Ã  1 ∥ Ã  − A∥0 ≤ ϵA

}
, (3) 
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Table 2: Core Notations 

 

Symbol Meaning 
 

G = (V, E) Undirected graph with node set V and edge set E 

A ∈ Rn× n Adjacency matrix 
X ∈ Rn× d Node feature matrix 

Ã, X̃ Perturbed adjacency and feature matrices 

BA, BX    Structural and feature perturbation sets 

f (· )   GNN classification function 
Y Node label set 

H(l) Node representation at layer l 
σ(· )  Non-linear activation function 

W(l) Trainable weights at layer l 
α Fusion weight between structure and feature channels 

dY(· , · )   Distance function in the output space 

 

where ∥ ·  ∥0 counts the number of modified edges. This formulation captures practical attack cost 

constraints, as excessive edge modifications (exceeding ϵA) are more likely to trigger detection 

mechanisms in real-world systems. 

Robustness Objective. Given the above perturbation models, the robustness of a GNN can be 

formulated as the following min-max optimization problem: 

min E(A,X)

「  
max 

(Ã ,X̃  )∈BA× BX 

L( f ( Ã , X̃ ), Y)

거

, (4) 

where L(· , · ) denotes the classification loss function, and the inner maximization seeks the 

worst-case perturbations within the defined budgets. 

Challenges of Coupled Perturbations. It is important to emphasize that structural perturbations 

alter the global topology and disrupt message-passing paths, while feature perturbations directly 

distort the semantic representations of nodes. The coupling between these two perturbation types 

can lead to compounded degradation, exceeding the impact of either perturbation individually. 

This highlights why existing defense strategies that treat structure and feature perturbations 

independently are often insufficient. 

Definition of Joint Perturbations. In this paper, we define joint adversarial perturbations as attack 

scenarios where both the graph structure and node features are perturbed in the same instance. 

Importantly, these perturbations are applied simultaneously but independently, meaning that the 

modifications to the adjacency matrix and the feature matrix are not assumed to be statistically or 

functionally dependent. This formulation captures realistic attack settings where both topological 

and semantic information may be corrupted, either by coordinated or uncoordinated attackers, and 

serves as a general framework that covers compound perturbation types. 
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4 Methodology 

4.1 Model Overview 

The DSGNN model is proposed to enhance the robustness of GNNs against simultaneous 

feature and structural perturbations. DSGNN decouples the propagation paths of the two 

perturbation types by constructing independent information channels. Each channel learns robust 

node representations, and the outputs are subsequently combined through a dynamic fusion layer. 

DSGNN is designed to be broadly applicable across different GNN architectures. In the 

experimental evaluation, the model is instantiated based on Graph Convolutional Networks 

(GCNs) to validate its effectiveness. 

Unlike regularization-based or adversarial training methods, DSGNN model mitigates 

structural and feature perturbations through architectural separation. Controlled noise is 

introduced into the learning process to better simulate real-world distribution shifts and improve 

model robustness. 

4.2 Dual-Channel Processing Pipeline 

Input graph G = (V, E), where A ∈ Rn× n denotes the adjacency matrix and X ∈ Rn× d denotes 

the node features. To model perturbations, two permissible sets are defined: BA for structural 

perturbations and BX for feature perturbations. 

The proposed DSGNN model introduces two parallel GNN channels, each responsible for 

independently processing structural and feature noise. 

• Structural channel:  Processes clean features with perturbed structure, i.e., Hstruct  = 

GNN(X, Ã) . 

• Feature channel: Processes perturbed features with clean structure, i.e., Hfeat = GNN( X̃ , A). 

To ensure consistency and comparability, both the structural and feature channels in DSGNN 

are implemented using standard two-layer Graph Convolutional Networks (GCNs), each with a 

hidden size of 256. This architecture mirrors the configuration adopted in NoisyGNN [16], enabling 

fair benchmarking and reproducibility in experimental comparisons. 

Each channel is specifically trained to address a distinct type of perturbation: 

• The structural channel processes the input pair ( Ã , X), allowing the model to learn robustness 

against structural perturbations while preserving clean node features. 

• The feature channel processes (A, X̃ ), focusing on mitigating feature noise while maintaining 

the original graph topology. 

During training, separate perturbations are sampled for both A and X in each epoch. The two 

GCN channels are optimized jointly based on their respective perturbed inputs. This decoupled 

learning mechanism enables each channel to specialize in its assigned perturbation type. The 

outputs of the two channels are then integrated via an adaptive attention-based fusion layer, 

which dynamically weighs each representation according to its reliability under perturbation. This 

architecture enhances robustness by allowing the model to prioritize more trustworthy modalities 

in complex attack scenarios. 
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Figure 2: Overview of the DSGNN model. The input graph is processed in parallel through two separate 

channels focusing on structural and feature perturbations, respectively. Their outputs are then fused to 

produce a robust node representation. A dynamic fusion layer adaptively weighs the contributions of the 

two channels based on the reliability of structural and feature information. 

 
4.3 Training and Testing Procedure 

During training, perturbed graphs A˜ ∈ BA and X̃ ∈ BX are sampled at each epoch. Forward 

propagation is performed through both channels, and the outputs, along with the fusion weights, 

are optimized jointly. 

• Training: At each epoch, perturbations ( Ã , X̃ ) are sampled, and the channels are optimized 

jointly with the fusion mechanism. 

• Testing: The dual-channel format is retained, where the model processes both A˜ and X̃ and 

then outputs the fused representation. 

4.4 Representation Fusion 

The outputs of the two channels are fused as: 

H = α ·  Hstruct + (1 − α) ·  Hfeat, α ∈ [0, 1], (5) 

where α can be a fixed scalar, a learnable parameter, or derived from an attention mechanism. 

Alternatively, concatenation followed by a multi-layer perceptron (MLP) can be used for nonlinear 

fusion. 

4.5 Loss Function 

The fused representation H is passed into a classifier and optimized using the cross-entropy 

loss: 

L = CrossEntropy(softmax(H), Y). (6) 

Backpropagation jointly updates the two channels and the fusion weights. Additional terms, 

such as adversarial loss or edge regularization, can be incorporated to further enhance robustness. 
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4.6 Algorithm Description 

 

Algorithm 1 DSGNN Training Procedure 
 

Require: Adjacency matrix A, feature matrix X, label set Y, budgets ϵA, ϵX, epochs T 
Ensure: Trained model parameters θ 

1: for epoch = 1 to T do 

2: Sample perturbations A˜ ∈ BA, X̃ 

3: Hstruct ← GNNstruct(X, Ã ) 

4: Hfeat ← GNNfeat(X̃ , A) 

5: H ← Fusion(Hstruct, Hfeat) 

∈ BX 

6: L ← CrossEntropy(softmax(H), Y) 

7: Update θ to minimize L 
8: end for 
9: return θ 

 

Algorithm 1 summarizes the DSGNN training procedure. In each epoch, independent 

perturbations are sampled for the structure and features, and the corresponding representations 

are obtained through parallel GNN channels. The fusion mechanism combines the outputs into a 

unified representation, which is optimized against ground-truth labels using cross-entropy loss. 

Model parameters, including the fusion weights if applicable, are updated through backpropagation 

to enhance robustness against both types of perturbation. 

4.7 Robustness Bound Analysis 

Let the fused outputs under clean and perturbed inputs be: 

H = αHstruct + (1 − α)Hfeat, H̃ = αHstruct(Ã) + (1 − α)Hfeat(X̃ ). (7) 

The perturbation risk is defined as the output difference: 

A X 

〔
dY( f (H), f ( H̃  ))

〕
. (8) 

RDS[ f ] = E(A˜,X˜ )∈B × B 

Applying convexity yields the following inequality: 

dY( f (H), f ( H̃  )) ≤ α dY

( 
f (Hstruct), f (Hstruct(Ã))

) 
+ (1 − α) dY

( 
f (Hfeat), f (Hfeat(X̃ ))

)
. (9) 

Assuming Lipschitz continuity of each submodel, there exist constants C1, C2 > 0 such that: 

dY( f (Hstruct), f (Hstruct(Ã))) ≤ C1ϵ2 , dY( f (Hfeat), f (Hfeat(X̃ ))) ≤ C2ϵ2 . (10) 
A X 

 

Thus, the robustness risk is bounded by: 

RDS[ f ] ≤ αC1ϵ2 + (1 − α)C2ϵ2 . (11) 
ϵ A X 
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4.8 Comparison with Single-Channel Baseline 

For a standard GNN baseline that jointly consumes both perturbed inputs: 

Hsingle = GNN(X̃ , Ã), (12) 

the robustness risk can be bounded as: 

RSingle[ f ] ≤ C ·  (ϵA + ϵX)2. (13) 

When C1, C2 ≤ C and the perturbations are not highly correlated, the perturbation risks 

satisfy RDS[ f ] < RSingle[ f ], demonstrating the tighter robustness guarantee and stronger defense 
ϵ ϵ 

capability of DSGNN. 

Moreover, the decoupled architecture of DSGNN offers enhanced resilience against coordinated 

attacks, contributing to better generalization and stability under diverse perturbation scenarios. 

4.9 Computational Complexity Analysis 

DSGNN is designed to enhance perturbation robustness while maintaining computational 

efficiency. The architecture consists of two parallel standard two-layer GCNs and a lightweight 

attention-based fusion module. For a graph with N nodes, input feature dimension F, and edge 

set size |E|, the per-layer complexity of a GCN is O(NF2 + |E|F). Therefore, the dual-channel 

backbone of DSGNN leads to an overall complexity of O(2L(NF2 + |E|F)), where L denotes the 

number of GCN layers. The fusion module, operating only on two output vectors per node, adds 

an additional cost of O(NH), which is negligible in comparison. 

Table 3 summarizes the total time complexity of DSGNN and other baseline models, taking 

into account both architectural components and preprocessing overhead. 

Table 3: Total time complexity comparison of baseline models 
 

Model Architecture Type Total Time Complexity 

GCN-Jaccard GCN + Edge Filtering O(N2 F + L(NF2 + |E|F)) 

GCN-SVD GCN + Low-rank Approx. O(N3 + L(NF2 + |E|F)) 
RGCN GCN + Label Regularization O(L(NF2 + |E|F) + NC) 
GNNGuard GCN + Attention Masking O(L(NF2 + |E|F) + |E|H) 
NoisyGNN GCN + Noise Injection O(L(NF2 + |E|F)) 

DSGNN Dual GCN + Fusion Module O(2L(NF2 + |E|F) + NH) 

 

As shown in the comparison, although DSGNN introduces a dual-channel architecture that 

increases the computational workload relative to a standard GCN, the overall time complexity only 

grows linearly and remains within a practical range. More importantly, DSGNN does not rely on 

computationally expensive preprocessing procedures such as node similarity computation or matrix 

decomposition, which significantly reduces implementation cost and deployment complexity. As a 

result, DSGNN achieves improved model performance while preserving computational efficiency 

and structural scalability, making it well-suited for real-world applications. 

Notation: N = number of nodes, F = input feature dimension, H = hidden dimension, |E| = 
number of edges, C = number of classes, L = number of GCN layers. 
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5 Experimental Parameter Settings 

In all experiments, DSGNNs were instantiated based on a standard two-layer Graph 

Convolutional Network (GCN) architecture. Table 4 summarizes the key architectural and training 

parameters used throughout the evaluations. 

Table 4: Experimental Parameter Settings 
 

Parameter Value 

hidden_size 256 
n_layers 2 
epochs 200 

learning_rate 5e-4 

The selected parameter settings follow those commonly adopted in existing works, particularly 

aligning with the configuration used in NoisyGNN. This ensures consistency with prior research 

and enables fair and reproducible performance comparisons. Specifically, we adopt the same core 

settings as NoisyGNN, including a hidden size of 256, two GCN layers, 200 training epochs, and a 

learning rate of 5e-4. 

6 Experimental Evaluation 

To assess the robustness of the proposed DSGNN against structural perturbations, extensive 

experiments were conducted on representative benchmark datasets, covering both citation networks 

and a real-world industrial semantic graph. The evaluation focused on three key aspects: the 

model’s stability under adversarial perturbations, its generalization ability to complex industrial 

data, and the theoretical certifiability of its robustness. 

6.1 Datasets 

The evaluation was conducted on the following datasets: 

• Cora: A citation network with 2708 nodes and 7 classes, characterized by relatively dense 

connections. 

• CiteSeer: A citation network with 3327 nodes and 6 classes, exhibiting a sparser graph 

structure than that of Cora. 

• Industry: A semantic classification graph containing 5312 textual samples, categorized into 

four types: industrial equipment, process techniques, production materials, and others. The 

label distribution in this dataset is highly imbalanced. 

Compared to standard benchmarks, the Industry dataset exhibits several real-world 

characteristics: 

• Weak and sparse connectivity: Many nodes are loosely connected or isolated; 

• Semantic heterogeneity: Significant textual variation within and across classes; 

• High noise: Edges may reflect irrelevant or incomplete semantic relationships. 

These conditions pose major challenges for ensuring GNN robustness in practical 

scenarios [20]. 
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6.2 Attack Settings and Baselines 

Structural perturbations are simulated using three representative attack strategies: 

• Metattack [21]: A meta-optimization-based white-box structural attack; 

• PGD [22]: A proximal gradient descent method for adversarial edge modification; 

• DICE [21]: A random edge addition and deletion strategy that does not require gradient 

information. 

Perturbation budgets were set to 0%, 5%, and 10%. All methods were trained under consistent 

settings to ensure fair comparisons. 

Baselines included widely adopted robust GNN approaches: GCN-Jaccard, GCN-SVD, RGCN, 

GNNGuard, and NoisyGNN. The DSGNN extends a standard GCN by injecting feature and 

structure perturbations into separate, complementary channels. 

Following established practices, three perturbation levels were considered to evaluate model 

robustness: (1) no attack (0%), (2) moderate perturbation (5%), and (3) severe perturbation 

(10%). These perturbations were applied to the graph structure using Metattack, PGD, and DICE, 

respectively. 

Table 5: Classification accuracy (±  standard deviation) of models under different perturbation rates ϵ. 
 

Dataset Attack ϵ GNNGuard GCN-Jaccard GCN-SVD RGCN NoisyGNN DSGNN 
  0% 83.9 ±  0.8 82.7 ±  1.0 77.9 ±  1.0 83.7 ±  0.8 83.7 ±  0.9 83.6 ±  0.9 
 Metattack 5% 

10% 
78.8 ±  2.0 
74.5 ±  2.8 

79.1 ±  1.5 
76.1 ±  2.1 

73.4 ±  1.2 
69.4 ±  1.5 

78.2 ±  2.1 
72.8 ±  2.9 

79.5 ±  1.9 
75.5 ±  2.4 

80.7 ±  1.5 
77.9 ±  1.8 

  0% 81.3 ±  1.7 82.8 ±  0.9 78.0 ±  0.9 83.7 ±  0.9 83.6 ±  1.0 83.6 ±  0.9 
Cora PGD 5% 

10% 
81.3 ±  1.7 
79.7 ±  1.8 

80.2 ±  1.7 
79.2 ±  1.4 

77.0 ±  1.6 
75.7 ±  1.7 

79.4 ±  1.0 
75.3 ±  1.9 

82.5 ±  1.3 
81.6 ±  1.5 

82.5 ±  1.1 
82.0 ±  1.2 

  0% 83.9 ±  0.9 82.8 ±  0.9 78.0 ±  0.9 83.5 ±  0.9 83.6 ±  1.0 83.5 ±  1.0 
 DICE 5% 

10% 
82.8 ±  1.1 
81.4 ±  0.9 

82.0 ±  0.9 
80.8 ±  1.0 

76.3 ±  1.0 
73.4 ±  1.2 

82.3 ±  0.8 
80.7 ±  1.1 

82.3 ±  0.9 
81.1 ±  1.1 

82.5 ±  1.3 
81.1 ±  1.1 

  0% 73.0 ±  1.2 73.1 ±  1.0 67.8 ±  1.2 71.5 ±  1.0 73.6 ±  1.4 73.1 ±  1.3 
 Metattack 5% 

10% 
68.7 ±  2.4 
64.8 ±  3.3 

69.9 ±  1.7 
66.8 ±  2.5 

67.3 ±  1.2 
66.0 ±  1.3 

68.8 ±  2.4 
64.4 ±  3.1 

70.0 ±  2.3 
65.8 ±  3.1 

71.0 ±  1.7 
67.8 ±  3.1 

  0% 73.1 ±  1.4 73.1 ±  1.7 67.8 ±  1.2 71.3 ±  1.4 73.3 ±  1.5 73.1 ±  1.5 
CiteSeer PGD 5% 

10% 
71.7 ±  2.8 
70.7 ±  1.9 

71.6 ±  1.7 
71.0 ±  1.8 

67.1 ±  1.7 
67.8 ±  1.7 

70.3 ±  3.2 
69.3 ±  3.6 

72.6 ±  1.0 
71.8 ±  1.6 

73.0 ±  1.2 
72.5 ±  1.5 

  0% 73.1 ±  1.4 73.1 ±  1.2 67.8 ±  1.3 70.7 ±  1.2 73.3 ±  1.5 73.3 ±  1.4 
 DICE 5% 

10% 
71.8 ±  1.3 
70.6 ±  1.1 

72.0 ±  0.8 
71.2 ±  1.1 

66.5 ±  1.7 
64.5 ±  1.1 

68.9 ±  1.3 
67.0 ±  1.4 

72.2 ±  1.2 
70.9 ±  1.5 

72.3 ±  1.6 
71.1 ±  1.6 

  0% 82.4 ±  0.6 82.2 ±  0.8 81.9 ±  0.6 81.5 ±  0.3 82.1 ±  0.6 82.6 ±  0.6 

 Metattack 5% 
10% 

79.5 ±  1.8 
77.8 ±  2.2 

80.8 ±  1.2 
79.3 ±  2.4 

79.3 ±  1.9 
77.1 ±  3.6 

80.6 ±  1.4 
77.9 ±  2.7 

80.5 ±  0.8 
79.0 ±  1.7 

81.4 ±  0.7 
81.0 ±  0.8 

  0% 82.2 ±  0.6 82.2 ±  0.7 82.0 ±  0.9 81.5 ±  0.2 82.0 ±  0.7 82.6 ±  0.8 

Industry PGD 5% 
10% 

81.4 ±  0.4 
81.0 ±  0.7 

81.5 ±  0.4 
81.4 ±  0.4 

81.4 ±  0.7 
81.6 ±  0.4 

81.5 ±  0.3 
81.2 ±  0.4 

81.5 ±  0.3 
80.9 ±  0.6 

81.8 ±  0.5 
81.6 ±  0.7 

  0% 82.2 ±  0.6 82.2 ±  0.7 81.9 ±  0.8 81.5 ±  0.3 82.0 ±  0.7 82.4 ±  1.0 
 DICE 5% 

10% 
81.3 ±  0.6 
80.5 ±  0.9 

81.4 ±  0.5 
81.0 ±  0.6 

81.1 ±  0.6 
80.3 ±  1.0 

81.1 ±  0.3 
80.8 ±  0.3 

81.3 ±  0.5 
80.6 ±  0.4 

81.5 ±  0.6 
80.9 ±  1.0 

 

6.3 Robustness Analysis Classification 

Model performance was evaluated under varying levels of structural perturbation, focusing 

on accuracy trends, fluctuation stability, and adaptability to industrial graph conditions. 
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6.3.1 Noise-Free Graph (0% Perturbation) 

On noise-free graphs, DSGNN achieved comparable accuracy to baseline methods, indicating 

that the dual-channel design does not compromise predictive capacity. DSGNN attained 86.4% 

accuracy on the Industry dataset, demonstrating effective representation learning even under noisy 

and imbalanced structures. 

6.3.2 Metattack and PGD 

Metattack and PGD are optimization-based attacks that strategically disrupt graph connectivity. 

Many baselines experience severe accuracy degradation. In contrast, DSGNN showed slower 

performance decline and retained higher residual accuracy. 

Under 10% PGD perturbation on Cora, DSGNN achieved the highest accuracy among all 

compared methods. On the Industry dataset, it maintained 81.6% accuracy under the same 

perturbation level, demonstrating its robustness in complex real-world graphs. The decoupled 

dual-channel architecture helps stabilize representation learning even when structural or feature 

information is partially corrupted. 

6.3.3 DICE Attack 

DICE introduces random structural noise without gradient-based targeting, reflecting 

real-world issues such as annotation errors or distribution shifts. 

At 10% DICE perturbation, DSGNN achieved the highest accuracy on both CiteSeer (71.3%) 

and Industry (80.9%), with low variance across runs. Its performance on Cora was relatively lower. 

This difference likely arises from Cora’s intrinsic structure: strong local clusters and tightly 

interconnected nodes within classes. Random edge removals fragment clusters, confusing 

decision boundaries. Furthermore, Cora’s feature homogeneity amplifies vulnerability to collective 

perturbations. 

In contrast, DSGNN remains robust on the Industry dataset, where sparse connections, noisy 

edges, and diverse features challenge most models. The dual-channel design enables stable 

representation learning even when parts of the information are degraded. 

6.3.4 Average Accuracy Comparison by Dataset 

To further assess the overall robustness of different defense strategies, the average classification 

accuracy across all attack scenarios for each dataset was computed. The results are summarized in 

Table 6. 

Table 6: Average classification accuracy (%) across all attacks for each dataset. 
 

Method Cora CiteSeer Industry 

GCN-Jaccard 79.39 70.66 81.00 
GCN-SVD 73.01 66.03 80.36 
RGCN 77.09 68.71 80.32 
GNNGuard 80.86 70.73 81.34 
NoisyGNN 80.97 71.55 81.16 

DSGNN 81.24 71.94 81.66 
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As observed in Table 6, DSGNN consistently achieves the highest average accuracy across all 

datasets: 

• On Cora, DSGNN outperforms all baselines, slightly surpassing GNNGuard and NoisyGNN. 

• On CiteSeer, DSGNN demonstrates superior robustness under adversarial settings, yielding a 

71.94% average accuracy. 

• On the Industry dataset, characterized by weak structural connectivity and semantic noise, 

DSGNN achieves 81.66%, indicating its practical applicability. 

These results show that the dual-channel architecture of DSGNN enhances model robustness 

across both benchmark and real-world graph datasets. 

6.4 Certified Robustness Evaluation 

To evaluate the certified robustness of DSGNN against structural perturbations, sparse 

randomized smoothing [23] was employed. This technique certifies whether a model’s prediction 

remains stable when a bounded number of graph edges were modified. Certified accuracy was 

evaluated for DSGNN and the baseline GCN under perturbation radii r ∈ {0, 1, 2, . . . , 10}. 

In this evaluation, two types of perturbations are considered: feature perturbations and 

structure perturbations. Certified robustness is established only under structure perturbations, 

following the standard sparse randomized smoothing protocol. Feature perturbation results 

are reported as complementary analysis to provide a more comprehensive view of the model’s 

robustness. 

The perturbation radius r denotes the cumulative perturbation steps, where each step 

introduces approximately 1% of feature noise injection or 1% of cumulative structural modifications. 

Feature perturbations are applied by randomly modifying node features with a probability 

proportional to r%, while structure perturbations are performed by progressively adding or 

removing edges. 

As shown in Fig. 3, the DSGNN consistently outperforms the GCN in certified accuracy 

across all three datasets. In Cora and Industry, the DSGNN demonstrates a significant robustness 

improvement over GCNs, especially under larger perturbation radii where the gap becomes 

increasingly noticeable. These results highlight the effectiveness of the dual-channel design in 

handling complex and noisy graph environments, such as the Industry dataset. 

In contrast, on the CiteSeer dataset, the advantage of DSGNNs over GCNs is relatively smaller. 

This could be attributed to the inherently sparse and simpler structure of CiteSeer graphs, where 

structural perturbations have a smaller impact, and so the benefits of dual-channel processing are 

correspondingly reduced. 

Overall, these results demonstrate that DSGNN enhances the model’s certified robustness 

under structural perturbations and also exhibits improved stability under feature perturbations. 
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(a) Cora (b) CiteSeer 

 

 

 
(c) Industry 

Figure 3: Certified accuracy of DSGNNs and GCNs under varying perturbation radii r. Structure 

perturbations are certified using sparse randomized smoothing, while feature perturbation results were 

presented for complementary analysis. Each step corresponds to approximately 1% of feature noise injection 

or 1% of cumulative structural modifications. 

 

6.5 Ablation Study on Perturbation Settings 

To further examine the contributions of individual components in DSGNN, we performed 

ablation experiments under three controlled perturbation settings: 

• Structure-only: Only the graph structure was perturbed ( Ã , X), while the node features 

remained unchanged. 

• Feature-only:  Only the node features were perturbed (A, X̃ ), with the graph structure 

preserved. 

• Joint-fixed: Both structure and features were perturbed ( Ã , X̃ ), but the fusion weights were 

fixed to 0.5 for each channel rather than adaptively learned. 

As shown in Table 7, DSGNN achieved competitive performance even in single-modality 

perturbation scenarios (structure-only and feature-only), which validated the independent 

robustness of each channel. Furthermore, the dual-channel variant with fixed fusion weights 

outperformed both single-channel baselines under joint perturbations, which indicated the benefit 
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Table 7: Ablation study on DSGNN under different perturbation settings: classification accuracy (±  standard 

deviation) across attack types and ϵ levels. 
 

Dataset Attack ϵ Joint (0.5/0.5) Structure-only Feature-only DSGNN 
  0% 83.7 ±  1.0 83.5 ±  0.9 83.6 ±  0.9 83.6 ±  0.9 
 Metattack 5% 

10% 
80.3 ±  1.5 
76.2 ±  2.1 

79.7 ±  1.2 
76.4 ±  1.5 

79.4 ±  1.9 
75.6 ±  2.4 

80.7 ±  1.5 
77.9 ±  1.8 

  0% 83.6 ±  0.9 83.6 ±  0.9 83.7 ±  1.0 83.6 ±  0.9 
Cora PGD 5% 

10% 
82.3 ±  1.3 
81.6 ±  1.3 

82.0 ±  1.5 
81.2 ±  1.7 

82.3 ±  1.2 
81.6 ±  1.4 

82.5 ±  1.1 
82.0 ±  1.2 

  0% 83.5 ±  0.8 83.3 ±  0.9 83.4 ±  1.0 83.5 ±  1.0 
 DICE 5% 

10% 
82.4 ±  0.8 
80.8 ±  1.0 

82.0 ±  1.1 
80.5 ±  1.2 

82.3 ±  0.9 
81.0 ±  1.2 

82.5 ±  1.3 
81.1 ±  1.1 

  0% 73.1 ±  1.0 72.7 ±  1.2 73.7 ±  1.3 73.1 ±  1.3 
 Metattack 5% 

10% 
70.7 ±  1.7 
67.8 ±  2.5 

71.0 ±  1.2 
66.9 ±  1.9 

70.1 ±  2.2 
66.7 ±  2.0 

71.0 ±  1.7 
67.8 ±  3.1 

  0% 73.1 ±  1.8 72.5 ±  1.2 73.0 ±  1.5 73.1 ±  1.5 
Citeseer PGD 5% 

10% 
72.8 ±  1.3 
72.0 ±  1.5 

73.0 ±  1.7 
72.3 ±  1.6 

72.5 ±  1.0 
71.6 ±  1.7 

73.0 ±  1.2 
72.5 ±  1.5 

  0% 73.1 ±  1.3 73.0 ±  1.3 73.2 ±  1.5 73.3 ±  1.4 
 DICE 5% 

10% 
72.3 ±  1.4 
71.0 ±  1.1 

71.9 ±  1.7 
70.3 ±  1.2 

72.2 ±  1.3 
70.9 ±  1.4 

72.3 ±  1.6 
71.1 ±  1.6 

  0% 82.2 ±  0.8 81.9 ±  1.1 82.0 ±  0.6 82.6 ±  0.6 
 Metattack 5% 

10% 
80.8 ±  1.3 
80.5 ±  1.4 

80.3 ±  1.0 
80.1 ±  0.9 

80.7 ±  0.8 
79.0 ±  1.7 

81.4 ±  0.7 
81.0 ±  0.8 

  0% 82.2 ±  0.8 82.0 ±  1.0 82.1 ±  0.7 82.6 ±  0.8 
Industry PGD 5% 

10% 
81.7 ±  0.4 
81.4 ±  0.4 

81.4 ±  0.7 
80.0 ±  0.4 

81.4 ±  0.3 
80.9 ±  0.7 

81.8 ±  0.5 
81.6 ±  0.7 

  0% 82.2 ±  0.7 81.9 ±  0.8 82.0 ±  0.7 82.4 ±  1.0 
 DICE 5% 

10% 
81.3 ±  0.7 
80.7 ±  0.6 

81.1 ±  0.7 
80.3 ±  1.0 

81.3 ±  0.6 
80.5 ±  0.4 

81.5 ±  0.6 
80.9 ±  1.0 

 

of integrating both modalities. Most importantly, the full version of DSGNN, which employed 

a learnable dynamic fusion mechanism, consistently achieved the highest accuracy across all 

datasets and attack settings. This demonstrated the essential role of adaptive fusion in handling 

heterogeneous and complex perturbation patterns. 

6.6 Summary 

Across both accuracy and certification evaluations, DSGNN consistently outperforms existing 

defenses on benchmark and real-world graphs. Its dual-channel structure improves stability, 

reduces performance degradation, and adapts well to weakly structured, semantically noisy 

industrial scenarios. 

7 Conclusion and Future Work 

DSGNN is proposed as a defense model that decouples structural and feature perturbations 

through a dual-channel architecture. By isolating the propagation paths of different noise types 
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and dynamically integrating their outputs, DSGNN significantly improves robustness against a 

wide range of adversarial attacks. 

Experimental evaluations show that DSGNN consistently outperforms baseline defense 

methods across multiple benchmark datasets, maintaining superior stability under both targeted 

and random perturbations. These results underscore the effectiveness of explicitly modeling 

perturbation decoupling at the architectural level. 

Future work includes extending DSGNN to other graph neural network architectures, such 

as GAT and GraphSAGE. Additionally, the development of adaptive fusion mechanisms, where 

the importance weights between channels are dynamically adjusted based on the characteristics of 

observed perturbations, represents a promising direction. 
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