
Ding, Y, Zhu, F, Li, H, Parlikad, AK and Xie, M

 A failure knowledge graph learning framework for offshore wind turbines with 
incomplete knowledge

https://researchonline.ljmu.ac.uk/id/eprint/26834/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Ding, Y, Zhu, F, Li, H ORCID logoORCID: https://orcid.org/0000-0001-6429-
9097, Parlikad, AK and Xie, M (2025) A failure knowledge graph learning 
framework for offshore wind turbines with incomplete knowledge. 
Renewable and Sustainable Energy Reviews, 215. ISSN 1364-0321 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


A failure knowledge graph learning framework for offshore wind turbines 
with incomplete knowledge

Yi Ding a , Feng Zhu a , He Li b,c,* , Ajith Kumar Parlikad d, Min Xie a,e

a Department of Systems Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
b School of Engineering, Liverpool John Moores University, 3 Byrom Street, Liverpool, L3 3AF, UK
c Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
d Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge, UK
e Department of Data Science, City University of Hong Kong, Hong Kong Special Administrative Region

A R T I C L E  I N F O

Keywords:
Offshore wind energy
Operation and maintenance
Failure knowledge graph
Knowledge transfer
Incomplete knowledge

A B S T R A C T

This study presents a novel framework for Failure Knowledge Graph (FKG) construction tailored for the safe 
operation and maintenance of offshore wind turbines. Specifically, Bidirectional Encoder Representations from 
Transformers (BERT) and Conditional Random Field (CRF) are combined for failure extraction, enhanced by 
iterative learning for failure data transfer from onshore to offshore wind turbines. Additionally, this framework 
incorporates a rule-based pseudo-label module and an innovative replacement-based pseudo-sample module to 
mitigate the impact of label errors and failure data imbalance during the iterative learning process. With the 
failure events extracted, the affiliate components and corresponding failure modes are identified to construct a 
tree-structured FKG automatically for offshore wind turbines. The feasibility and effectiveness of the proposed 
framework are validated by the presentation of an FKG regarding 313 offshore wind turbines recorded in the 
LGS-offshore dataset. Overall, the study provides the offshore wind sector with an intelligent framework for 
failure data analysis, presentation, and understanding and contributes to the safe operation of offshore wind 
turbines and wind farms.

Abbreviations

FKG Failure Knowledge Graph
BERT Bidirectional Encoder Representations 

from Transformers
CRF Conditional Random Field
O&M Operation and Maintenance
FMEA Failure Mode and Effects Analysis
FMECA Failure Mode, Effects, and Criticality 

Analysis
NER Named Entity Recognition
NLP Natural Language Processing
LSTM Long Short-Term Memory
Nomenclature
R on Set of records of onshore wind 

turbines
|R on| Number of records of onshore 

wind turbines
R off Set of records of offshore wind 

turbines

⃒
⃒R off ⃒⃒ Number of records of offshore 

wind turbines
r Record Y Predicted label sequence of r
ron
i i th record of onshore wind 

turbines
Yon

i Labeled sequence of failure 
events of ron

i
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roff
j

j th record of offshore wind 
turbines

Yoff
j

Predicted sequence of failure 
events of roff

j

K Knowledge database of 
onshore wind turbine

|K | Volume of the knowledge 
base of onshore wind turbine

comk k th components in the 
knowledge database K

desk k th failure modes in the 
knowledge database K

hl Hidden states obtained from 
BERT of thel th token

|L | Length of recordr

Sl,yl Score of the l th tag pertaining 
to the l th token

Ayl ,yl+1 Score of a transition from l th 
to l + 1 th toke

Yr Set of potential sequence 
combination predictions of r

Ỹ Each possible sequence 
prediction of records r

Yon
ri

Set of potential sequence 
combination predictions of ron

i

Ỹon
i

Each possible sequence 
prediction of record ron

i

Yoff
rj

Set of potential sequence 
combination predictions of 
roff
j

̃Yoff
j

Each possible sequence 
prediction of records roff

j

en
j n th failure event of record roff

j
cn

j n th context of record roff
j
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⃒
⃒nj
⃒
⃒ Number of failure events in 

roff
j

E Predicted failure events set of 
the offshore wind turbine

Eʹ Updated failure events set 
after module 2

Yoff
j

Updated predicted label 
sequence of failure events of 
roff
j after module 2

scoresc
j Importance factor of roff

j
scorer

j Rareness factor of roff
j

fcn
j

Number of records containing 
cn

j

numj Number of resampling of roff
j

r
═

j
off j th updated record of offshore 

wind turbines after module 3
Y
═

j
off Label sequence of failure 

events of r
═

j
off after module 3

⃒
⃒
═

R off
⃒
⃒
⃒

Number of updated records of 
offshore wind turbines after 
module 3

θ Model’s parameters

θtea Teacher Model’s parameters θstu Student model’s parameters
T Knowledge graph P Node set
A Edge set I Weight set (failure share)
proot Node of failure component p Node of failure mode
Im Child nodes with parent em ​ ​

1. Introduction

Harnessing the wind resources available distant from the coast and 
over deep waters, offshore wind farms offer remarkable potential for 
electricity generation with less human interference and an efficiency 
advantage [1,2]. Offshore wind farms can generate electricity at rates 
1.5 to 2 times greater than onshore wind farms and boast a capacity 
factor of up to 50 % [3–5]. However, the economic feasibility of offshore 
wind farms is challenged by their lower accessibility, and thus, the 
Operation and Maintenance (O&M) cost constitutes 25 %–35 % of that 
of a wind turbine’s lifecycle. On the contrary, the exact O&M cost of 
onshore wind turbines is generally no more than 25 % [6,7].

Over a prolonged O&M lifespan of 20–25 years, offshore wind tur-
bines should undergo rigorous daily management, including operational 
control, failure prevention, production efficiency optimization, and 
maintenance activities management [8]. Effective O&M is pivotal for 
the resource management of wind farms and evaluating the technical, 
economic, and social benefits of a wind energy project. Accordingly, the 
realization of the design efficiency and economic advantages of offshore 
wind turbines relies heavily on developing practical and effective solu-
tions aimed at the overall O&M cost reduction of wind energy projects 
[9]. To reduce O&M costs, an in-depth and proactive approach is 
required for the prediction, prevention, and rectification of incidents, 
especially for unexpected events that may lead to failure or reduced 
productivity [10,11]. This necessitates the implementation of effective 
failure data collection and analysis, which serves as the foundation of 
O&M cost-reduction-oriented investigations. Analysis of such semantic 
failure data (maintenance records) provides a comprehensive under-
standing of failure behaviors and the related maintenance actions of 
wind turbines, which can support risk assessment, failure analysis, 
reliability issues, and maintenance planning [12,13].

However, the rapid accumulation of failure data, particularly textual 
records pertaining to failures and maintenance, significantly challenges 
the traditional manual-based failure analysis approaches for diverse 
wind turbine configurations, including onshore, offshore, bottom-fixed, 
and floating. Especially for offshore wind turbines, the growth of failure 
data is accelerated by the ongoing offshore wind farms and the addition 
of new installations, thus imposing substantial constraints on the anal-
ysis of operational data. In light of these challenges, there is a pressing 
need for research to shift towards more effective analytical methodol-
ogies, which must be capable of handling, managing, and interpreting 
vast datasets in an intelligent, automated, and labor-efficient manner, 
thereby minimizing the reliance on human intervention.

Knowledge Graphs have emerged as a widely accepted tool for this 
purpose, which can graphically represent semantics by articulating en-
tities and their relationships [14–16]. It is able to encapsulate failure 
information and associated maintenance actions derived from the 

failure data, thereby creating Failure Knowledge Graphs (FKGs) for wind 
turbines. Different from conventional approaches to failure knowledge 
representation, such as Failure Mode and Effect Analysis (FMEA) [17] 
and its updated version, Failure Mode, Effects, and Criticality Analysis 
(FMECA) [18], FKGs offer an innovative, intuitive, and user-friendly 
graphical format for the presentation of failure and maintenance data 
[19,20]. This approach necessitates fewer manual interventions, an 
advantage that becomes increasingly critical as the volume of data es-
calates to levels that are unmanageable through traditional data analysis 
and information mining methodologies.

However, FKG construction based on real field data for offshore wind 
turbines is hampered by several limitations, including incomplete 
domain knowledge, limited experiential insights, and a lack of 
comprehensive understanding concerning new failure modes toward 
offshore wind turbines. Additionally, the existing knowledge base is 
often inadequate for the automatic identification of all failure charac-
teristics and their intrinsic relationships according to operation data 
reported by wind farms.

To this end, this study proposes a novel knowledge transfer-based 
framework for FKG construction for offshore wind turbines specifically 
tailored to scenarios with incomplete knowledge. This is achieved by 
harnessing knowledge transfer methodologies, where insights derived 
from the operational data analysis of the onshore wind sector are 
extrapolated to the offshore context. This framework aims to pioneer a 
new paradigm for FKG construction, bolstering performance and cost- 
efficiency in offshore wind energy through a systematic approach to 
intelligent failure data analysis and information mining.

The rest of study is organized as follows. Section 2 reviews the state- 
of-the-art and problems statement. Section 3 constructed the proposed 
FKG construction framework. The FKG for offshore wind turbines is 
constructed in Section 4, together with the validation and comparisons. 
Conclusions are provided in Section 5.

2. State-of-the-art

Maintenance logs are typically collected during routine O&M activ-
ities and represent a common form of textual failure data. A tree- 
structured FKG initially involves extracting failure information from 
maintenance logs [21]. The associated failure components, failure 
mode, system configuration, and their relationships are then identified 
to define the FKG’s intermediate nodes and arc, as shown in Fig. 1. 
Therefore, the initial phase of FKG construction is the extraction of 
failure events from maintenance logs. These events are then integrated 
with corresponding failure components and modes to form the nodes of 
the graph framework. One way to extract these failure events is Named 
Entity Recognition (NER), a regular Natural Language Processing (NLP) 
task that locates and classifies named entities presented in unstructured 
text [22]. Leveraging NER techniques, the unstructured records can be 
effectively analyzed to identify failure events, thereby establishing a 
fundamental basis for subsequent graph construction, reliability anal-
ysis, and operation management. NER has been extensively used in 
various domains, including the chemical industry [22] and clinical 
analysis [23], wherein it aids in identifying chemical elements, medical 
symptoms, and laboratory tests. The common models include Long 
Short-Term Memory and Conditional Random Field (LSTM-CRF) model 
[24], BERT model [23], BERT-Span model [25], and BERT-CRF model 
[26].

The utilization of NER models in identifying failure events within the 
records in the wind energy sector holds significant potential for 
knowledge graph construction [27]. Notably, NER models require fail-
ure information as labeled data for training [28]. However, experts 
within the offshore wind sector possess limited understanding, experi-
ence, and expertise regarding failures associated with offshore wind 
turbines [29–31]. Incomplete knowledge regarding existing failures 
hampers the accurate labeling process of failure information in opera-
tional records, which makes it impossible to use for failure identification 
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model training. In contrast, the knowledge base and research pertaining 
to onshore wind energy are considerably more abundant, which can 
provide sufficient labeled data for training.

By considering the relationships and similarities between onshore 
and offshore wind turbines, an intuitive and feasible approach is to 
introduce a shared NER model [32,33]. Trained based on onshore tur-
bine data, this shared model is directly applied to offshore systems, 
aiming to extract pertinent failure information efficiently. However, 
such approaches overlook the knowledge gaps that persist between 
onshore and offshore wind turbines. Thus, the shared model inade-
quately captures all the necessary information on offshore wind tur-
bines, which may significantly affect the model performance for failure 
information extraction. Therefore, leveraging the unlabeled data avail-
able in the offshore systems is a cost-effective approach that can yield 
valuable information. Iterative learning is a common semi-supervised 
technique that effectively incorporates unlabeled data to enhance 
model performance. Specifically, the shared NER model method with 
iterative learning transfers the semantic spaces of failure information 
between onshore and offshore wind turbines. The NER model maps 
labeled onshore data into the semantic space. Through feature transfer, 
iterative learning is applied to use unlabeled offshore data to adapt the 
model for offshore failure recognition. This process, following an 
encoding-transfer-decoding paradigm, is widely applicable in informa-
tion extraction tasks [34,35]. Nonetheless, applying this technique to 
the wind energy sector still encounters several challenges due to the 
unique properties of the collected maintenance logs, which impact 
failure information extraction and knowledge graph construction. 
Offshore wind turbines feature a more complex array of subsystems, 
resulting in different failure modes. Thus, it hampers model accuracy 
when trained solely on onshore data. During the iterative cycle, an 
initial error that is too large may cause the model to fail to converge. 
Besides, failure events are unevenly distributed, with some components 
exhibiting high failure rates and others demonstrating robust reliability. 
This issue hinders the model’s ability to detect infrequent failures and 
those related to less common contexts, thereby constraining overall 
performance [36].

To this end, this study proposes a novel knowledge transfer learning- 
based framework with iterative learning as a basis to construct failure 
knowledge graph construction of offshore wind turbines. Additionally, 
the framework incorporates a pseudo-label module and a pseudo-sample 
module to mitigate error amplification and address the issue of imbal-
anced data during the iterative training process to adapt the model for 
effective unlabeled offshore failure recognition. The contributions of 
this study include. 

(1) Propose a novel framework with iterative learning that in-
corporates the pseudo-label module and pseudo-sample module 
to facilitate the effective transfer of failure knowledge from 
onshore to offshore.

(2) Design a rule-based pseudo-label module to correct and update 
the labels associated with failure events in offshore records.

(3) Develop a replacement-based pseudo-sample module with a 
novel resample strategy to generate balanced data with highly 
reliable records.

Overall, this study proposes a knowledge transfer learning-based 
failure knowledge graph construction framework for offshore wind 
turbines with incomplete knowledge. It contributes to knowledge 
transfer development under errored labels and imbalanced data. Addi-
tionally, the study provides the wind energy sector with a reliable tool 
for intelligent failure data management.

3. Methodology

This section presents the proposed knowledge graph construction 
approach through knowledge transfer from onshore wind turbines with 
sufficient failure knowledge to offshore devices with unlabeled failure 
data. The proposed approach assumes the presence of onshore wind 
turbine records, inclusive of onshore wind turbine knowledge encom-
passing failure components and modes, alongside offshore wind turbine 
records as inputs. An overview of the proposed approach is shown in 
Fig. 2.

Module 1: Onshore Knowledge Learning (Section 3.1). Construct a 
BERT-CRF-based sequence labeling model and train the model using 
onshore failure data and known failure events (labels). It is used to 
predict failure events of offshore wind turbines. Failure events in 
offshore records can be obtained.

Module 2: Pseudo-Label Module (Section 3.2). Design a pseudo- 
label generator to correct and update the labels associated with fail-
ures reflected by offshore records. Updated failure events with its cor-
responding offshore records can be obtained.

Module 3: Pseudo-Sample Module (Section 3.3). Construct a pseudo- 
sample generator to increase the diversity of labeled offshore records. A 
balanced dataset that combines failure events with corresponding 
offshore records can be obtained.

Module 4: Iterative Learning (Section 3.4). Develop a teacher- 
student model to facilitate iterative learning. This enables a progres-
sive learning process, where the teacher model guides the student model 
to fully capture the knowledge of the offshore wind. A trained BERT-CRF 
model for effective failure event identification in the offshore wind field 
can be obtained.

The overview of the outputs of modules is shown in Fig. 3. The 
trained model is used to infer failure events in the records. After 
obtaining failure events, failure modes and components of correspond-
ing offshore wind turbines can be extracted. Then, a tree-structured FKG 
can be constructed.

3.1. Onshore Knowledge Learning

Denote a collection of onshore maintenance records which describes 

the failure information and property, as R on =
{
ron
i
}|R on |

i=1 , where ron
i and 

|R on| are the i th record of the onshore wind turbines and its number. 

Fig. 1. Flow chart of FKG construction.

Y. Ding et al.                                                                                                                                                                                                                                     Renewable and Sustainable Energy Reviews 215 (2025) 115561 

3 



Define the knowledge database of onshore wind turbine, as K =

{comk, desk}
|K |

k=1, contains components and failure modes, where |K | is 
the volume of the knowledge base.

Given R on and K , if the failure description {comk, desk} in the 
knowledge base matches in the record ron

i , denote the failure events of 
record ron

i as comk + desk. For constructing the label of the records, the 
first token (word in records) describing a failure is labeled as B-failure, 
while the remaining tokens within the description are labeled as I-fail-

ure. All other tokens are assigned as O. Hence, the dataset 
{
ron
i ,Yon

i
}|R on |

i=1 
for sequence labeling model training is established, where Yon

i represents 
the label sequence of record ron

i . As illustrated in Fig. 4, for the input "the 
staff reported a pitch activation failure," the corresponding label 

sequence is "O O O O B-failure I-failure I-failure O."
Then, the common sequence labeling model, the BERT-CRF model, 

which is shown in Fig. 4, is used. The BERT-CRF model amalgamates two 
crucial components: BERT for feature extraction and CRF for sequence 
labeling. BERT, built upon the Transformer architecture, serves as a pre- 
trained model that extracts representations of input text to encapsulate 
semantic and contextual information within the text. Following BERT 
processing, tokenized text undergoes conversion into corresponding 
hidden states. For instance, considering the sentence "The staff reported 
a pitch activation failure" in Fig. 4, each token is transformed into token 
embeddings and fed into BERT, resulting in hl (l = 1 to 8), signifying the 
transformation from discrete tokens to continuous hidden states. Sub-
sequently, CRF is employed for sequence labeling, not only ensuring 

Fig. 2. Overview of the proposed knowledge graph construction approach.

Fig. 3. Overview of the of the outputs of modules.
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relationships between output labels but also enforcing constraints or 
rules among the labels. In the CRF process, each token embedding is 
passed through a linear layer to derive the score of the l th tag pertaining 
to the l th token, denoted as Sl,yl . For every input record r that generates a 
predicted label sequence Y (e.g., "O O O B-failure I-failure I-failure O″ in 
Fig. 4), the scoring function sθ is defined as follows: 

sθ(r,Y) =
∑|L |− 1

l=1
Ayl ,yl+1 +

∑|L |

l=1
Sl,yl

(1) 

where |L | is the number of the tokens in the record. A is a transition 
matrix such that Ayl ,yl+1 represents the score of a transition from l th to l+
1 th token. This function imposes constraints on the relationships be-
tween labels. For example, "I-failure" cannot appear before "B-failure." 
Afterward, for each training sample, scores for all potential labeling 
sequences are calculated using the scoring function, which is then fol-
lowed by the normalization of these scores. 

P(Y|r) =
esθ(r,Y)

∑

Ỹ∈Yr

esθ(r,Ỹ) (2) 

where Yr is the set of potential sequence combination predictions. Ỹ is 
each possible sequence prediction of the records within the entire set. 
The loss function is determined using the maximum likelihood method 
of the scores, as: 

max
θ

sθ(r,Y) − log

(
∑

Ỹ∈Yr

esθ(r,Ỹ)

)

=min
θ

−

(

sθ(r,Y) − log

(
∑

Ỹ∈Yr

esθ(r,Ỹ)

))

(3) 

Subsequently, model training is performed using gradient descent to 
update parameters θ until the training process is completed.

Specifically, the BERT-CRF model is trained based on the labeled 
onshore data, as minimizing the loss function by following: 

min
θ

L(R on
)=min

θ

∑|R on |

i=1
−

⎛

⎝sθ
(
ron
i ,Yon

i
)
− log

⎛

⎝
∑

Ỹon
i ∈Yon

ri

esθ(ron
i ,Ỹon

i )

⎞

⎠

⎞

⎠

(4) 

where Yon
ri 

denotes a set of potential sequence combination predictions 

for the record ron
i . Ỹon

i signifies each possible sequence prediction of the 
records within the entire set Yon

ri
.

The learned model is then exploited for identifying failure events of 
offshore record roff

j ∈ R off . Denote a collection of maintenance records 

of offshore wind farms as R off =
{

roff
j

}|R off |

j=1
, where 

⃒
⃒R off ⃒⃒ is the number 

of offshore records. Specifically, for the record roff
j , the labeling sequence 

of failure events Yoff
j is calculated by: 

Yoff
j = arg max

˜Yoff
j ∈Yoff

rj

sθ

(
roff
j ,
̃Yoff

j

)
(5) 

where Yoff
rj denotes a set of potential sequence combination predictions 

for the record roff
j . ̃Yoff

i signifies each possible sequence prediction of the 

records within the entire set Yoff
rj .

3.2. Pseudo-label module

The model in the first module is likely to lead to incorrect predictions 
as labels due to the divergence in failures between onshore and offshore 
wind turbines. Accordingly, a crucial aspect of improving the model 
performance lies in the provision of a more reliable offshore dataset for 
supervised training. To address this issue, a pseudo-label module is 
designed for label correction and updating, as shown in Fig. 3.

Generally, failure events can be characterized by different Parts-of- 
Speech (POS) type combinations, which can be applied to refine and 
rectify the labels associated with each failure event prediction [37]. Four 
rules are formulated to determine the correction of predicted failure 
events. These rules encompass the following patterns: (1) Noun + Verb, 
(2) Noun + Verb + Noun, (3) Noun + Verb + Adjective, and (4) Noun +
Verb + Prepositional Phrase. Table I gives four examples of these rules. 
It can be shown that the labeled failure event follows the given rules. 
Predictions that do not adhere to these rules have a high probability of 
being incorrect. Therefore, these four rules can be used to broadly filter 

Fig. 4. Overview of the BERT-CRF model.

Table 1 
Examples of four rules.

Rule Record Labeled failure 
event

Predicted failure 
event

Noun + Verb The current overloads, 
leading to a temporary 
power outage.

current 
overloads

overloads ( × )

Noun + Verb +
Noun

It is reported that the 
device loses 
connection.

device loses 
connection

reported that the 
device ( × )

Noun + Verb +
Adjective

It was found that the 
cooling fans operates 
abnormally indicating 
a failure.

cooling fans 
operates 
abnormally

operates 
abnormally ( × )

Noun + Verb +
Prepositional 
Phrase

The cooling system 
overheats under load, 
causing the equipment 
to shut down.

cooling system 
overheats 
under load

The cooling 
system overheats 
under load (✔)
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correct predicted failure events.
Specifically, the record roff

j is decomposed into failure events and 

contexts, formulated by roff
j =

{
en

j ∪ cn
j

}|nj|

n=1
, where en

j , cn
j are the n th 

failure event and context of the j th record. 
⃒
⃒nj
⃒
⃒ is the number of failure 

events in the record. All failure events are grouped as E =

{en
j |n= 1, ...,

⃒
⃒
⃒nj|, j= 1, ..., |R off |}. If a failure event meets the four rules, 

update the failure events set by 

Eʹ={en
j

⃒
⃒
⃒rule

(
en

j

)
=TRUE, n=1, ...,

⃒
⃒
⃒nj|, j= 1, ...,

⃒
⃒R off ⃒⃒

}
(6) 

The failure events in the updated set Eʹ are preserved as corre-
sponding labels.

In some scenarios, failure events identified in certain logs may not be 
recognized in others. However, when a failure event is identified in one 
record, it also applies to other records. Hence, if a failure event belongs 
to Eʹ but has no indications in labels in the record roff

j , update the label by 

e|
nj |+1

j =
{

e
⃒
⃒
⃒e∈Eʹ, e in roff

j , e∕= en
j , n=1, ...,

⃒
⃒nj
⃒
⃒
}

(7) 

Following these rules, the offshore dataset is updated as 
{

roff
j ,Yoff

j

}|R off |

j=1
.

3.3. Pseudo-sample module

Following the pseudo-label module, a pseudo-sample module is built 
to generate new records by replacing the failure events as data 
augmentation to expand and achieve a more balanced offshore record 
dataset for model training. Introducing pseudo-sample generation for 
data augmentation is a conventional approach to address the imbal-
anced dataset challenge [38]. Following the work [39], to determine the 
number of resampling records for generating new records for data 
augmentation, the importance and the rareness of the records are 
considered. To measure the importance of the records, the idea is that a 
record containing more failure events is more important than one with 
no failure events. The importance factor of the j th record is defined as 

scoresc
j = |nj|. (8) 

where 
⃒
⃒nj
⃒
⃒ is the number of failure events in the record roff

j .
To incorporate the rareness factor, the general idea says that the 

rarer a minority context is, the fewer failure events corresponding to that 
context will be identified, and the more times records containing this 
context should be resampled. The rareness factor of the j th record is 
defined by 

scorer
j = − log2

(
max

{
fcn

j
|n=1,…,|nj|}

/⃒
⃒R off ⃒⃒

)
(9) 

where fcn
j 

refers to the number of records containing cn
j , 
⃒
⃒R off ⃒⃒ is the 

number of records.
A function incorporating these two factors is designed to determine 

the number of resampling of j th records as 

numj =1+
⌈ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

scoresc
j * scorer

j

√ ⌉
. (10) 

The add-one avoids removing failure-events-less records from the 
training set in the following step by guaranteeing all training sentences 
can be resampled at least once.

The binomial distribution is used to determine the replacement or 
not a failure event in the resampled record. Specifically, for the failure 
event en

j in record roff
j , a binomial distribution decides whether a 

failure event e should be replaced randomly from set Eʹ, as ên
j replaces en

j . 

Following the step, a new record r
═

j
off =

{
ên

j ∪ cn
j

}|nj|

n=1 
can be generated 

to update the BIO-label sequence accordingly and a new dataset 
{

r
═

j
off ,Y

═

j
off
}|

═
R off
⃒
⃒

j=1 
is gained. The new dataset is more reliable and im-

proves the model generalization in extracting offshore failures.

3.4. Iterative learning

A teacher-student model is established to learn knowledge from 
offshore data, where the teacher model guides the student model to fully 
capture the knowledge of the offshore wind. Initially, a teacher model 
with parameters θtea and a student model with parameters θstu is con-
structed based on the BERT-CRF model. These models are initialized 
using θ obtained from onshore data through equation (4) and setting 
parameters as θtea = θstu = θ.

Train the student model using the updated offshore wind records, 

along with their corresponding labels 
{

r
═

j
off ,Y

═

j
off
}|

═
R off
⃒
⃒

j=1
, to compute 

the updated θstu by minimizing the loss function min
θ

L
(

R off
═ )

. The pa-

rameters of the teacher model θtea are updated following θtea = θstu. 
The parameters of the student model θstu is then updated by θstu = θ.
Subsequently, the teacher model is employed to predict the failure 
events of the original offshore records R off , resulting in the generation 

of 
{

roff
j ,Yoff

j

}|R off |

j=1
.

The process of offshore data inference, pseudo-label generation, 
pseudo-sample generation, student model training, and teacher model 
update is repeated until model convergence.

3.5. Failure graph construction

After obtaining the failure event identification model, failure events 
can be extracted from the records. A tree-structured FKG represented by 
T = (P ,A ,I ) is constructed with the failure modes and components 
of offshore wind identified accordingly from events. Specifically, com-
ponents and failure modes are denoted by proot, p ∈ P . An arc 〈proot, p〉 
will be added to the arc set A in case a failure component proot and mode 
p are extracted in the same events. The FKG is constructed in a top-down 
manner with the hierarchical structure of subsystem - failure compo-
nents – failure modes. Failure share C(m, n) ∈ I reflects the probability 
of a failure, as: 

C(m, n)=
N(m, n)
∑

nʹ∈Im
N(m, nʹ)

(11) 

where N(m, n) is the number of occurrences of n. Im reflect child nodes 
with parent em. When In = ∅, en is a leaf node. N(m, n) is expressed as the 
frequency of n directly. Otherwise, N(m, n) is calculated by 

∑
oʹ∈In N(n,

ó ).

4. Case study

4.1. Data description

The records utilized in this study include 2022 failure data of 119 
onshore wind farms with 1257 wind turbines and 1755 failure data of 6 
offshore wind farms with 313 offshore wind turbines (LGS-Offshore 
dataset). The offshore wind turbines are decomposed into the support 
structures, pitch system, energy production system, cooling system, and 
auxiliary system. To be detailed, the records provide the failure calendar 
of wind turbines and contain a wide range of information such as failure 
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scenarios, failure modes, components, maintenance times, and mainte-
nance actions, see Table II. Failure descriptions in records are regarded 
as samples for model training. The failure descriptions of records are 
typically unstructured text due to the inconsistent language habits and 
unstrict recording rules followed by maintenance personnel, which re-
sults in multiple failure descriptions towards the same failure mode and 
introduces additional restrictions to failure identification and analysis. 
In addition, offshore devices incorporate more subsystems like dehu-
midification systems, contributing to distinct failure modes. Hence, it is 
imperative to emphasize the presence of specific components exhibiting 
different symptoms between onshore and offshore wind turbines.

Regarding data preprocessing, the initial step involves filtering out 
numerical values, English characters, and irregular symbols from the 
records. Subsequently, each sentence is segmented into individual 
words. A dictionary file1 https://github.com/dbiir/UER-py/blob/mast 
er/models/google_zh_vocab.txtis leveraged, containing 21,128 Chinese 
characters provided by Google. After segmentation, only words present 
in this vocabulary are retained to generate the processed record, while 
eliminating stop words sourced from the repository2 https://github.co 
m/goto456/stopwords. This meticulous preprocessing approach is 
crucial for addressing recording inaccuracies and ambiguities. Each 
word in the processed record undergoes encoding through a combina-
tion of word embedding, segment embedding, and position embedding, 
preparing it for input into the failure event identification model, thereby 
ensuring data integrity and enhancing the model’s text interpretation 
capabilities.

4.2. Experiment setting

For hyperparameter adjustment and model validation, data are 
divided into training, validation, and test sets for failure event identi-
fication. The training set, being the largest subset, is employed to train 
the model on data patterns. The validation set plays a crucial role in 
hyperparameter tuning and unbiased model evaluation. Lastly, the test 
set, offers an unbiased estimation of the model’s performance on 
entirely new data, thereby facilitating an assessment of the model’s 
generalization capability. This diving method ensures effective model 
generalization, guards against overfitting, aids in hyperparameter 
optimization, and provides a reliable gauge of the model’s real-world 
efficacy. Specifically, a randomly selected 10 % failure data of 
offshore wind is employed as the validation set, with an additional 20 % 
allocated for model testing, and the remaining failure data of offshore 
wind turbines and onshore wind turbines serves as the training set for 
failure event identification. Both validation and testing sets are manu-
ally labeled to facilitate a rigorous model performance evaluation.

The hyperparameters of the BERT-CRF model are batch size and 
learning rate. The batch size is set to grid search within the range [16, 
32, 64], while the learning rate is set to grid search within the range [1e- 
7, 1e-6, 1e-6]. The experiment was conducted on the Google Colab, with 
NVIDIA Tesla T4. The environment is Python 3.10.11, CUDA 12.0, 
Pytorch 2.0.1.

To assess the quality of the knowledge graph, evaluating the per-
formance of failure events extraction is crucial, as constructing a 
knowledge graph depends on accurately extracting entities and re-
lationships from text. The quality of this construction hinges on precise 
identification of these failure events [40,41]. Three performance metrics 
are used to evaluate the performance of failure event identification, 
including precision (P), recall (R), and F1-score (F1). 

■ Precision: It measures the accuracy of correctly predicted failure 
events out of the total instances predicted. A higher precision in-
dicates a higher level of confidence in predictions. It is defined by:

P=
|prediction ∩ true|

|prediction|
(12) 

where prediction and true indicate the predicted and true failure events 
extracted according to the labeling sequence. |prediction ∩ label| refers to 
the number of words that overlap in the predicted and labeled failure 
events. |prediction| represents the number of words of the predicted 
failures. 

■ Recall: It assesses the model’s ability to identify the failure events 
from the total labeled instances correctly. A higher recall signifies 
that the model identifies a more significant proportion of failure 
events. It is calculated by

R=
|prediction ∩ true|

|true|
(13) 

where |true| represents the number of words of the labeled failures. 

■ F1-score: It combines precision and recall to offer a balanced 
assessment of the model’s performance. A higher F1-score shows the 
superior overall performance of the model in terms of precision and 
recall, and it is defined as

F1=
2*P*R
P + R

. (14) 

4.3. Results

The knowledge graph of offshore wind turbines constructed and the 
failure share calculated is shown in Fig. 5 and Table III. It illustrates: (i) 
Failure behavior, is a systematic description of failure properties, 
including components and failure modes. Overall, 18 components with 
61 failure modes of offshore wind turbines are determined, which sup-
port the deep and comprehensive understanding of the failure mecha-
nisms and behaviors of offshore wind turbines; (ii) Failure share, 
represents the ratio of failure modes. Take the lubrication system failure 
of the pitch system as an example. Lubrication system failures are caused 
by unqualified lubricating oil (36 %) and lubrication pump power fail-
ure (64 %). The failure shares identified benefits for most likely failure 
behaviors identification, which further supports fast failure location and 
diagnosis as well as maintenance strategy planning of offshore wind 
farms. The failure characteristics of offshore wind turbines are sum-
marized by systems as follows. 

(1) The cooling system

It is pointed out that the cooling system is responsible for the heat 
dissipation of multiple electrical and electromechanical components. 
The cooling fan and cooling water pump are the most prevalent com-
ponents, contributing 94 % of the cooling system’s failures, followed by 
the water tank and water pipe. The damaged cooling fan severely im-
pacts the cooling system, leading to a chain of failures and disrupting the 
operation of offshore wind turbines.

The malfunctions/failures of the cooling system give rise to common 
cause failures in such systems and components. Regular inspection and 
quality control of cooling fans and pumps are required to prevent a 
minor cooling system failure from propagating to related components in 
the driving train. 

(2) The auxiliary system

The auxiliary system is a combination of blades and supportive 

1 https://github.com/dbiir/UER-py/blob/master/models/google_zh_vocab. 
txt

2 https://github.com/goto456/stopwords
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elements like yaw system. In this system, blades are responsible for 57 % 
of the failures. Broken bolts account for 52 % of these failures, followed 
by damaged blades (27 %) and stuck blades (21 %). Strong winds, large 
waves, and typhoons (in specific sea locations) are primary contributors 
to blade failures. The remaining failures in the auxiliary system are 
related to the yaw system, displaying various symptoms.

It is pointed out that blades are expensive components for 
manufacturing, installation, operation, and maintenance. The wind 
farms should ensure zero catastrophic failure, which requires the 
replacement of the overall lifecycle of offshore wind turbines. To this 
end, blades’ health state monitoring in extreme weather conditions is 
needed, and only non-destructive monitoring tools and concepts are 
acceptable. 

(3) The energy production system

The energy production system is known by driving train of offshore 
wind turbines. It composes a selection of components that directly 
involved in electricity production such as main bearing, inverter, 
convertor and so forth. In terms of failure of the energy production 
system, bearing failure is critical and contributes to 51 % of overall 
failures. Other notable failures include inverter (27 %), lubrication 
system (11 %), converter (7 %), and carbon brush (4 %). Concerning 
bearing failures, high temperatures, damaged bolts, and abnormal noise 
are dangerous states that engineers should be vigilant about. In terms of 
inverters, the primary failures are alarm activation and current 
overload.

Unlike other systems that play a supportive role in the energy pro-
duction process, the failures of any components of the energy production 
system will give rise to a decrease in energy generation efficiency or 
shutdown of offshore wind turbines. This highlights the importance of 
stringent quality control for the electrical and electromechanical 

Table 2 
Examples of unstructured records in maintenance logs.

Failure 
Time

Failure Description System Maintenance 
Start

Maintenance 
Complete

Onshore 2019-10- 
09 
09:00:00

The cooling air temperature is over 65 ◦C. After inspection, we find that the fan runs normally, but 
the cooling water pump works abnormally. The pump is replaced.

Cooling 2019-10-09 
10:10:00

2019-10-09 
18:30:00

2019-10- 
28 
08:00:00

When cooperating with the generator manufacturer to measure the generator bearing insulation, it 
is found that the generator bearing insulation of 14# and 37# units fail, and the resistance value is 
0.

Generator 2019-10-28 
09:10:00

2019-10-29 
08:00:00

Offshore 2020-05- 
02 
10:00:00

During the idling debugging process of the 42# unit, the personnel report a pitch activation 
failure.

Pitch 2020-05-02 
11:20:00

2020-05-02 
11:50:00

2019-06- 
03 
12:00:00

Fault phenomenon description: During the unit’s operation, the inverter’s activation fault is 
reported. Replace the DSP control board, and the fault is eliminated.

Generator 2019-06-03 
14:00:00

2019-06-03 
15:00:00

Fig. 5. The FKG of offshore wind turbines (Constructed upon the LGS-Offshore dataset).
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components of the system during the manufacturing process to ensure its 
adequate reliability. It is worth mentioning that electrical components 
fail more frequently than others due to degradation, such as the lubri-
cation system, and wear, such as carbon brushes. The findings indicate 
that such components’ supply chain control and backups are essential 
for offshore wind farm management. 

(4) The pitch system

The pitch system is of importance for electricity production efficacy 
improvement and safety control in extreme sea conditions by adjusting 
attack angles. The system is independently powered and consists of 
powers (with backups), motors, and activators. Specifically, the power 
supply represents the most significant contributor to pitch system fail-
ures, accounting for 30 % of failures to the total, considering that motor 
and controller failures account for approximately 20 % of each, 
respectively. Additionally, the limit switch and lubrication system are 
also observed in failures of the pitch system.

Even though the powers have been equipped with backups, the 
failure rate is still high. It calls for a better design of the scheduling al-
gorithm for backup units from the software’s point of view. From the 
hardware’s perspective, real-time monitoring of power units is also 
essential. Additionally, timely failure prevention of these components 
should be integrated into the maintenance strategy planning of offshore 
wind farms. 

(5) The support structures

The support structures are specially designed for offshore wind tur-
bines to support such devices stand on the sea space, representing the 
unique differences between onshore and offshore wind turbines. The 
obvious reasons for the failures of this system can be traced back to the 
control cabinet failure (43 %), switch failure (25 %), and communica-
tion failure (17 %). Additionally, minor failures include lighting pre-
vention system failure (6 %), dehumidifier failure (6 %), and stuck 
screws (3 %).

It is pointed out that LGS-Offshore datasets creatively provide the 
wind energy sector with a basic data foundation and understanding of 
failures, the populations which, however, are 2–5 years old. It indicates 
that structural failures do not appear in these young wind turbines, 
resulting in this analysis merely reporting functional failures but not 
structural ones. However, the structural failures introduced by harsh sea 
conditions should be emphasized in wind farms’ operation and main-
tenance process. Like several systems mentioned, the failure of electrical 
elements is the most frequent of the support structures. Robust designs 
and stringent electrical component selection can be solutions for un-
wanted failure prevention for this system.

To conclude, from the methodologies’ point of view, the proposed 
method serves as a valuable tool for acquiring failure information and 
conducting reliability analysis for offshore wind turbines through 
knowledge transfer. It enables the identification of failure modes of 
offshore wind turbines by leveraging operational knowledge and failure 
data from analogous onshore wind turbines. Notably, the method excels 
in extracting unique symptoms of components specific to offshore wind 
turbines, even when faced with different failure systems. Addressing the 
domain gaps between onshore and offshore wind farms, the proposed 
method effectively transfers knowledge to extract new failure informa-
tion, providing a comprehensive understanding of failures. The resulting 
FKG facilitates querying of failure mechanisms and supports optimized 
operation and maintenance of offshore wind turbines by implementing 
failure localization and diagnosis. The presented information is designed 
to be easily understandable and user-friendly. Another contribution of 
the study is that it provides an automatic tool for failure information 
extraction, which requires no human interactions and supports future 
big data scenarios.

4.4. Discussions

4.4.1. Iterative learning
In the process of iterative learning, the generation of pseudo-samples 

needs to determine the number of records to resample. The range of 
importance score is [0,5], while the range of rareness score is [2.1,10.1]. 
And the range of combined score, which is the number of resampling of 
records, is [1,9]. Considering the sampling uncertainty of failure events 
for replacement in iterative learning, the mean and variance of the 
criteria are calculated to evaluate the performance of the proposed 
method.

Fig. 6 shows the precision, recall, and F1-score of the proposed model 
during training processes. The mean and variance of the criteria are 
calculated over 20 runs. As the training set has no label information, the 
validation set is used to calculate during the training stage. Precision and 
recall converge stably with less fluctuation, which demonstrates the 
convergence of the proposed method. The F1-score, which symbolizes 
the overall performance of the proposed model, gradually increases and 

Table 3 
Items definition of the FKG for offshore wind turbines.

S1: Cooling system

C1 Cooling fan (60 %) M5 Leaky water pump (12 %)
C2 Cooling water pump (34 %) M6 Damaged airbag (12 %)
C3 Water tank (4 %) M7 Damaged elastic support (9 %)
C4 Water pipe (2 %) M8 Damaged sensor (3 %)
M1 Damaged fan (57 %) M9 Abnormal temperature (3 %)
M2 Overloaded current (43 %) M10 Leaky water tank (75 %)
M3 Overloaded current (36 %) M11 Damaged water tank (25 %)
M4 Abnormal pressure (25 %) M12 Deformed water pipe (100 %)
S2: Auxiliary system
C5 Blade (57 %) M18 Abnormal brake (16 %)
C6 Yaw system (43 %) M19 Damaged motor (16 %)
M13 Broken bolts (52 %) M20 Abnormal pressure (10 %)
M14 Damaged blades (27 %) M21 Damaged fuse (10 %)
M15 Stuck blades (21 %) M22 Damaged resistance box (4 %)
M16 Inverter failure (22 %) M23 Oil spill (3 %)
M17 Communication failure (17 %) M24 Burnt black brake unit (2 %)
S3: The energy production system
C7 Bearing (51 %) M31 Leaky oil (44 %)
C8 Inverter (27 %) M32 Damaged lubrication pump (20 

%)
C9 Lubrication system (11 %) M33 Low fluid level (10 %)
C10 Converter (7 %) M34 Power supply failure (10 %)
C11 Carbon brush (4 %) M35 Damaged motor (8 %)
M25 High temperature (42 %) M36 Damaged sensor (8 %)
M26 Damaged bolts (30 %) M37 Converter overload (46 %)
M27 Abnormal noise (28 %) M38 High temperature (27 %)
M28 Alarm activation failure (54 

%)
M39 Converter activation failure (15 

%)
M29 Overloaded current (39 %) M40 High pressure (12 %)
M30 Precharge failure (7 %) M41 Carbon brush failure (100 %)
S4: Pitch system
C12 Power supply (30 %) M46 Worn encoder (56 %)
C13 Drive (19 %) M47 High current (20 %)
C14 Motor (17 %) M48 High temperature (15 %)
C15 Controller (16 %) M49 Motor stop failure(9 %)
C16 Limit switch (10 %) M50 Safety chain failure (62 %)
C17 Lubrication system (8 %) M51 Damaged cabinet door (21 %)
M42 Abnormal power module (49 

%)
M52 Controller failure (17 %)

M43 Damaged capacitor cabinet 
(28 %)

M53 Smashed limit switch (100 %)

M44 Low capacitor voltage(23 %) M54 Lubrication pump power failure 
(64 %)

M45 Damaged drive (100 %) M55 Unqualified lubricating oil (36 %)
S5: Support structure
C18 Tower system (100 %) M59 Dehumidifier failure (6 %)
M56 Control cabinet failure (43 %) M60 Lighting system failure (6 %)
M57 Switch failure (25 %) M61 Stuck screw (3 %)
M58 Communication failure (17 %) ​ ​

SX: XX – Subsystem; CX XX(xx%) – Failure component (Failure share); MX XX(xx 
%) – Failure mode (Failure share).
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stabilizes during iterative learning. It verifies the effectiveness of the 
proposed model. The results also illustrate that the performance of the 
model increases less after the first four runs, and it proves the calculation 
efficiency of the proposed model and guides the calculation of the model 
when applied to other data analysis circumstances.

4.4.2. Impacts of sample size
The sample sizes of both labeled onshore data and unlabeled offshore 

data, which are inputs of the failure event identification model, are 
pivotal in determining the performance.

A larger sample size of labeled onshore data provides a diverse set of 
failure events of onshore data, enhancing the model’s learning and 
generalization. This results in improved knowledge transfer and iden-
tification of offshore data. Understanding the impact of sample size of 
labeled onshore data helps determine adequate training onshore data for 
a robust model that can improve the method’s performance. Fig. 7
validates the performance of the proposed method on different sample 
sizes of labeled onshore data. The results demonstrate a gradual 
improvement in the performance of the method as the sample sizes of 
onshore maintenance records increase. This improvement can be 
attributed to the fact that a larger sample size of onshore maintenance 
records contains more failure information about onshore wind farms, 
which in turn facilitates the extraction of failure information of offshore 
wind farms via knowledge transfer.

Fig. 7 also indicates that the increase in accuracy is in line with the 
increase in sample size. It can be an asset for model accuracy estimation 
and making the best decisions regarding failure data analysis by 
balancing accuracy and computational efficiency.

A larger unlabeled offshore data samples facilitate the extraction of 
failure information during iterative learning for improved model adap-
tation in offshore wind farm contexts. Fig. 8 validates the performance 
of the proposed method on different sample sizes of offshore data. It is 
shown that expanding sample sizes of unlabeled offshore records results 
in a consistent method of performance enhancement. This improvement 

results from more failure information being extracted during iterative 
learning, leading to better model adaptation in offshore wind farm 
contexts. Noteworthy is the significant impact of labeled onshore data 
on the model’s performance compared to unlabeled offshore data. This 
underscores the importance of leveraging onshore data and knowledge 
base for onshore labeled data obtained for refining the model towards 
optimal performance.

4.4.3. Ablation analysis
The ablation analysis is designed to understand the influence of 

modules of the proposed method. The insights into the relative signifi-
cance of different elements can be verified by selectively disabling ele-
ments and comparing the performance before and after the ablation. The 
results promote a full understanding of the capability of each module in 
the proposed method. Different combinations of modules for the failure 
identification are examined, including pseudo-label module, pseudo- 
sample module, and iterative learning module, see Table IV.

The results demonstrate that the pseudo-label module and pseudo- 
sample module with iterative learning can significantly improve the 
model performance. The proposed method can dig out new knowledge 
better and more profoundly.

Specifically, compared to the baseline, the inclusion of the pseudo- 
label module (module 2) results in a notable improvement in F1 value 
by 1.8 %. This improvement indicates that the presence of incorrectly 
labeled offshore data due to the knowledge gaps in the transfer learning 
can hinder performance, and the proposed pseudo-label module effec-
tively corrects labels for offshore data, establishing a solid foundation 
for training. Additionally, the pseudo-sample module (module 3) 
improved the F1 value by 1.1 %, suggesting that generating a more 
diverse range of samples enhances the model’s overall performance. 
Both generators (pseudo-label module and pseudo-sample module) pull 
up the F1 value by 5.1 %. This improvement is more pronounced 
compared to the use of either element individually due to the presence of 
incorrect labels of offshore data results from the knowledge transfer, 
which continues to limit performance. The proposed pseudo-label 
module can provide reliable data for subsequent pseudo-sample 

Fig. 6. Model performance of the proposed method over the training rounds.

Fig. 7. Model performance with different sample sizes of labeled onshore data.

Fig. 8. Model performance with different sample sizes of unlabeled 
offshore data.

Table 4 
Model performance of different module combinations.

Models Precision Recall F1

Module 1 (baseline) 0.774 0.748 0.761
Module 1 + Module 2 0.760 

(0.014↓)
0.799 
(0.051↑)

0.779 
(0.018↑)

Module 1 + Module 3 0.757 
(0.017↓)

0.787 
(0.039↑)

0.772 
(0.011↑)

Module 1 + Module 2 +
Module 3

0.838 
(0.064↑)

0.802 
(0.054↑)

0.812 
(0.051↑)

The proposed method 0.841 
(0.067↑)

0.833 
(0.085↑)

0.837 
(0.076↑)
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generation, resulting in diverse, reliable, and balanced offshore data for 
training.Besides, the iterative learning approach (module 4), as evident 
from the final lines in the table, enables continuous learning from 
offshore data. This iterative learning process further contributes to 
extracting and utilizing valuable knowledge from the offshore data.

4.5. Comparisons

4.5.1. Comparison – methodology
Five models are considered in the comparison to validate the per-

formance of the proposed method of failure event identification: (i) 
Rule-based model [42]. The rule-based model extracts the contexts with 
high frequencies as rules and uses them as indicators to discover the 
failure events; (ii) BERT-Span model [25]. We use labeled data in the 
onshore wind farms to generate pseudo-labeled data in the offshore data 
for training the BERT-Span model; (iii) BERT model [23]. The training 
process is like the second model; (iv) LSTM-CRF model [24]. The 
training process is like the second model; (v) Multi-head teacher-student 
model [43]. The labeled onshore data is applied to generate 
pseudo-labeled data for that of offshore data for training. The 
pseudo-labeled offshore data is then randomly divided into several parts 
to train corresponding models as teacher models, and then use the union 
of these models to infer results, see Fig. 9.

It is concluded that the proposed method shows the highest F1-score, 
indicating that it holds the best performance among others. The rule- 
based model shows worse performance due to its template matching 
mechanism, which ignores the hidden contextual information on the 
unstructured text. The BERT-Span model, BERT model, and LSTM-CRF 
model perform worse due to the ignorance of knowledge gaps be-
tween offshore and onshore wind turbines, which results in unreliable 
training labels and misleading the training process; the multi-head 
teacher-student model has limited capability of failure identification 
as it lacks a continuous learning process to further improve the perfor-
mance of the model.

It is also noted that the rule-based method is more effective for small 
sample size conditions. This is because the other methods employed are 
based on deep learning, which requires a larger dataset for training to 
obtain a robust and high-performance model. According to the results 
from the comparison study, the proposed method can guarantee good 
performance without high labeling and annotation efforts and achieve 
effective knowledge transfer from the high-knowledge onshore domain 
when given a large volume of onshore failure data.

This study provides a novel solution for textual failure data analysis 
in the wind energy sector, addressing challenges posed by rapidly 
accumulating and diverse data forms. The proposed FKG learning 
framework can reduce the overarching operation and maintenance costs 
of the offshore wind energy sector as well as the labor request. Mean-
while, by providing a practical FKG construction schedule, this study 
contributes to better utilization of failure data. Overall, the outcomes of 

this study benefit both industry and academia, providing a novel sys-
tematic framework and operational procedure for failure data analysis 
and FKG construction.

4.5.2. Comparison – offshore wind turbines
A comparison is conducted to examine the failure modes of offshore 

wind turbines extracted in various research for failure analysis, 
including: Risk-based failure analysis [44], FMEA [45,46], 
Correlation-FMEA [47], FMECA [48], cost-based FMEA [49], 
AHP-FMEA [7], Two-stage FMEA [50], see Table V.

Notably, the proposed methodology in this study identifies 61 failure 
modes of 24 components, which represents more failures identified than 
existing understandings published before. On the one hand, it verifies 
the comprehensiveness of the proposed method in revealing the failure 
properties of offshore wind turbines. It also provides the sector with a 
more detailed and extensive understanding in terms of offshore wind 
turbine failures, which act as the foundation of failure prevention and 
control, reliable operation and maintenance issues, as well as cost sav-
ings for offshore wind farms.

It is worth mentioning that this analysis delved into a more detailed 
investigation of failure modes within the cooling system and energy 
production system, as well as their corresponding components, such as 
the cooling fan, cooling water pipe, carbon crush, and lubrication sys-
tem. This emphasis arises from the high frequency of failure modes 
observed in these subsystems within the onshore system. Leveraging 

Fig. 9. Benchmarking results of the proposed method.

Table 5 
Components and failure modes of offshore wind turbines.

Components This 
study

[a] [b] [c] [d] [e] [f] [g] [h]

Cooling system ✓ ✓ ​ ✓ ✓ ​ ​ ✓ ✓
Cooling fan ✓ ​ ​ ​ ​ ​ ​ ​ ​
Cooling water 

pump
✓ ​ ​ ​ ​ ​ ​ ​ ​

Water tank ✓ ​ ​ ​ ​ ​ ​ ​ ​
Water pipe ✓ ​ ​ ​ ​ ​ ​ ​ ​

Auxiliary system ✓ ​ ✓ ✓ ​ ​ ​ ✓ ✓
Hub ​ ​ ​ ✓ ​ ​ ✓ ✓ ✓
Blade ✓ ​ ✓ ✓ ​ ​ ✓ ✓ ✓
Yaw system ✓ ​ ✓ ✓ ✓ ​ ​ ✓ ✓

Energy 
production 
system

✓ ​ ​ ​ ✓ ​ ​ ​ ​

Generator ​ ​ ✓ ✓ ✓ ​ ​ ✓ ​
Transformer ​ ​ ​ ✓ ✓ ​ ​ ✓ ✓
Bearing ✓ ✓ ✓ ​ ✓ ✓ ​ ✓ ✓
Inverter ✓ ​ ​ ​ ​ ​ ​ ​ ​
Lubrication 

system
✓ ✓ ​ ✓ ​ ✓ ✓ ​ ​

Converter ✓ ​ ​ ✓ ✓ ​ ​ ✓ ✓
Carbon brush ✓ ​ ​ ​ ​ ​ ​ ​ ​
Main Shaft and/ 

or Coupling
​ ​ ​ ✓ ​ ​ ✓ ✓ ✓

Pitch system ✓ ​ ✓ ✓ ​ ​ ​ ✓ ✓
Power supply ✓ ​ ​ ​ ​ ​ ​ ​ ​
Drive ✓ ​ ​ ​ ​ ​ ​ ​ ​
Motor ✓ ​ ​ ​ ​ ​ ​ ​ ​
Controller ✓ ​ ✓ ✓ ✓ ​ ​ ✓ ✓
Limit switch ✓ ​ ​ ​ ​ ​ ​ ​ ​
Lubrication 

system
✓ ​ ​ ​ ​ ​ ​ ​ ​

Support 
structure

✓ ​ ✓ ✓ ✓ ​ ​ ✓ ✓

Tower ✓ ​ ✓ ✓ ​ ​ ​ ✓ ✓
Others ​ ✓ ✓ ✓ ​ ​ ​ ✓ ✓
Number of 

failure modes
61 36 16 31 9 7 8 32 42

[a] Sinha and Steel [44]; [b] Arabian-Hoseynabadi, Oraee [45]; [c] Bharatbhai 
[46]; [d] Kang, Sun [47]; [e] Du [48]; [f] Tazi, Châtelet [49]; [g] Li, Teixeira 
[50]; [h] Li, Díaz [7].

Y. Ding et al.                                                                                                                                                                                                                                     Renewable and Sustainable Energy Reviews 215 (2025) 115561 

11 



knowledge transfer based on failure data from onshore systems, the 
proposed method became sensitive to failure information related to 
these components. Consequently, the proposed method excels at iden-
tifying failure modes specific to these components. Meanwhile, existing 
studies focus on understanding the failure modes of generators and 
transformers. However, this study reveals less failure (by proportion) of 
these aspects. The reason lies in the nature of the records, where failure 
descriptions involving generators and transformers often overlap with 
other systems, such as the cooling system.

Except for the discussed, in the algorithm perspective, traditional 
methods like FMEA and FMECA rely on manual information extraction 
and analysis by expert teams. This process is time-consuming, costly, 
and particularly challenging for large-scale systems. These methods may 
also struggle to fully explore the potential interrelationships within the 
records between different types of wind turbines. In contrast, the pro-
posed method automates the failure information identification to 
construct a knowledge graph for failure analysis that does not require 
human involvement. Leveraging a comprehensive knowledge base of 
onshore wind turbines, the proposed approach can use this as a refer-
ence label for failure event identification model training for offshore 
wind turbines, enabling the exploration of semantic correlations be-
tween onshore and offshore wind turbine records. This feature helps the 
knowledge transfer, enhancing the efficiency of the analysis process. 
However, the proposed method need adequate labeled onshore data by 
adopting an onshore wind turbine knowledge base for effective BERT- 
CRF model training. Large deep learning models like BERT-CRF de-
mand substantial computational resources for training and inference, 
potentially posing challenges in terms of hardware.

In conclusion, this study’s main contribution is that it provides an 
intelligent tool for failure data analysis of offshore wind turbines and can 
be extended to other scenarios. The approach can be generalized to 
various wind turbines because the methodology is to establish a transfer 
between failure events of the onshore wind turbines and offshore wind 
turbines in the semantic spaces. A deep learning-based method is 
adopted to transfer the semantic spaces of failure events of both. The 
failure event identification model BERT-CRF maps labeled onshore data 
into the semantic space. Through feature transfer, a rule-based pseudo- 
label module, pseudo-sample module, and iterative learning are applied 
to adapt the model for unlabeled offshore failure recognition. Conse-
quently, failure components and modes can be decomposed from the 
events to construct the knowledge graph. As the records of various wind 
turbines have correlations in semantic perspective, the method’s ability 
to transfer and learn semantic features within this semantic space en-
ables its applicability to broader Wind Farm scenarios, showcasing its 
potential for generalization across diverse wind turbine settings.

5. Conclusion

The study introduces a novel knowledge transfer learning frame-
work, utilizing incomplete knowledge to construct a Failure Knowledge 
Graph for offshore wind turbines based on onshore data. The proposed 
method employs the BERT-CRF model with iterative learning for deep 
extraction of failure information in offshore wind turbines. It also in-
corporates two key components: a rule-based pseudo-label module for 
refining failure information labels during learning and a pseudo-sample 
module with an innovative resampling strategy to generate a balanced 
dataset with more reliable records. A Failure Knowledge Graph is con-
structed as a basis to represent the failure information of offshore wind 
turbines, providing understanding for failure analysis, understanding, 
and prevention of failures. According to the Failure Knowledge Graph, 
the failure properties of offshore wind turbines are presented by their 
components. Overall, the outcomes of this study contribute to perfor-
mance improvement and cost-saving of offshore wind turbines by 
providing a novel systematic framework for intelligent failure data 
analysis, presentation, and understanding.

Although the proposed method outperforms the knowledge graph 

construction task, it still can be further improved considering the prac-
tical applications. Firstly, since the method requires a amount of labeled 
onshore data, it is crucial to use large language models with prior 
knowledge to reduce data dependency. Secondly, exploring model 
optimization methods that require fewer computational resources is 
worthwhile. In the future, we will continue to explore these two 
directions.
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