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e Sichuan Honghua Petroleum Equipment Co., Ltd, Guanghan, Sichuan, 618300, PR China   

H I G H L I G H T S  

• A novel intelligent drilling pumps fault diagnosis method, WCCN-BiLSTM, is proposed. 
• The WCCN is constructed for noise reduction and feature extraction of signals 
• The CBAM module embedded in WCCN enhances the feature representation of channel and spatial dimension. 
• The diagnostic ability and generalization ability of the model are verified by drilling pump data under different working conditions.  
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A B S T R A C T   

This paper proposes a novel method namely WaveletKernelNet-Convolutional Block Attention Module-BiLSTM 
for intelligent fault diagnosis of drilling pumps. Initially, the random forest method is applied to determine 
the target signals that can reflect the fault characteristics of drilling pumps. Accordingly, the WaveletKernelNet- 
Convolutional Block Attention Module Net is constructed for noise reduction and fault feature extraction based 
on signals. The Convolutional Block Attention Module embedded in WaveletKernelNet-CBAM adjusts the weight 
and enhances the feature representation of channel and spatial dimension. Finally, the Bidirectional Long-Short 
Term Memory concept is introduced to enhance the ability of the model to process time series data. Upon 
constructing the network, a Bayesian optimization algorithm is utilized to ascertain and fine-tune the ideal 
hyperparameters, thereby ensuring the network reaches its optimal performance level. With the hybrid deep 
learning model presented, an accurate fault diagnosis of a real five-cylinder drilling pump is carried out and the 
results confirmed its applicability and reliability. Two sets of comparative experiments validated the superiority 
of the proposed method. Additionally, the generalizability of the model is verified through domain adaptation 
experiments. The proposed method contributes to the safe production of the oil and gas sector by providing 
accurate and robust fault diagnosis of industrial equipment.   

1. Introduction 

Oil and gas are still powering the world as it has been in last cen-
turies, in spite of the surge demand and development of renewable en-
ergies, such as wind, hydropower, solar, nuclear, and so forth [1–3]. 
Different from energy production equipment operate on land, drilling 
devices works underground or under the sea, representing low accessi-
bility, harsh working condition, and limited intervention with operators, 

maintenance crew, and other stakeholders [4–6]. 
The drilling pump, one of the riskiest components among others of 

drilling devices, transports drilling mud to the bottom of wells through 
the high-pressure pipeline and the center hole of the drill pipe to 
maintain borehole cleanliness, support lubrication and cooling to the 
drill bit, and discharge the rock chips produced during drilling to the 
surface [7]. Failed to promptly identify a fault in a drilling pump can 
result in equipment damage, causing delays in field operations and 
resulting in property damage. Fault diagnosis of drilling pumps is 
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importance for oil, gas, and other energy drilling operations. The 
mentioned device accounts a large proportion of the drilling device 
malfunctions during the production process in land or at the sea ac-
cording to the field data. The root reasons can be traced back to [8,9]: (i) 
harmful working conditions including the abrasive and corrosive mud, 
the high-intensity working demand, and uncertain drilling operation 
underground or at the sea; (ii) low accessibility of maintenance which 
formulates that a minor malfunction could results in unrated production 
and can only be fixed after drilling actions completion. Accordingly, it 
has been a long-term, urgent, surge demand of the failure identification 
and prevention of such a device which relies heavily on the state- 
awareness of drilling pumps. It is, however, still based on the subjec-
tive judgment of experienced operators. 

To be specific, experienced operators identify the healthy state of 
drilling pumps according to the sound generated during the drilling 
process. The usable information given by the manual identification is 
somehow limited by only providing a pre-judgment on presence and 
seriousness of malfunctions [10], more detailed and practical decision- 
making assistance information like the location and remaining useful 
operation time of drilling pumps are still unavailable according to the 
manual identification way. Hence, practitioners are seeking automatic 
state-awareness methods or useful tools to support the optimal and 
reliable operation of devices with the help of the advance hardware like 
sensors and applicable methods like deep learning models. 

This study presents a novel fault diagnosis framework, called WCCN- 
BiLSTM, for drilling pumps. The core of this framework is the 
WaveletKernelNet-CBAM Net (WCCN) model, which is seamlessly in-
tegrated with a Bidirectional Long-Short Term Memory (BiLSTM) ar-
chitecture. An accurate fault diagnosis of a five-cylinder drilling pump is 
carried out with the assistance of the method. Overall, this method 
contributes to safe production of the oil and gas sector and benefit for 
accurate and robust fault diagnosis of industrial equipment. 

The remaining sections of the paper are structured as follows: Section 
2 offers an overview of the current state-of-the-art and presents the ac-
ademic perspective on the problem statement. Section 3 details the 
methodology employed. Section 4 showcases the drilling pump and its 
fault diagnosis process. Finally, Section 5 presents the conclusion. 

2. State of the art and problem statement 

2.1. Data-driven fault diagnosis 

2.1.1. From CNN to BiLSTM 
Traditional data-driven fault diagnosis methods such as machine 

learning have been implemented to solve real-world engineering prob-
lems [11]. For example, Chen et al. [12] utilized a hierarchical machine 
learning approach to detect gearbox faults employing a two-tier model. 
Li et al. [13] introduced an extreme learning machine technique for 
diagnosing faults in hydraulic pumps, specifically addressing the chal-
lenge of complex fault diagnosis in axial piston pumps. Meanwhile, Liu 
et al. [14] presented an enhanced machine learning-based fault diag-
nosis method for multi-phase drive systems. Lan et al. [15] applied 
signal processing technology and extreme learning machine to construct 
an intelligent network for fault diagnosis of slipper wear of axial piston 
pumps. However, these methods suffer from shortcomings like rely 
heavily on prior experience and knowledge and have difficulties in 
extracting deep and nonobvious failure features [16,17]. 

In recent years, the field of fault diagnosis has witnessed a significant 
shift towards deep learning techniques, addressing the limitations 
inherent in traditional methods as previously mentioned [18]. This 
trend was attributed to the adoption of Convolutional Neural Network 
(CNN), which excels in identifying spatial features and structures 
through the use of multiple layers with shared weights [19]. Kumar et al. 
[20] introduced a centrifugal pump fault detection method using a CNN 
enhanced by integrating an entropy-based divergence function in its cost 
function, applying acoustic images processed through analytical wavelet 
transform, to effectively identify centrifugal pump defects. Similarly, 
Tang et al. [21] introduced an enhanced CNN model with an adaptable 
learning rate for hydraulic piston pump fault diagnosis, effectively uti-
lizing vibration, pressure, and sound signals to improve detection ac-
curacy. To realize fault diagnosis of drilling pump, Li et al. [22] 
developed a CNN-based fault diagnosis method, which utilizes an 
innovative expansion operation to convert one-dimensional vibration 
signals into enhanced three-dimensional images. Tang et al. [23] uti-
lized the generalized S transform to convert raw vibration signals into a 
time-frequency image dataset, followed by the application of a CNN 
model for fault diagnosis of the drilling pump. Similar to CNN, Recurrent 
Neural Network (RNN) is a powerful tool for pattern recognition, feature 
extraction, and sequence modeling. Characterized by their cyclic con-
nections, RNN can process variable-length sequences and pass implicit 
states at each timestep, a functionality that enables them to effectively 
capture timing information within these sequences [24]. Wang et al. 
[25] developed an RNN-based multi-fault diagnosis method for wind 
power systems, utilizing 30 characteristic parameters like wind speed 
and rotor speed as inputs. Nevertheless, RNNs face challenges with 
gradient vanishing or exploding when handling long sequence inputs. To 
counter this, Hochreiter and Schmidhuber [26] developed the Long 
Short-Term Memory (LSTM) network, which integrates memory units 
into the hidden layer, enhancing RNN. LSTM utilizes gated units to 
control information flow, allowing the model to learn long-term de-
pendencies effectively. Bie et al. [27] developed a fault diagnosis 
method for reciprocating pumps using LSTM, enhanced by the Improved 
CEEMDAN algorithm. The approach utilizes vibration signals, effec-
tively extracting fault features for classification. Additionally, Chung 
et al. [28] introduced the Gated Recurrent Unit (GRU) network, an 
optimization of the LSTM structure. This approach simplifies the 
connection architecture and reduces the number of trainable parame-
ters, thus boosting training efficiency while maintaining the memory 
functionality within the network. Miao et al. [29] developed a planetary 
gearbox fault diagnosis method based on GRU, enhanced by dropout 
technology. This method, utilizing vibration signals as input, focuses on 
maintaining recognition ability and quickly adapting to new fault types. 
BiLSTM, an advanced iteration of LSTM, adeptly captures sequential 
data information, addressing the impact of distant sequence positions on 

Nomenclature 

Abbreviations 
CNN Convolutional Neural Network 
CWConv Continuous Wavelet Convolutional 
CBAM Convolutional Block Attention Module 
WCCN WaveletKernelNet-CBAM Net 
BiLSTM Bidirectional Long-short Term Memory 
RF Random Forest 
RNN Recurrent Neural Network 
LSTM Long-short Term Memory 
GRU Gate Recurrent Unit 
BO Bayesian Optimization 
BIConvLSTM Bidirectional-convolutional LSTM 
MDRL Multi-scale Deep Residual Nearning 
MSCNN Multi-scale Convolutional Neural Network 
SCN Sparse Convolutional Network 
CWT Continuous Wavelet Transform 
SPM Strokes per Minute  
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the current one and effectively resolving long-term dependency issues. 
Utilizing an ensemble BiLSTM network enhanced with an attention 
mechanism, Han et al. [30] devised a robust fault diagnosis method for 
Variable Refrigerant Flow (VRF) systems, achieving high accuracy and 
effective generalization under various conditions. Table 1 provides 
detailed insights into the representative fault diagnosis methods 
mentioned above, all of which are based on a single network. 

2.1.2. From single network to their combinations 
A single network turns out to be insufficient when dealing with fault 

diagnosis issues when they are applied to the real engineering equip-
ment with large categories of data [31,32]: (i) It can hardly represent 
complex relationships and features appeared in the fault diagnosis 
processes as different types of problems, sometimes, require different 
types of networks and a single network is unable to fulfil such as de-
mand; (ii) It processes limited features and requires fuse fusion when it is 
applied to complicated engineering cases; (iii) It impedes modular 
design and model function extension. Accordingly, combined networks 
are proposed to remove the drawbacks introduced by a single network as 
mentioned-above. Li et al. [33] introduced an approach that combines 
CNN and GRU for diagnosing gear pitting faults. This method demon-
strated impressive fault diagnosis accuracy, reaching 98% even when 
dealing with limited sample sizes. Wang et al. [34] and Liao et al. [35] 
extract the local features using CNN, capturing the global features and 
dynamic information with GRU. Zhang et al. [36] use CNN to extract the 
collected signal features, and then access LSTM to model the features 
and get a high fault diagnosis accuracy. You et al. [37] recommended an 
approach combining CNN, BiLSTM and AM, The robustness and effec-
tiveness of the model was verified by rolling bearing data. Xiang et al. 
[38] built the CNN-LSTM-AM model to improve the accuracy of fault 
detection by learning mapping weights and parameters, and to give 
early warning to abnormal states and detect faults, which was verified 
on supervisory control and data acquisition (SCADA) data. Wang et al. 
[39] added WKN to the model to reduce model parameters while dealing 
with signal noise. Huang et al. [40] carried out adaptive feature 
refinement of signals through CBAM to realize multi-classification 
recognition tasks. Xu et al. [41] propose a multi-scale CNN combined 
with BiLSTM model to solve the problem of insufficient extrapolation 
ability of intelligent method in fault diagnosis, with improve the 
generalization performance under complex working conditions. Many 

scholars have introduced AM into deep learning models to enhance 
feature expression ability and fault diagnosis accuracy [42,43]. Table 2 
lists representative model in the field. 

2.2. Problem statement and contributions 

Drilling pumps are specific devices and have been very a few in-
vestigations especially the failure features and fault diagnosis aspects. 
There is little literature on fault diagnosis of drilling pumps, but its 
reliable operation is of great significance to drilling engineering, which 
indicating that intelligent fault diagnosis of drilling pumps is a chal-
lenging task but are urgently needed. What’s more, signals collected 
from drilling pumps using sensors in complex and dynamic operating 
environments inevitably contain noise due to the nature of the pump’s 
operation. This interference can disrupt intelligent fault diagnosis tasks 
if not reduced. This is because the artificial neural network may inter-
pret noise as a fault-related feature, which could compromise the ac-
curacy of the diagnosis. The reduction of noise in raw signals is crucial 
for effective drilling pump fault diagnosis. However, all existing noise 
reduction methods unavoidably increase signal processing time to some 
extent. This presents a significant challenge for real-time fault diagnosis 
of drilling pumps, as it reduces the speed of fault identification, which 
could lead to serious equipment damage or safety incidents. Therefore, 
there is an urgent need for a fault diagnosis method that can integrate 
superior noise reduction performance with high efficiency, to aligning 
with the demands of engineering practice. 

The existing state-of-the-art methods, however, encounter in severe 
limitations when they are applied to the fault diagnosis of drilling 
pumps, including: (1) Majority of the methods uses vibration signals to 
characterize the health states. However, drilling pumps pose different 
failure modes and failure behaviors when compared to other devices. 
Hence, it is worthwhile to determine the signals that can better reflect 
their health state; (2) Drilling pumps operate in harsh, uncertain, and 
unpredictable environments, which challenges of capability of noise 
reduction of existing methods. To this end, this paper proposes a 

Table 1 
Application of single networks in fault diagnosis.  

Reference Model Object Signal used Advantages 

Kumar 
et al. 
[20] 

CNN Centrifugal 
pump 

Acoustic 
Converted input 
signals into 
images 

Tang et al. 
[21] CNN 

Hydraulic 
piston pump 

Vibration 
+Pressure +
Sound 

Converted input 
signals into 
images 

Li et al. 
[22] 

CNN Drilling pump Vibration Signal expansion 
operation 

Tang et al. 
[23] CNN Drilling pump Vibration 

Generalized S 
Transform 

Wang 
et al. 
[25] 

RNN Wind turbine 

Wind speed 
+Rotor Speed 
+Generator 
Speed 

Multi-feature 
input 

Bie et al. 
[27] 

LSTM Reciprocating 
pump 

Vibration Signal denoising 

Miao et al. 
[29] GRU 

Planetary 
gearbox Vibration Small sample size 

Han et al. 
[30] BiLSTM VRF systems. 

Thermal Data 
+Frequency 
Metrics 
+Electrical 
Signals 

Enhanced 
interpretability  

Table 2 
Application of combined networks in fault diagnosis.  

Reference Model Object Signal used Advantages 

Li et al. 
[33] 

CNN-GRU gear Acoustic+
vibration 

Network 
composition 

Wang 
et al. 
[34] 

CNN-GRU chiller system 
temperature 
+ pressure 

Network 
composition 

Liao et al. 
[35] CNN-GRU 

hydroelectric 
generating unit vibration 

Network 
composition 

Zhang 
et al. 
[36] 

CNN- 
LSTM 

Liquid Rocket 
Engine 

Pressure +
power Simulation data 

You et al. 
[37] 

CNN- 
BiLSTM 

Rolling Bearing vibration Network 
composition 

Xiang 
et al. 
[38] 

CNN- 
LSTM-AM 

wind turbine Temperature 
+ power 

Network 
composition 

Wang 
et al. 
[39] 

WKN- 
BiLSTM- 
AM 

Rolling Bearing vibration Signal denoising 

Huang 
et al. 
[40] 

CNN- 
CBAM- 
LSTM 

Fiber Vibration 
Signal 
Recognition 

vibration 
Good 
generalization 
ability 

Xu et al. 
[41] 

MSCNN- 
BiLSTM 

wind turbine 
bearing 

vibration 
Good 
generalization 
ability 

Yang et al. 
[42] 

MBiGRU- 
AM 

bearing vibration Introduction of 
AM 

You et al. 
[43] 

BiLSTM- 
SCN- 
CBAM 

rolling bearing vibration 
Good 
generalization 
ability 

MDRL: multi-scale deep residual learning; MSCNN: multi-scale convolutional 
neural network; SCN: sparse convolutional network 
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WaveletKernelNet-CBAM Net (WCCN) model combining with BiLSTM as 
a basis of that to build a fault diagnosis framework, namely WCCN- 
BiLSTM, for drilling pumps. Specifically, the WCCN model in-
corporates the WKN and CBAM modules. Within this framework, the 
WKN model seamlessly integrates noise reduction functionality into the 
network computation. This integration eliminates the need for separate 
signal processing for noise reduction. Instead, the model autonomously 
learns and applies the noise reduction function, bypassing additional 
noise reduction steps and thereby accelerating computation speed. 
Meanwhile, CBAM enhances the feature representation of the noise- 
canceled signal in both channel and spatial dimensions, thereby 
improving the capacity to learn and recognize key features. Following 

this, the BiLSTM module is employed to further augment the represen-
tation of key signal features and conduct sequence modeling, facilitating 
efficient and accurate fault diagnosis. The contributions of this paper 
include:  

(i) Determine the signal that can best characterizes of drilling 
pumps’ failures based on the Random Forest (RF) model.  

(ii) Create a WCCN network combining with the BiLSTM for better 
noise reduction and feature extraction from time series data. 

Overall, this method contributes to safe production of the oil and gas 
sector and benefit for accurate and robust fault diagnosis of industrial 

Fig. 1. The framework of the fault diagnosis method based on WCCN-BiLSTM.  
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equipment. 

3. Fault diagnosis method based on WCCN-BiLSTM 

3.1. WCCN-BiLSTM 

In this paper, a new drilling pump fault diagnosis method referred to 
as WCCN-BiLSTM, was introduced. WCCN employs a continuous 
wavelet convolutional layer (CWConv) and a standard convolutional 
layer to reduce noise in the original signal and facilitate basic feature 
extraction. A Convolutional Block Attention Module (CBAM) is then 
employed to enhance the feature representation in both channel and 
spatial dimensions. This enhancement improves the focus on essential 
features within the data signal while reducing the influence of irrelevant 
features. Finally, the BiLSTM model is used for the final computation of 
the feature vectors. After computation, the sequence data is passed 
through the output layer to derive the signal recognition result. Using 
Bayesian Optimisation (BO), the model parameters are optimized to 
achieve optimal model performance. In addition, the incorporation of 
batch normalization effectively prevents model overfitting. The fault 
diagnosis framework method based on the WCCN-BiLSTM network is 
shown in Fig. 1 and with the following steps, see Table 3: 

Step 1: Collect the monitoring signals of different degrees of damage 
to the drilling pump, and select the monitoring signal that can best 
characterize the drilling pump failure through the RF method. 

Step 2: Normalise the monitoring signals and partition the samples, 
data sets, and labels. 

Step 3: Use Bayesian optimization to determine the optimal set of 
hyperparameters for the WCCN-BiLSTM model. 

Step 4: Train and validate the WCCN-BiLSTM model using the 
compiled drilling pump dataset. 

Step 5: Perform ablation experiments to evaluate the effect of each 
module in the model. Validate the fault diagnosis capability of the model 
through comparative experiments. 

Step 6: Perform domain adaptation experiments to assess the 
generalization ability of the model across different working condition 
datasets. 

3.2. WaveletKernelNet -CBAM net 

CNN has shown success in remaining life prediction and fault diag-
nosis [44–46]. Typical CNN network comprises an input layer, con-
volutional layer, pooling layer, fully connected layer, and output layer. 
The input layer normalizes multidimensional data and feeds the learning 
data into CNN to guarantee the operational efficiency and learning 
performance [47,48]. The convolution layer generates features through 
convolution and using nonlinear activation functions. After convolution, 
the activation function applies a nonlinear transformation to each con-
volution’s output logarithm, aiming to enhance the linear divisibility of 
the originally linearly indivisible multidimensional features in another 
space. CNN is unable to handle noise in raw signals and lacks satisfactory 
interpretability. To this end, WKN is developed and applied to fault 
diagnosis [49]. Fig. 2 illustrates that WKN modifies the standard CNN 

architecture by substituting its first convolutional layer with a Contin-
uous Wavelet Convolutional Layer. This adaptation endows WKN with 
enhanced noise reduction capabilities. Furthermore, WCCN builds upon 
the foundation laid by WKN, incorporating a CBAM into the model. This 
integration enables WCCN to more effectively concentrate on key 
features. 

WCCN adds CWConv layer and CBAM before and after the first 
convolutional layer compared to CNN, and retains the first convolu-
tional layer and adds CBAM compared to WKN. The CWConv layer in-
cludes wavelet kernels with different scales and translation parameters, 
and performs convolution using a predefined function defined by two 
learnable parameters. To be specific, the CWConv layer is defined as: 

h = ψu,s(t)*x (1)  

where, ψu,s(t) represents the predetermined over function to denote re-
sults of CWConv layer, the translation and scaling parameters updating 
of whom is: 

δuk =
∂H
∂uk

=
∂H
∂zk

∂zk

∂hk

∂hk

∂ψk
u,s

∂ψk
u,s

∂uk

δsk =
∂H
∂sk

=
∂H
∂zk

∂zk

∂hk

∂hk

∂ψk
u,s

∂ψk
u,s

∂sk

(2)  

{
uk = uk − ηδuk
sk = sk − ηδsk

(3)  

where, ∂ is the derivative operator, ψk
u,s denotes the k th wavelet kernel 

of the layer with the length L, Sk and uk denote the scale and translation 
parameter, respectively. Specifically, u and s are updated by subtracting 
the learning rate η and gradientδ. 

CBAM is a lightweight general-purpose module to improve repre-
sentational and generalization capabilities of networks by introducing 
channel attention and spatial attention [50]. In the WCCN framework, 
convolutional layers initially process signals, capturing time-dependent 
features. The channel attention mechanism evaluates each channel via 
global pooling and a fully connected layer, forming a channel attention 
graph. This graph is then applied to the original feature maps to selec-
tively enhance or suppress specific channel features. Next, the spatial 
attention component generates a sequence attention map by performing 
mean and maximum pooling on the adjusted feature maps. Concate-
nated along the channel dimension, these results are processed through 
a convolutional layer. After activation, this map adjusts each temporal 
point’s prominence on the feature map. As shown in Fig. 3. 

Within the CBAM framework, input features undergo processing in 
the channel attention module, high-level features are extracted through 
average and maximum pooling, and the channel experiences compres-
sion and expansion through the multilayer perceptron (MLP). This 
process enhances the network’s capability to represent features across 
various channels. The features output by MLP are then summed by el-
ements and combined to output feature vectors. The channel attention is 
computed as: 

Table 3 
The procedure of the WCCN-BiLSTM network.  

Algorithm 1: The proposed method. 
Input: WCCN-BiLSTM, with best hyperparameters selected by BO; Dataset of drilling pump; 
Data Preprocessing: Monitoring Signal Selection; Signal Standardization; 
for epoch = 1, 2, …, epoch do: 
Data undergoes noise reduction and feature extraction through WCCN channel, followed by feature enhancement; 
Feature vector operations are performed on data output from the WCCN channel using the BiLSTM channel; 
Obtaining output of WCCN-BiLSTM; 
Adam algorithm is applied to optimize and reduce training error; 
end 
Output: Fault diagnosis of drilling pumps  
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Mc(F) = σ(MLP(AvgPool(F) ) ) + MLP(MaxPool(F) )

= σ
(

W1

(
W0

(
Fc

avg

)))
+ W1

(
W0

(
Fc

max
) ) (4)  

where, Mc(F) is the channel attention weight, σ denotes the sigmoid 
activation function, and F reflects the feature matrix. 

The spatial attention module explores the intrinsic relationship of 
features, which is computed by: 

Ms(F) = σ(Conv([AvgPool(F) ;MaxPool(F) ] ) )

= σ
(

Conv
([

Fs
avg; F

s
max

])) (5)  

where, Mc(F) is the spatial attention weight, and Conv(⋅) displays the 
convolution operation. 

3.3. BiLSTM 

LSTM is capable to process and model time series data with espe-
cially in solving long-term dependency problems [51–53], composes of 
different gated units, see Fig. 4(a). The input gate determines new input 
information into the cell state; The forgetting gate ascertains retains or 
not the previous information; The output gate determines outputs to the 
network layer in the time slice. These mechanisms enable LSTMs man-
aging previous information and update the cell state if needed. The 
calculation of LSTM are as follows: 

ft = σ
(
Wf ⋅[ht− 1, xt ] + bf

)
(6)  

where ft and xt represent output and input. σ reflects gate pass function, 
ht− 1 is the output. Wf and bf is the weight and bias matrix of forget gate. 

it = σ(Wi⋅[ht− 1, xt ] + bi ) (7)  

where it denotes the information input，Wi and bi is the weight and bias 
matrix of input gate. 

C̃t = tanh(Wc⋅[ht− 1, xt ] + bc ) (8)  

where C̃t is candidate memory cell. Wc and bc is the weight and bias 
matrix of input gate. 

Ct = ft ×Ct− 1 + it × C̃t (9)  

ot = σ(Wo⋅[ht− 1, xt ] + bo ) (10)  

where ot is the information output, Ct represents the current state of the 
cell. 

ht = ot × tanh(Ct) (11)  

where ht represents the ultimate data derived from both ot and Ct. 
BiLSTM introduces a hidden layer in two directions on the basis of 

LSTM to better capture the before and after relationships in time series 
data. The BiLSTM structure is shown in Fig. 4(b). 

4. Data processing 

4.1. Drilling pump & data 

The experimental data of this paper was experimented and collected 
from the HH2400 drilling pump test platform. This dataset was obtained 
from drilling components returned for repair and testing to replicate 

Fig. 2. Developments from CNN to WKN and WCCN.  
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actual operating conditions. The Siemens 1500 series PLC is employed 
for achieving real-time data sampling with a period of 1ms or shorter. 
The data acquisition module is equipped with pressure sensors, strain 
sensors, vibration sensors, etc. on each cylinder. The HH2400 drilling 
pump and its sensors configuration are shown in Fig. 5(a). For simula-
tion signals, a 16-bit precision extended analog input module is utilized, 
featuring 8 channels per module and a total of 3 modules, ensuring data 
accuracy. Following initial processing, the sampled data is stored in a 
dedicated data storage block (DB) within the PLC for communication 
transit, facilitating subsequent retrieval by the host computer. Utilizing 
Ethernet as the carrier, OPC is employed to efficiently coordinate the 
rapid retrieval of PLC data, with a requirement for an effective data 
retrieval cycle of within 10ms. Field engineers establish data analysis 
rules and algorithms to determine the status of the cylinder valve based 
on data anomalies, classifying them into categories such as normal 
operation, mild damage, moderate damage, and serious damage. 

Monitoring data obtained from nine groups of drilling pumps, each 
operating under four different conditions. A pump stroke is subjected to 
different frequencies: 50 strokes per minute (SPM), 90 SPM, 110 SPM, 
and 130 SPM. Valve states include normal, minor damage, moderate 
damage, and heavy damage, see Fig. 5(b). The 16 failures of the drilling 
pump are listed in Table 4. 

In actual drilling operations, 70–130 SPM pumping stroke is the most 
common working situation. Accordingly, dataset C, with 110SPM, was 
selected to verify the diagnostic capability of the WCCN-BiLSTM model. 
Each operating condition of drilling pump contains 16 states with 
160,000 samples and a single sample contains 2048 data sampling 
points. The total sample size was partitioned into training, validation, 
and test sets using an 8:1:1 ratio, resulting in 128,000, 16,000, and 
16,000 samples, respectively. 

Fig. 3. Frameworks of CBMA and WCCN.  

Fig. 4. Structural of LSTM and BiLSTM.  
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4.2. Monitoring signals selection 

The study acquires vibration, pressure, strain, crankshaft angle, and 
relieve pressure signals for drilling pumps. The random forest (RF) [54] 

method is utilized to identify the monitoring signals that can best reflect 
the fault characteristics of the drilling pump. A RF consists of several 
unrelated decision trees built randomly. Each decision tree in the forest 
judges a new sample separately to determine its class, and the final 
classification result is obtained by voting. In regression problems, the RF 
calculates the average of all decision tree outputs, quantifying the 
importance of the features. The higher the feature importance, the more 
significant the contribution to the accurate prediction of the model, and 
vice versa. The steps for building RF are as follows: 

Step 1: Utilize random sampling method to select bootstrap samples 
to construct decision tree. 

Step 2: Split decision trees until all samples in a node belong to the 
same class. 

Step 3: Classify samples of the RF using the “with-replacement” 
method. 

The Gini index used to evaluate performance of classification and 
regression is defined by: 

Gini = 1-
∑

Pi
2 (12)  

where, Pi represents the proportion of the i-th class samples in the 
dataset at the current node. 

In RF classification, the average of all Gini index weights the indi-
cator, by: 

Qk =

∑n

i

∑i

j=1
DGkij

∑m

k

∑n

i

∑i

j=1
DGkij

(13)  

where, Qk represents the importance of the k-th indicator among the all, 
m represents the total number of indicators, which is 5 in this paper, n 
reflects the number of decision trees, t is the nodes of each classification 
tree. DGkij represents the decrease in Gini index of the k-th indicator at 
the j-th node of the i-th tree. 

Fig. 6 displays the importance of signals for drilling pumps’ fault 
diagnosis. The findings indicate that the strain signal is the most effec-
tive in capturing the fault characteristics of drilling pumps. Selecting the 
most relevant and suitable sensor to collect information for fault diag-
nosis can simplify the modeling of fault diagnosis models and reduce the 

Fig. 5. Sensor configuration and failures of the HH2400 drilling pump/ (a) Sensor configuration; (b) Failures.  

Table 4 
Partition of drilling pump datasets.  

Dataset Pump 
stroke 
(SPM) 

State Label Encoder 

Suction valve Discharge 
valve 

A/B/C/ 
D 

50/90/ 
110/130 

Normal 
Minor 
damage SNDM1 0 

Normal Moderate 
damage 

SNDM2 1 

Normal Heavy 
damage 

SNDH 2 

Normal Normal SNDN 3 
Minor 
damage 

Minor 
damage SM1DM1 4 

Minor 
damage 

Moderate 
damage 

SM1DM2 5 

Minor 
damage 

Heavy 
damage 

SM1DH 6 

Minor 
damage Normal SM1DN 7 

Moderate 
damage 

Minor 
damage SM2DM1 8 

Moderate 
damage 

Moderate 
damage 

SM2DM2 9 

Moderate 
damage 

Heavy 
damage 

SM2DH 10 

Moderate 
damage Normal SM2DN 11 

Heavy 
damage 

Minor 
damage SHDM1 12 

Heavy 
damage 

Moderate 
damage 

SHDM2 13 

Heavy 
damage 

Heavy 
damage 

SHDH 14 

Heavy 
damage Normal SHDN 15 

S: Suction valve; D: Discharge valve; N: Normal; M1: Minor damage; M2: 
Moderate damage; H: Heavy damage 
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complexity in data processing and feature extraction and contribute to 
real-time monitoring and rapid diagnosis. Thus, strain signals are used 
for drilling pump fault diagnosis in this study. 

5. Experimental section 

5.1. Bayesian optimization model hyperparameters 

Bayesian optimization (BO) is widely recognized as a highly effective 
approach to hyperparameter selection in machine learning models [55]. 
Its notable strengths include the ability to achieve objectives with fewer 
iterations, ensuring faster convergence. In addition, BO is particularly 
robust to non-convex challenges, making it a preferred choice in com-
plex optimization scenarios. Furthermore, a distinct advantage of BO 
lies in its use of a priori information about the parameters. This process 
involves continuously updating the posterior distribution of the objec-
tive function by adding new samples, which helps to closely match the 
true distribution. Consequently, in this paper, BO is used as a method for 
selecting model hyperparameters to find the most optimal set of 
hyperparameters for the model. 

In this study, the BO process was structured in two distinct stages. 
Initially, five initial optimization iterations were conducted to establish 
a baseline model of parameter performance. This phase is essential, as 
Bayesian optimization relies on prior data to commence the iterative 
procedure. Following this, a further 50 optimization iterations were 
executed. These iterations were systematically designed by the Bayesian 
optimization algorithm, progressively enhancing and refining the 
parameter choices to more accurately approach the optimal solution. 
Altogether, 55 iterations were completed, a number deemed appropriate 
for balancing efficient exploration of the parameter space against 
computational costs. The main hyperparameters of the WCCN-BiLSTM 
model are selected by BO, including the filters, kernel size, strides, 
and units of BiLSTM. Fig. 7 represents the process by which the accuracy 
of the validation set corresponding to each set of hyperparameters 
selected by the network model using the Bayesian algorithm in the 
hyperparameter space changes. This figure comprises two sections: the 
lower section details the hyperparameter values, while the upper section 
highlights the peak accuracy achieved with each hyperparameter set 
during validation. The model, in each iteration, BO dynamically adjusts 
the value of the next hyperparameter selection based on the previously 
selected hyperparameters with their achieved highest accuracy. Table 5 
comprehensively presents the range of hyperparameter values explored 
and the conclusive outcomes of this process. 

5.2. Model evaluation method 

The model’s convergence was assessed using the cross-entropy loss 
function: 

Fig. 6. The importance of signals for drilling pumps’ fault diagnosis.  

Fig. 7. The hyperparameter training process.  

Table 5 
Hyperparameter ranges in BO and the optimized results [56].  

No. Name Range Results 

1 filters [1,64] 28 
2 kernel size [1,64] 33 
3 strides [1, 16] 12 
4 LSTM [1,64] 36  
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loss = −
∑K

i=1
yilog(pi) (18)  

where Pi is the probability value of the label i, while the label is i, theyiis 
1, otherwise is 0. 

Assess the model with the following criteria: accuracy, precision, 
recall and F1 − score. 

accuracy =
TP + TN

TP + FP + FN + TN
(19)  

precision =
TP

TP + FP
(20)  

recall =
TP

TP + FN
(21)  

F1 − score =
2*precision

precision + recall
(22)  

where TP, FP, FN, TN denote the counts of true positive, false positive, 
false negative, and true negative results, respectively. 

In Eq. (19), accuracy signifies the ratio of correctly predicted samples 
to the total number of samples. Eq. (20) defines precision, representing 
the proportion of correctly predicted positive samples to the actual 
predicted positive samples. Eq. (21) defines recall as the proportion of 
positive samples that are correctly predicted, and Eq. (22) formulates 
the F1-Score as a comprehensive performance metric for the model. 

5.3. Ablation experiment 

To verify the structure of the model, ablation experiments were 
designed to demonstrate the active role of each individual module. The 
experiment is centered around Dataset C, corresponding to a pump 
stroke of 110SPM. The training process for the WCCN-BiLSTM model is 
depicted in Fig. 8, where the accuracy and loss values are presented. As 
indicated by the figure, a noticeable convergence trend is evident once 
the iteration count reaches 50. 

Ablation experiments for the WCCN, CBAM, and BiLSTM modules 

were conducted on Computer 1, aiming to evaluate the individual 
effectiveness of each module in the developed WCCN-BiLSTM model. 
Computer 1 was outfitted with an i5-12400F processor, 32GB of RAM, 
and a 3060 GPU. Table 6 presents a quantitative comparison of precision, 
recall, and f1-score values across various models using Dataset C, 
demonstrating that the WCCN, CBAM, and BiLSTM modules enhanced 
fault diagnosis accuracy by 7.1%, 4%, and 17.6%, respectively. For more 
comprehensive comparisons, refer to Table 7. 

5.4. Comparison experiment 

5.4.1. Comparison of other networks 
In this section, the performance of the WCCN-BiLSTM model is 

evaluated by comparing it with seven other models. Fig. 9(a) demon-
strates that the proposed model, across different configurations, ach-
ieves faster convergence in accuracy compared to other models. 
Additionally, it exhibits notable stability, showing minimal fluctuation 
in accuracy post-convergence, unlike other methods. This suggests su-
perior convergence and robustness of the proposed method. The 
following experiments and analyses focus on illustrating the perfor-
mance of each model using dataset C, which represents common 
working conditions. Fig. 9(b) graphically presents the average precision, 
recall, and F1 score for both the state-of-the-art and the proposed 
models. Table 8 offers a thorough comparative analysis of time con-
sumption for different models, evaluating their computational effi-
ciency. To gauge real-world performance, the test set was run on two 
computers with distinct specifications. Computer 1 featured an i5- 
12400F processor, 32GB of RAM, and a 3060 GPU, whereas Computer 
2 was equipped with an i9-13900KF processor, 48GB of RAM, and a 
4090 GPU. 

To mitigate the impact of randomness from data sampling order and 
initial weight settings, which can cause variation in results across ex-
periments, conducting multiple experiments and calculating their 
average can effectively reduce this variability. Therefore, under iden-
tical parameter settings, five independent experiments were conducted, 
and the results of the fault diagnosis for the test set in Dataset C are 
displayed in Fig. 9(c). The figure reveals that the WCCN-BiLSTM model 
exhibits the greatest stability and highest average accuracy at 98.9%. In 

Fig. 8. The variation of values throughout the model training.  
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contrast, the average accuracies of the other seven models are 83.4%, 
94.1%, 94.1%, 95.9%, 97.6%, 94.3%, and 98.5%, respectively. 

The confusion matrix, a tool for comparing actual versus predicted 
classifications, aids in visualizing and assessing classification accuracy. 
To gauge the performance of various models, we present the confusion 
matrix for dataset C (110SPM) under relevant working conditions in 

Fig. 10. This figure highlights the classification accuracy for each label 
class, with a special focus on those falling below 95% accuracy. It shows 
that multiple labels in other models do not meet the 95% accuracy mark. 
However, the proposed method has just one label with a 94% accuracy, 
slightly below 95%. These results underscore the WCCN-BiLSTM 
model’s superior classification capabilities compared to other methods. 

Table 6 
The quantitative comparison results of each module ablation experiment.  

Index Network BiLSTM WKN-BiLSTM WCCN CNN-CBAM-BiLSTM CNN-BiLSTM CNN-CBAM 

Precision WCCN-BiLSTM WCCN ↑7% CBAM ↑4% BiLSTM ↑18% WCCN ↑2%   
CNN-CBAM-BiLSTM     CBAM ↑2% BiLSTM↑7%  

Recall 
WCCN-BiLSTM WCCN ↑7% CBAM ↑4% BiLSTM↑18% WCCN ↑2%   
CNN-CBAM-BiLSTM     CBAM ↑2% BiLSTM↑8%  

F1-score 
WCCN-BiLSTM WCCN ↑7% CBAM ↑4% BiLSTM↑18% WCCN ↑2%   
CNN-CBAM-BiLSTM     CBAM ↑2% BiLSTM↑8%  

Accuracy 
WCCN-BiLSTM WCCN ↑7.1% CBAM ↑4% BiLSTM↑17.6% WCCN ↑1.4%   
CNN-CBAM-BiLSTM     CBAM ↑2.2% BiLSTM↑7.7%  

Table 7 
Quantitative evaluation results of ablation experiments were performed on dataset C.  

Network Structure Input Output Precision Recall F1-score Accuracy 

WCCN-BiLSTM 

CWConv (filters ¼ 32, kernel size ¼ 64, stride ¼ 1) 
Conv (filters ¼ 28, kernel size ¼ 33, stride ¼ 12) CBAM () 
Pooling (pool size ¼ 2, strides ¼ 2) 
BiLSTM (units ¼ 32) 
Dense () 

(2048, 1) 
(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 
(85, 72) 

(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 
(85, 28) 
(6120, 16) 

0.99 0.99 0.99 0.988  

BiLSTM 
Pooling (pool size = 2, strides = 2) 
BiLSTM (units = 32) 
Dense () 

(2048, 1) 
(1024, 1) 
(1024, 72) 

(1024, 1) 
(1024, 72) 
(73,728, 16) 

0.92 0.92 0.92 0.917  

WKN-BiLSTM 

CWConv (filters = 32, kernel size = 64, stride = 1) 
Conv (filters = 28, kernel size = 33, stride = 12) 
Pooling (pool size = 2, strides = 2) 
BiLSTM (units = 32) 
Dense () 

(2048, 1) 
(2048, 32) 
(171, 28) 
(85, 28) 
(85, 72) 

(2048, 32) 
(171, 28) 
(85, 28) 
(85, 28) 
(6120, 16) 

0.95 0.95 0.95 0.948  

WCCN 

CWConv (filters = 32, kernel size = 64, stride = 1) 
Conv (filters = 28, kernel size = 33, stride = 12) CBAM () 
Pooling (pool size = 2, strides = 2) 
Dense () 

(2048, 1) 
(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 

(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 
(2380, 16) 

0.81 0.81 0.81 0.812  

CNN-CBAM-BiLSTM 

Conv (filters = 32, kernel size = 64, stride = 1) 
Conv (filters = 28, kernel size = 33, stride = 12) 
CBAM () 
Pooling (pool size = 2, strides = 2) 
BiLSTM (units = 32) 
Dense () 

(2048, 1) 
(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 
(85, 72) 

(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 
(85, 28) 
(6120, 16) 

0.97 0.97 0.97 0.974  

CNN-BiLSTM 

Conv (filters = 32, kernel size = 64, stride = 1) 
Conv (filters = 28, kernel size = 33, stride = 12) 
Pooling (pool size = 2, strides = 2) 
BiLSTM (units = 32) 
Dense () 

(2048, 1) 
(2048, 32) 
(171, 28) 
(85, 28) 
(85, 72) 

(2048, 32) 
(171, 28) 
(85, 28) 
(85, 28) 
(6120, 16) 

0.97 0.97 0.97 0.966  

CNN-CBAM 

Conv (filters = 32, kernel size = 64, stride = 1) 
Conv (filters = 28, kernel size = 33, stride = 12) 
CBAM () 
Pooling (pool size = 2, strides = 2) 
Dense () 

(2048, 1) 
(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 

(2048, 32) 
(171, 28) 
(171, 28) 
(85, 28) 
(2380, 16) 

0.92 0.91 0.91 0.911  
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A visualization technique, the t-SNE algorithm, introduces a shift 
from the high-dimensional Euclidean distance among data points to the 
conditional probability of their similarity [57]. It is effective in mapping 
high-dimensional data to low-dimensional data while preserving the 
relative similarity of the original data. To assess the feature extraction 
capability of the proposed method, we utilized the t-SNE dimensionality 
reduction technique, as depicted in Fig. 11. This figure showcases the 
varying classification abilities of different models with respect to data 
labeled differently. The visualization distinctly demonstrates how some 
models, like CNN, have a lesser ability to differentiate between labels, 

leading to a clustering of varied labels. In contrast, the proposed method 
is significantly more adept in T-SNE visualization, achieving clear 
clustering of the same labels and reducing overlap between different 
labels, thereby showcasing its efficacy in drilling pump fault diagnosis. 
Fig. 11 also reveals that the WCCN-BiLSTM model has certain limita-
tions in classifying data corresponding to label 4, showing overlap with 
labels 0 and 7, while other models also struggle to differentiate effec-
tively. Despite this, the WCCN-BiLSTM model generally succeeds in 
classifying and identifying different labels effectively, unlike the seven 
comparison models which demonstrate varying degrees of overlap. 

Fig. 9. Performance indicators of various models in the comparison experiment.  
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Overall, this confirms that the proposed method achieves denser clus-
tering in feature space, which translates to more accurate fault identi-
fication in drilling pumps. 

5.4.2. Comparison of other denoising methods 
To comprehensively evaluate the noise reduction effect of the 

WCCN-BiLSTM model, a denoising comparison experiment was 
designed. Initially, the original signals were processed individually 
using different noise reduction techniques. Subsequently, the denoised 
signals from each method were inputted into the CNN- BiLSTM model to 
generate their respective outputs. Following this, a comparison was 
made between these output results and the processing outcomes of the 
WCCN-BiLSTM model on the original signal. Through comparing and 
analyzing the fault diagnosis effects under different noise reduction 
methods, a clearer judgment can be made on the noise reduction effect, 
enabling a more comprehensive evaluation of the noise reduction per-
formance of the WCCN-BiLSTM model. Table 9 delineates the specifics 
of the comparison among different methods. It also indicates that the 
proposed method performs favorably compared to other noise reduction 
techniques, exhibiting no lag in any of the metrics. Additionally, it 

Table 8 
Comparison of quantitative evaluation results of different models.  

Network Precision Recall F1-score Time1 Time2 

WCCN-BiLSTM 0.9881 0.9875 0.9888 5.98 s 4.68 s 
WKN-CBAM-BiLSTM 0.9844 0.9838 0.9838 5.76 s 4.58 s 
WCCN-LSTM 0.9550 0.9500 0.9500 5.05 s 3.92 s 
CNN-CBAM-BiLSTM 0.9750 0.9740 0.9750 5.89 s 4.78 s 
CNN-BiLSTM 0.9694 0.9656 0.9656 5.36 s 4.06 s 
CNN-LSTM 0.9494 0.9388 0.9356 4.63 s 3.17 s 
CNN-GRU 0.9525 0.9381 0.9375 4.43 s 3.01 s 
CNN 0.8538 0.8480 0.8460 3.85 s 2.34 s  

Fig. 10. Confusion matrix of models.  
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Fig. 11. Comparison of fault identification.  
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becomes evident that direct fault diagnosis of the raw signal from the 
drilling pump without employing noise reduction techniques is less 
effective. These findings underscore the effectiveness of the proposed 
method in signal noise reduction, which bears positive significance for 
fault diagnosis in drilling pumps. 

Given the operational conditions in the field for drilling pumps, 
signal preprocessing can extend fault diagnosis time, leading to delays 
and potentially serious accidents. Therefore, this subsection evaluates 
not only the accuracy and other metrics of each noise reduction method 
but also conducts a comparative analysis of the time-consuming per-
formance of these methods on two different computers. The computers 
utilized are the same as those described in Section 5.3.1. Specifically, 
Table 9 documents the average time required by each method to process 
the test set data from reading to completing recognition, providing 
valuable insights into the effectiveness of these approaches. The figure 
illustrates that upon applying the noise reduction technique, the running 
time of the different methods on the test set increases to varying degrees. 
In particular, the EMD denoising technique requires significantly more 
time on computers 1 and 2, 13 and 28 times longer, respective-
ly—compared to performing without noise reduction. This substantial 
increase in time expenditure notably elevates the overall time cost of 
drilling pump fault diagnosis. In comparison to other noise reduction 
techniques, the built-in noise reduction method of WCCN-BiLSTM ex-
hibits minimal impact on signal processing consumption time, demon-
strating consistent computational efficiency across the comparison. The 
proposed method effectively and accurately identifies drilling pump 
faults, providing engineering value. 

5.5. Domain adaptation capability of the model 

To evaluate the generalization capability of the proposed method, a 
domain adaptation experiment across different datasets is established. 

The fine-tuning method facilitates the adaptation of a model, originally 
trained in one particular condition, to various other conditions [58]. 
Fig. 12 demonstrates that, post-training, the backbone of the proposed 
WCCN-BiLSTM method is frozen, with only the output layer remaining 
adjustable. Subsequently, the trained network is deployed to the 
training set of the target domain for a single iteration. As previously 
discussed, training in the target domain exclusively modifies the output 
layer, leaving the backbone of the proposed method unchanged. Upon 
completion of this training, the network is tested using the test set of the 
target domain to assess its adaptive capabilities. 

In the domain adaptation experiments, a single dataset is chosen as 
the source domain for training the model, while datasets from alterna-
tive working conditions are employed as target domains to evaluate the 
adaptive effect of the model. Like the comparison experiments, the 
domain adaptation experiments unfolded on two distinct computers. 
During this process, meticulous attention was devoted to documenting 
the model training duration, as well as the time consumed for adaptive 
training and testing phases. Table 10 presents the specific outcomes of 
the experiment, where the model, initially trained using source domain 
data, underwent five adaptive trials. The average values of these ex-
periments were then methodically computed and recorded. From 
Table 10, it is evident that adaptive training and testing significantly 
reduce time consumption compared to model training. Moreover, su-
perior results were attained, with accuracy rates consistently surpassing 
95%, indicating robust generalization of the proposed method. 

6. Conclusions 

This study proposes an intelligent fault diagnosis method, WCCN- 
BiLSTM, for drilling pump fault diagnosis. The method proposed offers 
a highly effective strategy for diagnosing faults in drilling pump. 
Employing the Random Forest model, identify the signal that most 
accurately characterizes drilling pump failures. The WCCN network, 
combined with BiLSTM, improves the noise reduction and feature 
extraction capabilities of time series data, resulting in enhanced diag-
nostic precision. This model is particularly effective at quickly pro-
cessing noisy data for feature extraction, as well as improving features 
and performing sequence calculations, which lays a solid foundation for 
superior diagnostic performance. The domain adaptation experiments 
achieved impressive results, with over 95% accuracy in target domains 
by sequentially using each working condition’s dataset as the source 
domain and fine-tuning the model without altering its core weights, 
demonstrating its strong generalization capability. However, relying 
solely on a single source machine may not yield sufficient knowledge for 
diagnostic decisions regarding the target machine. Therefore, future 

Table 9 
Comparing of various noise reduction techniques.  

Method Accuracy Precision Recall F1- 
score 

Time1 Time2 

WCCN- 
BiLSTM 

0.9888 0.9892 0.9888 0.9888 5.98 s 4.68 s 

FFT-CNN- 
BiLSTM 0.9849 0.9852 0.9849 0.9849 9.45 s 7.45 s 

EMD-CNN- 
BiLSTM 

0.9888 0.9891 0.9888 0.9888 
148.7 
s 

51.36 
s 

WT-CNN- 
BiLSTM 

0.9879 0.9882 0.9879 0.9878 9.25 s 6.07 s 

CNN-BiLSTM 0.9656 0.9694 0.9656 0.9656 5.25 s 3.86 s  

Fig. 12. Model-based transfer learning for WCCN-BiLSTM.  
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research will explore the development of a multi-source diagnostic 
knowledge fusion module to identify faults that may not be evident 
within the target domain. Additionally, an important future direction 
involves effectively integrating the proposed method with engineering 
practice. 
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