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Luke Topham2* 

Abstract 

Introduction Emergency departments (EDs) are critical for ensuring timely patient care, especially in triage, 
where accurate prioritisation is essential for patient safety and resource utilisation. Building on previous research, this 
study leverages a comprehensive dataset of 653,546 ED visits spanning six years from Mater Dei Hospital, Malta. This 
dataset enables detailed trend analysis, demographic variation exploration, and predictive modelling of patient prior‑
itisation, admission likelihood, and admitting ward.

Methods Two predictive models (Stage 1 and Stage 2) were developed using the Extreme Gradient Boosting 
(XGBoost) algorithm. In Stage 1, predictions were made at the triage level using basic demographic and present‑
ing symptom data. Stage 2 incorporated critical blood test results (e.g., Haemoglobin, C‑Reactive Protein, Troponin 
T, and White Blood Cell Count) alongside the demographic and symptom data from Stage 1 to refine and enhance 
predictions.

Key steps in data preprocessing, such as handling missing values, balancing class distributions with SMOTE, and fea‑
ture encoding, are discussed. Model evaluation employed comprehensive metrics, including AUC‑ROC and calibration 
curves, to assess both performance and reliability. This enhanced description provides a clear roadmap of the model 
development process, reinforcing the study’s rigor and contribution to advancing machine learning applications 
in emergency care.

Results The models demonstrated significant predictive capabilities. Key metrics showed improvement 
between Stage 1 and Stage 2. For example, patient prioritisation accuracy improved from 0.75 to 0.76, admission 
prediction accuracy rose from 0.80 to 0.82, and admitting ward prediction accuracy increased from 0.80 to 0.86. These 
enhancements underscore the value of incorporating clinical data to optimise predictions.

Discussion The integration of early predictions into ED workflows has the potential to improve patient flow, reduce 
wait times, and enhance resource allocation. By leveraging XGBoost’s capabilities and integrating both demographic 
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and clinical data, this study provides a robust framework for advancing decision‑making processes in triage 
environments.

Conclusions This research demonstrates the efficacy of machine learning models in predicting key ED outcomes, 
highlighting their potential to transform emergency care through data‑driven insights.

Keywords Emergency department, Triage, Big‑data, Machine learning, Decision‑making, XGBoost

Background
The emergency department (ED) is one of the most 
important components of a hospital ecosystem [1] and 
plays a vital role in saving people’s lives and reducing the 
rate of mortality and morbidity [2]. It is a critical inter-
face between the emergency medical services and the 
hospital [3]. EDs have no patients of their own but serve 
as a portal of entry to other specialised departments and 
wards within the hospital [4].

EDs are among the highest-risk areas within any hospi-
tal, where the emergency team faces constant challenges 
such as high workloads, simultaneous care of multiple 
patients, and frequent overcrowding [5, 6]. Patients pre-
senting themselves at the ED are usually in critical con-
dition and require immediate attention [7]. Healthcare 
professionals working in the ED are subject to several 
operation constraints and have to assemble and man-
age unrehearsed multidisciplinary teams with little 
notice and manage critically ill patients [5]. Patients are 
assessed, classified, and prioritised according to their 
medical condition in a restricted time-window [8]. This 
process of classification and prioritisation, known as tri-
age, primarily aims to organise the work of the ED for 
greater efficiency and optimal resource utilisation. More 
importantly, it promotes patient safety by ensuring that 
care and resource allocation are aligned with the level 
of severity of illnesses [3, 9]. This creates an environ-
ment that is not only highly complex and dynamic, but 
also functions under extreme constraints of time, physi-
cal space, high workload, interruptions, and distractions, 
with a significant level of uncertainty [10].

Improper triaging and prioritisation of patients can 
result in delayed care due to postponements or defer-
rals in giving treatment and inappropriate assignment 
of resources [11]. In ED, where the majority of patients 
are unknown, and their illnesses are seen through only 
small windows of focus and time [8], triage nurses are 
situated in high levels of uncertainty, which poses serious 
risks associated with inaccurate or inappropriate deci-
sions [12]. These decisions affect patients’ well-being, and 
while most of the time these decisions are correct, some-
times they can be inappropriate, leading to fatal results 
[13]. As a result, the ED has been identified as a hospi-
tal location where adverse events are highly likely to be 
attributable to errors [14]. Estimates of the proportion of 

ED adverse events deemed to be preventable range from 
53 to 82% compared with overall estimates of 27% to 51% 
for hospital-based adverse events [15–17].

Clinical decision support systems can assist triage 
nurses in decision-making by providing patient-specific 
assessments or recommendations [18–21]. These sys-
tems are designed to improve both the process and the 
outcome of medical decision-making [22] with targeted 
clinical knowledge, patient information, and other health 
information [23]. Their purpose is to augment the natu-
ral capabilities of the triage nurse in the complex process 
of medical diagnosis by improving triage accuracy [24], 
increased efficiency [25], reduce wait times [26], enhance 
patient safety [27] and improve resource allocation [28].

Previous studies have sought to predict ESI level [29] 
and hospital admission [30, 31] at the time of ED triage 
using machine learning models. Most models use routine 
administrative data collected at emergency triage and can 
robustly predict both ESI level and hospital admission. 
The addition of historical information such as lab test 
results, medications prescribed, and comorbidities has 
been able to achieve high predictive power and indicates 
the utility of these additional data points [32, 33].

This study aims to fill this gap by leveraging a novel, 
comprehensive dataset encompassing all ED visits 
across Malta from 2007 to 2022. The primary objec-
tive is to develop machine learning models that predict 
patient prioritisation, hospital admission likelihood, and 
admitting ward categorisation, thereby improving triage 
accuracy and resource allocation. By integrating both 
demographic and clinical data, the study seeks to provide 
actionable insights to optimise emergency care delivery 
on a national scale.

Study overview
Building on the methodologies of previous research [30, 
32, 34–37] this study makes a novel contribution through 
its findings and extensive scope and methodology. Unlike 
earlier studies limited to specific hospitals or regions, this 
research utilises a comprehensive dataset covering all 
ED visits across Malta from 2007 to 2022. The methodo-
logical rigor of this study is significantly shaped by insights 
from a preceding study that combined intuitive and ana-
lytical decision-making in emergency triage, which helped 
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address critical challenges such as time constraints and 
diagnostic uncertainty. This previous study’s influence 
is evident in the enhanced decision-making framework 
applied here, ensuring more precise and reliable predic-
tions in emergency triage settings.

Study scope
The study utilises data exclusively from Mater Dei Hospital, 
Malta, the primary public hospital on the island, providing 
a comprehensive national dataset encompassing all ED vis-
its across the country. This geographic scope ensures that 
the data reflects healthcare utilisation patterns across the 
entire Maltese population. Temporally, the dataset spans 
six years, from January 2017 to December 2022, captur-
ing over 653,000 ED visits. This extensive timeframe allows 
for the identification of longitudinal trends and patterns in 
patient care, resource utilisation, and changes in healthcare 
delivery, including shifts induced by external factors such 
as the COVID-19 pandemic.

This comprehensive national dataset not only enhances 
the statistical power of the findings but also significantly 
improves their generalisability to diverse populations. By 
encompassing a complete overview, the study allows for 
more accurate identification of trends in healthcare utilisa-
tion and patient outcomes across Malta, offering insights 
that are reflective of the real-world complexities of health-
care system interactions and patient care patterns.

By including all ED visits nationwide, the research ena-
bles detailed comparisons with international studies and 
provides a solid basis for understanding national health-
care trends. Observational findings, such as those from 
the Southern Harbour region which exhibited high rates 
of ED visits for chest pain potentially linked to economic 
factors [38] underscore the dataset’s value in exploring 
demographic variations and informing healthcare policy. 
The longitudinal nature of the data also facilitates studies of 
shifts in healthcare practices and patient behaviour, includ-
ing those induced by the COVID-19 pandemic.

Leveraging such a rich dataset enables invaluable insights 
into ED utilisation patterns, healthcare delivery, and patient 
outcomes on a national scale. The comprehensive nature of 
this research makes it a valuable addition to both academic 
research and practical healthcare strategy development, 
providing critical insights into disparities and identifying 
areas for targeted interventions.

Methodology
This section describes the study’s methodology, designed 
to ensure reproducibility, transparency, and clar-
ity. Figure  1 provides a structured outline of the steps 
taken from data extraction to model development and 
evaluation.

Data extraction
Data were retrospectively collected from the Health 
Information System (HIS) of Mater Dei Hospital, encom-
passing all ED visits across Malta from 2007 to 2022. This 
foundational step involved gathering extensive demo-
graphic information such as gender, age, and geographic 
region, as well as clinical data, including results from 
blood tests taken at the ED. Such comprehensive data 
collection is critical for building a dataset that accurately 
reflects the true scope of healthcare dynamics and patient 
interactions within the ED. With 32,373,603 individual 
data points, this expansive dataset not only offers numer-
ous advantages for investigating healthcare outcomes but 
also significantly enhances statistical power. This robust-
ness in the data increases the reliability and confidence in 
the results obtained from subsequent analyses.

Data cleaning and preparation
Data cleaning was the initial step in the process, involv-
ing the standardisation of data formats and the removal 
of extraneous characters to enhance data quality, a fun-
damental requirement for accurate analysis and inte-
gration. During the data integration phase, diverse data 
elements from multiple sources within the hospital’s HIS 
were linked using unique patient identifiers, ensuring the 
maintenance of data consistency and integrity across the 
dataset. To safeguard privacy in compliance with GDPR 
and ensure the integrity of data integration, sensitive 
patient data underwent pseudo-anonymisation through 
tokenization. Additionally, the dataset was further refined 
during the feature engineering phase by addressing miss-
ing values and ensuring uniformity in data entries, which 
are crucial for the reliability of machine learning models. 
This phase involved the creation of new features and the 
modification of existing ones to better capture the under-
lying patterns needed for analysis.

Fig. 1 Workflow of this research study
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Data integration
After cleaning, the data from various sources were 
integrated into a unified dataset using a unique patient 
identifier (PID). This integration ensures accurate data 
consolidation while maintaining patient confidential-
ity, allowing for a holistic view of each patient’s jour-
ney through the ED. The consolidated data then formed 
a unified data source, serving as the backbone for all 
further analyses and model training. This dataset con-
tains all necessary variables and historical data points 
required for robust predictive modelling, providing a 
comprehensive dataset for subsequent analysis.

Model development and evaluation
The study involved the development and optimisation 
of four predictive models using two distinct sets of 
variables: basic models utilising only demographic and 
administrative data, and enhanced models incorporat-
ing additional clinical and laboratory variables. The 
algorithm used was XGBoost, selected for its efficacy 
in managing imbalanced datasets [39]. To address class 
imbalances, the Synthetic Minority Over-sampling 
Technique (SMOTE) was applied to enhance model 
robustness. SMOTE helps balance the dataset by syn-
thetically generating new instances of the minority 
class, improving model generalisation and accuracy by 
ensuring equitable class representation in the train-
ing data. This adjustment prevents model bias towards 
the majority class, making the predictions more reli-
able across diverse scenarios. The performance of these 
models was rigorously evaluated using a variety of met-
rics including accuracy, precision, recall, F1-scores, 
AUC-ROC curves, and calibration curves to ensure 
prediction reliability.

In terms of predictive modelling, these models were 
carefully calibrated to meet the specific needs of emer-
gency care settings, predicting patient prioritisation, 
hospital admission, and specialty ward assignments. 
Extensive validation and testing were conducted post-
development to ensure accuracy and generalisability, 
confirming the models’ reliability across various patient 
scenarios and their suitability for clinical application.

The computational framework for these analyses relied 
heavily on Python, using libraries such as Pandas for data 
manipulation and cleaning, which is crucial for managing 
large datasets; NumPy for supporting complex numerical 
calculations; SciKit-Learn for implementing and evalu-
ating machine learning algorithms and which aided in 
model tuning and validation; and XGBoost for its gradi-
ent boosting capabilities, which significantly enhance 
model performance and prevent overfitting. This com-
prehensive suite of tools ensured that the statistical 

analyses and model training were conducted efficiently 
and effectively.

Data processing and integration
Data was extracted from diverse sources to ensure a 
comprehensive and representative dataset. Given the 
heterogeneity of the data sources, a comprehensive data 
cleansing process was carried out to enhance data qual-
ity and retain data integrity. This process included the 
removal of extraneous characters, normalisation of 
data formats, and enforcing uniform data standards to 
ensure consistency across the dataset. Additionally, sev-
eral records were further standardised to establish a 
more structured and uniform dataset. Once the data was 
thoroughly cleaned and consolidated into a unified data 
source, pseudo-anonymisation was applied using tokeni-
sation techniques to protect patient identities.

Tokenisation was selected for this dataset because it 
replaces sensitive patient information with non-sensitive 
equivalents (tokens), ensuring privacy while maintain-
ing the data’s usability for analysis [40]. This approach 
ensures that patients were not recognisable, as tokenisa-
tion took place prior to data analysis, further safeguard-
ing their privacy. Tokenisation offers a robust method 
for de-identifying data in compliance with GDPR regula-
tion, without compromising the integrity of clinical data 
required for research and analysis [41].

Following the data tokenisation process, the data 
underwent rigorous testing for consistency and quality 
assurance, including data validation to ensure tokenised 
values maintained referential integrity across the dataset, 
as well as cross-validation to confirm that the tokenisa-
tion did not inadvertently alter or obscure critical data 
attributes. Additionally, both functional and non-func-
tional testing were conducted to assess the security and 
performance of the tokenised data, ensuring compliance 
with healthcare privacy standards and the continued 
accuracy of the dataset for analytical purposes. Finally, 
the prepared dataset was exported in Comma Sepa-
rated Variable (CSV) format and securely stored in an 
encrypted repository to ensure data protection and com-
pliance with regulatory standards.

In total, the dataset comprises 653,546 ED visits, equiv-
alent to 257,495 unique patients. Each record contains 21 
variables that capture clinical, demographic, and health-
care-related information. The variables used in this study 
are explained in detail in Appendix 1.

The dataset preparation involved replacing miss-
ing values with zeros or ’MISSING’ labels to maintain 
the integrity of the dataset and avoid data loss. This 
straightforward imputation method allows XGBoost to 
effectively handle incomplete records, as the algorithm 
is capable of learning from missing data patterns. By 
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explicitly flagging missing values, the model can differ-
entiate between actual data and missing entries, ensuring 
that these gaps do not adversely affect predictive accu-
racy while simplifying the preprocessing stage. The target 
variables (Patient Prioritisation, Patient Admission, Main 
Category Admitting Ward and Subcategory Admitting 
Ward) were then encoded using LabelEncoder, a tech-
nique that converts categorical columns into numerical 
values, enabling them to be used by machine learning 
models, which only accept numerical data. This preproc-
essing step is essential in machine learning projects, as 
models like XGBoost require numerical input.

To enhance the accuracy of the predictive model for 
the admission ward, a second copy of the dataset was 
created, including only those patients who had been 
admitted to the  hospital over the same six-year period. 
This focused approach narrows the scope of the model 
to a subset of patients where outcomes such as hospital 
admission are more relevant. By concentrating on admit-
ted patients, the model can better identify critical pat-
terns that influence hospital admissions, which would 
be diluted if non-admitted patients were included. This 
refinement ensures that the model is trained on the most 
pertinent data, improving its ability to accurately predict 
which patients require admission.

Model development: XGBoost
The predictive model adopted in this study is based on 
the Extreme Gradient Boosting (XGBoost) Classifier. 
XGBoost is a powerful machine learning algorithm that 
gained recognition for its high performance in predic-
tive modelling, particularly with large, complex, and 
often imbalanced datasets typical present in healthcare 
research [42]. As an advanced form of gradient boosting, 
XGBoost builds a collection of decision trees sequen-
tially, where each tree attempts to correct the errors 
made by its predecessors [42]. This method employs a 
regularised objective function that balances model accu-
racy and complexity, helping to reduce overfitting.

One of XGBoost’s strengths is its incorporation of sec-
ond-order optimisation, which utilises both the gradient 
(first derivative) and Hessian (second derivative) of the 
loss function [39]. This approach allows for more precise 
and stable updates during training, improving conver-
gence speed and enhancing overall model performance. 
XGBoost effectively handles both categorical and numer-
ical features using one-hot encoding and offers built-in 
support for missing values. It uses a sparsity-aware algo-
rithm to manage missing data by learning the optimal 
imputation strategy that minimises the loss [43]. This 
feature is particularly beneficial in healthcare datasets, 
where incomplete records are common [44].

XGBoost is also designed to handle class imbalance 
[39], a frequent challenge in healthcare datasets where 
certain outcomes, such as ordering a particular blood 
test, have fewer instances than others. The algorithm 
addresses this through parameters like scale_pos_weight, 
which adjusts the model’s focus on minority classes, and 
through the integration of techniques like the Synthetic 
Minority Over-sampling Technique (SMOTE) to further 
enhance the model’s ability to accurately predict under-
represented outcomes.

Furthermore, XGBoost generates feature importance 
scores, offering insights into which variables most sig-
nificantly influence predictions. This feature supports 
healthcare researchers by highlighting key factors driv-
ing prediction outcomes. The algorithm also includes 
tree pruning based on complexity scores, controlling tree 
growth and improving model interpretability. Its compu-
tational efficiency, scalability, and capacity for managing 
complex relationships in heterogeneous datasets make 
XGBoost a robust tool for clinical decision support. It 
has been successfully applied to predict patient admis-
sions, disease progression, and treatment outcomes, 
enabling real-time, accurate decision-making in emer-
gency settings. These attributes make XGBoost an asset 
in healthcare research, striking a critical balance between 
predictive accuracy and model interpretability.

Model configuration
The architecture for the XGBoost-based machine learn-
ing method follows a structured process, starting from 
data preprocessing, handling class imbalance, model 
training, evaluation, and model saving. Figure 2 visually 
represents each component from the initial preprocess-
ing stages to model evaluation and deployment.

The first step in implementing the prediction algo-
rithm is the data loading and preprocessing stage, where 
the dataset is loaded using Pandas,1 and relevant col-
umns are filtered for analysis. Missing values are ampu-
tated, as explained in the previous sections, ensuring no 
data is omitted during the training process. The target 
variable (Patient Prioritisation, Patient Admission, Main 
Category Admitting Ward and Subcategory Admitting 
Ward) is label-encoded, and categorical features are one-
hot encoded to convert them into a format suitable for 
machine learning algorithms. These transformations, 
along with the processed dataset, are saved for future use, 
enabling consistent application in later predictions.

Once preprocessing is complete, the train-test split 
is performed, where the dataset is divided into training 
and test sets. In most cases, a typical ratio for this split 

1 https:// pandas. pydata. org/

https://pandas.pydata.org/
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Fig. 2 Model architecture
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is 80:20 or 70:30, where 80% or 70% of the data is used 
for training, and the remaining 20% or 30% is reserved 
for testing [45]. However, this ratio may vary depend-
ing on the size and characteristics of the dataset. In this 
study, an 80:20 ratio was utilised for the implementation 
of XGBoost. This split was chosen to ensure a balance 
between adequately training the model and evaluating its 
performance. With 80% of the data used for training, the 
model has sufficient exposure to learn patterns and rela-
tionships within the dataset, which is especially crucial 
for complex healthcare data. The remaining 20% provides 
enough data to reliably assess the model’s generalisation 
ability without risking overfitting.

To address the issue of class imbalance, Synthetic 
Minority Over-sampling Technique (SMOTE) is applied 
to the training data. SMOTE generates synthetic samples 
for the minority class, allowing the model to learn more 
effectively from underrepresented cases. This technique 
is particularly beneficial in healthcare applications, where 
minority classes often represent critical but infrequent 
conditions. SMOTE ensures that the model is trained 
with a more balanced dataset, reducing the risk of over-
fitting and improving its ability to generalise across all 
classes.

Following data preparation, the model is trained 
using XGBoost, a high-performance gradient boost-
ing algorithm. Key parameters (outlined in Table  1) are 
fine-tuned to optimise the model, including setting the 
learning rate at 0.05, fixing n_estimators at 500, and 
configuring max_depth at 8 to control model complex-
ity. Additionally, scale_pos_weight is adjusted to 1.65 

to handle any residual imbalance after SMOTE. A five-
fold stratified cross-validation approach is employed to 
further enhance the model’s robustness. This method 
ensures that class proportions are preserved within each 
fold, providing a reliable estimate of how well the model 
generalises to unseen data. A fixed random_state of 42 
is used throughout the process, ensuring reproducibility 
of results, which is crucial for validating model perfor-
mance. This is essential for verifying and comparing the 
model’s performance, where reproducibility of results is 
critical. While there is no technical reason for choosing 
this number over others, it has become popular in the 
programming and data science community [46].

Model evaluation is conducted using the test data. 
The model’s performance is assessed using classification 
metrics such as accuracy, precision, recall, and F1-score, 
offering insights into its ability to generalise across vari-
ous classes. Maintaining class balance during evalua-
tion is particularly important in imbalanced datasets to 
ensure that minority classes are adequately represented 
in the results, enhancing the model’s reliability.

To gain further insights into the model’s decision-
making process, XGBoost’s built-in feature importance 
metric is employed. This metric ranks features based 
on their contribution to the model’s predictions, allow-
ing for a detailed understanding of how clinical, demo-
graphic, and healthcare-related features influence the 
model’s outcomes. Such insights are crucial in health-
care applications, where transparency and explainability 
are vital for trust in predictive models. Clinicians need 
to not only understand the predictions but also the fac-
tors driving them. By identifying and ranking the most 
important features, the model provides an explanation 
for its predictions, ensuring that critical clinical or demo-
graphic variables are appropriately considered. This level 
of explainability is key to ensuring fairness, as it helps 
detect and mitigate potential biases, guaranteeing equita-
ble treatment across all patient groups.

Finally, the trained model, along with the label encod-
ers and encoded feature columns, is saved using joblib, 
ensuring that the model is reusable for real-time appli-
cations in future scenarios. This ensures that the model, 
once trained, can be seamlessly deployed or further 
refined without the need for retraining.

The AUC-ROC (Area Under the Receiver Operating 
Characteristic) curve was utilised in this study as a robust 
statistical tool to evaluate the diagnostic accuracy and 
performance of the predictive models. The ROC curve is 
a graphical representation that plots the true positive rate 
(sensitivity) against the false positive rate (1-specificity) 
across various threshold values, illustrating the trade-offs 
between sensitivity and specificity for each cut-off point. 
The area under this curve (AUC) quantifies the model’s 

Table 1 XGBoost parameter configuration

Component Parameter Value

train_test_split test_size 0.20

train_test_split random_state 42

train_test_split stratify y_esi

SMOTE random_state 42

XGBClassifier random_state 42

XGBClassifier eval_metric Mlogloss

XGBClassifier scale_pos_weight 406596 / 
246949 
(approx. 1.65)

XGBClassifier learning_rate 0.05

XGBClassifier n_estimators 500

XGBClassifier max_depth 8

XGBClassifier subsample 0.80

XGBClassifier colsample_bytree 0.80

StratifiedKFold n_splits 5

StratifiedKFold shuffle TRUE

StratifiedKFold random_state 42
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ability to distinguish between classes, with a value closer 
to 1 indicating a high level of accuracy. This method is 
particularly valuable in healthcare especially in medical 
diagnostics where continuous test results are converted 
into dichotomous outcomes (e.g., presence or absence of 
a condition), and finding the optimal threshold is crucial 
[47]. By providing a comprehensive evaluation of model 
performance, the AUC-ROC allows for comparison of 
different models and assists in selecting the most effec-
tive diagnostic approach, ensuring a balanced considera-
tion of both sensitivity and specificity.

In addition, calibration curves were added to further 
assess the reliability of the model’s probability outputs 
[48]. These curves, which plot the fraction of true out-
comes versus the model’s predicted probabilities, help to 
visually evaluate how well the probabilities estimated by 
the model correspond to the actual results. For a perfectly 
calibrated model, the curve would form a 45-degree line 
indicating that the predicted probabilities are identical to 
the actual outcomes. This calibration plot is crucial for 
understanding how well the predicted probabilities cor-
respond to the actual outcomes, highlighting areas where 

the model’s confidence in its predictions aligns with the 
observed frequencies [49]. By addressing these discrep-
ancies, the model can be fine-tuned to improve its relia-
bility, which is particularly important in medical settings 
where precise risk estimation is critical for patient man-
agement and treatment decisions.

Results
This section starts by outlining the process patients 
undergo upon arrival at the ED. Upon arrival, patients 
first register at the registration desk, where they provide 
their personal details and describe their presenting symp-
toms. This information is entered into the Health Infor-
mation System (HIS) and is made accessible at the triage 
nurse stations. The triage nurse then calls the patient to 
the triage area for an initial clinical assessment, where 
the urgency of the patient’s condition is evaluated, and a 
triage level is assigned. During this assessment, the nurse 
assigns a triage level based on the urgency of the patient’s 
condition. After triage, the patient moves on to medical 
evaluation for diagnosis and stabilisation before being 
either admitted to the hospital or discharged. On average, 

Fig. 3 Prediction model (Two staged model)
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the entire process from admission to either discharge or 
admission takes approximately 8 to 10 h [50].

The prediction model presented in this study and as 
outlined in Fig.  3 is split into two distinct stages: the 
first stage that involves generating an initial predic-
tion at the triage level using readily available basic 
patient data, including demographic information and 
presenting symptoms. This early prediction provides 
a preliminary assessment of the patient’s condition. 
The second stage occurs at a later stage when critical 
blood test results become available, allowing for a more 
refined and accurate prediction. The blood tests used 
in the second stage give a comprehensive assessment 
of critical physiological systems, providing key indica-
tors of the patient’s condition. Haemoglobin measures 
the blood’s oxygen-carrying capacity, with low levels 
indicating anaemia or acute blood loss, both critical in 
emergency settings. C-Reactive Protein (CRP) serves 
as a marker of inflammation or infection, aiding in 
the diagnosis of bacterial infections, sepsis, or inflam-
matory conditions. Troponin T is a specific indicator 
of heart damage, essential for diagnosing acute myo-
cardial infarction in patients with chest pain. Glucose 
(Random Serum) levels assess blood sugar, crucial for 
identifying hyperglycaemia, often associated with dia-
betes, or hypoglycaemia, which can cause altered men-
tal states. Platelets are essential for blood clotting, with 
low counts signalling bleeding risks and high counts 
possibly indicating inflammatory conditions or cancers. 
White Blood Cell Count (WBC) reveals immune activ-
ity, with elevated levels pointing to infection, inflam-
mation, or stress, while low levels may suggest immune 
suppression or severe infection. The Estimated Glomer-
ular Filtration Rate (eGFR) reflects kidney function, and 
a decreased rate indicates impaired renal function, crit-
ical for managing fluids and medications. Lastly, Red 

Cell Distribution Width (RDW) provides insight into 
the variation in red blood cell size, aiding in diagnos-
ing anaemia and other blood disorders that may com-
plicate patient management in emergency situations. In 
an emergency setting these markers enable clinicians 
to rapidly evaluate the severity of acute conditions and 
guide treatment decisions effectively.

The data used in this study spans a six-year period from 
January 2017 to December 2022 and encompasses a com-
prehensive review of all ED visits across Malta, critical 
for developing predictive models aimed at enhancing ED 
efficiency and patient care outcomes. The scope of the 
study was primarily focused on developing and evaluat-
ing predictive models; however, the extensive dataset 
also provided valuable insights beyond model predic-
tions. Key aspects analysed include gender and age dis-
tribution, regional variations, admission rates, hospital 
stay durations, and blood test results, all of which offer a 
deeper understanding of trends in healthcare utilisation 
and patient outcomes over time.

Table  2 summarises these key aspects of the dataset 
analysis. It highlights that gender distribution may influ-
ence admission rates and hospital stays. Age groups, 
especially older patients, tend to have longer hospi-
tal stays and higher admission probabilities. There are 
regional variations that could affect admission rates 
and specific health concerns. About 31.2% of patients 
were admitted, with factors such as age, gender, and lab 
results playing a role in admission likelihood. Hospital 
stays durations vary widely and are potentially influenced 
by both demographics and lab results. Abnormal lab 
results tend to be associated with higher admit rates and 
longer stays. Admissions also vary seasonally, with peaks 
in certain seasons like winter, while the dataset’s multi-
year span provides an opportunity to analyse trends in 

Table 2 High level data interpretation

Aspect Findings

Gender Distribution Data includes male and female patients; potential differences in admission rates and stay durations 
between genders

Age Groups Age distribution may affect hospital stay durations and admission likelihood, especially in older patients

Geographic Variation (Region) Regional differences may affect admission rates and specific health concerns across different geographic 
areas

Admission (Admitted vs Non‑Admitted) 31.2% of patients were admitted; factors like age, gender, and blood lab results may affect admission likeli‑
hood

Hospital Stay Duration Hospital stays durations vary widely; blood lab results and demographics may be predictors of longer stays

Blood Test Results (e.g., Haemoglobin, 
Creatinine, etc.)

Abnormal blood lab results likely correlate with higher admit rates and longer hospital stays

Seasonal Trends Seasonal variation in admissions, with potential peaks during certain seasons (e.g., winter)

Yearly Changes Data spans multiple years: analysis could reveal trends in admission rates and healthcare burden
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healthcare burden over time. More detailed data and 
comprehensive analysis can be found in Appendix 1.

Predicting patient prioritisation
This section focuses on the process of predicting patient 
prioritisation. The comparison of model performance 
between Stage 1 and Stage 2 reveals several key differ-
ences as outlined in Table 3.

In terms of precision for the “HIGH” class, Stage 1 
achieved a precision of 0.70, while Stage 2 showed a slight 
improvement with a precision of 0.72. This enhancement 
indicates that Stage 2 was better at correctly identifying 
true “HIGH” cases when making positive predictions. 
For recall in the “HIGH” class, Stage 1 achieved 0.59, 
which remained the same in Stage 2, suggesting that the 

modifications introduced in Stage 2 did not significantly 
impact the model’s ability to correctly identify instances 
in this class. Similarly, the F1-score for the “HIGH” class 
improved slightly from 0.64 in Stage 1 to 0.65 in Stage 
2, reflecting a marginal enhancement in the balance 
between precision and recall.

For the “LOW” class, Stage 1 had a precision of 0.77, 
while Stage 2 showed a marginal increase to 0.78, indi-
cating a slightly improved ability to correctly predict true 
“LOW” cases. The recall for the “LOW” class was 0.85 in 
Stage 1, which increased to 0.86 in Stage 2, enhancing the 
model’s sensitivity to identifying “LOW” instances. The 
F1-score for the “LOW” class also rose from 0.81 in Stage 
1 to 0.82 in Stage 2, highlighting an overall better perfor-
mance with more balanced precision and recall.

The overall accuracy of the model increased from 75% 
in Stage 1 to 76% in Stage 2, suggesting that the extended 
dataset contributed to a more accurate classification.

When examining the macro averages, Stage 1 had a 
precision of 0.74, which improved to 0.75 in Stage 2. 
Similarly, recall increased from 0.72 in Stage 1 to 0.73 in 
Stage 2, and the F1-score rose from 0.72 to 0.73. These 
improvements in macro averages indicate that Stage 2 
offered a more balanced performance across both the 
“HIGH” and “LOW” classes.

Stage 2 outperforms Stage 1 in most key metrics, 
including precision, recall, F1-scores, and overall accu-
racy, particularly in the classification of the “HIGH” and 
“LOW” categories. This indicates that the extended data-
set in Stage 2 provided additional valuable information 
that slightly enhanced the model’s predictive capabili-
ties. These results suggest that the model is better at cor-
rectly identifying and balancing predictions for “LOW” 
instances compared to “HIGH” ones, where recall 
improvements were limited.

The AUC-ROC curves indicated in Figs. 4 and 5 illus-
trate the performance of the predictive model for prior-
itisation across two stages of evaluation. The first curve 
(AUC = 0.80) and the second (AUC = 0.81) both indicate 
a strong ability of the model to distinguish between the 
classes. An AUC value closer to 1 suggests better perfor-
mance, with the incremental improvement between the 
stages demonstrating the refinement and optimisation of 
the model. These curves provide visual evidence of the 
model’s effectiveness in prioritising cases accurately.

The calibration curves displayed in Figs. 6 and 7 respec-
tively evaluate the accuracy of the predictive model’s 
probability estimates. The curves show a similar outcome 
with a progressive increase in the fraction of positives as 
the mean predicted value rises, illustrating the model’s 
tendency to underestimate the probability of positives at 
lower predicted probabilities and slightly overestimate 
as probabilities increase. While the ideal model would 

Table 3 Predicting patient prioritisation

Aspect Stage 1 Stage 2

Class Distribution (Post-SMOTE)
 HIGH 325,072 325,072

 LOW 325,072 325,072

Model Performance Metrics
 Precision (HIGH) 0.70 0.72

 Recall (HIGH) 0.59 0.59

 F1‑Score (HIGH) 0.64 0.65

 Precision (LOW) 0.77 0.78

 Recall (LOW) 0.85 0.86

 F1‑Score (LOW) 0.81 0.82

 Overall Accuracy 0.75 0.76
 Macro Average (Precision) 0.74 0.75

 Macro Average (Recall) 0.72 0.73

 Macro Average (F1‑Score) 0.72 0.73

Top Features by Importance
 1. Sub_Category 0.599668 0.280758

 2. Complaint_Category 0.245478 0.147617

 3. Imaging done at ED 0.077076 0.010940

 4. Entry_Method 0.052218 0.034253

 5. Part_of_Day 0.008545 0.014772

 6. Region 0.007345 0.014055

 7. Age_Group 0.004123 0.007176

 8. Season 0.003199 0.005793

 9. Gender 0.002348 0.002989

 10. Estimated_GFR_Serum_Result N/A 0.192580

 11. Haemoglobin_Result N/A 0.132402

 12. White_Blood_Cell_Count_Result N/A 0.103781

 13. Troponin_T_Result N/A 0.029050

 14. Red_Cell_Distribution_Width_Result N/A 0.012869

 15. C_Reactive_Protein_Result N/A 0.004270

 16. Glucose_Random_Serum_Result N/A 0.003620

 17. Platelets_Result N/A 0.003075
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Fig. 4 AUC‑ROC curve for prioritisation (Stage 1)

Fig. 5 AUC‑ROC curve for prioritisation (Stage 2)
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align perfectly with the dashed line representing perfect 
calibration, this curve reveals that the model is reason-
ably well-calibrated but could benefit from adjustments 
to align more closely with the diagonal.

In conclusion, both Stage 1 and Stage 2 highlight 
the shifting importance of various features in driv-
ing model performance. In Stage 1, Sub_Category and 

Complaint_Category are the dominant features, while 
in Stage 2, their importance decreases as clinical lab 
results such as Estimated_GFR_Serum_Result, Haemo-
globin_Result, and White_Blood_Cell_Count_Result 
gain prominence. This shift in Stage 2 suggests a greater 
reliance on clinical data to enhance prediction accuracy. 
While demographic features like Age_Group, Gender, 

Fig. 6 Calibration curve for prioritisation (Stage 1)

Fig. 7 Calibration curve for Prioritisation (Stage 2)
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Fig. 8 AUC‑ROC curve for admission (Stage 1)

Fig. 9 AUC‑ROC curve for admission (Stage 2)
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and Region maintain relatively low importance across 
both stages, the overall evolution in feature impor-
tance reflects the model’s improved ability to integrate 
both categorical and clinical data for better prediction 
outcomes.

Predicting patient admission
This section focuses on the process of predicting patient 
admission as outlined in Table  4. The comparison of 
model performance between Stage 1 and Stage 2 reveals 
several key differences. Both models utilised SMOTE 
to balance the class distribution, resulting in 359,244 
instances for both the “Admitted” and “Not Admit-
ted” categories, ensuring that neither model was biased 
toward either class.

In terms of precision for the “Not Admitted” class, 
Stage 1 achieved a precision accuracy of 0.88, while 
Stage 2 showed a notable improvement with a preci-
sion of 0.90. This enhancement indicates that Stage 2 
was better at correctly identifying true “Not Admit-
ted” cases when making negative predictions. For recall 
in the “Not Admitted” class, Stage 1 achieved 0.83, 
which increased slightly to 0.84 in Stage 2, suggesting 
that the extended dataset in Stage 2 did affect slightly 
the model’s ability to identify actual “Not Admitted” 
cases. Similarly, the F1-score for the “Not Admitted” 
class improved from 0.85 in Stage 1 to 0.87 in Stage 2, 
reflecting a more balanced performance between preci-
sion and recall.

For the “Admitted” class, Stage 1 had a precision of 
0.66, while Stage 2 had a value of 0.69, indicating a 
slightly improved ability to correctly predict true “Admit-
ted” cases. The recall for the “Admitted” class was 0.74 in 
Stage 1, which increased to 0.79 in Stage 2, enhancing the 
model’s sensitivity to identifying “Admitted” instances. 
The F1-score for the “Admitted” class also rose from 0.70 
in Stage 1 to 0.74 in Stage 2, highlighting an overall better 
performance with more balanced precision and recall.

The overall accuracy of the model increased from 80% 
in Stage 1 to 82% in Stage 2, suggesting that the extended 
dataset contributed to a more accurate classification. 
When examining the macro averages, Stage 1 had a preci-
sion of 0.77, which improved to 0.79 in Stage 2. Similarly, 
recall increased from 0.78 in Stage 1 to 0.81 in Stage 2, 
and the F1-score rose from 0.77 to 0.80. These improve-
ments in macro averages indicate that Stage 2 offered a 
more balanced performance across both the “Admitted” 
and “Not Admitted” classes.

Stage 2 outperforms Stage 1 in all key metrics, includ-
ing precision, recall, F1-scores, and overall accuracy, par-
ticularly in the classification of the “Admitted” and “Not 
Admitted” categories. This indicates that the extended 
dataset in Stage 2 provided additional valuable infor-
mation that enhanced the model’s predictive capabili-
ties. Overall, the model is more precise and balanced in 
identifying “Not Admitted” instances, while for “Admit-
ted” cases, the model shows improvement, particularly 
in recall, but still lags behind in precision. This indicates 
that the model is better at correctly identifying “Not 
Admitted” cases compared to “Admitted” ones.

The AUC-ROC curves displayed in Figs. 8 and 9 below 
represent the performance of the predictive model for 
the “Admitted” category across the two evaluation stages. 
The first curve (AUC = 0.86) indicates a strong clas-
sification ability, while the second (AUC = 0.90) shows 
further improvement, demonstrating an even higher 
ability to differentiate between outcomes. The increase 
in the AUC value reflects the model’s enhancement and 

Table 4 Predicting patient admission

Aspect Stage 1 Stage 2

Class Distribution (Post-SMOTE)
 Admitted 359,244 359,244

 Not Admitted 359,244 359,244

Model Performance Metrics
 Precision (Not Admitted) 0.88 0.90

 Recall (Not Admitted) 0.83 0.84

 F1‑Score (Not Admitted) 0.85 0.87

 Precision (Admitted) 0.66 0.69

 Recall (Admitted) 0.74 0.79

 F1‑Score (Admitted) 0.70 0.74

Overall Accuracy 0.80 0.82
 Macro Average (Precision) 0.77 0.79

 Macro Average (Recall) 0.78 0.81

 Macro Average (F1‑Score) 0.77 0.80

Top Features by Importance
 1. Main_Complaint_Category 0.366452 0.098703

 2. Sub_Category 0.340276 0.166274

 3. Imaging done at ED 0.194817 0.022586

 4. Entry_Method 0.056628 0.013569

 5. Age_Group 0.014497 0.010499

 6. Part_of_Day 0.010952 0.016365

 7. Region 0.010224 0.012885

 8. Season 0.003579 0.004886

 9. Gender 0.002577 0.002411

 10. Haemoglobin_Result N/A 0.299525

 11. Red_Cell_Distribution_Width_Result N/A 0.200899

 12. White_Blood_Cell_Count_Result N/A 0.120217

 13. Troponin_T_Result N/A 0.013900

 14. Estimated_GFR_Serum_Result N/A 0.006094

 15. C_Reactive_Protein_Result N/A 0.006083

 16. Glucose_Random_Serum_Result N/A 0.003013

 17. Platelets_Result N/A 0.002092
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refinement, supporting its reliability in predicting admis-
sions accurately.

The calibration curves for the predictive model, 
shown across Stage 1 and Stage 2 in Figs.  10 and 11 
respectively, reveal its probability estimation accuracy. 
Both stages exhibit a pattern where the model under-
estimates positive outcomes at lower probabilities 

and overestimates at higher probabilities. The curves 
approach perfect calibration as predicted probabilities 
increase, particularly in the Stage 2 where the mod-
el’s predictions nearly align with actual outcomes 
at high confidence levels. Despite reasonable over-
all calibration, the deviation at higher probabilities 
suggests potential for refinement, such as adjusting 

Fig. 10 Calibration curve for admission (Stage 1)

Fig. 11 Calibration curve for admission (Stage 2)
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probability thresholds or applying calibration tech-
niques to enhance model accuracy.

In conclusion, both Stage 1 and Stage 2 of the model 
emphasise the importance of clinical and demographic 
features in driving predictive performance. While Main_
Complaint_Category and Sub_Category remain key fea-
tures in both stages, their importance shifts between 
Stage 1 and Stage 2, with a greater emphasis on lab results 
such as Haemoglobin_Result and Red_Cell_Distribution_
Width_Result in Stage 2. This suggests that Stage 2 places 
increased weight on clinical laboratory data, enhancing 
the model’s ability to make more accurate predictions. 
The model evolves across stages, balancing the contri-
bution of categorical features with lab results, leading to 
more refined and reliable performance.

Predicting admitting ward
The structure of the hospital’s admitting wards is com-
plex, encompassing an extensive list of different ward 
categories. For the purposes of this predictive model, the 
wards were systematically categorised into two levels: 
main wards and sub-wards as indicated in Appendix 2.

Main category admitting ward
This section focuses on the process of predicting main 
category admitting ward. The comparison of model per-
formance between Stage 1 and Stage 2 highlights several 
significant differences as outlined in Table 5.

In terms of precision for the “Medicine” ward, Stage 
1 achieved a value of 0.70, while Stage 2 showed an 
improvement, with a precision of 0.78. This increase 
suggests that Stage 2 was more effective in correctly 
identifying true cases for the “Medicine” category. For 
recall in the “Medicine” class, Stage 1 achieved 0.54, and 
Stage 2 increased this value to 0.74, indicating that the 
Stage 2 model had better sensitivity in identifying actual 
“Medicine” cases. Similarly, the F1-score for “Medicine” 
improved from 0.61 in Stage 1 to 0.76 in Stage 2, reflect-
ing a more balanced performance between precision and 
recall.

For the “Surgery” class, Stage 1 had a precision of 
0.77, while Stage 2 improved to 0.83, indicating a clear 
enhancement in correctly predicting true “Surgery” 
cases. The recall for the “Surgery” class in Stage 1 was 
0.68, which increased to 0.75 in Stage 2, further enhanc-
ing the model’s sensitivity for this category. The F1-score 
for “Surgery” also rose from 0.72 in Stage 1 to 0.79 in 
Stage 2, demonstrating improved overall performance.

For the “Paediatrics” and “Obs & Gynae” categories, 
Stage 1 already demonstrated high precision and recall, 
with values close to or exceeding 0.95. These strong 
results were maintained in Stage 2, confirming the mod-
el’s robustness in identifying patients in these categories.

Table 5 Main category admitting ward

Aspect Stage 1 Stage 2

Class Distribution (Post-SMOTE) Balanced 
(107,093 
instances)

Balanced 
(107,093 
instances)

 Cardiology 17,849 17,849

 Medicine 17,849 17,849

 Obs & Gynae 17,849 17,849

 Paediatrics 17,848 17,848

 Specialty Care 17,849 17,849

 Surgery 17,849 17,849

Model Performance Metrics
 Precision (Cardiology) 0.70 0.84

 Recall (Cardiology) 0.78 0.85

 F1‑Score (Cardiology) 0.74 0.85

 Precision (Medicine) 0.70 0.78

 Recall (Medicine) 0.54 0.74

 F1‑Score (Medicine) 0.61 0.76

 Precision (Obs & Gynae) 0.90 0.93

 Recall (Obs & Gynae) 0.97 0.98

 F1‑Score (Obs & Gynae) 0.93 0.95

 Precision (Paediatrics) 0.95 0.96

 Recall (Paediatrics) 0.98 0.99

 F1‑Score (Paediatrics) 0.97 0.97

 Precision (Specialty Care) 0.77 0.83

 Recall (Specialty Care) 0.85 0.88

 F1‑Score (Specialty Care) 0.81 0.86

 Precision (Surgery) 0.77 0.83

 Recall (Surgery) 0.68 0.75

 F1‑Score (Surgery) 0.72 0.79

 Overall Accuracy 0.80 0.86

 Macro Average (Precision) 0.80 0.86

 Macro Average (Recall) 0.80 0.86

 Macro Average (F1‑Score) 0.80 0.86

Top Features by Importance
 1. Main_Complaint_Category 0.534174 0.474656

 2. Sub_Category 0.36959 0.245715

 3. Age_Group 0.025675 0.024526

 4. Gender 0.019845 0.021517

 5. Imaging done at ED 0.016466 0.01809

 6. Region 0.013191 0.015512

 7. Entry_Method 0.009025 0.009785

 8. Part_of_Day 0.006303 0.00744

 9. Season 0.005731 0.006541

 10. Troponin_T_Result 0 0.090083

 11. Estimated_GFR_Serum_Result 0 0.042822

 12. C_Reactive_Protein_Result 0 0.011233

 13. Glucose_Random_Serum_Result 0 0.009102

 14. Red_Cell_Distribution_Width_Result 0 0.007492

 15. Platelets_Result 0 0.005589

 16. Haemoglobin_Result 0 0.005198

 17. White_Blood_Cell_Count_Result 0 0.004699
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The overall accuracy of the model increased from 
80% in Stage 1 to 86% in Stage 2, indicating that the 
additional data introduced in Stage 2 contributed to 
more accurate classifications across all ward categories. 
Examining the macro averages, Stage 1 had a precision 
of 0.80, which improved to 0.86 in Stage 2. Similarly, 
recall increased from 0.80 in Stage 1 to 0.86 in Stage 2, 
and the F1-score rose from 0.80 to 0.86. These improve-
ments in macro averages suggest that Stage 2 deliv-
ered more balanced and reliable predictions across all 
classes.

Stage 2 consistently outperformed Stage 1 in all key 
metrics, including precision, recall, F1-scores, and over-
all accuracy. This improvement is especially pronounced 
in categories like “Medicine” and “Surgery,” where Stage 
1 struggled to achieve strong predictive performance. 
The extended dataset model in Stage 2 provided valuable 
information that significantly enhanced its predictive 
capabilities.

The AUC-ROC curves presented for the patient admis-
sion outlined in Figs.  12 and  13 illustrate the model’s 
performance at two stages. The first curve, with an 
AUC of 0.82, shows the initial classification capabil-
ity, while the second curve, with an improved AUC of 
0.87, demonstrates enhanced discriminatory power. This 
improvement reflects the model’s refinement, suggesting 

increased accuracy in predicting outcomes in the later 
stage.

In the analysis of calibration curves outlined in Figs. 14 
and 15 across two distinct stages of predictive modelling, 
there is a marked improvement from Stage 1 to Stage 2, 
which can be attributed to the integration of more com-
prehensive clinical data. In Stage 1, the calibration curves 
for various medical specialties such as Cardiology, Medi-
cine, and Paediatrics show a significant deviation from 
perfect calibration, particularly as the predicted prob-
abilities approach 1, indicating a consistent underpre-
diction of the true probabilities. Conversely, in Stage 2, 
where more detailed data (likely from further tests and 
investigations) is incorporated, the calibration curves are 
noticeably closer to the line of perfect calibration. This 
is particularly evident in specialties like Specialty Care 
and Surgery, suggesting a substantial enhancement in the 
accuracy of the model’s predictions. These observations 
highlight the critical role of detailed and comprehensive 
data in enhancing the reliability and utility of predictive 
models in clinical settings.

In conclusion, both Stage 1 and Stage 2 demonstrate 
the importance of clinical and demographic features in 
the model’’s predictions, though with noticeable shifts 
in emphasis. In both stages, Main_Complaint_Category 
and Sub_Category remain the top features, but their 

Fig. 12 AUC‑ROC curve for ward (Stage 1)
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Fig. 13 AUC‑ROC curve for ward (Stage 2)

Fig. 14 Calibration curve for ward (Stage 1)
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importance decreases slightly in Stage 2. Meanwhile, 
clinical lab results, such as Troponin_T_Result and Esti-
mated_GFR_Serum_Result, which were not influential 
in Stage 1, gain significant importance in Stage 2. Demo-
graphic features like Age_Group and Gender maintain 
relatively stable importance across both stages, while 
features such as Imaging done at ED and Region show 
slight increases. This progression highlights the model’s 
increasing reliance on clinical data in Stage 2 to improve 
predictive performance (Table 6).

Subcategory admitting ward
This section focuses on the process of predicting subcat-
egory admitting ward.

In Stage 1, the overall model accuracy for subcategory 
wards was 69%. While categories such as “Accident & 
Emergency” demonstrated excellent performance with 
high precision and recall, subcategories within “Medi-
cine,” such as “Medicine/Acute,” “Medicine/Diabetes/
Endo,” and “Medicine/Respiratory,” exhibited lower pre-
dictive performance. For instance, “Medicine/Acute” 
achieved a precision of 0.14 and recall of 0.07, reflect-
ing poor sensitivity in identifying true positive cases. 
Similarly, “Medicine/Nephrology” and “Medicine/Res-
piratory” also had low F1-scores, highlighting significant 
imbalances between precision and recall.

Stage 2 showed substantial progress, with overall model 
accuracy rising to 75%. Precision and recall improved 
across most subcategory wards. For example, the “Cardi-
ology” subcategory saw its precision increase from 0.25 
in Stage 1 to 0.42 in Stage 2, with a corresponding recall 
increase from 0.56 to 0.70. This improvement reflects the 
model’s enhanced ability to correctly classify ’Cardiology’ 
cases, reducing misclassification rates.

Subcategories within the “Medicine” category also 
experienced improvements. “Medicine/Geriatrics,” for 
example, maintained a high recall, improving from 0.96 
in Stage 1 to 0.99 in Stage 2. While precision remained 
modest in certain ’Medicine’ subcategories, the overall 
F1-scores improved, indicating more balanced model 
predictions.

In particular, the “Medicine/Acute” subcategory, 
despite its precision remaining low (0.17 in Stage 2), 
showed a slight improvement in recall, suggesting a bet-
ter ability to capture true cases in this category. Likewise, 
“Medicine/Respiratory” saw precision increase from 0.19 
to 0.22, and recall improved as well, resulting in a more 
balanced performance. In the “Surgery General” subcat-
egory, precision increased from 0.31 to 0.38, and recall 
rose from 0.38 to 0.44 in Stage 2, reflecting better perfor-
mance in predicting surgical cases.

The macro averages for precision, recall, and F1-score 
across all subcategories improved from 0.66 in Stage 1 to 

Fig. 15 Calibration curve for ward (Stage 2)
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0.73 in Stage 2. This shows that the Stage 2 model pro-
vided more consistent and reliable predictions across 
a wide range of subcategories. The inclusion of features 
such as blood test results and entry methods in Stage 2 
contributed to these improvements, allowing the model 
to capture more complex patterns and enhance its pre-
dictive power.

Stage 2 demonstrated significant improvements in pre-
dictive performance, particularly within the “Medicine” 
and “Surgery” categories. The refinements in Stage 2, 
including a more comprehensive feature set, led to bet-
ter sensitivity and precision, making the model more 
effective for aiding decision-making in hospital triage 
and admissions. These findings underscore the value of 
incorporating domain-specific features and advanced 
techniques like SMOTE to achieve balanced and accurate 
predictions in healthcare predictive modelling.

The AUC-ROC curves for the Sub-Ward indicated in 
Figs.  16 and  17 show the model’s performance across 

two stages. In the first stage, the AUC is 0.76, indicating 
a moderate level of classification accuracy. In the second 
stage, an improvement is seen with the AUC rising to 
0.78, suggesting a slight enhancement in the model’s abil-
ity to differentiate between the classes. This progression 
highlights ongoing efforts to optimise the model’s predic-
tive performance.

The calibration curve analyses for two distinct stages 
of predictive modelling outlined in Figs. 18 and 19 reveal 
a notable variation in model performance across various 
medical specialties. In Stage 1, the calibration curves dis-
play significant deviations from the ideal of perfect cali-
bration, particularly for specialties such as Medicine/GI 
and Neurology, indicating a general underprediction of 
probabilities and suggesting a lack of adequate data or 
features within the model. Transitioning to Stage 2, there 
is a visible improvement in calibration accuracy, espe-
cially for fields like Accident & Emergency and Cardi-
ology, which align closer to the perfect calibration line. 

Table 6 Subcategory admitting ward

Aspect Stage 1 Stage 2

Class Distribution (Post-SMOTE) Balanced (113,566 instances) 3,154 / 3,155 instances 
per ward

Balanced (113,566 instances) 
3,154 / 3,155 instances 
per ward

Model Performance Metrics
 Precision (Macro Average) 0.66 0.73

 Recall (Macro Average) 0.69 0.75

 F1‑Score (Macro Average) 0.67 0.74

 Precision (Weighted Average) 0.66 0.73

 Recall (Weighted Average) 0.69 0.75

 F1‑Score (Weighted Average) 0.67 0.74

 Overall Accuracy 0.69 0.75

Top Features by Importance
 1. Main_Complaint_Category 0.534174 0.474656

 2. Sub_Category 0.36959 0.245715

 3. Age_Group 0.025675 0.024526

 4. Gender 0.019845 0.021517

 5. Imaging done at ED 0.016466 0.01809

 6. Region 0.013191 0.015512

 7. Entry_Method 0.009025 0.009785

 8. Part_of_Day 0.006303 0.00744

 9. Season 0.005731 0.006541

 10. Troponin_T_Result 0 0.090083

 11. Estimated_GFR_Serum_Result 0 0.042822

 12. C_Reactive_Protein_Result 0 0.019068

 13. Glucose_Random_Serum_Result 0 0.009102

 14. Red_Cell_Distribution_Width_Result 0 0.007492

 15. Platelets_Result 0 0.005589

 16. Haemoglobin_Result 0 0.005198

 17. White_Blood_Cell_Count_Result 0 0.004699
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Fig. 16 AUC‑ROC curve for sub‑ward (Stage 1)

Fig. 17 AUC‑ROC curve for sub‑ward (Stage 2)
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Fig. 18 Calibration curve for sub‑ward (Stage 1)

Fig. 19 Calibration curve for sub‑ward (Stage 2)
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However, inconsistencies persist with some specialties, 
such as ENT/Audiology and Dermatology, experienc-
ing dramatic over- or under-estimations at certain prob-
ability points. This improvement from Stage 1 to Stage 2 
suggests that the integration of additional data or refined 
modelling techniques has enhanced prediction accuracy, 
yet the remaining variability across specialties highlights 
the ongoing need for model tuning and possibly the 
development of specialty-specific approaches to optimize 
predictive performance comprehensively.

In both Stage 1 and Stage 2, the most important fea-
tures for model performance are Main_Complaint_Cate-
gory and Sub_Category, though their importance slightly 
decreases in Stage 2. Demographic features such as Age_
Group, Gender, and Region maintain relatively stable 
importance across both stages. However, Stage 2 shows 
a significant increase in the importance of clinical lab 
results like Troponin_T_Result, Estimated_GFR_Serum_
Result, and C_Reactive_Protein_Result, which were not 
contributing factors in Stage 1. This shift in Stage 2 high-
lights the model’s increasing reliance on clinical data, 
improving its predictive capability as these features gain 
prominence. Meanwhile, features such as Imaging done 
at ED and Entry_Method see slight increases, reflecting 
a more nuanced integration of both clinical and admin-
istrative data.

Summary of results
In this study, the overall accuracy of the XGBoost predic-
tion model was chosen as the primary metric to evalu-
ate its performance. Accuracy offers a clear and widely 
understood measure of the model’s effectiveness in mak-
ing correct predictions across various tasks, making it 
suitable for summarising results in a straightforward 
manner. While additional metrics such as precision or 
recall could provide deeper insights, overall accuracy is 
ideal for conveying the general performance of the model 
in this context.

The model demonstrated strong predictive capabili-
ties across several key tasks. As outlined in Fig.  20, for 
patient prioritisation, the model achieved an accuracy of 
0.75 in Stage 1, which improved to 0.76 in Stage 2, indi-
cating that the model became more effective at prioritis-
ing patients as it evolved. Similarly, in patient admission 
prediction, the accuracy increased from 0.80 in Stage 1 to 
0.82 in Stage 2, reflecting a notable improvement in iden-
tifying which patients required admission. When predict-
ing the main category of the admitting ward, the model’s 
accuracy rose from 0.80 in Stage 1 to 0.86 in Stage 2, 
showing enhanced reliability in matching patients to the 
appropriate ward. For the more detailed task of predict-
ing the subcategory of the admitting ward, the mod-
el’s accuracy improved from 0.69 in Stage 1 to 0.75 in 

Stage 2, demonstrating progress in this more complex 
classification.

These results highlight the model’s ability to improve 
its predictive performance with further refinement, espe-
cially in critical areas such as patient admission and ward 
categorisation.

Discussion
This study demonstrates the potential of using machine 
learning, specifically the XGBoost Classifier, to make 
accurate predictions in the highly uncertain and dynamic 
environment of the ED. By successfully predicting patient 
prioritisation, admission likelihood, and the appropriate 
admitting ward, the model addresses some of the most 
pressing challenges in emergency medicine. These pre-
dictive capabilities represent a significant advancement, 
offering a strategic approach to managing ED operations 
where crowding, human error, and resource limitations 
are common.

Accurate prioritisation is crucial in emergency settings, 
where delays in treatment can have serious consequences 
[51]. Traditionally, patient prioritisation relies heavily 
on the experience and judgment of triage nurses, which, 
although effective, is subject to variability and potential 
bias, especially under stressful and crowded conditions. 
By accurately identifying patients who need immediate 
care, this model enables a more efficient triage process, 
ensuring that critical patients receive the necessary atten-
tion without delay. This, in turn, helps reduce the chances 
of adverse outcomes due to diagnostic mistakes, improv-
ing overall patient safety and outcomes.

In addition, predicting patient admission early in 
their ED visit significantly enhances the effective man-
agement of hospital resources. EDs often face chal-
lenges in bed availability, leading to extended waiting 
times and resulting in patient fatigue and exacerbated 
medical conditions, all of which contribute to nega-
tive health outcomes. This model provides hospital 
administrators and ED staff with the foresight to antici-
pate admissions and prepare bed availability accord-
ingly. By identifying patients who are likely to require 
admission, hospital staff can proactively allocate beds, 
arrange for necessary equipment, and coordinate with 
inpatient units, thereby reducing bottlenecks in the 
patient flow. This proactive bed management not only 
optimises the use of limited hospital resources but also 
minimises the time patients spend in the ED await-
ing admission, reducing overcrowding and the risk of 
medical errors caused by delayed care. By accurately 
predicting the correct ward for patient admission, this 
approach prevents the inconvenience and costs associ-
ated with admitting patients to the wrong wards, which 
often necessitates subsequent transfers. Such transfers 
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increase operational inefficiencies, disrupt care conti-
nuity, and further strain hospital resources. Ensuring 
that patients are placed in the correct ward from the 
outset enhances both patient outcomes and hospital 
efficiency.

Additionally, early predictions of the admitting ward 
offer significant operational advantages. Knowing the 
likely admitting ward for each patient streamlines care 
transitions and ensures that the receiving unit is ade-
quately prepared. Bed management nurses can organise 
the necessary equipment, medications, and special-
ist staff in advance, promoting continuity of care. This 
capability also helps avoid costly and disruptive 

reallocations of patients to different wards, further 
improving hospital workflow efficiency.

These predictive capabilities are transformative for 
emergency medicine. By predicting patient prioritisation, 
admission likelihood, and admitting ward early in the 
ED process, hospitals can significantly improve patient 
flow, reduce wait times, and optimise resource allocation. 
This not only benefits patient care but also addresses sys-
temic issues such as ED overcrowding, which is linked to 
increased mortality rates and lower quality of care. The 
ability to anticipate patient needs allows for better staff 
planning, improved bed utilisation, and more effective 
communication between ED and inpatient units, all of 

Fig. 20 Summary of Prediction Results
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which contribute to a more efficient healthcare delivery 
system.

Moreover, the integration of such predictive models 
into the early stages of emergency care provides health-
care professionals with valuable insights, supporting their 
decision-making in an environment where rapid and 
accurate judgments are critical. This model can serve as 
a supplement to clinical expertise, offering an objective, 
data-driven approach that reduces the variability inher-
ent in human judgment. While no predictive model can 
replace the understanding of a trained clinician, the use 
of machine learning models like XGBoost adds a layer of 
support that can lead to better informed decisions and 
more consistent and equitable patient care.

The implications of this study extend beyond individ-
ual EDs to the broader healthcare system. By streamlin-
ing ED operations and improving patient flow, hospitals 
can reduce the costs associated with prolonged ED stays, 
resource wastage due to over-triaging, and delayed 
treatments. In addition, by minimising crowding and 
enhancing prioritisation, hospitals can mitigate the risk 
of diagnostic errors and improve patient outcomes. Fur-
thermore, early prediction allows for more strategic 
resource management during peak periods, such as flu 
season or during public health emergencies, enabling a 
more resilient healthcare response.

In summary, the integration of machine learning mod-
els like XGBoost into emergency care processes has 
the potential to be a game-changer for EDs. By provid-
ing accurate, early predictions for patient prioritisa-
tion, admission, and admitting ward, this study’s model 
addresses critical challenges faced by EDs, improving 
patient outcomes and streamlining hospital operations. 
The use of such predictive analytics offers a pathway to 
smarter, more efficient healthcare, where data-driven 
insights support rapid, informed decision-making. As 
healthcare systems continue to face growing demands 
and resource constraints, adopting predictive models 
could be a key strategy in enhancing the delivery of emer-
gency care.

Limitations
Despite the significant findings and contributions of 
this study, several limitations should be acknowledged. 
Although the dataset spans a five-year period and 
includes numerous patient visits, it is reliant on data 
extracted from HIS. HIS data may contain inaccuracies, 
missing values, or inconsistencies due to human error 
in data entry, incomplete medical records, or variations 
in clinical documentation practices. While missing data 
were addressed through imputation, the approach of fill-
ing missing values with zeros may introduce biases or 
obscure meaningful patterns in the data.

The study utilises a set of 20 features derived from 
demographic, clinical, and laboratory data. While 
this is comprehensive, there may be additional factors 
influencing ED outcomes, such as social determinants 
of health, environmental factors, or patient-reported 
symptoms, which were not available or included in the 
dataset. The exclusion of these variables could limit the 
predictive power and generalisability of the models.

Although SMOTE was applied to address class imbal-
ance, synthetic oversampling methods have their own 
limitations [52]. SMOTE generates new data points by 
interpolating between existing minority class samples, 
but this may not capture the true complexity of rare 
events or the underlying distribution of certain target 
classes. This could lead to overfitting or reduced model 
performance on underrepresented classes when applied 
to real-world, unseen data.

XGBoost while highly effective for predictive tasks 
is inherently a very complex model. Although feature 
importance can be derived, the decision-making pro-
cess in this model is not as easily interpretable as sim-
pler models (e.g., logistic regression). This could pose 
challenges in clinical settings where interpretability and 
transparency of predictions are crucial for trust and 
decision-making by healthcare professionals.

The dataset is specific to the Emergency Department 
of Mater Dei Hospital, a single hospital in one country. 
Healthcare practices, patient demographics, and hos-
pital policies may differ across regions or countries, 
limiting the generalisability of the findings to other 
healthcare settings. Validation of the models using data 
from different hospitals or healthcare systems would be 
necessary to confirm their broader applicability.

The dataset covers a six-year period (2017–2022), 
during which changes in healthcare practices, medical 
technologies, or hospital policies may have occurred. 
These changes could affect patient outcomes and the 
performance of the predictive models. Additionally, the 
impact of external factors such as the COVID-19 pan-
demic, which likely influenced healthcare delivery dur-
ing part of this period, was not explicitly accounted for 
in the models.

Despite the use of cross-validation and hyperparame-
ter tuning, there is still a risk of overfitting, particularly 
given the complexity of the models and the large num-
ber of features. Overfitting occurs when a model per-
forms well on the training data but poorly on unseen 
data, limiting its real-world applicability.

Although the data were pseudo-anonymised to pre-
serve patient confidentiality, the use of personal health 
data for predictive modelling raises ethical concerns. 
Ensuring that models developed from such data are 
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used responsibly and in ways that benefit patients with-
out compromising privacy is essential.

Conclusion
This study demonstrates the effectiveness of machine 
learning models, specifically XGBoost, in predicting 
key outcomes in the ED. Leveraging a large, compre-
hensive dataset, the models provide valuable insights 
into patient prioritisation, hospital admission, and 
ward allocation. Despite some limitations related to 
data quality, generalisability, and model interpretabil-
ity, the findings have the potential to enhance ED effi-
ciency, reduce costs, and improve patient care through 
better decision-making and resource allocation.  In 
future research, the model can be further enhanced by 
incorporating additional data fields to improve its pre-
dictive accuracy. Including patients past medication 
history and initial diagnostics taken upon arrival at the 
emergency department, such as blood pressure, pulse 
oximetry and Electrocardiography (ECG) results, could 
provide valuable context for the model. These vari-
ables are critical indicators of a patient’s health status 
and can significantly impact the decision-making pro-
cess for hospital admissions. By integrating these data 
points, the model will have access to a more compre-
hensive view of each patient’s condition when present-
ing at the ED, potentially leading to more accurate and 
detailed predictions.

Another area for future exploration involves the 
acceptance and trust of medical staff towards such pre-
dictive models. Will doctors and hospital staff trust and 
rely on these systems for decision-making? A valuable 
study would involve surveying medical staff to gauge 
their confidence in the system, which, although not pub-
lished in this paper, is planned as part of the PhD study 
and broader validation exercise. Understanding the per-
ception of the end-users is key to the success of these 
models in practice.

Additionally, methods for increasing explainability and 
calculating model uncertainty may further contribute to 
building trust in the system. While the current predic-
tion model, as outlined in the methods, includes some 
elements of explainability and aims to reduce the “black 
box” nature often associated with machine learning mod-
els, further work in this area is necessary. Implementing 
more advanced methods of explainability and uncertainty 
estimation could provide more transparency in the pre-
dictions, offering clinicians better insights into how and 
why certain decisions are made. Such efforts would not 
only improve the model’s robustness but also address 
concerns related to the ethical and responsible use of 
prediction models in clinical settings.
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