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ABSTRACT
Neurological disorders impose a significant burden on the healthcare systems. The latest published data by WHO indicated that 
stroke was the second leading cause of death globally in 2020, with Alzheimer's disease (AD) and other dementias in the seventh 
position. The treatment of neurological disorders is challenging because of the complex nature of the disease, as well as limited 
accessibility to this target organ due to several biological barriers. There is a wide range of treatment options for neurological 
disorders. Small drug molecules, antibodies, and stem cells have been employed for the treatment of neurodegenerative diseases 
such as AD, but currently, there is no effective treatment for AD. As conventional drugs have not been successful in achieving 
therapeutic outcomes, natural products such as curcumin, stemming from traditional medicines, have been tested for the treat-
ment of neurodegenerative diseases such as AD. However, this compound has not shown significant therapeutic effects for the 
treatment of brain diseases, mainly due to rapid clearance from the body. Therefore, phytochemical nanoparticles have been de-
veloped. In this review article, the rationale has been provided for the use of nanoparticles for the treatment of neurodegenerative 
diseases with emphasis on phytochemical nanoparticles.

1   |   Introduction

Neurological disorders are categorized into communicable and 
noncommunicable disorders. Tetanus, meningitis, and enceph-
alitis are examples of communicable disorders. On the other 
hand, epilepsy, Alzheimer's disease (AD), Parkinson's disease 
(PD), multiple sclerosis (MS), stroke, and traumatic brain injury 
(TBI) are examples of noncommunicable neurological disorders. 
Recognition of noncommunicable disorders such as epilepsy 
goes back to 1808 [1]. Neurodegenerative diseases are part of 
both communicable and noncommunicable neurological disor-
ders with progressive neural function loss, including cognitive 
and motor functions, leading to a patient's death. The causes of 
neurological disorders vary widely. Symptoms can range from 

mild to severe and may include memory loss, tremors, paraly-
sis, seizures, and changes in mood or personality. For example, 
stroke is caused by the focal injury of the central nervous system 
by a vascular cause, such as blockage of the vessel by a blood 
clot (ischemic stroke) or rupture of blood vessels (hemorrhagic 
stroke). The lack of blood flow causes cerebral tissue necrosis 
and focal neuronal deficits. In addition, other pathophysiologi-
cal effects occur, including inflammation [2], increased release 
of proinflammatory cytokines (TNFα and IL- 6) [3], complement 
activation [4], and impairment of the blood–brain barrier (BBB) 
[5], which makes stroke the leading cause of mortality and dis-
ability worldwide [6]. Increasing age is the most important risk 
factor for certain noncommunicable neurological disorders such 
as stroke [7], PD, and AD [8]. Clinicians prepare a diagnosis 
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based on the patient's medical history and a physical exam, to-
gether with other appropriate tests. For example, for AD, diag-
nosis often requires a combination of neurological examinations 
(cognitive function tests), imaging techniques like magnetic res-
onance imaging (MRI) or computed tomography (CT) scans [9], 
and laboratory tests for measuring biomarkers such as total tau 
in cerebrospinal fluid [10].

Neurological disorders impose a significant healthcare burden. 
The latest published data by WHO indicated that stroke was the 
second leading cause of death globally in 2020, with Alzheimer's 
disease and other dementia in the seventh position (https:// 
www. who. int/ news-  room/ fact-  sheets/ detail/ the-  top-  10-  cause s-  
of-  death ). The impacts of neurological disorders are expressed 
by disability- adjusted life years (DALYs), which is the sum of 
the years that a patient lives with disability and the years that 
are lost before the life expectancy (due to premature mortality). 
An estimated 3.40 billion individuals had a condition affecting 
the nervous system in 2021, corresponding to 43.1% of the world 
population [11]. These conditions caused 11.1 million deaths 
[11]. The number of all neurological conditions was 3.4 million 
in 2021, which was a 58.8% increase from 1990, perhaps due 
to increased life expectancy. DALY counts increased by 18.2% 
from 375 million DALYs in 1990 to 443 million DALYs in 2021 
for total nervous system health loss [11]. The leading cause of 
disability changed by age; for example, stroke was the second 
cause of disability for the 75 years and older age group (with 13% 
of 329 million total DALYs count), whereas this was the ninth 
for the 25-  to 49- year age group (with 3.2% of 616 million DALYs 
count) in 2019 [12]. Stroke was the first, and TBI was the 14th 
noncommunicable neurological disorder in the ranking of age- 
standardized DALY rates for all conditions with neurological 
health loss by GBD region in 2021 [11].

In the majority of neurodegenerative disorders, microglia (major 
brain- resident immune cells) are activated, which may lead to 
the release of proinflammatory cytokines [13, 14]. This promotes 
infiltration of peripheral immune cells into the central nervous 
system (CNS) [15, 16], which is collectively known as neuroin-
flammation. Dysregulated neuronal autophagy and impaired re-
myelination are examples of neuroinflammation's pathological 
effects [17, 18]. Although there are compensation mechanisms to 
repair damaged neurons, these are not sufficient to prevent the 
progression of the damage. For example, there are axon dam-
ages early in MS, and these are compensated by mechanisms 
such as remyelination. However, lesions in the gray and white 
matter gradually expand and become prominent. Continuous 
and low- level inflammation and loss of compensatory mecha-
nisms result in segmental and global atrophy [19]. The microglia 
are rapidly activated following TBI and mobilize to the damaged 
area to clear debris [20]. As there could be potential microbial 
contamination, microglia release proinflammatory cytokines to 
induce a cascade of inflammatory response, including infiltra-
tion of peripheral immune cells [21]. This is to ensure that the 
brain environment is suitable for the normal functioning of neu-
rons. However, an uncontrolled and even excessive activation 
becomes detrimental and promotes neurodegeneration. The dys-
regulated microglia activation can be maintained up to 17 years 
in TBI patients [22]. As the BBB is also damaged in TBI, and 
natural compounds such as phillyrin, from Forsythia suspensa 
(Thunb.) Vahl, also known as Lianqiao in Chinese traditional 

medicine, could repair the BBB after TBI [23]. Delayed repair of 
the BBB becomes a contributing factor to neural apoptosis [24]. 
Recent studies demonstrated that a natural product (ACT001, 
also known as dimethylamino- micheliolide, a certified orphan 
drug) reduced microglia activation in vitro by lipopolysaccha-
rides (LPSs) through suppression of the NFκB/NLRP3 neuroin-
flammatory pathway by inhibiting the phosphorylation of AKT 
[14]. These results explained the alleviation of motor function 
deficits in mice after TBI by administering ACT001 [14].

Phytochemical compounds have long been utilized in tradi-
tional medicine for treating neurodegenerative disorders (ex-
amples provided in the above), offering a promising approach 
with an established safety profile. The historical use of these 
compounds in traditional healing practices has motivated re-
searchers to explore their potential in clinical treatments, with 
notable examples such as curcumin for the treatment of AD. 
Despite their potential, phytochemical compounds have en-
countered significant challenges in neurological therapeutics. 
Existing data reveal that these compounds face critical obstacles 
similar to other active ingredients, particularly the fundamental 
challenge of brain penetration. This limitation has historically 
prevented many promising compounds from becoming effective 
treatments for neurodegenerative disorders. Nanoparticle (NP) 
technology emerges as a potential breakthrough in addressing 
these longstanding challenges. By providing an advanced drug 
delivery method, NPs offer an innovative approach to transport-
ing therapeutic compounds across the BBB, potentially over-
coming the penetration limitations that have hindered previous 
treatment strategies. Surprisingly, phytochemical NPs remain a 
relatively unexplored research domain. This review paper exam-
ines recent advancements in neurodegenerative disorder treat-
ments, focusing on both small and large drug molecules. The 
manuscript particularly emphasizes the potential advantages of 
formulating phytochemical compounds as NP preparations. The 
review concludes by presenting the most recent developments in 
phytochemical NP formulations, highlighting their promising 
potential for treating neurodegenerative disorders. By exploring 
innovative delivery mechanisms, this paper aims to illuminate 
a path forward in addressing some of the most challenging neu-
rological conditions.

2   |   Current Treatments for Noncommunicable 
Neurological Disorders

A wide range of treatment options for neurological disorders is 
available. Small drug molecules, antibodies, and stem cells have 
been employed for the treatment of AD [25]. However, there is 
no effective treatment for AD, and as a result, it is necessary to 
develop an effective treatment for AD. The acetylcholinesterase 
inhibitors (AChEIs) are cornerstone medicines that delay cog-
nitive decline in AD. The cholinergic hypothesis is based on 
the progressive loss of cholinergic innervation in AD, which is 
important for brain functions such as memory, learning, and 
attention. These medicines include donepezil, galantamine, 
and rivastigmine. Clinical investigations in patients with AD 
demonstrated the benefits of donepezil and galantamine for an 
increase from baselines for ADAS- cog and Mini- Mental State 
Examination (MMSE) scores [26]. Aducanumab is an antibody 
developed by Biogen that selectively targets aggregated Aβ. 
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Following the promising outcome of aducanumab from in vivo 
[27] and Phase I clinical trial [28], Biogen conducted two Phase 
3 clinical trials (EMERGE and ENGAGE) to evaluate adu-
canumab in early AD [29]. Aducanumab was administered at 
a low dose of 3 mg/kg to ApoE ε4+ patients or 6 mg/kg to ApoE 
ε4− via intravenous infusion following dilution into saline every 
4 weeks over 76 weeks (20 doses total), as well as a high dose of 
aducanumab at 10 mg/kg. Both dose regimens of aducanumab 
significantly reduced the brain amyloid load compared to pla-
cebo by week 78. Aducanumab resulted in a 22% statistically sig-
nificant reduction in the decline of CDR- SB, an 18% reduction 
in the decline of MMSE, and a 27% reduction in the decline in 
the Alzheimer's Disease Cooperative Study–Activities of Daily 
Living scale (ADCS- ADL)- MCI for the 10- mg/kg dose regimen 
in the EMERGE cohort. The incidences of amyloid- related im-
aging abnormalities–oedema (ARIA- E) were much higher in 
both doses in both cohorts [29]. As the EMERGE trial met its 
primary outcome and the ENGAGE trial did not, Biogen sub-
mitted the data to the US Food and Drug Administration (FDA) 
for review and possible marketing approval. The FDA approved 
aducanumab (Aduhelm) in 2021 with a high starting price of 
$56,000 per year, but the price was later reduced to $28,200 [30].

Glatiramer acetate and interferons are the first approved 
disease- modifying therapies for MS. [31] Disease- modifying 
therapies modify the course of MS through the suppression or 
modulation of immune function. To achieve more effective ther-
apies, strategies were developed to inhibit lymphocyte access to 
the CNS by using drugs such as natalizumab (α4 integrin antag-
onist) [32] and siponimod (functional antagonist of sphingosine- 
1- phosphate receptor) [33]. Autologous hematopoietic stem cell 
transplantation is another approach that is under investigation 
to induce a prolonged remission in MS patients [34].

Small molecules such as levodopa have been used for the treat-
ment of PD since the 1960s [35]. In addition, the presence of ab-
normal α- synuclein aggregates is the pathological hallmark of 
PD. To remove these, prasinezumab has been developed, which 
is a humanized monoclonal antibody targeting the C- terminus 
of aggregated α- synuclein [36]. Although the Phase II clinical 
trial did not find prasinezumab therapy to have a meaningful ef-
fect on global or imaging measures of PD progression compared 
with placebo [37], deep brain stimulation has been a useful 
treatment for PD when levodopa and other dopamine replace-
ment therapies become ineffective [38]. Deep brain stimulation 
involves a surgical procedure to implant electrodes in the brain 
to stimulate subcortical structures, including the internal globus 
pallidus and subthalamic nucleus [39].

TBI is defined as a sudden injury that causes damage to the 
brain, with 69 million individuals suffering every year world-
wide. Because of the mechanical damage, the breakdown of 
the BBB happens, as well as hemorrhage. This is known as the 
primary damage. However, there is secondary damage, accom-
panied by inflammation, ischemia, and oedema. These injuries 
occur within minutes of the injury, but the damage continues, 
which leads to the development of neuropsychiatric comorbid-
ities. Tranexamic acid is a small molecule that is used in mild 
to moderate TBI to reduce the risk of death, which is adminis-
tered within 3 h of the injury [40]. Additionally, mannitol and 
hypertonic saline are intravenously administered to reduce 

intracranial pressure [41]. Due to possible posttraumatic sei-
zures, antiepileptic drugs may be administered. There are other 
medicines administered for the treatment of post- TBI neuropsy-
chiatric changes such as selective serotonin reuptake inhibitors 
(sertraline and citalopram), serotonin and norepinephrine re- 
uptake inhibitors (milnacipran), serotonin 1A receptor partial 
agonist (buspirone), antipsychotics (methotrimeprazine, dro-
peridol, haloperidol), and prazosin (to reduce the severity and 
frequency of nightmares associated with posttraumatic stress 
disorder) [42].

Stroke is defined as a focal neurological deficit that only cerebro-
vascular disease can explain. Ischemic stroke accounts for 60%–
70% of all strokes, and it is the result of acute arterial occlusion. 
Intracerebral hemorrhages are caused by a vessel rupture in the 
brain [43]. Restoration of the cerebral perfusion is the main aim 
of ischemic stroke treatment. This is achieved by the adminis-
tration of intravenous thrombolysis and/or endovascular throm-
bectomy. Intravenous administration of alteplase is approved by 
all regulatory agencies and is currently the only thrombolytic 
agent for the treatment of ischemic stroke. Tenecteplase may be 
used off- label for the treatment of acute ischemic stroke [44]. 
Intra- arterial therapy can be divided into chemical dissolution 
of clots with locally delivered thrombolytic agents or removal 
of the clot with a mechanical device. Intra- arterial treatment 
(intra- arterial thrombosis and/or mechanical treatment pro-
vided better outcomes than a control group that received usual 
care alone [45].

CNS tumors result from irregular cellular growth in the brain 
and spinal cord, which is associated with neurological symp-
toms. The age- standardized rate of CNS cancers was 12.5 per 
100,000 in 2021. [11] The treatment depends on the type of 
tumor, which may need a combination of surgery, chemother-
apy, and radiotherapy. Patients with advanced breast cancer 
may develop brain metastases. Whole- brain radiation therapy 
(WBRT) or surgical resection form part of the treatment [46]. 
Lapatinib is a tyrosine kinase inhibitor with a molecular weight 
of 581 g/mol and can access the normal brain and brain metasta-
ses [47]. A systemic review and meta- analysis revealed that lapa-
tinib yielded better survival for HER- 2+ breast cancer patients 
with brain metastases [48]. Temozolomide is a small- molecule 
chemotherapeutic drug used for brain tumors such as glioma. 
A recent study found that adjuvant use of temozolomide with 
radiotherapy showed better survival (median overall survival 
116·6 months) of patients with anaplastic glioma compared to 
concurrent temozolomide chemotherapy [49]. There are other 
medicines used for the treatment of brain metastases reviewed 
recently [46, 50].

In the search for more effective treatments, several tech-
niques have been developed for both invasive and noninvasive 
drug delivery systems. Invasive drug delivery systems include 
convection- enhanced drug delivery (Figure 1A) [51], ultrasound- 
mediated BBB disruption (Figure 1B) [52, 53], transcranial injec-
tions [54], also known as stereotaxic injections [55] (Figure 1C), 
and intrathecal administration (Figure 1D) [56, 57]. Intrathecal 
administration is used for the management of therapy- resistant 
pain, spasticity, and dystonia when oral therapy has not been 
successful [58]. Ultrasound- mediated BBB disruption was 
employed for delivering antibodies to the brain [52]. The 
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noninvasive technique is the formulation of novel and complex 
NPs [59] as well as novel shuttle peptides [60]. Although invasive 
delivery systems have been more frequently used in clinics, NP- 
based formulations are making their way through clinical trials 
[61]. Brain mapping is done during surgery (https:// www. youtu 
be. com/ watch? v= u50HP Re3rOY).

2.1   |   The Limitations of Current Treatments

Although there are several treatments for neurological disorders, 
the worldwide burden of neurological disorders is increasing. 
The medicines invented for CNS diseases have shown limited 
clinical efficiency. As a result, high drug doses and continuous 
consumption have been considered, leading to associated side 
effects. Aging is another factor that makes treatment challeng-
ing due to aging- related comorbidities. For certain treatments, 
such as antibodies, the BBB has presented a prominent obstacle 
for reaching large drug molecules in the brain [52]. Intrathecal 
injections of methotrexate have led to death due to brain damage 
in leukemic patients [62]. In addition, drugs such as tranexamic 
acid do not reduce death in severe TBI patients with extensive 
intracranial hemorrhage. [63] As a result, the World Health 
Organization has set a new Intersectoral Global Action for 

improving the treatment of neurological disorders [64]. One of 
the objectives of this action plan is “Provide effective, timely and 
responsive diagnosis, treatment and care for neurological disor-
ders” [65]. The development of targeted interventions is pivotal 
to promoting, improving, and monitoring brain health across 
the whole life [66]. The development of new treatments forms 
part of the targeted interventions, as well as research drug de-
velopment and the development of new therapies. This includes 
epidemiological studies and access of all patients to new thera-
pies [67].

The invasive drug delivery methods suffer from risks such as 
CSF leak (intrathecal administration) or developing meningitis 
[58]. The brain damage might be due to the direct contact of a 
medicine with neurons at high doses. The focus on ultrasound- 
mediated BBB disruption requires complex considerations 
for each patient [68]. These include a well- defined ultrasound 
acoustic dose to reduce variability in BBB disruption. Acoustic 
waves could reflect from different surfaces and interfere with 
other waves. Furthermore, the BBB has the physiological 
role of protecting the brain from harmful compounds in the 
brain. A small area of hypo- intensities has been reported with 
focused- ultrasound BBB opening, which disappeared after 24 h 
[69]. These could be microhemorrhages around the BBB [69]. 

FIGURE 1    |    Invasive drug delivery to the brain. (A) Schematic presentation of convection- enhanced drug delivery, (B) ultrasound- mediated BBB 
disruption [53], (C) transcranial injections [55], and (D) intrathecal administration [57]. Reproduced with permission from the cited references.
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Therefore, long- term safety should be evaluated for opening the 
CNS barriers. In addition, during the focused ultrasound BBB 
opening, the presence of an anesthesiologist may be required 
[52], or the patient is under anesthesia [53]. For transcranial 
drug delivery injections, precise brain mapping and delivery to 
the site of the lesion are required, which limits the application 
of this method [70]. It should be added that a surgical procedure 
is required for transcranial administration, which would limit 
the number of drug administrations. Nonminimally/minimally 
invasive techniques include intravenous injections of NPs, exo-
somes, shuttle peptides, and stem cells.

The unclear approval process of the FDA and the drug's price 
prompted criticism and led Congress and the FDA to launch in-
vestigations into relations between Biogen and key figures at the 
regulatory agency [71]. The investigations found that the FDA 
worked unusually closely with Biogen staff in a “collaborative 
workstream” that massaged the poor trial results and changed 
study endpoints. Unexpectedly, the FDA considered only the re-
duction of brain amyloid load as the evidence of clinical benefit, 
which was never accepted by the FDA statisticians as well as 
nonsignificant clinical benefits. As a result, they were excluded 
from meetings. In addition, a group of international research-
ers, clinicians, and policy experts met on December 15, 2021, 
and they voted unanimously to recommend that the FDA with-
draw its approval for aducanumab [72]. Following these inves-
tigations, Biogen decided to withdraw aducanumab from the 
European market on April 20, 2022. Furthermore, Biogen an-
nounced in January 2024 that Aduhelm would be discontinued 
in November 2024.

3   |   NPs for the Treatment of Brain Disease

Nanotechnology has gained significant attention for the treat-
ment of neurological disorders. NPs are materials with overall 
dimensions in the range of 10 to 1000 nm [73]. NPs can have 
different shapes, such as spheres [74], rods [75], fibers [76], 

or irregular [77]. The NPs can have filled or core–shell struc-
tures  [78]. Several types of NPs have been developed for drug 
delivery to the brain, such as polymeric NPs [79], liposomes [80], 
exosomes [81], and peptide- based NPs [82]. There are several ad-
vantages of using NPs for drug delivery to the brain, as briefly 
explained below.

3.1   |   Facilitating Crossing the Blood–Brain Barrier

NPs can encapsulate large hydrophilic molecules such as small 
interfering RNA (siRNA) or monoclonal antibodies and cross 
the BBB and deliver to the brain (Figure 2) following a systemic 
administration [83]. Furthermore, NPs can protect sensitive 
compounds such as siRNA from enzymes in the blood by pro-
viding a core–shell structure that the active ingredient is en-
capsulated within the NP [84, 85]. NPs can be used as a carrier 
to deliver small hydrophilic molecules such as curcumin to the 
brain [86, 87]. NPs can be functionalized with ligands that bind 
to specific receptors on brain cells. This targeting ability allows 
for more precise drug delivery, potentially increasing therapeu-
tic efficacy while reducing off- target effects. For instance, flu-
orinated polyethylenimine NPs have been designed to target 
microglia in the brain following intravenous administration and 
deliver TREM2- encoding plasmid for treating neuroinflamma-
tion in neurodegenerative diseases such as AD [88].

3.2   |   Sustained Release of Drug

Furthermore, NPs can be engineered to release drugs at a spe-
cific rate over an extended period in the brain. This controlled 
release can maintain therapeutic drug concentrations in the 
brain for longer durations, potentially improving treatment ef-
ficacy and reducing the need for frequent dosing. For example, 
dual- targeting liposomes were formulated by encapsulating 
danshensu. These liposomes are surface- decorated with trans-
ferrin molecules to cross the BBB and phosphatidylserine to 

FIGURE 2    |    Representative ex vivo fluorescence images of glioma- bearing brain tissues 10 days after one injection (5 mg kg−1) of nimotuzumab 
or brain- targeting NPs loaded with nimotuzumab, n(Nimo), labeled with Cy5.5. The histogram compares the relative fluorescence intensity of the 
tumor- bearing brain tissue. **p < 0.01 (two- tailed Student's t- test). Data represent mean ± standard error of the mean (n = 3). Reproduced with per-
mission from [83].
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target microglia. The liposomes released danshensu gradually 
over 96 h in vitro and in vivo (Figure 3) [89].

3.3   |   Protection of Sensitive Drugs

siRNAs have the potential for therapeutic application in brain 
diseases, such as glioblastoma [90], AD [91], PD [92], TBI [93], 
and stroke [94]. As siRNAs are subject to rapid enzymatic deg-
radation in serum endonucleases or exonucleases [95], NPs can 
encapsulate siRNAs and protect them from enzymatic degrada-
tion. For example, Raja et al. 2015 encapsulated siRNA within 
chitosan NPs. To evaluate the protection of siRNA, siRNA- 
loaded chitosan NPs were exposed to RPMI cell culture media 
with 10% FBS. It was found that most of the naked siRNA was 
degraded within 48 h of exposure to FBS, whereas encapsu-
lated siRNA exhibited more stability [96]. Proteins are another 
class of biologics that may require protection against proteases 
within the physiological environment. For example, the en-
hanced green fluorescence protein (EGFP) is used for imaging 
techniques with the advantage of low toxicity. However, EGFP 
can be degraded by proteases. It has been shown that encapsu-
lation of EGFP within silica NPs improved the stability of EGFP 
against proteases [97]. Insulin is another protein that is unsta-
ble in an acidic environment. Encapsulation of insulin with 
polymeric NPs allowed protection of insulin from the gastric 
enzymes and pH and provided an opportunity to significantly 
lower blood glucose levels in diabetic rats compared to oral un-
protected insulin solution [98].

4   |   Reduced Side Effects

NPs enable more targeted delivery and potentially lower the 
overall dose required, which can help reduce systemic side ef-
fects. This is particularly important for drugs with narrow ther-
apeutic windows or significant toxicity profiles, such as Doxil, 
which is a liposomal formulation of doxorubicin [99]. This is be-
cause small drug molecules may not have selectivity for the par-
ticular target tissue and remain within the systemic circulation 

with back- and- forth diffusion into several off- target organs. 
Although NPs reduce widespread systemic distribution of the 
drug molecules, this targeted delivery allowed achieving high 
maximum tolerated dose for paclitaxel by using a Cremophor- 
free, protein- stabilized, NP formulation of paclitaxel [100]. 
Therefore, NP- based delivery systems can also help minimize 
systemic side effects often associated with brain- targeted ther-
apies such as glioblastoma multiform [101]. It should be noted 
that NPs themselves may impose toxicity [102, 103]. Carbon 
nanotubes have attracted a great deal of research and interest 
as NP- based drug delivery. For example, carbon nanotubes can 
cross the BBB without the need for a brain- targeting ligand 
[104]. Carbon nanotubes were employed as carriers for the de-
livery of acetylcholine into the brain for treating animal models 
[105]. However, there are reports of toxic effects following expo-
sure to carbon nanotubes [102].

5   |   Improved Solubility and Stability

Combinatorial chemistry has been employed for drug develop-
ment, both for lead discovery and optimization [106]. In this 
approach, a diverse range of compounds is synthesized by ap-
plying techniques such as Houghten's tea bag technology to 
form a chemical library [107]. Then the compounds are screened 
against a variety of biological targets such as cytotoxicity, cell 
signaling, and binding to the target protein. Over 40% of drug 
molecules that are identified through this combinatorial screen-
ing program are poorly water soluble [108]. This causes diffi-
culties in formulating the active ingredient using conventional 
techniques, as drug bioavailability may not be sufficient to 
achieve therapeutic targets. The formulation of nanocrystals has 
been employed to overcome the poor solubility of active ingredi-
ents. The surface area of solid particles significantly increases 
by reducing particle size, which enhances the dissolution rate. 
In addition, the formation of nanocrystals improves saturation 
solubility through changes in the physicochemical properties 
of the compound such as crystalline structure [109]. Formation 
of fenofibrate nanocrystals improved its solubility from 0.3 to 
5.7 μg/mL [110].

FIGURE 3    |    Fluorescence analysis of targeting rat brains following iv injection of DiR, liposomes (LPs) loaded with danshensu (DSS) and DiR 
(DSS- LPs- DiR), and liposomes decorated with transferrin (TF) and phosphatidylserine (PS) and loaded with DSS and DiR (TF/PS/DSS/- LPs- DiR). 
Reproduced with permission from [89].
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7

6   |   Potential for Noninvasive Administration

The olfactory of the nasal cavity contains nerves that provide 
direct access to the CNS by bypassing the BBB. Lipophilic 
and small drug molecules may get access to the CNS through 
paracellular diffusion along the olfactory sensory neurons as 
well as crossing the intracellular pathways of the neuron cells. 
However, drug molecules with masses over 1000 Da have low 
permeability through the sensory neurons, and therefore, the 
absorption is reduced. NP formulations have allowed the deliv-
ery of large drug molecules to the brain [111] such as glatiramer 
acetate for the treatment of MS in animal models. Glatiramer 
acetate (a random polypeptide) was encapsulated in lipid NPs 
and administered nasally to experimental autoimmune en-
cephalomyelitis (EAE) mice. The clinical scores of EAE mice 
were improved significantly compared to control EAE mice that 
had only glatiramer administration. In addition, curcumin (a 
poorly water- soluble drug) was encapsulated in lactoferrin and 
administered intranasally to wild- type rats [112]. Considerable 
amounts of the NPs were detected in the brains following intra-
nasal administration. This nasal delivery provides a noninva-
sive delivery route to the brain, which may be considered a more 
patient- friendly and safer alternative to invasive methods such 
as intravenous or intracranial injections.

Oral delivery of insulin has been widely investigated, with re-
cent positive results from insulin oral capsules [113]. A Phase 2 
clinical trial showed improvements in Type 2 diabetic patients 
using oral insulin 338 (I338). This is a long- acting, basal in-
sulin analogue formulated in a tablet with the absorption en-
hancer sodium caprate [114]. Although the clinical trial met the 
primary outcomes, further development of this particular oral 
insulin project was discontinued. This was because I338 doses 
were high and, therefore, production of the required quantities 
of I338 for wide public use was considered not commercially vi-
able [114]. NP formulation of insulin may provide an oral ad-
ministration route with reduced amounts of insulin. Insulin NP 
formulations for oral delivery have been reviewed recently [115].

7   |   Multifunctional Capabilities

NPs can be designed to serve multiple functions simultane-
ously. For example, they can carry both therapeutic agents and 
imaging contrast agents, allowing for real- time monitoring of 
drug delivery and treatment response. These formulations are 
known as theranostic (theragnostic) NPs [116]. Lam et al. 2018 
formulated pegylated liposomes, which were functionalized 
with transferrin (BBB targeting component). The lipid structure 
of the liposomes also contained Cy5.5- labeled lipids, which al-
lowed tracing the liposomes in the brain of animal models using 
an IVIS instrument. These liposomes were loaded with two 
drugs: temozolomide and a bromodomain inhibitor. The ther-
anostic liposomes confirmed targeting glioblastoma and pro-
longed the animal's survival [117]. Carbon nanotubes provide a 
platform for developing brain- targeting theranostic NPs. Costal 
et al. 2018 employed multiwalled carbon nanotubes (MWNTs), 
which were functionalized with derivatives of Pittsburgh 
Compound B (PiB) not only to target Aβ plaques in AD but also 
to allow visualization of targeting the brain by SPECT/CT imag-
ing technique [118]. These NPs took advantage of the intrinsic 

property of carbon nanotubes crossing the BBB. The SPECT/CT 
confirmed the accumulation of functionalized MWNTs in the 
brain. The NPs achieved up to 1% of the injected dose accumu-
lation per gram of the brain. Gold NPs also provide a platform 
for the formulation of multifunctional formulations [119]. For 
example, Mirrahimi et al. 2019 developed gold NPs that carried 
cisplatin, and these were employed for the treatment of the CT26 
colorectal tumor model. The diseased animals were treated with 
532 nm laser irradiation and received dramatically higher ther-
mal doses due to the optical absorption properties of AuNPs. 
The AuNPs provided a combined action of chemo- photothermal 
therapy, and the tumor growth was significantly less than con-
trol animals [120].

8   |   Phytochemical NPs Hold Promise

Phytochemical compounds have been considered for the treat-
ment of brain diseases. For example, curcumin is a polyphenol 
compound obtained from Curcuma longa with a wide range of 
applications from food to the textile industry. Curcumin has 
been demonstrated to reduce Aβ burden in the brain of aged 
Tg2576 mice by inhibiting Aβ aggregation and fibril formation 
[121]. Curcumin was generally well tolerated in a Phase I clinical 
trial for the treatment of mild- to- moderate probable Alzheimer's 
disease at a dose of 2 g/day [122]. However, the Alzheimer's 
Disease Assessment Scale—Cognitive Subscale (ADAS- Cog) 
was significantly different from the placebo group at 24 weeks. 
A similar trend was observed for the MMSE score. Furthermore, 
the plasma and CSF levels of curcumin were determined using 
liquid chromatography/tandem mass spectrometry (LC/MS/
MS). Curcumin and its metabolites were detected in the plasma 
of the treatment group, but not in the CSF. Therefore, the lack of 
efficacy from curcumin capsules could be due to the poor pene-
tration of curcumin into the CNS [123] and rapid clearance from 
the body with a half- life of 6–7 h [124].

Quercetin is a flavonoid found in fruits and vegetables such as 
onions and apples. Quercetin was dissolved in phosphate buffer 
saline containing 0.1% dimethyl sulfoxide and intraperitone-
ally administered to 3xTg- ad mice at a dose of 25 mg/kg every 
48 h for three consecutive months [125]. Quercetin significantly 
reduced the Aβ load in the CA1, the subiculum, the entorhi-
nal cortex, and the amygdala regions of the transgenic mouse 
brains. Also, quercetin decreased microgliosis in the hippocam-
pus region of 3xTg- ad mice. Quercetin significantly reduced 
microglia activation compared to the vehicle- treated transgenic 
mice. Furthermore, quercetin significantly improved the mem-
ory function of the transgenic mice compared to the vehicle- 
treated control group. Quercetin plus dasatinib are evaluated in 
a clinical trial with the title of Senolytic Therapy to Modulate 
the Progression of Alzheimer's Disease (SToMP- AD) Study 
(SToMP- AD) and trial identifier of NCT04685590. The clinical 
trial is currently recruiting. Dasatinib is given as one 100- mg 
capsule daily for two consecutive days, and quercetin will be 
given as four 250- mg capsules daily (total 1000 mg daily) for the 
same two consecutive days. Both are administered orally. This 
treatment is based on the removal of senescent cells using da-
satinib and quercetin from the CNS [126]. Early outcomes were 
released recently [126]. The CNS penetrations of dasatinib and 
quercetin were assessed by evaluating drug levels in the CSF of 
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the participants using high- performance liquid chromatography 
with tandem mass spectrometry. Dasatinib levels were detected 
in the CSF of four participants, ranging from 0.281 to 0.536 ng/
mL, but quercetin was not detected in five participants who 
completed the trial. Cognitive and neuroimaging endpoints did 
not significantly differ from the baseline to posttreatment after 
12 weeks of treatment [126].

Huperzine A is an alkaloid isolated from the Chinese folk med-
icine Huperzia serrata. It is a reversible and selective inhibitor 
of AChE and has been used in the clinical treatment of AD in 
China [127]. Oral administration of huperzine A significantly 
reduced escape latency in the mouse model of cerebral ischemia. 
Huperzine was administered at the dose of 0.2 mg/kg, once per 
day, starting 2 days before surgery, and lasting for 7 days after 
surgery [128]. In addition, bryostatin is a natural product ex-
tracted from the bryozoan Bugula neritina [129] and has shown 
positive outcomes in clinical trials for the treatment of AD 
[130, 131].

Generally, natural products did not show desired significant 
therapeutic improvements for the treatment of brain disorders 
in clinical trials [132]. Therefore, several NP formulations were 
developed, which showed much improved therapeutic efficacy 
in  vivo compared to the base natural product, although not 
many of them are in clinical trials. So far, only the APH- 1105 
NP formulation has been studied in clinical trials, which is ad-
ministered intranasally. APH- 1105 is a nanoformulation of a po-
tent analogue of Bryostatin 1 [133]. This is a modulator of the 
α- secretase [134], which is an enzyme that cleaves the amyloid 
precursor protein into a more soluble compound, allowing faster 
clearance from the brain, and does not lead to the formation of 
insoluble amyloid plaques [135]. Detailed examples are given in 
the following for NP formulations containing natural products.

Lipid NPs were developed that encapsulated quercetin for the 
treatment of AD. The NPs were functionalized with transfer-
rin to facilitate crossing the BBB [136]. In vitro studies demon-
strated the capacity of the NPs to inhibit fibril formation. 
Similarly, lipid NPs were developed that were functionalized 
with RVG29 peptide. The NPs were loaded with quercetin. 
These NPs also inhibited the formation of Aβ fibrils in  vitro 
[137]. Quercetin nanocrystals were developed by an evaporation 
precipitation of nanosuspension method [138]. The nanocrystal 
formulation was orally administered at a dose of 10 or 25 mg/kg 
to 6- hydroxydopamine (6- OHDA)–induced Parkinson- like rat 
models. Stereotaxic injection of 6- OHDA- induced lesioned rats 
showed a significant increase in rotations compared to a control 
group. Administration of quercetin nanocrystals at a 25- mg/kg 
dose significantly reduced the number of rotations compared to 
untreated animals (i.e., with the brain lesions).

Copolymers of poly (ethylene oxide)- b- poly(ε- caprolactone) 
(PEO- b- PCL) self- assembled to NPs loading curcumin and L- 
DOPA via nanoprecipitation and solvent displacement method 
[139]. The NPs were coated with glutathione to facilitate cross-
ing the NPs through the BBB. These NPs were formulated for the 
treatment of PD. The in vitro studies demonstrated the biocom-
patibility of the NPs toward Vero and PC12 cells. Polydopamine- 
based curcumin- loaded NPs (RPC NPs) were decorated with 
a peptide obtained from rabies virus glycoprotein (RVG) 29 to 

target the brain following intravenous administration for treat-
ing 6- OHDA- PD animal models [140]. PC- NPs reached the 
brain in a time- dependent manner, with 12 h postadministra-
tion reaching the maximum. RPC NPs significantly reduced do-
paminergic neuron damage and improved the neurobehavioral 
abnormalities (measured by rotarod, pole, swimming, and open- 
field tests) in PD mice.

Figure 4 schematically summarizes recent applications of nat-
ural product–based NP formulations for the treatment of brain 
diseases, and Table 1 provides further details about these recent 
investigations.

9   |   Critical Evaluation of the Challenges in 
Translating

The translation of phytochemical NPs from laboratory bench 
to clinical bedside represents one of the most promising yet 
challenging frontiers in modern nanomedicine. Although these 
bioactive compounds derived from plants offer tremendous 
therapeutic potential, their successful clinical implementation 
faces numerous complex obstacles and, unfortunately, may 
involve more than synthetic compounds, which should be sys-
tematically addressed. The primary hurdle lies in achieving 
consistent, reproducible manufacturing processes. Because the 
active ingredient is sourced from plants, these phytochemicals 
exhibit inherent batch- to- batch variability due to factors such 
as plant source, extraction methods, seasonal variations, and 
geographical differences [168]. Even the same plants may not 
produce the same phytochemical compounds at every harvest-
ing time. The use of multivariate analysis has been suggested to 
identify the source of variation, such as packing behavior [169]. 
Furthermore, the harvested plant may promote degradation of 
the target compound and microbial contamination due to rela-
tively high amounts of moisture [170]. When incorporated into 

FIGURE 4    |    Recent natural product–based nanoparticle formula-
tions developed for the treatment of brain diseases.
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NP formulations, factors such as variations in plant species, 
growth conditions, and extraction methods have been identified 
as contributing factors to inconsistencies in the properties and 
potentially the performance of NP formulations [171]. For exam-
ple, ZnO NPs extracted from Punica granatum peel and coffee 
ground extracts did not show antibacterial activity against sev-
eral bacterial strains, such as Pseudomonas aeruginosa, whereas 
chemically synthesized ZnO NPs showed inhibitory effects [172]. 
This variability makes it challenging to establish standardized 
protocols that meet regulatory requirements. Extraction may 
form part of the manufacturing process. It is the process of sepa-
rating bioactive components of plants using selective solvents by 
applying standard procedures. The extracted ingredients are rel-
atively complex mixtures of bioactive constituents. Ideally, the 
chosen solvent should be nontoxic [173]. As part of regulatory 
requirements, the impurities should be identified and quantified 
in NP formulations. The formulation of phytochemical NPs has 
the potential to impact the solubility and pharmacokinetics of 
phytochemicals. Reducing the size of phytochemical crystals 
to nanometer size (enhancing surface area) would increase the 
solubility of the compound and affect the absorption rate in 
the GI [174]. For example, the solubility of resveratrol was in-
creased by formulating it as NPs using a thin film rehydration 
technique [175]. Resveratrol NPs showed improved efficacy in 
the EAE mice compared to resveratrol solution [175]. In terms of 
pharmacokinetics, paclitaxel was encapsulated in the polymeric 
micelles of Pluronic 123 [176]. Paclitaxel- loaded micelles had an 
average size of 25 nm. Paclitaxel- loaded micelles were adminis-
tered intravenously into rats, and t1/2β was 2.50 ± 0.63 h for Taxol 
injection (solution formulation) and 5.85 ± 1.52 h for the micelle 
formulation, indicating a 2.3- fold increase for the micelle for-
mulation. In addition, the AUC0–8h was 1007.9 ± 192.6 μg·h/L for 
Taxol injection, whereas the AUC was 2916.8 ± 873.6 μg·h/L for 
the micelle formulation, a 2.9- fold increase for the micelle for-
mulation. The hydrophilic shell of the micelles avoided uptake 
by the reticuloendothelial system as well as rapid clearance by 
the kidneys [176]. In terms of translation into clinical trials, NP 
formulations face tougher challenges compared to classical for-
mulations [177], in particular if the active ingredient (including 
phytochemicals) is not an approved drug substance. For exam-
ple, for NP formulations, a well- defined manufacturing process 
is needed with its associated process controls. This is to ensure 
that an acceptable product is produced on a consistent basis, as 
small changes to block copolymer micelle products may signifi-
cantly influence their performance [178]. The economic land-
scape presents substantial challenges for clinical translation, 
as researchers need to choose particular plants known for their 
high concentrations of phytochemicals such as polyphenols or 
flavonoids. In addition, well- known techniques should be em-
ployed, such as maceration and reflux, to extract the desired 
phytochemical ingredients [179]. Furthermore, the use of phy-
tochemicals as a source of active ingredients may compete with 
food production [179]. Although these seem like challenges, 
phytochemicals are often derived from natural sources, making 
them potentially more cost- effective than synthetic compounds 
[174]. Another challenge in the development of phytochemical 
NPs is related to poor financial support [180], perhaps due to a 
lack of strong intellectual property protection [181]. As part of 
the future perspectives, the phytochemical extracts/plant- based 
NPs should be regulated through official controls such as the 
US Food and Drug Administration or the European Medicines N
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Agency for rigorous manufacturing standards [180]. This is be-
cause there is a concern about the lack of official information 
regarding the actual toxicity of many extracts, as adverse effects 
may be caused by the misuse of medicinal plants, affecting pub-
lic health [182]. Therefore, the successful clinical translation 
of phytochemical NPs demands innovative solutions that may 
not be common with synthetic active ingredients. This shift re-
quires balancing the practical feasibility of these promising phy-
tochemical NPs with whether they can fulfill their potential in 
providing novel solutions to human neurodegenerative diseases.

10   |   Safety Profiles and Potential Toxicity of 
Phytochemical NPs

As discussed above, the aim of phytochemical NPs has been to 
encapsulate phytochemicals in a nanoparticulate formulation. 
This has been to reduce the systemic toxicity of the phytochem-
ical compounds such as paclitaxel. It is not expected that NPs 
encapsulating phytochemical compounds will exert different 
toxicity compared to synthetic active ingredients. Therefore, 
typical adverse events such as infusion site reactions have been 
reported for NPs encapsulating phytochemicals [183, 184]. NPs 
can exert immunotoxicity by interacting with the immune 
system in several ways, such as inducing the release of proin-
flammatory cytokines [185]. As an example, nab- paclitaxel (NP- 
bound paclitaxel) induced cytokine release syndrome in clinic 
[186]. However, flavonoid- encapsulated NPs significantly down-
regulated proinflammatory cytokines such as TNF- α and IL- 1β 
[187]. Plant- derived NPs have achieved significant attention 
recently due to their potential pharmacological applications, 
such as antimicrobial activity [188], and plant- derived nanove-
sicles have demonstrated low immunogenicity [189]. However, 
strawberry- derived vesicles carried protein sequences that were 
homologous to known allergens [190].

11   |   Conclusion and Future Perspective

Conventional treatments often fail to adequately slow the pro-
gression of neurodegenerative diseases. The BBB and the com-
plexity of neurodegenerative diseases have been major obstacles 
to achieving desired therapeutic outcomes. Techniques such as 
convection- enhanced delivery and ultrasound- mediated BBB 
disruption have been employed to improve the quantity of active 
ingredients reaching target zones in the brain. Although these 
represent improvements, significant therapeutic outcomes have 
not been achieved, and techniques such as convection- enhanced 
delivery remain invasive. Furthermore, surgical removal of 
brain tumors or application of convection- enhanced techniques 
fail to eradicate all cancerous cells. These drawbacks have 
prompted the development of novel NP- based formulations, 
which can reach the brain via minimally invasive routes such 
as intravenous administration and specifically target diseased 
cells/neurons in the brain. Although several NP formulations 
are commercially available, none specifically target the brain. 
Most NP formulations under development aim to enhance the 
delivery of highly active ingredients across the BBB. Natural 
products are also being formulated as NP delivery systems for 
brain disorders. These compounds offer potential safety advan-
tages, having been used in traditional medicine for extended 

periods. Multiple in vivo studies have demonstrated the efficacy 
and safety of natural product–based NP formulations for treat-
ing brain diseases. Future research must address regulatory 
requirements for NP formulations to advance these promising 
treatments into clinical trials. For formulation scientists, under-
standing regulatory frameworks and conducting appropriate 
compliance testing represents a critical step in this development 
pathway.
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