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Abstract

Background: Marker-based motion capture is the current gold standard for three-
dimensional (3D) gait analysis. This is a highly technical analysis that is time-consuming,
and marker application can trigger anxiety in children. One potential solution is to use
markerless camera systems instead. The objective of this study was to compare 3D lower
limb gait kinematics in children using both marker-based and markerless motion capture
methods. Methods: Ten typically developing children (age 6—13 yrs) completed five bare-
foot walks at a self-selected speed. A 10-camera marker-based system (Oqus, Qualisys)
and a 7-camera markerless system (Miqus, Qualisys) captured synchronised gait data at
85 Hz. Generalised Additive Mixed Models were fitted to the data to identify the random
effects of measurement systems, age, and time across the gait cycle. The root-mean-square
difference (RMSD) was used to compare the differences between systems. Results: Signifi-
cant interactions and differences were observed between the marker-based and markerless
systems for most joint angles and planes of motion, particularly with regard to time and age.
Conclusions: Despite differences across all kinematic profiles, the RMSD in this study was
comparable to previously published results. Alternative model definitions and kinematic
crosstalk in both systems likely explain the differences. Age differences were not consistent
across joint levels, suggesting a larger sample size is required to determine how maturation
may affect markerless tracking. Further investigation is required to understand the devia-
tions and differences between systems before implementing markerless technology in a
clinical setting.

Keywords: gait analysis; Theia3D; kinematics; markerless motion capture; plug-in
gait model

1. Introduction

Many children experience walking impairments due to congenital deformities, de-
velopmental disabilities, acquired injuries, or degenerative changes. Therefore, the gait of
children is systematically evaluated in clinical gait laboratories and used diagnostically
to inform and evaluate the outcomes of clinical interventions, including orthopaedic or
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neurological interventions, as well as the provision of orthotic devices [1]. Furthermore,
assessing gait and functional ambulation is also essential for documenting the extent of
gait changes, disease progression, and treatment effectiveness in patients with unknown
and rare diseases.

The current gold standard for assessing gait is three-dimensional (3D) gait analy-
sis. This requires the accurate placement of small skin-mounted markers on anatomical
landmarks on the body. The positions of these markers are then measured using infrared
cameras to calculate joint angle graphs (and moments and powers when synchronous
force data is captured). This is a highly technical analysis that is time-consuming (with a
reported median duration of 80 min for subject preparation, data collection, and physical
examination across Europe [2]), requires minimal clothing, can trigger anxiety, and thereby
may lead to an unnatural walking pattern [3,4]. These challenges are particularly prevalent
in very young children, those with sensory processing difficulties, and children with be-
havioural problems or intellectual disabilities [3]. Despite the challenges, 3D gait analysis
remains clinically valuable for identifying gait deviations in these children. Therefore,
identifying methods that reduce the burden of data collection, while maintaining sufficient
accuracy, is essential to ensure the continued clinical utility of gait analysis in these groups.
Furthermore, even when markers are placed accurately by a highly skilled practitioner,
soft tissue artefacts remain an unsolved problem despite numerous solutions developed to
reduce inaccuracies [5-7]. Bone deformities, and especially torsional deformities, can cause
further inaccuracies in marker placement [8].

One potential solution to tackle the limitations associated with participant discomfort
and marker placement is to use markerless motion capture technology [9]. These systems
typically rely on high-resolution video footage and machine learning algorithms to estimate
joint positions and body segment kinematics without the need for skin-mounted markers. A
wide range of markerless systems have been developed to investigate human gait in clinical
contexts [10]. Some use depth sensors (e.g., Microsoft Kinect [11]), others rely on monocular
or multi-view 2D video-based pose estimators (e.g., OpenPose [12], OpenCap [13]), and
others, like Theia3D [14], apply deep learning to synchronised multi-camera video data
to generate full-body 3D kinematic models. These systems differ in their data inputs,
underlying algorithms, and output formats, but share the potential to streamline workflow,
reduce participant burden, and improve ecological validity, particularly for populations in
which traditional marker use may be difficult or inappropriate.

Theia3D (v2023.1.0.3161, Theia Markerless Inc., Kingston, ON, Canada) was selected
for this study due to its availability as a commercial markerless motion capture system
within our research setting, and its compatibility with existing laboratory equipment
and software for future studies (e.g., force plates, Visual3D). The Theia3D software uses
synchronised video data and deep learning techniques to estimate three-dimensional (3D)
human pose without the need for skin-mounted markers. While the internal pose estimation
algorithm is proprietary and not openly documented, Theia3D markerless technology has
demonstrated the ability to produce results that are comparable to the current marker-based
method in adult gait studies [14], with differences as high as 11° (hip flexion/extension)
and as low as 2.6° (hip abduction/adduction). In addition, this innovation has shown
encouraging preliminary results in a cohort of clinical patients, although further tests are
recommended before using it for clinical decision-making [15-18]. The potential benefits
of Theia3D markerless technology are particularly relevant in paediatric contexts, where
movement variability, sensory sensitivities, and behavioural compliance often limit the
quality or feasibility of marker-based assessments. In these cases, markerless systems may
offer a less intrusive and more efficient alternative, though further validation in children is
needed.
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While early work has explored the validity of Theia3D in pediatric gait, the existing
body of evidence remains limited. To date, only one study has quantified the difference be-
tween synchronous marker and markerless derived gait kinematics in typically developing
children, reporting differences as high as 12° (hip rotation) and as low as 2.5° (foot progres-
sion), with marker data processed using the Human Body Model [16]. Further comparison
between marker-based and markerless systems has been reported in a mixed cohort of
adults and children. D’Souza et al. [18] compared Theia3D with the CAST model in healthy
individuals and clinical patients aged 8-61 years, demonstrating generally similar gait
patterns but significant differences in hip rotation (~9°), knee rotation (~10°), and pelvic tilt
(~6°). However, to our knowledge, no studies have directly compared Theia3D with the
conventional gait model (CGM), also called the plug-in gait model (PiG), which is currently
the most widely used biomechanical model in clinical gait analysis, particularly in the
paediatric population [19,20]. The PiG model is suitable for gait analysis in the paediatric
population because it uses a small number of markers and has demonstrated reliability
of kinematic and kinetic data, indicating that the magnitude of the errors obtained using
this model is clinically reasonable [20]. Since younger children exhibit greater gait vari-
ability [21,22], the magnitude of differences between models may also vary depending
on age. This study addresses these gaps by quantifying the differences in lower limb 3D
gait kinematics derived from marker-based (PiG model) and markerless (Theia3D) motion
capture for typically developing children and identifying if and how children’s age might
affect these differences.

2. Materials and Methods
2.1. Participants and Data Collection

Ten healthy children (8 male/2 female, mean (SD) age: 8.3 (2.2) years, height: 1.33 (0.18)
m, mass: 31.4 (14.2) kg) volunteered to participate in this study at the Liverpool John
Moores University Biomechanics laboratory (Liverpool, UK). The following clinical data
were collected: age, height, mass, leg length, inter-ASIS distance, and knee and ankle
width. The sample included three children aged six years, four children aged eight years,
two children aged ten years, and one child aged 13 years. Participants were able to walk
independently without assistive devices, were free from musculoskeletal or neurological
conditions that affected their gait, and had no previous history of lower limb surgeries.

Ethical approval was obtained from the University Research Ethics Committee
(22/SPS/033). Written informed consent was obtained from the legal guardian of each
participant, consenting to the use of the child’s data for this healthcare research.

A single mixed-camera system of ten infrared (Oqus 7+, Qualisys AB, Gothenburg,
Sweden) and seven colour video cameras (Miqus Video, Resolution: 1920 x 1080p, Qualisys
AB, Gothenburg, Sweden) captured all trials at 85 Hz. Whole-system synchronisation was
achieved using the Qualisys Precision Time Protocol, with all data, including calibration of
the global reference frame, captured within a single instance of Qualisys Track Manager
(Qualisys AB, Gothenburg, Sweden). Retro-reflective markers, with a diameter of 14.5 mm,
were placed on the lower limb of the participants according to the PiG model [23]. The
marker placement was undertaken by a single assessor, whose repeatability is regularly
tested according to the CMAS standards.

A recording of the participant standing in a stationary position was captured to define
a marker-based model during post-processing. Participants then walked barefoot at self-
selected speed on a 10 m walkway. One static and one walking trial were collected and
processed to evaluate the knee varus/valgus kinematic profile. If the knee varus/valgus
profile exhibited crosstalk with knee flexion, the thigh wand marker was adjusted, and
a new static trial was collected [20]. Each participant was then asked to walk until five
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separate kinematic trials were conducted. This decision aligns with common clinical gait
analysis practices, where data collection is typically limited to five trials per condition due
to participant fatigue and time constraints, particularly in pediatric populations. While
guided by clinical feasibility, this number also aligns with prior research, which reports
that five gait cycles demonstrate good kinematic repeatability in children [24].

2.2. Data Analysis

Markerless motion capture video data were processed using Theia3D (v2023.1.0.3161,
Theia Markerless Inc., Kingston, ON, Canada) to generate the default inverse kinematic
full body model with 6 degrees of freedom (dof) at the pelvis, 3 dof at the hip, and 2 dof
at the knee and ankle. Theia3D uses a deep convolutional neural network to perform
2D pose estimation on synchronised video frames. This network is trained on a large
dataset of human images annotated with anatomical landmarks, enabling the automatic
detection of key points across multiple views. The 2D key points extracted from each
camera view are then triangulated to reconstruct the 3D locations of anatomical landmarks.
These points are used to fit a biomechanical model to the subject’s motion through an
optimisation procedure, yielding full-body 3D pose estimations. The system does not rely
on physical markers. Instead, it estimates the positions of “virtual markers” by directly
identifying anatomical features in the video frames. These virtual markers are consistent
with traditional marker-based definitions but are generated automatically based on visual
inference [14]. Theia3D outputs that represent the participant’s pose were exported as
C3D files to Visual3D (C-Motion, Germantown, MD, USA). Marker-based motion capture
data were tracked in QTM, and polynomial interpolation was applied to gaps smaller than
10 frames. The data was then exported for further analysis to Visual3D (Figure 1).

MARKERS \

Figure 1. Visual comparison of marker-based and markerless motion capture workflows for a
representative participant. Top row: (1) Child participant standing with Plug-in Gait (PiG) marker set
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attached (face blurred for anonymity); (2) walking trial with PiG markers visible; (3) markers labelled
within Qualisys Track Manager (QTM); and (4) Visual3D-generated skeletal model based on the
marker trajectories. Bottom row: (1) child walking; (2) walking trial with Theia3D-generated skeletal
overlay; (3) three-dimensional model output from Theia3D; and (4) Visual3D-generated skeletal
model based on the markerless joint centre outputs. This figure illustrates the key steps in both data
processing pipelines and highlights the differences in model generation between marker-based and
markerless systems. Joint centre locations in the Theia3D overlay were determined by proprietary
deep learning algorithms and are not explicitly labelled or rendered as visible discrete key points.

Two skeletal models were created in Visual3D: one, which Visual3D automatically
generated when data from Theia3D was loaded, and a second marker-based model, which
tracked the marker trajectories, was manually defined. The marker-based and markerless
data were filtered using a 4th-order Butterworth filter with a lowpass cut-off frequency of
6 Hz.

Pelvis and lower limb joint angles were calculated using the Visual3D models in the
sagittal, coronal, and transverse planes. One left-sided gait cycle was used from each of
the five gait trials for analysis. Heel strike gait events were determined using foot marker
kinematics, defined as the local maxima in the anterior displacement of the toe relative
to the pelvis [25]. They were applied to the markerless data to ensure that the kinematic
measurements were compared between the systems for identical gait cycles. Marker-based
and markerless data were then time-normalised to 101 points.

2.3. Statistical Analysis

The differences between systems were assessed using Generalised Additive Mixed
Models (GAMM) [26], fitted to the data to identify the systematic and random effects of
measurements by model (PiG, Theia3D), time (100% of the gait cycle), and age. Spline
expansions were used to model the observed nonlinearities in the measurements. The
selection of spline complexity was automated and based on complexity control criteria.

Approximate F-test statistics were obtained to test the null hypothesis of equality of
measurements across model types, controlling for age and repeated measurements within
subjects. Significance level was scaled to 0.005 by Bonferroni correction to control the family-
wise error rate of repeated tests on correlated signals. The analyses were implemented in
the R language using the mgcv, itsadug, and ggplot2 libraries.

Root mean square deviation (RMSD) was calculated for each gait cycle for each
participant to compare the pairwise differences in marker and markerless-derived lower
limb gait kinematics. This involved computing the square root of the mean of the squared
differences between joint angle values at each time-normalised point across the gait cycle.
We selected RMSD because it offers a concise and widely accepted summary of deviations
between datasets. It is commonly reported in previous validation studies of markerless
motion capture systems [14,17,18]. Including RMSD in our analysis not only facilitates
direct comparison with those studies but also allows the reader to interpret our results in
the context of clinically meaningful error thresholds. The current guideline threshold for
inter-assessor repeatability error in clinical gait laboratories in the UK and Northern Ireland
is 5-10° [27], and this was used as a guideline when interpreting differences between the
PiG and Theia3D models.

3. Results

There were significant interactions and differences between the Theia3D and PiG
model across the gait cycle and between age groups, for most joint angles and planes of
motion. Thereby, the null hypothesis of no difference between the Theia3D and PiG model
was rejected. The statistical model was able to explain between 73 and 97% of the observed
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variation across the joint levels (Table 1). The RMSD was less than 5° for pelvic rotation
and ankle dorsiflexion/plantarflexion angles (Figure 1). Pelvic tilt had the highest RMSD
(10.5°), with the Theia3D model showing less anterior tilt across the gait cycle. Hip rotation
had a high RMSD (8.0°), with the Theia3D model showing more external hip rotation
during the stance phase and less during the initial swing phase (Figure 2).

Table 1. Statistical differences between Theia3D and PiG.

Signal Nonlinear Trend over Time Nonlinear Trend over Age Interaction Between Age and Time  R?

” F(8.45, 9954.67) = 61.02 F(2.99, 9954.67) = 899.35 F(8.35,9954.67) = 12.35 091

Tilt p <0.001 p <0.001 p <0.001 :

) o F(8.61,9949.58) = 964.12 F(2.99, 9949.58) = 119.92 F(8.95,9949.58) = 340.67

Pelvis  Obliquity p <0.001 p <0.001 p <0.001 0.78
Rotati F(8.85, 9954.26) = 68.07 F(2.97,9954.26) = 129.16 F(8.07,9954.26) = 13.04 080

otation p <0.001 p <0.001 p <0.001 :

F(8.60, 9949.56) = 41.07 F(2.99, 9949.56) = 939.66 F(8.35,9949.56) = 11.58

Flex/Ext p <0.001 p <0.001 p <0.001 097
Hi Abd/ F(8.34, 9952.34) = 340.36 F(2.98, 9952.34) = 147.27 F(8.88,9952.34) = 153.28 078

P Adduction p <0.001 p <0.001 p <0.001 :
Int/ Ext F(8.93,9952.22) = 716.78 F(3.00, 9952.22) = 700.88 F(8.74,9952.22) = 17.41 074

Rotation p <0.001 p <0.001 p <0.001 :

F(8.60, 9942.91) = 47.45 F(2.967, 9942.91) = 176.63 F(8.27,9942.91) = 8.07

« Flex/Ext p <0.001 p <0.001 p <0.001 096
nee Varus,/Valeus F(8.96,9949.27) = 579.42 F(2.99,9949.27) = 184.13 F(8.91,9949.27) = 77.50 073

& p <0.001 p <0.001 p <0.001 :
Plantar/ F(8.42,9951.03) = 66.90 F(2.82,9951.03) = 109.02 F(4.26,9951.03) = 3.12 089

Ankl Dorsiflexion p <0.001 p <0.001 p =0.006 ’
nile Foot F(8.59, 9947.86) = 89.44 F(2.99, 9947.86) = 96.36 F(7.22,9947.86) = 3.01 087

Progression p <0.001 p <0.001 p =0.002 ’

Visual inspection of the curves suggests there were comparable patterns and ranges
of motion for some, but not all, joints and planes of motion. Pelvic tilt, pelvic obliquity,
hip rotation, hip abduction/adduction, foot progression across the entire gait cycle, and
knee varus/valgus during the swing phase show the most notable visible differences in
gait pattern. Similar gait patterns and/or low RMSD were reported for all other joint levels
and planes of motion (Figure 1).

The difference between marker-based and markerless data also depended on age and
was especially notable for pelvis tilt, pelvis obliquity, hip and knee flexion/extension, hip
abduction/adduction, and hip rotation (Figure 1). Among these, 10-year-olds exhibited
the smallest differences in pelvis obliquity and hip abduction/adduction. In contrast,
the largest differences in hip flexion/extension and hip rotation were observed in both
8- and 10-year-olds, while the 13-year-olds showed the greatest discrepancies in knee
flexion/extension.
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Figure 2. Mean =+ standard deviation (SD) joint angles of the pelvis, hip, knee, and ankle graphs in
the sagittal, coronal and transverse plane for the left leg measured by the markerless (bold teal with
shaded teal areas) and marker-based (bold orange with shaded orange areas) motion capture systems
for 10 typically developing children. Shaded areas represent the inter-trial variability (1 SD) across
the cohort. The upper panels show joint angle curves for each system, while the lower panels display
the average difference (markerless—marker-based) stratified by age group: 6 years (red), 8 years
(green), 10 years (blue), and 13 years (purple). Average pairwise RMSDs between the two systems
are inset in each joint angle plot.

4. Discussion

This study reports the differences in lower limb 3D gait kinematics derived from
marker-based (PiG model) and markerless (Theia3D) motion capture for typically develop-
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ing children. The markerless system produced significantly different kinematics compared
to the PiG model for all joint levels and planes of motion throughout the gait cycle. The
magnitude of difference between the PiG and Theia3D gait kinematics also varied by age,
with no consistent pattern across joint levels and planes of motion.

Despite the significant differences between models, our RMSD errors are similar or
better than previously published results that compare a range of marker-based models to
Theia3D in differing age groups of typically developed adults and children [14,18]. Notably,
the large differences we report for pelvic tilt and hip rotation are comparable to those
previously reported in TD children (pelvic tilt = 9.2°, hip rotation = 12° [17]). Our work
builds on previous research by identifying that the child’s age may influence the differences
reported between models, a finding that has not been previously reported. The differences
between age groups were notable for pelvis obliquity, hip and knee flexion/extension, hip
abduction/adduction, and hip rotation (Figure 1); however, there was no clear evidence
that one age group consistently differed more than the others. Reduced differences in
older children might be explained by a reduction in intra-subject gait variability linked to
maturation [21,22], but this explanation does not hold across all joints. While our findings
provide preliminary insights into the differences between markerless and marker-based
gait data in typically developing children, the small sample size limits the generalizability
of our results. As gait characteristics can vary substantially with age, development, and in-
dividual variability, caution is warranted in extending these results to broader populations.
Future work should aim to include larger and more diverse samples to characterise these
differences across developmental stages.

Although the marker-based knee varus/valgus gait curves were assessed for crosstalk
and fell under 10°, the presence of the knee valgus wave during the swing phase indicates
the possibility of kinematic crosstalk. Despite this, the marker-based hip rotation aligned
around neutral in the stance phase, whereas the markerless data indicates mild external
rotation. Despite being a well-known challenge to accurately assess hip rotation with the
marker-based system, the accuracy of the markerless system in capturing hip rotation in
children remains unknown. Therefore, the difference may be due to a marker placement
error in the marker-based data, systemic errors in the markerless system, or both, resulting
in a higher overall RMSD.

Some of the differences between the PiG and Theia3D models are likely explained by
differences in the underlying segment definitions. For example, in the sagittal plane, the
PiG-defined pelvis is moderately offset to anterior tilt, whereas the Theia3D model appears
to generate a more neutral pelvis. This led to a systematic offset in our analysis and is a
common feature of existing validation studies that compared different marker-based mod-
els [14,16-18,28]. Errors in joint centre position estimation may also contribute to further
errors in lower limb joint kinematics [29]. The PiG model has been reported to produce
larger mean deviations, especially in the medial-lateral direction, compared to other hip
joint centre equations [29,30]. This may explain the differences in hip abduction/adduction,
especially during the early stance and swing phase. More broadly, both marker-based
and markerless motion capture systems are subject to methodological challenges such as
occlusion and errors in identifying body segment positions. Marker-based approaches are
particularly affected by soft tissue artefacts and mislabeling of markers, while markerless
systems may encounter difficulties if clothing obscures anatomical landmarks. However,
previous findings suggest that the choice of clothing across multiple sessions does not sub-
stantially increase variation [31]. Although multiple camera views can reduce the impact
of occlusion for both systems, neither approach is immune to these sources of error. The
influence of soft tissue movement on markerless motion capture remains underexplored
and warrants further investigation. Markerless kinematics generated by Theia3D may
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be affected by several factors related to the training dataset it learns from, including the
age, sex, and ethnicity of the individuals included. It is also unlikely that the underlying
artificial neural network of Theia3D was trained on children with markers attached to their
legs. Any implicit bias within the training dataset could result in propagated errors in the
data; however, since Theia3D is a proprietary system, researchers have limited control over
how the machine learning models process the data.

5. Conclusions

This study investigated the differences in lower limb kinematics between marker-
less (Theia3D) and the commonly used marker-based PiG model in typically developed
children. The results showed significant differences across all kinematics, which varied
with age; however, the RMSD errors in this study were comparable to those previously
published. The differences between models emphasise that the two systems cannot be
used interchangeably at this stage. Further investigations are needed to determine whether
markerless lower limb kinematics are an accurate method in typically developing children,
particularly in clinical populations.
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