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INFRARED 

Detecting Cardiovascular Diseases and Diabetes Mellitus 
Through Fingernails Using Attenuated Total Reflectance- 
Fourier Transform Infrared Spectroscopy and Machine 
Learning

Megan Wilsona, Dhiya Al-Jumeilyb, Leung Tangc, Jason Birketta, Iftikhar Khana, 
Ismail Abbasd, and Sulaf Assia 

aSchool of Pharmacy and Biomedical Sciences, Liverpool John Moores University, Liverpool, United 
Kingdom; bSchool of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, 
United Kingdom; cChemical Analysis Group, Agilent Technologies, United Kingdom; dFaculty of Science, 
Lebanese University, Beirut, Lebanon 

ABSTRACT 
Cardiovascular diseases (CVDs) and diabetes mellitus (DM) represent a 
global concern for the public and often result in severe medical and/or 
economic consequences. Traditional disease detection techniques such 
as blood work and cardiac catheterization are not only invasive and 
intrusive, but also require high expenses for equipment, facilities and 
training. This urges for the use of alternative methods such as infrared 
(IR) spectroscopy, which has shown great success in the detection of can-
cer, Fabry disease and kidney disease. Through the combination of 
machine learning algorithms (MLAs) and the alternative biological matri-
ces (fingernails), infrared (IR) spectroscopy has the potential to replace 
traditional techniques, especially in low- and middle-income countries, 
where the economic and medical consequences created by CVDs and 
DM are at their highest. Thus, this work explored the detection of CVDs 
and DM through fingernails using attenuated total reflectance-Fourier 
transform infrared (ATR-FTIR) spectroscopy, chemometrics and MLAs 
such as correlation in wavenumber space (CWS), principal component 
analysis (PCAs) and self-organizing maps (SOMs). Spectral interpretation 
of fingernail spectra revealed the presence of key endogenous com-
pounds such as amino acids, lipids and proteins, as well as disease- 
related compounds including glucose, high-density lipoproteins (HDLs) 
and homocysteine. Moreover, the applied MLAs demonstrated the feasi-
bility of ATR-FTIR spectroscopy for the classification of healthy vs. dis-
eased fingernails. Of these MLAs, PCA and SOM were more accurate 
than CWS where the latter showed high number of mismatches 
between fingernail spectra of varying health/disease status. However, 
PCA and SOM demonstrated more accurate clustering between healthy 
and diseased fingernails. This in turn confirmed that ATR-FTIR and MLAs 
were accurate in detecting CVDs and DM in fingernails non-destructively.
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Introduction

The incidence of cardiovascular diseases (CVDs) represents a global concern for the 
public. Collectively CVDs have remained the leading cause of death globally and have 
created severe medical and economic consequences (World Health Organisation 2019). 
In 2019, the number of CVD deaths was approximately 17.9 million and this number is 
expected to rise to 23.6 million in 2030, if their diagnosis and treatment is not vastly 
improved (Ghazali et al. 2015; Roman, Martin, and Sauli 2019; Vaduganathan et al. 
2022; World Health Organisation 2019). The rise of CVD cases has become detrimental 
in low- and middle-income countries (LMICs) in comparison to developed countries, 
where treatment and diagnostic training are more accessible (Sianga, Mbago, and 
Msengwa 2025). Through the rise in risk factors including excessive alcohol consump-
tion, poor exercise and smoking, CVDs now do not only affect older people, but also 
young individuals, who are more likely to take part in risk factors/behaviors (Dedefo 
et al. 2018). The accessibility of such risk factors/behaviors have now created a para-
digm shift within the prevalence of disease.

A close link exists between CVDs and diabetes mellitus (DM), which is also 
extremely prevalent in LMICs (Leon and Maddox 2015). In fact, CVDs are the most 
prevalent cause of mortality and morbidity within the diabetic population (Leon and 
Maddox 2015; Matheus et al. 2013). Moreover, direct costs related to DM primarily 
lend themselves to macrovascular and microvascular complications such as coronary 
artery disease (CAD), hypertension, myocardial infarction and peripheral vascular dis-
ease (American Diabetes Association 2008; Bahia et al. 2011). To minimize the preva-
lence of such diseases and their economic burden, it is first crucial that diagnostic 
errors are avoided. Diagnostic errors, characterized by the late or misdiagnosis of dis-
ease, are under-recognized sources of patient harm and excessive spending linked to 
malpractice litigation cases and the administration of unnecessary treatment/therapies 
(Gandhi et al. 2006; Phillips et al. 2004; Quinn et al. 2017; Schiff et al. 2013; Zuccotti 
and Sato 2011). The diagnosis of CVDs and/or DM can often be challenging, particu-
larly in patients who do not take part in risk factor behaviors or present atypical disease 
symptoms (Panju et al. 1998; Quinn et al. 2017; Sequist et al. 2006, 2012). For example, 
a previous systematic review identified sex bias within the diagnosis of CVDs in 
females. The diagnosis of CVDs for female patients is difficult, as females often display 
atypical symptoms that are misdiagnosed as anxiety or gastrointestinal related (Al 
Hamid et al. 2024). As a result, CVDs are often left untreated and further complications 
arise such as angina and stroke, as well other comorbidities including DM and depres-
sion (Thompson and Yancy 2004).

Another study reported the extreme misclassification of DM, with 10–25% of patients 
with type 2 diabetes mellitus (T2DM) being incorrectly diagnosed with type 1 diabetes 
mellitus (T1DM) (Lusignan et al. 2010, 2011). Additionally, another 5% of patients diag-
nosed with T2DM showed no objective evidence of DM (Lusignan et al. 2010, 2011). 
Therefore, to improve the economic burden created through the misdiagnosis of CVDs 
and/or DM, disease detection techniques must be highly sensitive.

Traditional techniques for the detection of CVDs and/or DM include blood work, 
cardiac catheterization, cardiac stress testing, chest X-rays, computed topography (CT) 
scans and echocardiogram (ECGs) (American Diabetes Association 2011; Bangalore 
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et al. 2021; Gillam and Marcoff 2024; Ladapo, Blecker, and Douglas 2010; Lopez-Mattei 
et al. 2023). While the aforementioned techniques do offer high sensitivity, there use in 
LMICs in often unfeasible. For example, interpretation of CT scans and ECGs require 
advanced user knowledge (Amini et al. 2022; Kazemi et al. 2023). In LMICs were train-
ing and equipment maintenance is expensive, such methods are not plausible. 
Therefore, interpretations can after create misdiagnosis, mistreatment and create add-
itional disease-related complications.

New techniques are thus required to deliver accurate accounts of disease detection, 
with a high degree of sensitivity and specificity. Infrared (IR) spectroscopy, which is 
based on the scattering, reflection, absorption or transmission of IR radiation, offers 
affordable, non-intrusive and noninvasive analysis of a range of biological matrices 
including blood (plasma and serum), fingernails, hair, urine and saliva (Jee 2024). ATR- 
FTIR spectroscopy has been shown to be successful in detecting diseases from different 
biological matrices including saliva (Jee 2024; Kumar, Srinivasan, and Nikolajeff 2018), 
serum (Silva et al. 2024) and fingernails (Coopman et al. 2017; Farhan, Sastry, and 
Mandal 2011). The aforementioned studied demonstrated the potential for ATR-FTIR 
in detecting diseases by monitoring biomarkers and/or endogenous compounds in bio-
logical matrices. Endogenous compounds reported were lipids, proteins and sugars 
(Coopman et al. 2017; Farhan, Sastry, and Mandal 2011; Jee 2024; Kumar, Srinivasan, 
and Nikolajeff 2018; Silva et al. 2024; Wu et al. 2023). Particularly in fingernails, keratin 
glycation was monitored using ATR-FTIR spectroscopy (Coopman et al. 2017; Farhan, 
Sastry, and Mandal 2011). Yet, some confounding factors related to other diseases 
affected the glycation process in the study.

Considering these limitations, the present study built on the findings of the latter 
study (Coopman et al. 2017; Farhan, Sastry, and Mandal 2011) in applying ATR-FTIR 
spectroscopy to individuals that have DM co-existing with other conditions, e.g., CVDs. 
Thus, the present study evaluated the signature of fingernails in multiple conditions and 
utilized unsupervised machine learning algorithms (MLAs) to understand differences in 
healthy and diseased fingernails.

MLAs have showed advancement in previous studies by significantly improving the 
efficiency of analyzing ATR-FTIR spectra from biological samples; thus, facilitating clin-
ical applications including screening, diagnosis, risk stratification and prognosis predic-
tion of Alzheimer’s disease, aspergillosis, cancer, Covid-19, hepatitis C virus, malaria 
and paracoccidioidomycosis (Alajaji et al. 2025; Coopman et al. 2017; Fadlelmoula et al. 
2023; Farhan, Sastry, and Mandal 2011; Maiti 2023; Wu et al. 2023). Therefore, this 
study built on the previous studies that used either ATR-FTIR spectroscopy and/or 
MLAs for diseases diagnosis. As such, this study explored the detection of CVDs and 
DM through fingernails using ATR-FTIR spectroscopy and MLAs.

Methodology

Sample collection

Ethical approval for the collection of fingernail clippings was granted by two institutes, 
those being: Liverpool John Moores University (LJMU) (23/PBS/009A) and the 
Lebanese University (2022-0104). Participants were approached through a LJMU’s 
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community site and were provided with a participant information sheet, questionnaire 
and consent form. Inclusion criteria included adult age (�18 years old), while those that 
were ˂18 years old were excluded from the study. Individuals, with no previous medical 
diagnosis, were included and classed as healthy controls. Those that had a previous 
diagnosis of a medical condition or disease, which was not related to either CVDs or 
DM, were accepted but classified as unhealthy away from the CVD and/or diabetic par-
ticipants. Moreover, those with a CVD such as hypertension or CAD and/or DM (type 
1 or type 2), were included and classified as either CVD, diabetic or CVD-diabetic. The 
optimized sample size was calculated through the following equation for the sample size 
(Al Hamid 2015):

n ¼
t2x pð1 − pÞ

m2 (1) 

where n is the desired sample size, t represents the level of confidence at 95% (1.96), p 
is the estimated prevalence of the characteristics of interest in the project area, and m is 
the error margin at 5% (0.05).

Based on Eq. (1) and considering the previous studies, an ideal sample size of 381 
fingernail clippings was sought. As 126 participants were recruited, 1182 fingernail clip-
pings were accounted for, as several participants failed to provide a full set (n¼ 10). In 
this respect, 92 (73%) sets of fingernails were complete, 15 (12%) sets had nine clip-
pings, eight sets (6%) had eight clippings, six (5%) had seven clippings and five (4%) 
had six clippings. Fingernail clippings where then stored in 2 mL glass vials prior to 
analysis. Participants were also asked to fill in an anonymous questionnaire for the col-
lection of clinical data, which complemented the IR data.

The sample consisted of both female (n¼ 76, 60%) and male (n¼ 50, 40%) partici-
pants, aged between 18 and 84 years old. Across this age range, participants were cate-
gorized into five age groups, those being: 18–24 (n¼ 21, 17%), 25–34 (n¼ 11, 9%), 35– 
39 (n¼ 5, 4%), 40–64 (n¼ 69%, 55%) and 65–84 (n¼ 20, 16%) years old. A total of 
seven ethnic groups were represented and included Arab (n¼ 38, 30%), Asian (n¼ 14, 
11%), Indian (n¼ 2, 2%), Lebanese Arab (n¼ 22, 17%), Middle Eastern Arab (n¼ 2, 
2%), mixed (unspecified) (n¼ 2, 2%) and White (n¼ 46, 37%). Based on the clinical 
data provided and the participants health or disease status, participants were placed into 
one of five groups those being healthy (n¼ 68, 53.9%), other unhealthy (medical condi-
tion that is not CVD and/or DM) (n¼ 23, 18.7%), CVD (n¼ 15, 11.9%), diabetic 
(n¼ 5, 3.97%) and CVD-diabetic (n¼ 15, 11.9%). CVD participants reported the pres-
ence of atrial fibrillation (n¼ 1, 6.67%), heart disease (n¼ 2, 13.3%) and hypertension 
(n¼ 12, 80%). The diabetic participants reported either type 1 (T1DM) (n¼ 1, 20%) or 
type 2 diabetes mellitus (T2DM) (n¼ 4, 80%).

Prior to spectral measurements, the length, depth and width of each fingernail clip-
ping was taken. Based on these measurements, each fingernail clipping received a label 
of A–J. Fingernails labeled A and B, were the largest in length and were usually taken 
from the thumb. While fingernail clippings I and J were the smallest fingernail clipping 
and taken from the participant’s little finger.
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Instrumentation

For the collection of ATR-FTIR spectra, the Agilent 4500a ATR-FTIR spectrometer was 
utilized (Agilent Technologies, Inc. Santa Clara, CA). Samples were measured over the 
range 4000–650 cm−1 using an ATR diamond and diamond holder. At a resolution of 
4 cm−1, 64 backgrounds scans were taken per spectrum. Apodization was carried out 
using a triangular motion.

Fingernail measurements

Prior to measurements being taken, fingernail clippings were removed from clear glass 
vials. In cases of contamination such as fingernail polish and/or environmental dirt, fin-
gernails were soaked in acetone for 2–3 h. For the collection of ATR-FTIR spectra, indi-
vidual fingernail clippings were placed directly onto the diamond holder and held into 
place using the presser. The applied pressure ensured that the fingernail clipping was 
flat against the ATR diamond. For each clipping, a total of three spectra were taken, 
hence, producing 30 spectra per fingernail set. To ensure maximized spectral collection 
and that the distribution of the endogenous compound across was accounted for, spec-
tra were collected from the dorsal and ventral layers. When fingernail sets were incom-
plete (<10 fingernails clippings), additional spectra were collected. In between spectra, 
the ATR diamond was cleaned and a background taken. A reference spectrum of poly-
styrene film was also used for calibration purposes and to return the instrument to its 
original baseline. Thus, reference spectra were taken before and after the application of 
fingernails.

Data analysis

For spectral visualization and application MLAs, ATR-FTIR spectra were imported into 
MATLAB 2019a. The aforementioned software allowed for the visualization of ATR- 
FTIR spectra for the purpose of spectral quality and spectral interpretation assessments. 
Spectral quality parameters included number of bands, maximum band position/inten-
sity, range and the signal-to-noise ratio. The highlighted parameters were utilized to 
determine the IR activity as either strong, medium or weak.

To further explore the feasibility of ATR-FTIR spectrometry, MLAs such as correlation 
in wavenumber space (CWS), principal component analysis (PCA) and self-organizing 
maps (SOMs) were employed. The application of CWS allowed the correlation coefficient 
(r) values of the test spectrum to be matched against the reference spectrum (Assi et al. 
2019). A calculated r value of −1 indicated that the test and reference spectra were com-
pletely dissimilar. While an r value of þ1 demonstrated that the test and reference spectra 
were identical. Due to sample noise, it was often difficulty to obtain an r value of þ1; 
therefore a threshold of 0.95 was employed as a match (Assi et al. 2019).

To reduce the original matrix’s dimensionality into subspaces of scores and loadings, 
PCA was applied. The PC scores demonstrated the distribution of fingernails, particu-
larly healthy vs. diseased fingernails, in a multidimensional space. Additionally, the PC 
scores allowed for the visualization of clusters and pattern within the dataset (Abid 
et al. 2018). In this respect, clustering scores of the healthy fingernails away from the 
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diseased or unhealthy fingernails. The PC loadings demonstrated significant absorbance 
values that were representative of key endogenous compounds found within the finger-
nails (Jolliffe and Cadima 2016). As a linear combination of the original data, PCs were 
calculated and ordered based on their size. Thus, the first dimension (PC1) provided 
explainability for the highest variance, followed by the second dimension (PC2) for the 
second highest variance and the third dimension (PC3) for the third highest dimension 
(Camargo 2022). To validate the PCA findings, SOMs were employed. As neural net-
work modes, SOMs were composed of organized neurons that could detect spectral fea-
tures without an awareness of spectra’s classes or memberships (Assi et al. 2023). Based 
on previous experiments, three variations were expected within the SOMs, including the 
fingernail’s physical properties, fingernail’s water content and the absence or presence 
of disease, a 3� 3 SOM was applied with 100 epochs.

Results and discussion

Spectral analysis of fingernails

Spectral interpretation of 126 fingernail sets (n¼ 1191 fingernail clippings) was carried 
out and represented healthy, unhealthy, CVD, diabetic and CVD-diabetic participants. 
A comparison with the literature and reference standards revealed key ATR-FTIR fre-
quencies and their corresponding endogenous compounds (Table 1).

Several amide groups were identified over the 4000–650 cm−1 range. Amide A of the 
fingernail’s protein was identified at 3277 cm−1 and was attributed to symmetric N–H 
stretching (Selvam and Gunasekaran 2018). Amide A and B were detected at 3067 cm−1 

and were related to N–H stretching (Sharma et al. 2020).The presence of Amide I was 
identifiable at 1642 cm−1 and related to C¼O stretching coupled with in-plane bending 
of N–H and C–N stretching of the fingernails’ a-helix (Sundaram et al. 2016). Amide II 
was detected between the region 1582–1562 and at 1535 cm−1 and was attributed N–H 
in-plane bending, coupled with C–N stretching vibrations of proteins and C–O stretch-
ing coupled with N–H bending deformation and C–H stretching, respectively 
(Gunasekaran et al. 2010). Finally, amide III was detected at 1296 and 1249 cm−1, which 
were attributed to N–H bending and N–H in plane bending paired with O¼C–N bend-
ing and C–N stretching, respectively (Sharma et al. 2020).

The presence of lipids was identified at 2960 cm−1 and were related to C–H asymmet-
ric stretching of CH3 (Sharma et al. 2020; Sundaram et al. 2016). Lipids and proteins 
were also detected at 2920, 2851 and 1452 cm−1, which was attributed to C–H symmet-
ric stretching of CH3, C–H symmetric stretching of CH2 and CH2 and CH3 asymmetric 
bending modes (Sharma et al. 2020; Sundaram et al. 2016). At 1738 cm−1, high-density 
lipoproteins were identified and was associated with the C¼O groups of cholesterol 
esters (Selvam and Gunasekaran 2018; Gunasekaran et al. 2010).

Several amino acids were detected at 1398 cm−1 and included cysteine, cystine, tyro-
sine and tryptophan (symmetric mode of CH3) (Barton 2004; Bantignies et al. 1998). 
Interestingly, glucose was identifiable at key bands 1115 and 1080 cm−1 and were attri-
buted to stretching of glycogen and CO symmetric stretching, respectively (Abid et al. 
2018).
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Detection of disease

To identify differences between the healthy, unhealthy, CVD, diabetic and CVD- 
diabetic fingernails, five areas of interest were examined and variation between the 
absorbance levels of each group noted (Figure 1). As the healthy group was classed as 
the majority and the remaining groups, the minority, data balancing was carried out. 
Therefore, five participants were selected, one from each group. The fingernail sets 
matched in completeness (number of fingernail clippings within the set) and number of 
spectra taken (n¼ 30). An equal balance of spectra per fingernail group, ensured that 
overfitting of models was avoided and allowed an equal comparison between the 
groups. Participants included MWS1 (healthy), MWS46 (hypertension), MWS51 
(T1DM), MWS57 (T1DM and CAD) and MWS98 (elevated blood pressure). The 
absorbance levels for the selected regions represented the ATR-FTIR of key endogenous 
compounds and showed variation between the healthy, unhealthy and diseased finger-
nails. ATR-FTIR activity was based on the following criteria: number of bands, the 
range, signal-to-noise ratio and maximum absorption intensity.

The first area of interest was selected between 3570 and 2999 cm−1 and was attributed to 
amide groups and the fingernails’ proteins (Selvam and Gunasekaran 2018; Sharma et al. 
2020). Within the aforementioned region, unhealthy participant MWS98 demonstrated the 
highest ATR-FTIR activity and was followed by healthy>CVD-diabetic> diabetic>CVD 

Table 1. Spectral interpretation of healthy, unhealthy, CVD, diabetic and CVD-diabetic participants 
measured using the Agilent 4500a ATR-FTIR spectrometer equipped with an ATR diamond.
Band position (cm−1) Functional group Association

3277 Symmetric N–H stretching Amide A of protein (Selvam and Gunasekaran 2018)
3067 N–H stretching Amide A and B (Sharma et al. 2020)
2960 C–H asymmetric stretching of CH3 Lipids and total cholesterol (Sharma et al. 2020; 

Sundaram et al. 2016)
2920 C–H symmetric stretching of CH3 Lipids and proteins (Sundaram et al. 2016)
2851 C–H symmetric stretching in CH2 Lipids and proteins (Sundaram et al. 2016)
1738 C¼O groups of cholesterol esters High-density lipoproteins (Gunasekaran et al. 2010; 

Selvam and Gunasekaran 2018)
1644–1642 C¼O stretching coupled with in- 

plane bending of N–H and C–N 
stretching

Amide I (a-helix) (Farhan, Sastry, and Mandal 2011; 
Mitu et al. 2023; Sundaram et al. 2016)

1633 C¼O stretching Amide I (Sundaram et al. 2016)
1582–1562 N–H in plane bending vibration 

strongly coupled to C–N 
stretching vibration protein, NH2 

scissoring

Amide II, homocysteine (Gunasekaran et al. 2010)

1535 C¼O stretching coupled with C–N 
stretching and bending 
deformation of N–H

Amide II (Sundaram et al. 2016)

1452 CH2 and CH3 asymmetric bending 
modes

Lipids and proteins (Sharma et al. 2020; Sundaram 
et al. 2016)

1447 Methyl symmetric deformation Amino acids, triglycerides (Fern�andez-Higuero et al. 
2014)

1398 Symmetric mode of CH3 Amino acids (Bantignies et al. 1998; Barton 2004)
1296 N–H bending Amide III (Sharma et al. 2020)
1249 N–H in plane bending paired with 

O¼C–N bending and C–N 
stretching

Amide III (Sharma et al. 2020)

1115 Stretching of glycogen Glucose (Selvam and Gunasekaran 2018)
1080 CO symmetric stretching Glucose (Selvam and Gunasekaran 2018)
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participants. Previous research made apparent the relationship between high levels of pro-
teins and high blood pressure (Appel 2003). Thus, providing accountability for the 
increased ATR-FTIR activity of proteins within this region and unhealthy fingernail clip-
pings. The healthy fingernail set demonstrated the second highest ATR-FTIR activity of 
this area and this could be indicative of the participant’s habits of smoking (2–8 cigarettes 
daily). Despite limited research linking the fingernail’s proteins and smoking, previous 
research demonstrated that cigarette smoking increased inflammation and as a result 
increased the expression of proteins in plasma (Kolli 2023).Interestingly, participants 
MWS46, MWS51 and MWS57, did not report any smoking habits and showed the lowest 
ATR-FTIR activity of proteins.

The second area of interest was located between 3000 and 2828 cm−1 and was associ-
ated with lipids and cholesterol (Sharma et al. 2020; Sundaram et al. 2016). At this 
region, diabetic fingernails possessed the highest absorbance and in turn ATR-FTIR 
activity, followed by CVD> healthy> unhealthy>CVD-diabetic fingernails. As many 
diabetics suffer from hyperglycemia, the high ATR-FTIR activity of lipids for diabetic 
fingernails is not unexpected (Verghese et al. 1990). CVD fingernails also showed a 
strong ATR-FTIR activity within this region, which was also attributed hyperglycemia 
commonly seen in the development of CVDs. Similarly, between the region 1482– 
1426 cm−1 diabetic fingernails showed the highest ATR-FTIR activity followed by 
CVD> unhealthy>CVD-diabetic and was attributed to amino acids, lipids and trigly-
cerides. Within the region 1424–1362 cm−1, high ATR-FTIR activity of amino acids was 
also observed in unhealthy> diabetic>CVD>CVD-diabetic> healthy fingernails. The 
high ATR-FTIR of amino acids within the fingernails is reflective of circulating amino 
acid levels found within the plasma. For example, work by Cai et al. (2024) and Fine, 
Wilkins, and Sawicki (2024) demonstrated that sufferers of CVDs, DM and/or elevated 
blood pressure showed high levels of amino acids such as isoleucine, leucine and valine. 

Figure 1. ATR-FTIR spectra of healthy (green), unhealthy (magenta), cardiovascular disease (CVD) 
(red), diabetic (blue) and CVD-diabetic (black) fingernails.
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Therefore, we suggest that the ATR-FTIR activity of key endogenous compounds found 
in the fingernails is reflective of circulating endogenous compounds within the blood.

Amide I and amide II groups relating to the fingernails’ protein structure was 
detected at 1674–1588 cm−1 (Farhan, Sastry, and Mandal 2011; Fern�andez-Higuero 
et al. 2014; Gunasekaran et al. 2010; Sundaram et al. 2016). Within this region, 
healthy participant MWS1 produced the highest ATR-FTIR activity, followed by 
diabetic>CVD> unhealthy>CVD-diabetic participants. Sihota et al. (2019) investi-
gated the relationship between amide content of healthy control vs. controlled and 
uncontrolled diabetic cases. This work demonstrated that amides I and II content 
decreased in both controlled and uncontrolled diabetic cases (Sihota et al. 2019). 
Thus, indicating that the presence of DM impaired protein regulation and disrupted 
the keratin structure of the fingernail.

Additional spectral interpretation assessments were carried out using the full spectral 
dataset (n¼ 126 fingernail sets) and revealed the presence of additional ATR-FTIR bands 
that were associated to the presence of disease. For example, an additional band was iden-
tified at 1115 cm−1 (stretching of glycogen) and was attributed to the presence of glucose 
(Selvam and Gunasekaran 2018). Glucose is deposited into the fingernail in the form of 
advanced glycation end-products (AGEs) or glycated proteins. Thus, the appearance of 
glucose within the diabetic fingernail spectra is not unexpected. In fact, several diabetic 
participants including MWS43, MWS51 and MWS58, demonstrated ATR-FTIR activity 
at 1115 cm−1. It is worth noting that while the aforementioned band was detected for sev-
eral non-diabetic participants, the ATR-FTIR activity of this band was lower in non- 
diabetic participants. For instance, the ATR-FTIR activity of band 1115 cm−1 for healthy 
participant MWS5 was 0.127 absorbance units. Whereas diabetic participant MWS43 pos-
sessed 0.150 absorbance units at the band of interest. Thus, demonstrating an accumula-
tion of glucose within diabetic fingernails. In like fashion, a band located at 1080 cm−1 

(CO symmetric stretching) was also indicative of glucose (Selvam and Gunasekaran 
2018). Similarly diabetic participants showed a greater ATR-FTIR activity at this band 
than healthy participants (0.116 vs.0.0987 absorbance units).

For several ATR-FTIR spectra, the absence of band 1738 cm−1 was noticeable. The 
aforementioned band lends itself to high-density lipoproteins (HDLs) and can be attri-
buted to C¼O groups of cholesterol esters (Barton 2004; Selvam and Gunasekaran 
2018). The presence of band 1738 cm−1 was noted for a low number of participants 
(n¼ 26), who were classified as healthy (n¼ 20), unhealthy (n¼ 2), CVD (n¼ 2) and 
diabetic (n¼ 2). HDLs, often referred to as ‘good cholesterol’, play an imperative role in 
lipid metabolism and have previously demonstrated a protective effect against CVDs 
(Farhan, Sastry, and Mandal 2011). Through the transportation of cholesterol from per-
ipheral tissues such as arterial walls to the liver for excretion, HDLs prevent the build- 
up of cholesterol in blood vessels; thus, reducing CVD risk (Das and Ingole 2023). 
Hausenloy and Yellon (2008) also made apparent their anti-inflammatory, antioxidant 
and anti-thrombotic benefits, which further contribute to their cardioprotective proper-
ties. Therefore, a low level of HDLs is considered a risk factor for CVDs (Das and 
Ingole 2023).

Hypoalphalipoproteinemia, where HDL levels are < 40 and < 50 mg/dL in males and 
women, respectively, is often the consequence of poor lifestyle choices including a lack 
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of exercise, unhealthy diets and extreme alcohol consumption (Das and Ingole 2023; 
Schaefer et al. 2016). Moreover, have also been associated with insulin resistance, DM 
and other medical conditions such as cancer (Penson et al. 2019). This was the case for 
participant MWS15, who had previously been diagnosed with breast cancer, and a num-
ber of CVD, diabetic and CVD-diabetic participants, who did not present ATR-FTIR 
activity at band 1738 cm−1. In cases where HDLs were absent in healthy spectra, the 
clinical data was referred to and revealed that participants made poor lifestyle choices 
including infrequent or no exercise, frequent fast-food consumption, unbalanced diet 
and smoking.

Between the region 1582–1562 cm−1, the presence of homocysteine was detected and 
was attributed to NH2 scissoring (Assi et al. 2019). Hyperhomocysteinemia, elevated lev-
els of homocysteine, creates blood vessel irritation and in severe cases hardening of 
arteries (atherosclerosis) and blood clots (venous thrombosis) (Varga et al. 2005). 
Several of the CVD participants, including MWS46, MWS47, MWS52, MWS56 and 
MWS71, demonstrated high ATR-FTIR activity within this region. Increased activity of 
homocysteine has also been associated with lifestyle factors including consumption of 
alcohol and caffeine, folate intake, smoking and physical exercise (Bree et al. 2001; Giles 
et al. 1999; Maron and Loscalzo 2007; Nygård et al. 1997, 1998; Selhub et al. 1993; 
Ubbink et al. 1998; Vollset et al. 2001). The aforementioned factors were reported by 
several participants including MWS32, MWS54, MWS61–MWS63, MWS89, MWS90, 
MWS99, MWS100 and MWS101, who presented ATR-FTIR activity within 
1582 − 1562 cm−1.

Application to machine learning algorithms

To further understand the relationship between disease and the fingernails’ endogenous 
compounds, several MLAs were applied. The first applied MLA was CWS, which dem-
onstrated the relationship or correlation between fingernails of similar or dissimilar 
characteristics/disease status. As 30 spectra were taken per fingernail set, 150 spectra 
(five sets of clippings) were applied to the model and prevented this issue of overfitting 
or creating an overly complex model. As highlighted by Figure 2, each fingernail set 
produced an r value of þ1 against itself, indicating a positive match. Five spectra, taken 
from fingernail set MWS1, produced r values of þ1 against one another and indicated a 
match. Moreover, a minimal number of mismatches (n¼ 3) were seen between healthy 
vs. healthy spectra. Thus, ATR-FTIR was able to detect healthy fingernails. When com-
pared to unhealthy and diseased fingernails, several mismatches were observed. For 
example, when healthy spectra were correlated against unhealthy spectra, 53 mismatches 
were identified. Healthy spectra vs. CVD, diabetic and CVD-diabetic spectra produced 
71, 119 and 10 mismatches, respectively. Thus, across the four remaining groups, ATR- 
FTIR showed the greatest discrimination between healthy vs. diabetic fingernails.

A total of 386 mismatches were detected for unhealthy spectra. The largest number 
of mismatches was observed between unhealthy vs. diabetic spectra with a total of 146 
mismatches. Unhealthy vs. CVD spectra also produced a high number of mismatches 
(n¼ 107), followed by unhealthy vs. healthy spectra, which showed 71 mismatches. 
Several type II errors were identified, as 28 unhealthy spectra mismatched against 
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spectra of the same unhealthy status. Nevertheless, ATR-FTIR spectroscopy paired with 
CWS demonstrated the ability to differentiate between unhealthy and healthy or disease 
spectra.

Overall, CVD spectra produced 523 mismatches across the five groups. Despite CVD 
and DM sharing similar pathophysiological features, the highest number of mismatches 
(n¼ 160) was recorded for the aforementioned groups (De Rosa et al. 2018). A high 
number of mismatches were also observed between CVD and unhealthy fingernails 
(n¼ 107). The ATR-FTIR spectroscopy paired with CWS, also showed some ability to 
differentiate between CVD and healthy spectra, with 70 mismatches between the two 
groups. Nonetheless, 121 mismatches were noted between CVD vs. CVD spectra and 
was attributed to type II error.

Across the five groups, diabetic spectra demonstrated the highest number of mis-
matches (n¼ 766). In like manner to the classification of CVD spectra, diabetic vs. 
CVD spectra produced the highest number of mismatches (n¼ 157), followed closely by 
diabetic vs. unhealthy spectra with 147 mismatches, while diabetic vs. healthy spectra 
produced 120 mismatches. When compared to spectra of the same disease status, a high 
number of mismatches were observed (n¼ 214). However, it is important to note that 
while many type II errors were seen, several diabetic spectra (n¼ 15) produced a perfect 
r value of þ1 against other diabetic spectra.

The lowest number of mismatches was observed for the correlation of CVD-diabetic 
spectra, which produced a total of 260 mismatches. Against the remaining five groups, 

Figure 2. Correlation in wavenumber space (CWS) of average ATR-FTIR spectra taken from healthy 
(1–30), unhealthy (31–60), CVD (61–90), diabetic (91–120) and CVD-diabetic (121–150) fingernails 
measured using the Agilent 4500a ATR-FTIR spectrometer equipped with an ATR diamond. The color 
bar demonstrated the correlation between the spectra and made apparent the corresponding r-value. 
Dark blue represented a minimum r value of 0.75, while the bright yellow demonstrated the max-
imum r value of 0.9999. Between the minimum and maximum r values, a blue color corresponded to 
an r value of 0.80–0.85, light blue corresponded to an r value of 0.85–0.90, green/yellow corre-
sponded to an r value of 0.90–0.95 and orange/yellow corresponded to an r value of 0.95–1.00.
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CVD-diabetic fingernails produced 11 (healthy), 45 (unhealthy), 65 (CVD) and 129 
(diabetic) mismatches. Against spectra of the same disease status, a minimal number 
(n¼ 10) of mismatches were identified. However, it is worth noting that the limited 
number of mismatches between CVD-diabetic spectra and the remaining four groups 
can be attributed to the CVD-diabetic participant sharing similar CVD (CAD) and dia-
betic (T1DM) diagnoses as the CVD and diabetic participants, MWS46 and MWS51, 
respectively.

Across the CWS model, 2191 mismatches were identified and demonstrated the abil-
ity of ATR-FTIR spectroscopy paired with CWS to differentiate between fingernails of 
different health or disease status. In addition, ATR-FTIR spectroscopy correctly corre-
lated spectra with the same health or disease status, particularly healthy spectra, which 
only produced three type II errors. The presence of several mismatches between finger-
nail spectra of differing health or disease (type I error) can be attributed to the sharing 
of the same set of endogenous compounds across all fingernails, despite the absence or 
presence of disease. Therefore, while disease such as CVDs and/or DM did alter the cir-
culation of key endogenous compounds, the presence of disease did not significantly 
alter the ATR-FTIR spectra. Hence indicating that for the detection of disease, in-depth 
spectral interpretation of key IR bands and absorbance levels are necessary.

A PCA model was then applied to fingernail spectra for the visualization of clusters 
and patterns within the spectral data. The PCA model demonstrated a high variance of 
98.9%, with PC1 corresponding to 98.1% of the variance and PC2 to 0.818% of the vari-
ance. Figure 3 demonstrated the clustering of the five groups and confirmed shared epi-
demiological and biological mechanisms of CVDs and DM. For example, 
hyperglycemia, a common diabetic symptom, is also extremely prevalent in patients 
with CVDs (Diabetes UK 2024). High blood sugar levels have associated with blood ves-
sel damage and as a result increases inflammation and disrupts normal blood flow. 

Figure 3. Principal component analysis (PCA) of ATR-FTIR spectra of healthy (green), unhealthy 
(magenta), CVD (red), diabetic (blue) and CVD-diabetic (black) fingernails.
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In extreme cases, whereby the two conditions occur as comorbidities, microvascular and 
macrovascular complications worsen (Kotis et al. 2005). Similarly, CVD-diabetic and 
diabetic spectra were clustered together based on their shared diagnosis of T1DM. 
Thus, shared similar ATR-FTIR activity of key endogenous compounds. In like manner, 
CVD and unhealthy spectra were presented in close proximity, which can be attributed 
to the similarities seen between hypertension (>130 mm Hg) and elevated blood pres-
sure (120–129 mm Hg) (World Health Organisation 2023). Through the poor manage-
ment of elevated blood pressure, hypertension can occur, causing further narrowing and 
damage to the arteries and preventing sufficient blood flow (World Health Organisation 
2023). Thus, the deposition of endogenous compounds and corresponding ATR-FTIR 
activity seen with the fingernails of participants with high blood pressure or hyperten-
sion is likely to be similar.

SOMs were applied as an additional proof of concept and validated PCA findings. 
The SOMs of choice included neighbor weight distances (Figure 4) and sample hits 
(Figure 5). Neighbor weight distances made apparent the distances and relationships 
between the inputted spectra. Dark colors including black, dark red and red represented 
smaller distances between neurons and in term highlighted close relationships between 
the inputted spectra. For instance, two neurons connected by the black hexagon corres-
pond to healthy and unhealthy spectra. Therefore, confirming the close clustering of 
healthy and unhealthy spectra within the previous PCA model. Despite the presence of 
high blood pressure, the ATR-FTIR activity of key endogenous compounds was not sig-
nificantly altered which can be attributed to the management of the condition. 
Participant MWS98 reported the use of Aldomet (methyldopa), which is administered 

Figure 4. Self-organizing map (SOM) neighbor weight distances of ATR-FTIR spectra of healthy, 
unhealthy, CVD, diabetic and CVD-diabetic fingernails.
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for the treatment of high blood pressure. Through the repeated use of such prescription 
drugs, it is likely that participant MWS98 has managed their condition well and pre-
vented severe damage to the arteries. Therefore, allowing endogenous compounds to 
move freely to finger’s palmer digital arteries and to carry out passive diffusion into the 
fingernail. Light colored hexagons such as orange, yellow and light yellow were indica-
tive of larger distances and loosely related spectra.

For example, a light yellow hexagon was seen between the neurons representing the 
healthy and CVD-diabetic fingernail sets and further confirmed previous PCA findings. 
The high variability between healthy vs. CVD-diabetic fingernails can be attributed to the 
diagnosis of CAD and T1DM. CAD is characterized by the development of plaque (fatty 
deposits) within artery passages. The formation of such fatty deposits decreases the sup-
ply of blood and oxygen, as well as the distribution of vital nutrients around the body 
(Pandey et al. 2020). Thus, the passive diffusion of endogenous compounds for partici-
pant MWS57 was limited. The presence of T1DM is also detrimental to the passage of 
nutrient and endogenous compounds around the body and to tissues such as fingernails. 
Hyperglycemia can not only cause blood vessel damage but can also block the passage of 
nutrients (Diabetes UK 2024). Therefore, the high variability seen between the healthy 
fingernails, with normal circulation, and CVD-diabetic fingernails, is not unexpected.

Samples hits were also explored to further confirm the grouping of fingernails based 
on their ATR-FTIR activity. Within the model, a total of nine groups were accounted 
for and confirmed the relationships identified within the PCA model. In particular, the 
relationship between CVD and diabetic fingernails, as well as the relationship between 
CVD and unhealthy clippings. Group one (n¼ 16) corresponded to spectra taken from 

Figure 5. SOM sample hits of ATR-FTIR spectra of healthy, unhealthy, CVD, diabetic and CVD-diabetic 
fingernails.
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CVD-diabetic fingernails. Group two (n¼ 24) showed a crossover between CVD and 
CVD-diabetic spectra. A crossover was also demonstrated between CVD and diabetic 
fingernails in groups three (n¼ 12) and four (n¼ 24). Group five consisted solely to 
spectra taken from CVD fingernails. Group five (n¼ 16). Group six (n¼ 32) corre-
sponded to CVD, unhealthy and healthy spectra. Finally, groups seven (n¼ 8), eight 
(n¼ 4) and nine (n¼ 14) represent unhealthy and healthy spectra.

Conclusions

This study demonstrated the feasibility of ATR-FTIR spectroscopy and MLAs for the 
detection of CVDs and/or DM in fingernails. Spectral interpretation allowed for identifi-
cation of key ATR-FTIR bands, as well as their corresponding functional groups and 
related endogenous compounds. The detection of these compounds, such as amino 
acids, lipids and proteins, demonstrated the fingernail’s structural integrity and keratin 
quality. Additional disease-related compounds such as glucose, HDLs and homocysteine 
were also identified. Specifically, the presence of glucose indicated DM, while homocyst-
eine demonstrated the presence of CVDs such as atherosclerosis and hypertension. In 
cases where low ATR-FTIR activity of HDLs were observed, CVD risk was common. 
Nonetheless, low ATR-FTIR activity of HDLs was also attributed to poor lifestyle 
choices such as a lack of exercise, poor diet and smoking.

Six areas of interest were investigated and provided key information regarding the 
ATR-FTIR activity of endogenous compounds and their deposition into healthy and 
unhealthy/diseased fingernails. It was demonstrated that increased ATR-FTIR activity of 
amide I and the fingernail’s protein was associated with high blood pressure and smok-
ing. Moreover, high ATR-FTIR activity of lipids and cholesterol were primarily observed 
in diabetic clippings. The application of MLAs further confirmed the successful applica-
tion of ATR-FTIR spectroscopy for the detection of CVDs and/or DM in fingernails.

Firstly, the CWS model demonstrated a high number of mismatches between spectra 
of varying health/disease status. Thus, ATR-FTIR paired with CWS can efficiently 
match or mismatch the spectra based on similar or dissimilar spectral characteristics 
created by disease and lifestyle. The application of a PCA model, further confirmed this 
finding and grouped fingernail spectra based on their health/disease status. While some 
crossover was observed between the five groups of interest, interaction was minimal 
and when encountered, confirmed the presence of similar epidemiological and biological 
mechanisms between CVDs and DM, as well as high blood pressure and hypertension. 
Crossover was also apparent in the utilized SOMs (neighbor weight distances and sam-
ples hits), which highlighted relationships between CVD and diabetic clippings, CV and 
unhealthy clippings and finally CVD, diabetic and CVD-diabetic clippings.

To conclude, the Agilent ATR-FTIR spectrometer offered noninvasive and non- 
intrusive analysis of fingernails, which can be applied in LMICs. Its ability to detect- 
related compounds including glucose, HDLs and homocysteine makes apparent the 
feasibility of ATR-FTIR as a novel disease detection tool that in future years may 
replace traditional detection techniques such as blood work and CT scans, which are 
expensive, invasive and intrusive.
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