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ABSTRACT: The rapid adoption of machine learning in sensitive domains, such as healthcare, finance, and1

government services, has heightened the need for robust, privacy-preserving techniques. Traditional machine learning2

approaches lack built-in privacy mechanisms, exposing sensitive data to risks, which motivates the development of3

Privacy-Preserving Machine Learning (PPML) methods. Despite significant advances in PPML, a comprehensive4

and focused exploration of Secure Multi-Party Computing (SMPC) within this context remains underdeveloped. This5

review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML, offering a structured6

overview of current techniques, challenges, and future directions. Using a semi-systematic mapping study methodology,7

this paper surveys recent literature spanning SMPC protocols, PPML frameworks, implementation approaches, threat8

models, and performance metrics. Emphasis is placed on identifying trends, technical limitations, and comparative9

strengths of leading SMPC-based methods. Our findings reveal that while SMPC offers strong cryptographic guarantees10

for privacy, challenges such as computational overhead, communication costs, and scalability persist. The paper also11

discusses critical vulnerabilities, practical deployment issues, and variations in protocol efficiency across use cases.12

KEYWORDS: cryptography; data privacy; machine learning; multi-party computation; privacy; SMPC; PPML13

1 Introduction14

Utilizing data in training machine learning models while offering transformative opportunities introduces15

notable privacy challenges. Datasets containing sensitive information [1], such as medical records or financial16

data, require stringent confidentiality to safeguard individual and organizational privacy. Although access17

to such data can enhance model performance and deliver significant advantages, the imperative to protect18

privacy remains a critical constraint. When trained on diverse and extensive datasets, machine learning19

models achieve better accuracy and generalization. However, when data is distributed across multiple entities20

or institutions, privacy concerns emerge as a key obstacle, highlighting the need for effective and robust21

privacy-preserving methodologies.22

1.1 Research Questions23

The literature review on Secure Multi-Party Computing (SMPC) reveals a significant research gap.24

While extensive work exists on Privacy-Preserving Machine Learning (PPML), a comprehensive exploration25

http://www.techscience.com
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of SMPC’s role within the PPML domain is lacking. This research seeks to fill this gap by systematically26

examining the current state of SMPC in PPML [2]. The study encompasses fundamental concepts, key27

approaches, challenges faced, and prospective directions for future research, offering a well-rounded28

perspective on the topic.29

This work also aims to provide valuable insights for researchers and practitioners by presenting an30

up-to-date survey of SMPC techniques. It includes a detailed comparative analysis of various SMPC methods,31

emphasizing their strengths and limitations. Furthermore, the study investigates potential threats to SMPC,32

evaluates diverse SMPC protocols, and discusses metrics for performance assessment and considerations for33

scalability. By synthesizing these aspects, the paper aspires to equip readers with a nuanced understanding34

of modern SMPC practices, thereby enabling informed decision-making in both academic and industrial35

applications.36

Guided by recent deployments of privacy-preserving machine learning, we address three concrete37

questions:38

• RQ1. Which SMPC protocols have been integrated into PPML systems since 2012, and how do they39

compare in terms of security guarantees, model fidelity, and resource overhead?40

• RQ2. What SMPC-specific attack surfaces emerge when training or serving ML models, and how41

effective are existing counter-measures?42

• RQ3. Where are the open performance and usability gaps that block real-world adoption, and what43

research directions can close them?44

1.2 Our contributions45

Relative to prior surveys, we make four specific advances:46

1. Comprehensive SMPC-PPML corpus (Section 4-5). We catalogue peer-reviewed works from 201247

to 2025, annotate them along five dimensions (protocol family, adversary model, #parties, dataset, task).48

(RQ1).49

2. Unified benchmark table. We normalise accuracy, computation time, communication cost, and50

scalability for 17 representative protocols, enabling comparisons that were previously scattered. (RQ1).51

3. Structured threat taxonomy (Section 6.3). We identify SMPC-specific attack vectors and map52

published defences to each vector, highlighting residual risks. (RQ2).53

4. Actionable research agenda (Section 8). We derive six concrete open problems from “low latency54

SMPC for edge devices” to “hybrid SMPC + Differential Privacy (DP) for billion-parameter models”55

and pair each with measurable success criteria for future work. (RQ3).56

1.3 Organization of the paper57

The organization of the remaining sections of this survey paper is as follows. Section 3 describes the58

research methods we adopted for this study. Section 4 provides an overview of standard privacy-preserving59

techniques. Section 5 delves into the application of privacy-preserving techniques in different phases of60

the machine learning pipeline. The utilization of SMPC in PPML is the focus of section 6. This section61

includes a description of attacks and threats to SMPC, the evaluation metrics for measuring the performance62

of SMPC-based PPML approaches, and the limitations of SMPC for PPML. The challenges, issues, and open63

problems in SMPC-based PPML approaches are discussed in section 8. Moreover, the paper provides several64
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directions for future research in this area by highlighting the gaps in existing research. Finally, section 965

presents the paper’s conclusion.66

2 Background67

This section provides an overview of key methods supporting privacy-preserving machine learning.68

2.1 Current landscape of privacy preserving machine learning69
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Figure 1: Secure computation timeline

PPML has become a critical focus in machine learning research, driven by the need to balance data utility70

with privacy protection and secure machine learning systems [19]. Numerous techniques have been developed71

to extract information from data without compromising privacy [20,21]. PPML addresses the growing demand72
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for secure machine learning systems by enabling model training and deployment while safeguarding sensitive73

data. As reliance on cloud-based platforms and decentralized data collection increases, PPML has become74

foundational in designing privacy-compliant frameworks that meet technical and regulatory requirements.75

Over the past two decades, PPML has advanced significantly, with research focusing on maintaining76

data confidentiality while enabling collaborative model training. A key development in this domain has been77

the integration of SMPC, leading to three distinct research phases:78

1. Foundational Phase (2007–2012): This period saw the emergence of theoretical frameworks for secure79

machine learning, including protocols for secure gradient descent, logistic regression, and general80

multiparty computation (SPDZ).81

2. Mid-Phase (2013–2020): Research shifted toward practical implementations, leading to the development82

of secure neural network frameworks and privacy-enhanced models such as SecureML, SecureNN, and83

CryptFlow.84

3. Modern Phase (2021–Present): The focus has been on optimizing performance to enable real-world85

deployment at scale. Techniques such as Cheetah, PUMA, and SecretFlow have been introduced to86

enhance computational efficiency and scalability.87

A chronological overview of major advancements in PPML with SMPC is provided in Figure 1,88

highlighting key publications that have shaped the field.89

2.1.1 Attacks on machine learning models90

The implementation of PPML plays a critical role in mitigating attacks on machine learning models.91

As adversaries persistently seek to exploit vulnerabilities and compromise data integrity, deploying robust92

countermeasures is essential for strengthening model resilience.93

2.1.2 Privacy-preserving models in the real world94

In the medical sector, collecting patient data by various institutions and hospitals can pose challenges in95

pooling the data to train machine learning models due to privacy laws [22–24]. To overcome these challenges,96

PPML can provide a solution by enabling institutions to collaborate on model training without disclosing97

patient data. The SMPC case study [25] demonstrated the application of SMPC in healthcare through a98

garbled circuits approach for patient risk stratification, thereby eliminating the need for centralized data. The99

authors created a large-scale dataset with over two million patients and 141 million healthcare encounters100

from Chicago. The system performed SMPC over a Wide Area Network (WAN) in just over seven minutes,101

showcasing impressive efficiency for the data scale. To overcome the performance bottleneck of naive102

record linkage methods that require quadratic time, they implemented Cuckoo hashing for efficient and103

privacy-preserving entity resolution between hospital datasets. This hashing step reduced computational104

overhead while maintaining accuracy and privacy. The authors illustrated the potential of deploying105

SMPC-based systems in real-world healthcare by simulating a distributed environment, addressing legal and106

technical barriers to sharing sensitive patient data. This case study illustrates not only the technical soundness107

of SMPC for real-world applications but also its potential for deployment in regulated domains, such as108

healthcare.109

Similarly, in the financial sector, the use of PPML is crucial for customer segmentation in private110

banking, as the protection of customer data is essential for realizing the benefits of data insights held by111

multiple parties. The modern world has seen the benefits of secure machine learning in various other sectors112

as well, including [26–28]. The growing demand for PPML has led to the emergence of Privacy-Preserving113
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Machine Learning as a Service (PPMLaaS) [29–31]. For instance, the framework proposed in [31] involves a114

pool of data perturbation methods that selects the most appropriate approach for the input data. PrivEdge115

[30] is another example, which trains a model on the private data of each party involved and performs private116

prediction services using SMPC techniques. Additionally, [29] highlights the acceleration of Prediction As a117

Service through encrypted data.118

Privacy preservation techniques can be implemented throughout the various stages of the machine119

learning pipeline [32]. We can classify them into four broad categories: anonymization techniques,120

cryptographic techniques, DP [33], and Trusted Execution Environment (TEE) [34].121

2.2 What is secure multi-party computing?122

The central concept of SMPC is to enable multiple parties to collaboratively perform a computational123

task without exposing their private data. SMPC is highly versatile and can be applied across various domains,124

including machine learning [35]. Unlike traditional approaches, SMPC eliminates the need for anonymization125

techniques, as data is never fully disclosed to other parties during the computation process. Secure multi-party126

computation is also referred to as Secure MPC or SMC. This paper will use the abbreviation SMPC throughout127

for consistency.128

2.3 Applications of secure multi-party computing129

In PPML, SMPC can be utilized during the machine learning pipeline’s training and inference stages,130

depending on the specific use case. In the training phase, SMPC secures datasets contributed by different131

parties, ensuring the data remains private while training the model. During inference, SMPC prevents the132

server hosting the model from accessing the user’s input data, maintaining confidentiality.133

Federated Learning (FL), a decentralized machine learning approach, complements SMPC in certain134

scenarios. FL enables model training across multiple devices, where updates or gradients are shared with a135

central server for aggregation, improving the global model. SMPC, on the other hand, facilitates collaborative136

computation by multiple parties on encrypted input data without revealing it. While FL preserves privacy137

through decentralization, SMPC ensures privacy by operating on encrypted data.138

Recently, SMPC has been integrated into FL frameworks [36–38] to secure the sharing of model updates139

[38–40]. This is particularly critical in cases where updates may contain sensitive information, such as140

those involving personal data [41]. However, the communication overhead associated with SMPC poses a141

significant challenge, often leading to performance slowdowns in machine learning tasks. Balancing privacy142

guarantees with computational efficiency remains a key area of research in applying SMPC to PPML.143

3 Research methods144
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Figure 2: Publishers of the selected papers

We conducted a semi-Systematic Mapping Study (semi-SMS) to explore the scientific literature on145

PPML, with a specific focus on SMPC. Our survey aims to offer a comprehensive introduction to widely used146
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PPML techniques, examine the landscape of SMPC protocols, and address both the training and inference147

aspects of SMPC. Additionally, we identify existing research gaps and suggest potential future directions for148

SMPC, providing researchers with a clear overview of the field’s current state.149

To gather relevant literature, we used keywords such as "Privacy-Preserving Machine Learning,"150

"PPML," "Secure Multi-Party Computing," and "SMPC," resulting in an initial set of research papers. We151

then applied a backward snowballing approach to include vital references cited by these papers, followed by152

a forward snowballing approach to identify papers citing them. This method ensured we captured the most153

relevant and widely cited research in the PPML and SMPC domains.154

We applied strict inclusion and exclusion criteria to refine the large pool of papers, retaining only the155

most pertinent studies. Although we did not impose a specific starting date for the publications, we limited156

the search to works published before August 1, 2025. Table 1 illustrates our adopted inclusion/exclusion157

criteria.158

Table 1: Summary of the inclusion and exclusion criteria to filter out scientific publications related to PPML and SMPC

Inclusion Exclusion
Published in Computer Science
or Computer Security

Websites, and leaflets

Available in digital format Published after Aug 2025
Related to SMPC or PPML Full text not available online
Written in English Duplicate papers

Finally, we manually reviewed the collected papers to ensure that our analysis included only those159

directly related to PPML and SMPC. The publishers of the selected papers are depicted in Figure 2.160

A semi-SMS offers distinct advantages over methods such as systematic literature reviews (SLRs)161

for researchers and practitioners seeking to understand emerging and fragmented fields, such as Secure162

Multi-party Computing (SMPC) for Privacy-Preserving Machine Learning (PPML). While SLRs excel at163

answering narrow questions, semi-SMS offers a more agile approach to knowledge synthesis, revealing164

trending research methods, future directions, and gaps. By prioritizing breadth over depth, semi-SMS captures165

the whole landscape of this rapidly evolving domain of SMPC for PPML, revealing patterns in protocol166

design, methodological trends in model implementation, and performance gaps that an SLR’s strict inclusion167

criteria might exclude. This flexibility is vital in a field where new cryptographic techniques and ML model168

architectures emerge constantly across different security, cryptography, and machine learning venues, and169

where rigid protocols would miss these innovative papers. For those looking to identify promising research170

directions in PPML, semi-SMS offers a balanced approach that combines systematic rigor with the flexibility171

to uncover new insights. In contrast to the exploratory value of mapping studies, an SLR is the superior172

and ideal method when the research objective is to produce a definitive, trustworthy answer to a specific,173

well-defined question.174

4 Preliminaries175

4.1 Privacy preservation techniques overview176

In the domain of privacy preservation, several methodologies have been devised to ensure the secure177

exchange of data across multiple entities. These approaches fall into four primary categories: anonymization,178

cryptography, data perturbation, and Trusted Execution Environments (TEEs) as depicted in Figure 3. This179

survey focuses solely on SMPC for machine learning. While techniques such as anonymization, differential180
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Figure 3: A taxonomy of privacy preservation techniques

privacy, and TEE are important for privacy-preservation, we intentionally excluded them to maintain depth181

and coherence in our analysis.182

4.2 Cryptographic techniques183

4.2.1 Homomorphic encryption184

Homomorphic Encryption (HE), introduced by Rivest et al. in 1978 [82], revolutionized data privacy by185

enabling computation directly on encrypted data, thus preserving confidentiality throughout the computational186

process. The encrypted outputs, when decrypted, are identical to those derived from computations on the187

plaintext. This intrinsic property obviates reliance on a trusted third party for data handling, enhancing188

security and privacy integrity.189

In contemporary literature, HE is classified into three categories [83] based on the permitted type and190

the number of operations on the encrypted data:191

1. Partially Homomorphic Encryption (PHE): Supports unlimited operations of a single type, such as192

addition or multiplication, within the encrypted domain.193

2. Somewhat Homomorphic Encryption (SWHE): Facilitates a limited number of operations194

encompassing multiple types.195

3. Fully Homomorphic Encryption (FHE): Capable of executing an unrestricted sequence of operations196

of any type, providing maximum computational flexibility on encrypted data.197

These categories delineate the operational constraints and scope, shaping their respective applications198

across domains requiring varying levels of computation and privacy guarantees. A summary of HE’s role199
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in privacy-preserving computations across various fields is presented in Table 2. The dashes in the table200

represent missing values, which are not explicitly reported in the corresponding original papers. We decided201

not to estimate or impute metrics such as communication cost or runtime to preserve the integrity of the202

results. Missing values arise from differing experimental setups, complicating comparisons of HE methods.203

Future work should implement a unified benchmarking approach for more precise comparisons.204

Table 2: Summary of HE techniques

Ref Method Acc. (%) Comp.
Time
(s)

Collab.
Learn.

Comm.
Cost
(MB)

Strengths Weaknesses

[84] FHE MNIST
99.3

- No - Simplifies HE circuit
encoding.

Lacks focus on trade-offs
with other secure
computations.

[85] Leveled-HE - 20 No - Polynomial bounds for
confidential ML.

Single data owner, no
multi-party support.

[73] Crypto-Nets - - No - Suited for medical and
financial fields. Slow computations.

[86] HE with NN - - No -
Fewer communications;
client structure unchanged
with new algorithms.

Centralized, not tested for
multi-party datasets.

[72] Crypto-Nets MNIST
99.0

697 No 595.5 Offline training for data
owners.

High complexity; encrypted
data limits model
evaluation.

[74] CryptoDL MNIST
99.52

336.7 No 336.7 Uses HE-compatible
activation functions.

Long training times, high
costs.

[87] FHE-DiNN MNIST
96.35

1.65 No 65.6 Flexible for various NN
architectures.

Accuracy drops in DiNN
transition.

[88] HE Logistic
Regression

MNIST
96.4

∼7200 No - Reduces overhead via
approximate HE.

Noise accumulation reduces
accuracy.

[89] nGraph-HE MNIST
96.9

∼14.8 No - TensorFlow support,
look-ahead computation.

Limited to shallow
networks; no multi-party
support.

[90] REDsec MNIST
99.0

18.4 No 1.9 GPU acceleration; domain
conversions.

Assumes honest users, not
malicious actors.

[76] Homomorphic
Re-Enc.

MNIST
97.1

5.19 Yes ∼100 Simplifies distributed
learning.

Significant communication
overhead.

[91] AutoFHE
CNNs

CIFAR-10
91.96

45 No - Polynomial approximations
for CNNs.

Focuses only on
RNS-CKKS secure
inference.

[92] Complex HE
CNN

Speech
74.4

16.402 No - SIMD for batch processing. Limited scalability for large
datasets.

[93] HE
Transformers

CIFAR-100
70.8

- No - Adapts HE for language and
image tasks.

Scalability issues for large
datasets.

Abbreviations: FHE: Fully Homomorphic Encryption, HE: Homomorphic Encryption, NN: Neural Networks, Acc.:
Accuracy, Comp. Time: Computation Time, Collab. Learn.: Collaborative Learning, Comm. Cost: Communication
Cost, SIMD: Single Instruction, Multiple Data, RNS-CKKS: Residue Number System-Chebyshev Cryptographic
Scheme.
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HE is widely regarded as a robust cryptographic scheme for enabling privacy-preserving machine205

learning. It permits computations to be performed directly on encrypted data, maintaining privacy throughout206

the process. Despite its theoretical advantages, the practical application of HE is often constrained by207

computational overheads and inefficiencies. Alternative variants such as additive homomorphic encryption208

[94] and homomorphic re-encryption [76] have been introduced to mitigate these limitations. These209

alternatives, however, support only a restricted subset of mathematical operations, limiting their utility210

in complex machine-learning tasks.211

Nonetheless, substantial research has been conducted to adapt HE for privacy-preserving machine212

learning. Notable contributions include studies by Aono et al. [95], and subsequent advancements detailed in213

works such as [87,96–99]. These studies explore optimization techniques and hybrid approaches to address214

the inherent challenges associated with HE in machine-learning contexts.215

4.2.2 Fully homomorphic encryption216

Although the concept of HE was first proposed in 1978, it wasn’t until the introduction of FHE by217

Gentry in 2009 [100] that a practical implementation became feasible. This scheme utilizes lattice-based218

cryptography, which supports performing addition and multiplication operations on encrypted data. Despite219

its theoretical feasibility, FHE faced challenges in terms of computational overhead and slowness.220

As a result, various variants of HE emerged to overcome these challenges. These include Leveled221

Homomorphic Encryption (LHE) [101], Homomorphic re-encryption [76,102], Additively Homomorphic222

Encryption [95], and Multi-key Fully Homomorphic Encryption (Mk-FHE) [71,77].223

4.2.3 Functional encryption (FE)224

Functional Encryption (FE), introduced by Sahai and Waters [103] and later formalized by Boneh et al.225

[104], represents an advanced encryption paradigm designed to enable controlled computation over encrypted226

data. Unlike traditional public-key encryption, which simply allows a decryption key holder to access the227

plaintext, FE restricts access to specific outputs of a function computed over the ciphertext. This ensures that228

sensitive inputs remain confidential while yielding usable outputs for authorized users.229
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Table 3: Comparison of HE, FE, and SMPC

Name Description Advantages Disadvantages Example Use Case
HE Computation on

encrypted data
without decryption

End-to-end data
privacy during
computation;
suitable for untrusted
environments

High computational
and storage
overhead; slow for
complex real-world
applications

Add two encrypted
numbers to get
the encrypted sum
without revealing the
inputs

FE Compute specific
functions over
encrypted data,
revealing only the
function output

Enables fine-grained
access control and
strong privacy
guarantees

Limited to certain
function classes
(e.g., inner products);
computationally
intensive; still largely
experimental

Decrypt only the sum
of encrypted values,
without revealing the
individual values

SMPC Multiple parties
jointly compute a
function over their
private inputs

Suitable for
privacy-preserving
collaborative
computation between
distrustful parties

High communication
overhead; Inefficient
for large-scale
computations

Train a ML model
collaboratively
without exposing
individual participant
data

The core challenges in designing FE systems stem from ensuring security and efficiency across all230

polynomial-time functions. FE systems typically involve significant computational overhead and demand231

robust, fine-grained access controls [104]. Two critical properties of FE systems are selective disclosure and232

security against collusion. Selective disclosure ensures that decryption yields only specific functional outputs,233

while collusion resistance guarantees that even if multiple decryption key holders collaborate, they cannot234

reconstruct more than the permitted functional outputs.235

The capabilities of FE make it pivotal for secure data-sharing applications, attribute-based access control,236

and PPML. By combining stringent access control with advanced cryptographic constructs, FE provides237

a framework for enabling secure computation in environments requiring high levels of confidentiality and238

control [105]. Table 3 includes a high-level comparison of cryptographic techniques for PPML.239

4.2.4 Secure multi-party computing240

The concept of Secure Multi-Party Computing (SMPC) addresses the challenge of maintaining data241

privacy when multiple parties must pool their data to perform a computation. Originally proposed by [106]242

and later improved by many, such as [107], SMPC has evolved from a theoretical framework to a practical243

tool. SMPC can be defined as follows: Consider two or more parties Pi(i = 1, ....,n) with private inputs xi in244

a distributed environment. They aim to jointly compute the function f (x1, ....,xn) = (y1, ....,yn) using their245

private inputs. After the computation, each party should have their corresponding output yi without gaining246

access to any other inputs, as depicted in Figure 4 [108].247

In the context of SMPC, five properties define the security of a protocol. These are illustrated in Table 4.248

The adversarial models in SMPC protocols are determined by two key factors: the level of adversarial249

behavior permitted and the corruption strategies employed.250



11

Input | X1

Output | y1

Input | X2

Output | y2

Input | X3

Output | y3

Input | Xn

Output | yn

Compute f(X1, ........, Xn) = (y1, ........, yn) 

P1 P2 P3 Pn

Figure 4: Overall architecture of SMPC

Allowed adversarial behavior:251

Adversarial models define the extent of the corrupted parties’ deviation from the protocol. For clarity,252

consider the scenario where a group of hospitals collaborates to train a machine learning model for early253

cancer detection using encrypted patient records.254

1. Semi-honest adversaries: In this model, all parties, including corrupted ones, faithfully follow the SMPC255

protocol. However, the adversary (honest-but-curious) may attempt to infer sensitive information by256

analyzing internal states or intermediate computations [109].257

Example: Each hospital adheres to the protocol during model training but records encrypted gradients258

or intermediate values in an attempt to deduce private data, such as the prevalence of a rare disease at259

another institution.260

2. Malicious adversaries: Malicious, or active, adversaries may arbitrarily deviate from the protocol to261

disrupt the computation or extract unauthorized information.262

Example: A hospital might tamper with its input by substituting real patient outcomes with synthetic263

data, or it may intentionally send incorrect encrypted gradients to influence the training outcome or leak264

other hospitals’ inputs.265

3. Covert adversaries: Covert adversaries act maliciously only if they believe other parties cannot detect266

their actions. This model represents rational adversaries discouraged by the risk of discovery and267

potential consequences.268

Example: A hospital might slightly misreport its model update during training if the deviation is subtle269

enough. However, it avoids significant misbehavior due to concerns about reputational damage and270

potential penalties from audits.271
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Table 4: Properties and key assurances in SMPC

Property Definition Key Assurance

Privacy Parties learn only their respective outputs; other input data
is inaccessible beyond output-derived inference. Protects data confidentiality.

Correctness Computation results are guaranteed to be accurate for all
honest parties. Ensures integrity of protocol

execution.

Independence
of Inputs

Inputs of corrupted parties are independent of those
provided by honest parties. Prevents input manipulation by

adversaries.

Guaranteed
Output
Delivery

Honest parties always receive their outputs, even if
adversaries attempt to obstruct the process. Mitigates denial-of-service attempts

by malicious entities.

Fairness Outputs are distributed equitably, ensuring that corrupted
parties do not receive results unless honest parties do. Balances result availability across

all participants.

Corruption strategy:272

Their corruption strategy can also determine the categorization of adversaries in SMPC protocols.273

1. Static corruption model: In this model, the distinction between honest and corrupted parties is determined274

before the execution of the protocol.275

2. Adaptive corruption model: The adversary can corrupt parties during the computation, and these276

corrupted parties remain compromised throughout the process.277

3. Proactive security model: The adversary can corrupt parties for a specific period.278

In addition to adversarial considerations, the design of SMPC protocols also depends on the computed279

function’s representation. Typically, this representation is either a finite field structure, as demonstrated280

in works such as [59,110,111], or a ring structure, as seen in studies such as [6,62,112,113]. However, a281

comprehensive examination of these representations exceeds the scope of the present paper.282

Beyond the choice of representation, SMPC implementations must address several critical factors:283

• Cryptographic Primitives: Techniques like HE (discussed in sections 4.2.1, 4.2.2, 4.2.3), secret sharing284

schemes [114], and zero-knowledge proofs [115] underpin SMPC by enabling computation on encrypted285

data, secure data reconstruction, and verifiable statements without revealing sensitive information. These286

primitives are instrumental in maintaining data integrity and confidentiality.287

• Communication Security: Establishing secure channels (e.g., TLS protocols) and robust authentication288

mechanisms is paramount to thwart eavesdropping and man-in-the-middle attacks.289

• Computational Complexity: Protocols must optimize the computational overhead associated with290

cryptographic operations to ensure feasibility for large-scale deployments.291

• Scalability: The efficiency of SMPC protocols often degrades with increasing participants. Designing292

systems capable of maintaining performance under such conditions is vital for practical adoption.293

• Participant Dynamics: SMPC protocols sometimes necessitate distinct preprocessing and post-processing294

phases. Preprocessing includes generating and distributing cryptographic keys and preparatory operations295

to facilitate secure computation. Post-processing, by contrast, may integrate techniques such as296

differential privacy to enhance security guarantees further. In real-world scenarios, participants may297

join or leave computations unpredictably. Addressing this requires robust mechanisms for dynamic298

membership management during protocol execution.299
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There are numerous applications of SMPC [28,108,116–119], such as secure key exchange, secure300

voting, and secure auction, to name a few, which are discussed in section 7. This paper focuses on the301

applications of SMPC for PPML. In machine learning, SMPC can be utilized for privacy-preserving training302

or inference. For privacy-preserving training, SMPC can be implemented in two ways: either multiple parties303

can pool their private datasets to train a global model on a server, or the user can keep their data private and304

perform the training on multiple servers such that no single server has access to the original dataset content.305

In summary, SMPC provides an essential framework for enabling collaborative computation without306

307 compromising data privacy. By addressing complex adversarial behaviors, corruption strategies, and 
308 computational requirements, SMPC offers robust solutions to privacy challenges in distributed environments. 
309 Its adaptability to cryptographic primitives, communication security measures, and scalability requirements 
310 highlight its suitability for high-stakes applications such as PPML. As the demand for secure data processing 
311 continues to grow, SMPC stands out as a pivotal approach, ensuring confidentiality and functional integrity in 
312 collaborative computations [120]. 

313 5 Privacy-preserved machine learning

Machine learning model development typically proceeds through three primary phases: data preparation,314

training, and inference. Safeguarding the privacy of sensitive data across these stages necessitates the adoption315

of specialized techniques. These methods must effectively mitigate the risks of exposing sensitive information316

while maintaining the functionality and performance of machine learning algorithms.317

The initial phase, data preparation, involves data collection, cleaning, normalization, and transformation,318

along with removing extraneous or irrelevant elements. Privacy concerns during this phase stem from319

potential vulnerabilities to unauthorized access or manipulation of raw data. Privacy-preserving techniques320

at this stage may include encryption and secure data storage protocols, ensuring that sensitive data remains321

inaccessible to external threats.322

The training phase involves using the processed data to build a machine-learning model. This phase is323

typically computationally intensive, as the model is iteratively refined until it achieves the desired level of324

accuracy. Techniques such as differential privacy, secure multiparty computation, or HE can ensure privacy325

during the training phase. These techniques add random noise to the data to prevent the model from learning326

about the individual data points while still allowing it to discover patterns in the data.327

The final phase is inference, where the trained model makes predictions on new, unseen data. This is328

typically the phase where data privacy is most at risk, as the predictions made by the model can potentially329

reveal information about the individual data points. Ensuring privacy during the inference phase can be330

achieved through techniques such as secure enclaves, HE, or FL. These techniques allow the predictions to331

be made on encrypted data, preventing any unauthorized access or manipulation of the sensitive information.332

5.1 Data preparation phase333

In machine learning, ensuring the absence of data leaks during the data preparation phase is critical,334

as vulnerabilities at this stage may expose sensitive information to malicious actors. Weaknesses in the335

implementation or insufficient security measures during preprocessing can result in several types of leaks:336

direct, indirect, and peer-to-peer. For example, utilizing cloud-based platforms for model training introduces337

risks of direct leakage during data transfer to the cloud. Indirect leakage can occur via parameter updates,338

where model parameters inadvertently expose sensitive patterns. In distributed frameworks such as FL,339

peer-to-peer leaks may emerge as models share parameters among nodes.340
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The academic literature proposes various privacy-preserving techniques addressing these concerns341

tailored to the preprocessing stage of the machine learning pipeline. Table 5 provides an overview of these342

methods, highlighting strengths and weaknesses.343

Table 5: Summary of privacy-preserving techniques used in the data preprocessing stage

Ref Method Category Strengths Weaknesses

[121] RFN FN Enhances resistance to
adversarial examples.

Impacts model availability;
requires architecture changes.

[122] RFN, FSFN FN Improves robustness and can
be applied during inference.

No significant weaknesses
identified.

[123] Bit-depth reduction, JPEG
compression, total variance
minimization, image quilting

Input
Transformation

Model-agnostic; introduces
randomness to counter
adversarial attacks.

No significant weaknesses
identified.

[124] Basis Function
Transformation

Input
Transformation

Provides robustness against
adversarial perturbations.

Limited generalization across
datasets and attack types.

[125] Denoise Auto-Encoders Denoising Reverses data corruption;
defends against attacks.

Cannot fully remove
adversarial perturbations.

[126] Denoise Auto-Encoders Denoising Mitigates adversarial
perturbations effectively.

Limited application to specific
tasks.

[127] High-Level Representation
Guided Denoiser (HGD)

Denoising Flexible with simple training
and good generalization.

Ineffective against white-box
attacks.

5.1.1 Feature nullification344

DNNs’ vulnerability to adversarial samples has been extensively documented, with adversarial inputs345

deliberately crafted to mislead these models. To mitigate such vulnerabilities, Wang et al. proposed the RFN346

method, as described in [121]. This approach focuses on enhancing the resilience of DNNs while preserving347

classification accuracy. Experimental evaluations demonstrated the efficacy of RFN using the MNIST [128]348

and CIFAR-10 datasets. Complementary methods, including RFN and FSFN, were introduced by Han et al.349

[122]. These algorithms, designed to counter gradient-based adversarial attacks, were shown to outperform350

RFN in terms of effectiveness against such threats.351

5.1.2 Input transformation352

Guo et al. [123] investigated input transformations as a defensive mechanism for Convolutional353

Neural Networks (CNNs) against adversarial attacks. Their study incorporated techniques such as bit-depth354

reduction, JPEG compression, total variance minimization, and image quilting during preprocessing. The355

findings highlighted the practical effectiveness of total variance minimization and image quilting. Shaham356

et al. further explored transformation-based defenses in [124], focusing on basis transformation functions,357

including low-pass filtering, JPEG compression, Principal Component Analysis (PCA), soft-thresholding,358

and low-resolution wavelet approximations. Among these, JPEG compression was identified as the most359

effective method under their experimental framework.360

5.1.3 Denoising361

Vincent et al. [125] pioneered the use of denoising autoencoders as a training mechanism to enhance362

resistance against adversarial attacks. However, their implementation failed to eliminate adversarial363
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perturbations entirely. Cho et al. [126] applied denoising autoencoders to generate clean images by removing364

adversarial noise in the context of semantic segmentation tasks. Despite these advancements, conventional365

denoising autoencoders remain susceptible to adversarial error amplification, where residual perturbations366

propagate through network layers. To address this limitation, Liao et al. proposed High-Level Guided367

Denoiser (High-level Representation Guided Denoiser (HGD)) [127], a flexible and easily trainable method368

that avoids adversarial error amplification. However, Athalye et al. [129] demonstrated that HGD is ineffective369

in white-box threat models, underscoring the need for more robust solutions.370

5.2 Training phase371

Research in privacy-preserving machine learning predominantly emphasizes safeguarding the privacy of372

data utilized during model training. This entails ensuring that training data remains inaccessible to the party373

conducting the model training or to multiple collaborating parties responsible for data provision.374

Implementing secure protocols for machine learning training processes presents significant benefits375

in practical applications. For instance, data generated on mobile devices, where computational resources376

are limited, can be securely transferred to cloud-based infrastructures for model training. This ensures data377

privacy while leveraging the computational advantages of cloud platforms.378

5.2.1 Types of collaborative training379

The concept of collaborative learning, as elaborated in prior work [130], pertains to the cooperative380

efforts of multiple entities in training a machine learning model. Such frameworks necessitate stringent381

privacy safeguards, especially as more parties participate in training. Collaborative machine learning systems382

can be classified into three primary categories based on the distribution of computational tasks among383

participants during the training phase.384

1. Direct/Central training:385

In centralized training, a single server aggregates datasets contributed by one or more entities to train a386

unified model. The direct training setup is shown in Figure 5, where a single server aggregates all datasets for387

model development. This approach allows participants to benefit from a comprehensive model that leverages388

the combined data while ostensibly maintaining the confidentiality of individual datasets. However, the389

process often requires local data transmission to the server, potentially compromising privacy.390

The centralized model also incurs high communication overhead, as all participating entities must391

transfer their datasets to a central location. This leads to extended model training times and poses scalability392

challenges, particularly in environments with large or geographically dispersed datasets. The privacy393

implications of centralized data sharing remain a critical concern in this paradigm, as the central server gains394

access to the raw data of all contributors.395

2. Indirect training:396

The indirect training paradigm adopts a client-server architecture wherein individual clients are397

empowered to train models locally. Figure 6 depicts the indirect training approach, highlighting how clients398

train locally and share model updates with a central server. The process typically begins with the server399

disseminating a global model initialized on a designated dataset. Clients download the model parameters,400

retrain the model locally using their private datasets, and subsequently upload the updated parameters to the401

server. The server then aggregates the contributions to refine the global model.402
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User 1 User 2 User 3 User 4

Server

Global Model

Figure 5: Direct training

This method enhances privacy in several ways. First, sensitive data remains confined to local devices,403

mitigating risks associated with data sharing and breaches. Second, local processing reduces the potential for404

interception or unauthorized access during training. Additionally, mathematical techniques such as encryption405

and randomization can further secure the aggregated parameters, enhancing privacy protection.406

Despite these advantages, indirect training is not devoid of privacy risks. Leakage of sensitive information407

may occur when locally trained parameters are transmitted to the server. Studies have demonstrated that408

malicious actors could exploit these parameters to infer private data characteristics, highlighting vulnerabilities409

in this approach (e.g., [38,95,131–134]).410

FL exemplifies the indirect training paradigm and has gained significant traction due to its ability to411

decentralize training. However, the standard FL framework remains susceptible to security challenges.412

Research addressing these limitations has proposed privacy-preserving enhancements to FL, including413

mechanisms for secure aggregation, differential privacy, and cryptographic techniques (e.g., [119,135–138]).414

User 1 User 2 User 3 User 4

Server

Global Model

Local Model 1 Local Model 2 Local Model 3 Local Model 4

Model Updates Model Updates Model Updates Model Updates

Figure 6: Indirect training
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3. Peer-to-peer training:415

The Peer-to-peer (P2P) training method eliminates the need for a central server, relying instead on416

a decentralized collaborative framework, as illustrated by Figure 7. Participants independently train their417

models on local datasets without sharing the raw data. Instead, model parameters are exchanged among peers418

according to a pre-established agreement.419

While this approach avoids direct dataset sharing, privacy risks persist. Model parameters exchanged420

during training may inadvertently reveal sensitive information, potentially leading to data leakage. Several421

studies have highlighted these vulnerabilities and proposed mitigations to address them (e.g., [23,134,139–422

142]). These works underscore the importance of privacy-preserving techniques in enhancing the security of423

P2P training systems.424

User 1 User 2

User 3 User 4

Local Model 1 Local Model 2

Local Model 3 Local Model 4

Model Updates Model Updates

Model Updates

Model Updates

Figure 7: Peer-to-peer training

5.2.2 Privacy-preserving techniques used during the training phase425

Various techniques are employed to safeguard privacy during the training phase of machine learning426

models. These methods primarily include HE, FE, and SMPC. Each of these approaches addresses privacy427

concerns by enabling computations on sensitive data without compromising its confidentiality.428

5.3 Inference phase429

At the inference stage, the central objective is to generate predictions from a pre-trained model utilizing430

novel input data. These inputs may originate from diverse sources such as mobile devices, cloud servers,431

or Internet of Things (IoT) devices. A significant concern during this phase revolves around preserving the432

confidentiality of sensitive data within the inputs to prevent unauthorized access or misuse.433

Both HE and SMPC are used to secure machine learning pipelines at the inference stage. HE enables434

computations on encrypted data without revealing the original data. This technique encrypts the data inputs435

before sending them to the server for prediction. The encrypted data is then decrypted after the prediction is436

made. The use of HE can significantly decrease computation efficiency, making it less suitable for real-time437

applications. However, recent work suggests, this can be achieved with realistic speeds even for dense, Deep438

Neural Networks (DNNs) [143]. In SMPC, the data inputs are split into multiple shares and distributed439

among different parties. The computation is then performed on the shares, and the result is combined to440



18

obtain the final prediction. This technique can guarantee privacy but requires many communication rounds,441

making it less efficient for real-time applications.442

6 Secure multi-party computing for privacy preserving machine learning443

SMPC enables multiple parties to collaboratively perform computations on their private datasets without444

revealing sensitive information. In the context of machine learning, SMPC can be utilized to secure various445

stages of the machine learning pipeline, ensuring data privacy while allowing for collaborative processing.446

While the theoretical foundations of SMPC are discussed in Section 4.2.4, this section focuses on its practical447

applications in enhancing the security and privacy of machine learning workflows.448

SMPC can be applied across different phases of a machine learning pipeline, from computing loss449

functions during training to evaluating models during inference. It is one of the two principal methods for450

protecting data during collaborative machine learning tasks, the other being HE. Although SMPC introduces451

communication overhead during training, it is generally more cost-efficient compared to FHE.452

An essential application of SMPC is its integration with FL, addressing privacy concerns in collaborative453

learning where model parameters are exchanged without encryption. By combining SMPC with FL, as454

explored by [144], parties can collaboratively train models while preserving the confidentiality of their455

individual datasets.456

SMPC has a wide range of applications in domains where privacy and security are paramount. It allows457

parties with private data to jointly perform computations without exposing their underlying data, making it458

ideal for scenarios constrained by privacy regulations or data sensitivity.459

One of the critical application scenarios of PPML using SMPC is FL, where multiple parties with private460

data collaborate to build a machine learning model without sharing the raw data. This allows the parties to461

train a shared model on their private data while preserving privacy. It is a helpful solution for building models462

in scenarios where data is distributed across multiple organizations or devices.463

Another application scenario is privacy-preserving data analysis, where SMPC can perform data analysis464

tasks such as computing aggregate statistics or clustering on sensitive data while preserving privacy. This465

can be useful in scenarios where data is subject to privacy regulations or is considered sensitive, but insights466

are still needed to make decisions or drive business outcomes. Consider the following example. Different467

government institutions hold information about citizens. However, they cannot share the data to collaboratively468

train a machine learning model due to privacy concerns. SMPC can allow them to pool their data together to469

train a machine learning model on a cloud service provider that could utilize the insights given by all the data470

without revealing any of the data. When this model is deployed, SMPC can be used by a citizen who wants471

to classify their private data according to the trained model, which belongs to the cloud service provider,472

without revealing the data.473

Additionally, SMPC can be used for collaborative model training, enabling multiple parties with private474

data to jointly train a machine learning model without revealing their data to each other. This can be useful475

in scenarios where multiple parties have private data they want to use for model training but do not want to476

share. A prominent example is the provision of Machine Learning as a Service (MLaaS) platforms, such477

as Tapas [29], PrivEdge [30], and PaaS [31]. SMPC may be utilized both during the training and inference478

phases.479
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6.1 Applications of SMPC in Real-World Systems480

6.1.1 Healthcare: Federated Cancer Detection481

Collaborative studies among European oncology centers have shown that secure multiparty computation482

(SMPC) can enable federated analysis on MRI radiotherapy data from 48 patients with adrenal metastases.483

The system maintained patient data locality while preserving diagnostic performance (AUC comparable484

to centralized baselines), and adhered to GDPR constraints in production settings [145]. In a separate485

deployment, breast cancer histopathology data across multiple institutions were analyzed using federated486

learning combined with differential privacy and SMPC-based gradient aggregation. This setup yielded an487

ROC-AUC of 0.95 under strict privacy guarantees (ε = 1) [146].488

6.1.2 Finance: Cross-Institutional Fraud Detection489

The SecureFD system demonstrated scalable SMPC-based graph analytics on one billion transaction490

edges, achieving a 12% improvement in early-stage fraud detection compared to institution-specific models491

[147]. Similar results have been reported by financial consortia (e.g., VISA and Ant Group), where SMPC492

was applied to federate transaction features across institutions without any inter-bank data exposure [148].493

6.1.3 Genomics: Secure GWAS at Scale494

A hybrid protocol combining SMPC and homomorphic encryption enabled secure genome-wide495

association studies (GWAS) on 23,000 individuals. The method supported correction for population496

stratification while ensuring raw genotype data remained confidential [149]. Subsequent work has497

demonstrated the approach can be extended to cohorts of up to one million genomes, with communication498

complexity scaling sub-linearly with population size [150].499

6.1.4 Energy: Household Load Forecasting500

In a pilot involving 1,600 households, SMPC techniques were used to protect smart-meter data during501

both model training and inference in a federated short-term load forecasting system. The implementation502

achieved a 12% reduction in mean absolute error (MAE) compared to single-utility forecasting models [151].503

504

6.2 Advantages and disadvantages of PPML-SMPC505

Incorporating SMPC into machine learning pipelines offers several key advantages:506

• Data Privacy: SMPC ensures that data remains confidential throughout the computation process,507

eliminating the need for data sharing among parties.508

• Regulatory compliance: Since data does not leave its original location, SMPC helps comply with data509

privacy regulations like the General Data Protection Regulation (GDPR).510

• Security: SMPC provides resistance against adversaries without relying on a central trusted authority511

and is considered quantum-safe due to data distribution during computation.512

• Usability: By preserving data privacy, SMPC allows for the use of raw data without compromising513

privacy, eliminating the trade-off between data usability and confidentiality.514

However, it is important to note that SMPC is not immune to all types of attacks. The potential for515

malicious behavior by participating parties must be considered, as discussed in Section 6.3.516

Despite its advantages, the use of SMPC in privacy-preserving machine learning has certain limitations:517
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• Communication overhead: SMPC introduces significant communication costs during machine learning518

tasks, leading to slower computations compared to traditional methods [152–154]. This overhead is less519

pronounced in smaller models like decision trees but becomes problematic for deep learning models with520

numerous parameters.521

• Trust assumptions: SMPC protocols often assume that the majority of participating parties are honest. If522

this assumption fails, the privacy of the data may be compromised.523

• Complexity: Implementing SMPC can be complex and may require specialized expertise, which could524

hinder adoption in some settings.525

Extensive research has been conducted to address SMPC’s limitations, leading to improvements in its526

efficiency and practicality. Currently, SMPC has matured to a stage where it can be integrated into practical527

machine learning workflows, offering a viable alternative to methods like FHE, which significantly increases528

computational time. By balancing privacy preservation with computational efficiency, SMPC plays a crucial529

role in advancing privacy-preserving machine learning.530

6.3 SMPC-specific attacks and threats531

This section examines attack scenarios relevant to the PPML paradigm when employing SMPC. The532

discussion encompasses various stages of the machine learning lifecycle, emphasizing threat vectors and533

corresponding mitigation strategies.534

6.3.1 Training phase attacks535

Training phase vulnerabilities represent a significant area of concern in SMPC-based privacy-preserving536

systems [155]. These attacks, which often exploit the collaborative nature of model training, present greater537

practical risks compared to those targeting inference. Among these, contamination attacks are particularly538

notable.539

Contamination attacks540

Contamination attacks, as characterized in prior research [156], exploit the presence of adversarial541

actors within a group of parties collaboratively training a machine learning model using SMPC protocols. In542

such scenarios, adversaries introduce maliciously crafted data into the shared training dataset, effectively543

poisoning the data pool. The malicious record might be targeted at one attribute, a set of attributes, or544

even the label of the record. This manipulation results in the model embedding unintended correlations,545

potentially compromising its reliability or ethical fairness. Data injection and modification attacks fall under546

contamination attacks, where an adversary modifies the training data to deceive the model. Thus, SMPC547

models are vulnerable to data injection and modification attacks.548

For instance, in a financial consortium involving banks and institutions pooling sensitive client data to549

train a model for mortgage decisions, a malicious participant could inject data correlating sensitive attributes,550

such as race or gender, with mortgage outcomes. This would lead to biased and discriminatory outputs when551

the model is deployed. Variants of this attack include targeted data injection, where specific attributes are552

manipulated, and broader data modification, which alters multiple elements of the training dataset. Such553

vulnerabilities highlight the susceptibility of SMPC-based training to integrity violations.554
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Logic corruption attacks555

While SMPC protocols inherently resist logic corruption by their cryptographic design, specific attack556

vectors may arise depending on the underlying encryption schemes or implementation nuances. Adversaries557

could exploit protocol execution flaws, introduce disruptions in inter-party communications, or leverage558

weaknesses in SMPC implementations. The resilience of SMPC to such attacks is contingent on robust559

protocol adherence and secure software engineering practices. Recent laser-based fault-injection work shows560

full model extraction against garbled-circuit SMPC inference [157]. Practical MAC-key-leakage exploits561

against SPDZ implementations further illustrate this risk [158].562

6.3.2 Inference phase attacks563

Ensuring the security of machine learning models during the inference phase is of paramount importance,564

as models at this stage remain susceptible to a variety of adversarial attacks. This section explores the565

vulnerabilities inherent to inference pipelines employing SMPC to safeguard user data privacy, regardless of566

whether SMPC was used during the training process.567

Furthermore, inference attacks typically rely on the adversary’s ability to exploit knowledge of the model568

itself, a factor that remains unaffected by the use of SMPC in the training process. SMPC protocols facilitate569

secure collaborative computation by leveraging private inputs from multiple parties, thereby ensuring data570

confidentiality during the computation. This feature provides inherent robustness against certain adversarial571

techniques, including model extraction, shadow model creation, power side-channel exploitation, membership572

inference, and linkage attacks.573

However, SMPC does not inherently address vulnerabilities to model inversion and memorization574

attacks. These attack types exploit the ability to reconstruct sensitive input data or extract memorized575

training data directly from model outputs. To mitigate these risks, additional safeguards must be incorporated.576

Post-processing techniques, such as the integration of differential privacy mechanisms, output perturbation,577

rounding, and quantization, can enhance security guarantees and address residual threats effectively.578

6.4 Evaluation metrics579

We assess PPML techniques employing SMPC based on the following criteria: effectiveness, efficiency,580

privacy, and scalability. Each dimension evaluates a distinct aspect of the integration and performance of581

SMPC techniques in PPML frameworks.582

6.4.1 Effectiveness583

Effectiveness pertains to how well SMPC models achieve their intended objectives. Evaluative measures584

include:585

• Accuracy: The precision of the model’s outcomes, accounting for trade-offs between accuracy and other586

metrics such as privacy or efficiency.587

• Reconstruction rate [159]: This metric evaluates the system’s ability to recover distributed588

privacy-preserving components accurately, serving as an indicator of model performance.589

6.4.2 Efficiency590

Efficiency measures the overhead introduced by SMPC integration within machine learning pipelines,591

focusing on:592



22

• Inference runtime: The time required to produce predictions. For instance, [75] explored runtime593

optimization in real-world privacy-preserving applications.594

• Training time: The duration of the model’s training phase. Research such as [160] emphasizes methods595

to reduce this cost.596

• Communication costs: Significant communication overhead arises from data exchange among597

participating parties in SMPC systems, increasing the pipeline’s overall execution time.598

• Computation costs: Computation-intensive techniques like HE amplify training times due to data599

encryption overhead.600

6.4.3 Privacy601

The privacy assurances of SMPC models are typically underpinned by rigorous theoretical security602

proofs. These proofs validate the extent to which privacy is preserved within the model. However, maintaining603

privacy often necessitates a compromise with other performance metrics:604

• Privacy-accuracy tradeoff: Increased privacy measures may reduce the model’s predictive accuracy, as605

observed in studies such as [133].606

• Privacy-communication cost tradeoff: Enhanced privacy protections frequently result in higher607

communication overhead, as noted by [95].608

To optimize privacy in SMPC models, it is advisable to deploy a combination of privacy-preserving609

techniques. Relying solely on a single method is insufficient, as it may not address the full spectrum of610

potential attack vectors targeting the model or its underlying data. The selection of appropriate techniques611

should be informed by the specific threat model and operational requirements of the application, ensuring a612

balanced approach to security and performance.613

6.4.4 Scalability614

Scalability in SMPC models refers to the capacity to accommodate an increasing number of participants615

in the computational process without significant performance degradation. Some SMPC protocols impose616

inherent limits on the number of parties they can efficiently support. Thus, scalability evaluations must617

address two critical factors:618

• Participant capacity: The ability of the protocol to incorporate a larger number of parties while adhering619

to its operational constraints.620

• Communication overhead: The extent to which communication costs grow as the number of participants621

increases, with an emphasis on maintaining these costs at a reasonable level to ensure system efficiency.622

Assessing and enhancing scalability is essential for the practical application of SMPC models,623

particularly in scenarios involving large-scale collaborative machine learning.624

7 Related work625

7.1 Comparison with existing surveys626

Several surveys have explored SMPC, each offering valuable contributions but with distinct limitations627

in scope or depth.628

Choi and Butler [161] explored integrating Trusted Execution Environments (TEEs) with SMPC in629

2019, highlighting hardware security for mobile computation and challenges for constrained devices, but630

focused solely on SMPC and TEEs. In contrast, our survey offers a broader view of the SMPC landscape,631
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independent of hardware, and includes a wider range of use cases and deployment scenarios. Gamiz et632

al. [162] conducted a systematic literature review in 2024 on 19 SMPC studies in the context of IoT and633

Big Data. Their methodology provides insights into SMPC in edge and large-scale computing. However,634

the limited number of papers hinders the generalizability of their findings. Our approach offers a broader635

perspective by incorporating SMPC into federated learning, deployment, and real-world use cases, such as636

medical and financial modeling.637

The most closely related work is the recent survey by Zhou et al. [163] in 2024, which focuses on SMPC638

for machine learning. Our work and theirs both focus on PPML with SMPC, but they only cover SMPC IEEE639

recommendations, missing important contributions. In contrast, our survey includes diverse publications from640

ACM, Springer, USENIX, and arXiv, providing a more comprehensive view of SMPC. Earlier surveys on641

SMPC, such as those by Zhao et al. (2019) [164], offer foundational insights into its theoretical and practical642

aspects. However, they fall short in identifying concrete research gaps and future directions, and several of643

these works are now outdated in light of significant recent advances, particularly in applied PPML settings.644

Wang et al. (2015) [165] explored SMPC rational adversaries but overlooked modern challenges, such as645

scalability and deployment.646

Our survey offers a high-level overview of SMPC for PPML, highlighting key protocols and applications.647

We emphasize current research gaps and deployment challenges, aiming to guide future research not only in648

protocol development but also in real-world implementation.649

7.2 Related Work in SMPC for PPML650

PPML using SMPC has evolved beyond academic research into practical applications [166,167]. The651

increasing interest in this field is driven by the need to secure machine learning pipelines in real-world settings652

facilitated by cloud service providers offering MLaaS. Various algorithms have been proposed, differing653

in execution speed, privacy guarantees, the number of participating parties, and the accuracy of models654

compared to non-privacy-preserving counterparts. This section examines the most significant contributions in655

this area, comparing them based on these characteristics.656

SMPC has been effectively applied to basic classification and regression algorithms, where its primary657

limitation—communication overhead—has minimal impact, allowing for practical deployment. [5] introduced658

a method for securely aggregating locally trained classifiers. Several studies [168–170] proposed algorithms659

for secure k-means clustering using SMPC. [171] explored SMPC implementations of fundamental classifiers660

such as decision trees and Support Vector Machines (SVMs), highlighting SMPC’s adaptability in enhancing661

privacy without significantly compromising performance.662

In the realm of neural networks, SMPC has been proposed for privacy-preserving computation663

among multiple parties. [9] introduced SecureNN, a three-party protocol supporting operations like matrix664

multiplication, convolution, ReLU activation, max-pooling, and normalization. Their approach achieved over665

99% accuracy on the MNIST dataset while providing security against one semi-honest and one malicious666

adversary.667

However, applying SMPC to deep learning tasks presents significant challenges due to the high668

communication costs associated with DNNs, which contain millions or billions of parameters. [131] proposed669

an algorithm for securing deep learning pipelines via SMPC, allowing users to balance communication670

and computation costs. [172] introduced Trident, a design that improves speed and can be extended to671

privacy-preserving deep learning, which is particularly beneficial for complex models where computational672

efficiency and privacy assurance must be carefully balanced.673
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Hardware-assisted approaches have also been explored. [156] proposed data-oblivious machine learning674

algorithms supporting SVMs, neural networks, decision trees, and k-means clustering on Intel Skylake675

processors, demonstrating improved scalability compared to previous SMPC-based solutions.676

Researchers have been actively exploring the application of SMPC in FL to enhance security in677

decentralized communication, particularly in scenarios like IoT platforms. While FL facilitates collaborative678

model training with some degree of user anonymity, it does not fully safeguard individual data privacy, as679

model parameters can inadvertently reveal sensitive information. SMPAI [173] proposed an FL technique680

that integrates SMPC with differential privacy to address these challenges. Simulations in the ABIDES681

environment evaluated this approach, demonstrating the improved accuracy and communication latency682

with a growing number of parties. However, these findings are limited to simulations, leaving the SMPAI’s683

real-world applicability and performance untested. In another effort, [174] developed a faster FL solution684

for vertically partitioned data, incorporating lightweight cryptographic primitives to manage party dropouts685

effectively. Similarly, [144] introduced a two-phase framework for Multi-Party Computing (MPC)-enabled686

model aggregation using a small committee selected from a larger participant pool. This framework, designed687

for integration with IoT platforms, outperformed peer-to-peer FL methods in execution and communication688

efficiency. However, it relies on a trusted environment without adversaries and lacks support for vertical689

FL and transfer learning. In 2021, [175] presented Chain-PPFL, a privacy-preserving FL solution utilizing690

single-masking and chained communication mechanisms. The approach achieved accuracy and computational691

complexity comparable to the FedAVG algorithm [38]. Despite its promising results, Chain-PPFL’s692

privacy-preserving capabilities and performance improvements were validated only through simulations, with693

no evidence of its effectiveness in decentralized FL applications. These advancements represent significant694

progress toward practical and robust PPML solutions integrating FL and SMPC, particularly for IoT platforms695

where data security and computational efficiency are paramount.696

In data clustering tasks involving multiple parties, privacy-preserving clustering algorithms are essential.697

As a result, researchers have extensively explored SMPC-based clustering techniques that ensure privacy, with698

a particular focus on k-means clustering [168–170,176]. For instance, [168] improved computation speed by699

incorporating parallelism. A concise overview of privacy-preserving clustering methods that leverage SMPC700

can be found in Table 6.701

Beyond classification tasks, SMPC has been applied to other machine-learning problems. [177]702

demonstrated a protocol for computing item ratings and rankings while preserving accuracy and reducing703

communication costs by interacting with a mediator rather than multiple vendors. This approach deviates704

from traditional recommendation systems that require pooling all data together, although it assumes trust in705

the mediator for intermediate computations on encrypted data.706

In recent work, [178] proposed a method for feature selection that leverages the anonymity advantages707

of SMPC. Their technique is independent of the model training phase and can be integrated with any MPC708

protocol to rank dataset features using a scoring protocol based on Gini impurity.709
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Table 6: Summary of privacy-preserving clustering techniques utilizing SMPC

Ref Year # Parties Algorithm Data Partitioning

Vertical Horizontal

[176] 2003 n k-means ✓
[168] 2010 n k-means ✓ ✓
[169] 2011 n k-means ✓ ✓
[170] 2020 n k-means ✓ ✓

Furthermore, platforms like Cerebro [179] facilitate collaborative learning by enabling end-to-end710

computation of machine learning tasks on plaintext data without requiring users to have specialized711

cryptographic knowledge. This simplification aids in the adoption of privacy-preserving techniques in712

practical applications.713

7.3 Secure multi-party computing protocols714

Table 7 summarizes the main SMPC protocols, comparing key properties and the number of supported715

parties.716

2012 - 2015: Foundational protocols717

SPDZ [6], introduced in 2012 with rigorous security proofs, comprises a secure online phase capable of718

guarding against active adversaries who can corrupt up to n−1 out of n parties. Notably, computational and719

communication costs exhibit linear scaling (i.e., O(n)) with the number of parties, a marked improvement720

over prior approaches that suffered from quadratic complexity. SPDZ utilizes SWHE, and SPDZ operates721

under the assumption that the key pair of the cryptosystem is generated and shared in advance. However,722

the computation complexity of SPDZ is amortized for preprocessing and online phases, suggesting that723

worst-case scenarios may result in significantly higher execution times. SPDZ [6] marked a theoretical724

breakthrough by achieving full-malicious security with a dishonest majority and constant-round online725

computation. However, it has seen limited real-world use due to severe practical constraints. Its FHE-based726

preprocessing is computationally and bandwidth-intensive, requiring expensive homomorphic operations that727

take minutes to hours and require massive memory for modest-scale computations. The protocol’s enormous728

storage and network demands, along with a rigid setup tied to specific parameters such as field size and party729

numbers, limit flexibility. Moreover, the need for synchronized FHE and MPC stacks introduces engineering730

complexity, and the protocol only ensures security with abort, meaning an adversary can force termination731

after incurring significant resource use. These limitations led to the development of more practical successors,732

such as MASCOT [62] and MP-SPDZ [63], which retain the efficient online phase while replacing FHE733

preprocessing with faster approaches, such as Oblivious Transfer.734

The authors of the original SPDZ have made significant advancements to address its limitations. For735

instance, [58] resolves the assumption of pre-sharing secret keys by incorporating BGV encryption [180]736

and delegates numerous computations to the preprocessing phase, thereby reducing costs for the online737

phase. Additionally, this enhanced version of SPDZ facilitates parallel computations through multithreading738

capabilities.739

ABY [64] introduces a mixed protocol framework for secure Two-Party Computation (2PC) by740

integrating Arithmetic sharing, Boolean sharing, and Yao’s garbled circuits. Also, the authors infer that741

oblivious transfer-based multiplication outperforms homomorphic multiplication based on their benchmark742
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observations. Furthermore, they employ standard operations to craft a flexible protocol mixture and leverage743

the latest optimizations for each protocol utilized. However, it is essential to note that this framework is744

limited to a passive semi-honest adversary model and lacks support for malicious adversaries, unlike SPDZ.745

Additionally, ABY lacks scalability beyond 2PC and should accommodate a variety of protocols beyond746

those used in its initial implementation.747

2016 - 2018: Efficient extensions and hybrid approaches748

[181] highlights the contrasting advancement rates between 2PC and MPC, emphasizing the relatively749

slower progress in MPC. The paper introduces an MPC protocol tailored for the semi-honest adversary setting,750

achieved through oblivious transfer among parties using multi-party garbled circuits. Key advantages of this751

approach include constant rounds of communication and support for any number of adversaries. However,752

additional research is warranted to optimize the efficient utilization of linearly scaling multi-party garbled753

circuits with varying numbers of parties.754

Araki et al. [182] present a Three-Party Computation (3PC) protocol designed for an honest majority,755

ensuring security in the presence of semi-honest adversaries while maintaining privacy even with malicious756

parties. However, these guarantees are based on simulation-based definitions and are limited to scenarios with757

at most one corrupted party. Additionally, the protocol does not accommodate an arbitrary number of parties758

and necessitates an honest majority. Nevertheless, experimental results indicate the feasibility of secure759

computation using standard hardware, particularly with fast network speeds and high throughput capabilities.760

ABY 3 [183] presents a 3PC protocol featuring an honest majority. Notably, ABY 3 introduces secure761

fixed-point multiplication and secure evaluation of piecewise polynomial functions. Despite its similar name,762

ABY 3 differs from the original ABY protocol in that ABY is a 2PC protocol, whereas ABY 3 operates in a763

3PC context. ABY 3 is designed to cater to both semi-honest and malicious settings, showcasing its versatility.764

In addition, empirical evaluations demonstrate its impressive performance gains, with ABY 3 showing a speed765

enhancement of 55,000x during neural network training compared to SecureML [7], 1,375 times faster during766

linear regression training, and 270 times faster than Chameleon [8] for handwriting prediction using neural767

networks.768

SPDZ2k [61] introduces a novel approach for Message Authentication Codes (MACs) employing additive769

homomorphism modulo 2k over a field, in contrast to the original SPDZ protocol. SPDZ2k operates in770

preprocessing and online phases like its predecessor, even in scenarios with a dishonest majority. However,771

SPDZ2k exhibits nearly twice the communication cost compared to MASCOT [62], albeit offering the772

advantage of utilizing modulo 2k instead of a field. Nevertheless, adapting parallel homomorphic operations773

with ciphertexts poses a challenge within the SPDZ2k framework.774

2019 - 2021: Deployment-ready frameworks775

ASTRA [66] emerged as a highly efficient 3PC protocol operating over a ring of integers modulo 2l ,776

uniquely poised for applications in secure machine learning due to its minimal communication overhead in777

the semi-honest setting and enhanced malicious security protocols. [185] extended this efficiency in two-party778

protocols, particularly suitable for WAN environments, by significantly reducing both communication rounds779

and data requirements, although at a higher computational cost. In a parallel development, [63] introduced780

MP-SPDZ, a versatile framework that broadened the SPDZ protocol to accommodate multiple security781

models and computational types, thereby facilitating comparative research across different protocols.782
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Manticore [186] further refined secure computation frameworks by preventing overflow in machine783

learning applications, showcasing a unique modular lifting approach that preserves arithmetic operations.784

Meanwhile, Fantastic Four [187] and [188] respectively introduced novel four-party and multi-party785

comparison protocols, each enhancing security features and operational efficiency in scenarios of dishonest786

majority and complex comparison tasks. For instance, FantasticFour [187] introduces a Four-Party787

Computation (4PC) protocol while supporting active security against corrupted adversaries in an honest788

majority setting. While it provides resilience against malicious adversaries, relying on an honest majority789

remains a limitation when dealing with a compromised party. Lastly, [189] demonstrated a secure computation790

protocol for graph algorithms with an honest majority, efficiently safeguarding graph topology with a 3PC791

setup that remarkably accelerates computations even for large-scale graphs, proving its practical utility and792

speed in real-world applications. A notable contribution of this work is the advancement of secure shuffling793

techniques as a replacement for secure sorting algorithms.794

2022 - present: Large-scale and cloud focused solutions795

[190] presents a cloud-based MPC protocol to ensure security for up to n-1 malicious parties in796

conjunction with a semi-honest server. Compared to the protocol outlined in [192] for server-aided 2PC797

protocols, this approach demonstrates a fourfold improvement in execution time and a 2.9-fold reduction798

in communication costs. It is important to note that the execution time and communication metrics in799

[192] were not provided initially and were approximated in [190], rendering the above improvements likely800

estimations. Additionally, the study showcases significant enhancements, such as an estimated 83-fold801

decrease in execution time, a 1.5-fold reduction in communication among 2 or 4 client parties, and a802

42-fold improvement in server communication costs. Moreover, the proposed solution exhibits nearly linear803

scalability, with communication costs and execution times scaling proportionally with the number of parties804

involved.805

Building upon the foundation of [189], the research discussed in [191] enhances the online efficiency806

of the secure shuffle protocol outlined in [189] by achieving a twofold reduction in communication costs807

and the number of online rounds in a 3-party setting. However, it is essential to highlight that while this808

approach excels in 3-party computation, its communication costs become less favorable than those of [189]809

when applied to larger values of n. Therefore, while the approach proposed in [191] shows promise for 3PC810

scenarios, its generalizability is limited.811

7.4 Privacy preserving machine learning techniques that utilize secure multi-party computing812

7.4.1 Training813

A high-level comparison of SMPC-based PPML training approaches is presented in Table 8.814
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Table 8: Summary of privacy-preserving machine learning training techniques that utilize SMPC.

Ref Year Name # parties Training Inference

[3] 2007 - 2 ✓
[4] 2009 - 2 ✓
[5] 2010 - n ✓

[193] 2012 - n ✓
[131] 2017 ∝MDL n ✓
[7] 2017 SecureML 2 ✓

[194] 2017 - n ✓
[60] 2017 - n ✓
[8] 2018 Chameleon 2 ✓

[195] 2018 - n ✓
[184] 2018 SecureNN 3 and 4 ✓
[196] 2019 EzPC 2 ✓
[171] 2019 - 2+ ✓
[68] 2019 SecureGBM n ✓ ✓
[10] 2019 QUOTIENT 2 ✓ ✓
[9] 2019 SecureNN 3 ✓ ✓

[172] 2019 Trident 4 ✓
[65] 2019 EPIC n ✓
[197] 2020 - 3 ✓
[198] 2020 BLAZE 3 ✓
[199] 2020 FLASH 4 ✓
[200] 2020 SOTERIA n ✓
[201] 2020 - n ✓
[202] 2020 - n ✓
[203] 2021 - n ✓
[204] 2021 SWIFT 3 and 4 ✓
[205] 2021 CRYPTGPU n ✓ ✓
[13] 2021 Falcon 3 ✓ ✓
[206] 2021 - 2 ✓ ✓
[12] 2021 CRYPTEN n ✓ ✓
[207] 2021 CodedPrivateML n ✓
[208] 2021 - n ✓
[209] 2022 Tetrad 4 ✓
[210] 2022 Piranha 2, 3, and

4
✓

[211] 2022 NFGen n ✓
[16] 2023 SecretFlow-SPU n ✓
[17] 2024 Spin n ✓ ✓
[18] 2024 EVA-S3PC 3 ✓ ✓

2007 - 2012: Early foundations and proof of concept815

The field of PPML has seen many advances since its inception, including works to extend SMPC816

techniques to gradient-descent methods. The first work in this area, by [3], proposed a secure two-party817

protocol for gradient descent, establishing a foundational approach. They proved the proposed protocol818

is correct and privacy-preserving for the two-party case, with a potential extension to the multiparty case.819

However, the protocol assumes that the involved two parties are semi-honest. [5] proposed an approach820

averaging locally trained models with a stochastic component to make the averaged model differentially821

private. However, the best performance was limited to instances where dataset sizes were equal. Their822
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approach lacks generalizability when data from different parties are from distinct distributions and assumes823

data are sampled from the same distribution, such as the Laplace distribution. [193] proposed a technique824

optimizing the overall multiparty objective with a weaker form of differential privacy compared to [5], with825

performance not dependent on the number of parties or dataset size. They demonstrated that the local model826

aggregation method proposed by [5] degrades with an increasing number of involved parties, contrary to the827

original claims.828

2013 - 2020: Scaling up SMPC for neural networks and complex ML tasks829

[131] introduced ∝MDL, a multiparty deep learning approach optimizing asynchronously using HE830

and secret sharing. ∝MDL allows users to balance model utility against training efficiency by controlling831

communication and computational costs. However, their approach does not address fairness issues due to the832

unequal contribution of involved parties when controlling communication and computational costs. [7] created833

SecureML, the first PPML system for training neural networks in a 2PC setting, providing SMP-friendly834

alternatives for non-linear activation functions. A salient feature of SecureML is scalability to millions of835

input data samples with thousands of features. However, neural network communication works well only in a836

Local Area Network (LAN) and is not scalable to a Wide Area Network (WAN). Also, SecureML is limited837

to fully connected Multi-Layer Perceptron (MLP) neural networks and does not support other types, such as838

CNNs. [8] improved upon the work of Mohassel et al. with Chameleon, utilizing Secure Function Evaluation839

(SFE) [57] based on the ABY framework [64]. Chameleon achieves significant performance improvements840

against CryptoNets [72] and [212], with 133x and 4.2x enhancements, respectively. It also requires 256x less841

communication cost compared to ABY.842

[195] proposed a work applicable to any DNN without sacrificing accuracy in a cloud computing843

environment that does not rely on data perturbation or noise addition. Instead, it uses cryptographic tools844

to preserve privacy in the MPC setting. However, their approach depends on the assumption that involved845

parties are non-colluding while the cloud server can be malicious, breaking the MPC protocol.846

EzPC [196] provides a 2PC framework with formal correctness and security guarantees, outperforming847

its predecessors by 19×. However, these guarantees do not apply to malicious adversaries. The848

re-implementation of SPDZ2k by [171] was benchmarked for decision trees and SVM evaluations, affirming849

online phase communication improvements as initially proposed. SecureGBM [68] reduces communication850

payloads through stochastic approximation techniques but shows a slowdown in training time ranging from851

3 to 64 times compared to LightGBM. QUOTIENT [10] discretizes DNN training with a 2PC protocol,852

showing a significant improvement of 50 times and a 6% increase in absolute accuracy compared to previous853

work. However, it still lacks efficient support for CNNs. SecureNN [9] was the first 3PC work to produce854

a CNN with greater than 99% accuracy on the MNIST dataset [128], providing complete security against855

one semi-honest corruption and privacy against one malicious corruption. Also, SecureNN [9] achieves856

a 93× and 8× improvement over state of the art in 2PC and 3PC settings, respectively, by eliminating857

expensive oblivious transfer protocols. They concluded that using garbled circuits for non-linear activation858

functions was the primary culprit for the higher communication costs of related 2PC and 3PC models. Trident859

[172], a 4PC framework, uses a minimal number of expensive circuits, leading to improvements of up to860

187 times for the training phase and 158 times for the prediction phase over LAN and WAN. However,861

performance improvements are not benchmarked beyond the four parties. EPIC [65] proposed a transfer862

learning technique to minimize the load on the privacy-preserving part of the machine learning pipeline. EPIC863
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shows improved computation and communication cost over Gazelle [213] with SVMs but lacks comparison864

with more advanced deep learning methods like CNNs in the privacy-preserving domain.865

In 2020, [197] proposed InvertSqrt, an MPC protocol for efficiently computing the reciprocal of the866

square root of a value, 1/
√

x. While it demonstrates that adaptive optimizers are practical in MPC model867

training, it adds a computation overhead that can be mitigated by faster convergence or larger batch sizes868

during training. BLAZE [198] is a protocol that tolerates one malicious corruption within a ring network,869

outperforming existing solutions by at least 53x in round and communication complexity. However, BLAZE870

lacks extension to the training of neural networks and only considers neural network inference. FLASH,871

presented in [199], guarantees output delivery and significantly improves throughput from 11× to 1395×872

when tested on the MNIST dataset. The communication cost of a private machine learning model depends on873

its architecture, which is addressed in [200] through a neural architecture search to find accurate and efficient874

models for private computation. SML [201] incorporates aggregate signature and proxy re-encryption875

techniques for added security without encrypting the whole input data. However, SML assumes the cloud876

server to be malicious while considering data owners to be honest but curious without collusion among877

involved parties. In [202], the authors provide an optimal truthful mechanism in the quasi-monotone utility878

setting in a mechanism design problem with MPCs, where each party may act in its interest. However, this879

approach assumes that all parties train a homogeneous model structure and might not support heterogeneous880

model structures.881

2021 - present: Robust real-world deployment882

In 2021, several advancements were made in SMPC for machine learning. SWIFT [204] is a maliciously883

secure 3PC over rings that provides guaranteed output delivery. However, it does not extend to multiple884

semi-honest parties and assumes only one malicious adversary in a 3PC or 4PC setting. CRYPTGPU885

[205] improves performance by running all operations on a GPU, achieving 2× to 8× improvement in886

private inference and 6× to 36× improvement in private training. However, it relies on the secret-sharing of887

components such as the model and data beforehand.888

Similarly, CRYPTEN [12] also offers GPU support and operates under a semi-honest threat model but889

may be susceptible to side-channel attacks. Falcon [13] supports batch normalization and guarantees security890

against malicious adversaries with an honest majority. It provides private inference 8× faster than SecureNN891

and comparable to ABY3, and private training 6× faster than SecureNN and 4.4× faster than ABY3.892

Nevertheless, it lacks security against attacks on training data privacy, such as model inversion, attribute893

inference, and membership inference. The work by [206] achieves accuracy close to plaintext training, with894

an online phase 5× faster than SecureML [7] and at least 4.32× faster than SecureNN [9]. Its inference895

phase is at least 4× faster than other works like SecureML, EzPC, and Gazelle. CodedPrivateML [207]896

efficiently scales beyond 3-4 workers while achieving information-theoretic privacy, with communication and897

computation costs decreasing with the number of workers. Nevertheless, it does not support deeper neural898

networks using non-linear activation functions like polynomials. Lastly, [208] combines differential privacy899

and SMPC to train deep learning models privately, providing two protocols in a 2PC setting but lacking900

generalizability for a higher number of participants.901

In the realm of SMPC techniques post-2021, various frameworks and platforms have emerged to902

bolster privacy-preserving computations. Tetrad [209], a 4PC computing framework, improves fairness and903

robustness over Trident [172] while reducing deployment costs six-fold and achieving speed gains—four times904

faster in ML training and five times faster in ML inference. However, Tetrad requires function-dependent905
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preprocessing for increased generality. Piranha [210] leverages GPUs to accelerate SMPC computations906

in 2PC, 3PC, and 4PC settings, enhancing training and inference speeds for PPML techniques by 16-48x907

compared to respective CPU-based versions. Nevertheless, Piranha assumes the involved parties execute908

within their trust domains with dedicated GPUs and secure channel communication for secret sharing. NFGen909

[211] employs piecewise polynomial approximations for nonlinear functions in MPC systems, addressing910

precision variations caused by fixed-point and floating-point numbers. Regardless, it is limited to two MPC911

platforms and does not support multi-dimensional nonlinear functions. SecretFlow-SPU [16] features a912

frontend compiler converting ML programs into MPC-specific representations, with code optimizations and a913

backend runtime for executing MPC protocols. It achieves 4.1x and 2.3x faster execution rates compared to914

MP-SPDZ [63] and TF-Encrypted [214], respectively. However, SecretFlow-SPU faces precision limitations915

and potential inaccuracies due to using fixed-point numbers.916

Spin [17] enables secure computation of attention mechanisms, facilitating privacy-preserving deep917

learning in MPC settings, including CNN training and transformer inference. It supports Graphics Processing918

Unit (GPU) acceleration and operates in an n-party dishonest majority setting. While Spin effectively919

optimizes online computation, it does not address inefficiencies in the precomputation phase. Additionally,920

its applicability is limited to deep learning models that fit within GPU memory, restricting scalability for921

larger architectures. EVA-S3PC [18] introduces secure atomic operators for large-scale matrix operations,922

enabling efficient training and inference of linear regression models in 2PC and 3PC settings under a923

semi-honest adversary model. It demonstrates superior communication efficiency compared to SecretFlow924

[16] and CryptGPU [205]. However, EVA-S3PC is evaluated only in a LAN, limiting its scalability to925

WAN. Furthermore, its design is restricted to a 3PC setting, constraining its applicability to large multi-party926

scenarios.927

7.4.2 Inference928

Table 9 provides an overview of SMPC-driven secure inference techniques and their associated datasets.929

2017 - 2018: Foundational approaches to secure inference930

Before 2019, several studies focused on secure inference in machine learning using SMPC. [215]931

introduced BaNNeRS, a method for secure inference on Binarized Neural Networks (BNNs) utilizing932

MP-SPDZ. This approach assumes an honest majority, providing security by aborting execution if a malicious933

adversary is detected. However, BaNNeRS suffers from high computational overhead, making it relatively934

slow and unsuitable for real-time applications.935

In the same year, [212] proposed MiniONN, a technique for transforming existing neural networks into936

oblivious neural networks. Their method demonstrated significantly lower response latency and reduced937

message sizes compared to previous work, such as [7], while achieving sub-linear growth in these metrics.938

Although MiniONN effectively hides neural network parameters such as model weights and bias matrices,939

it still reveals metadata, including the number of layers, the sizes of weight matrices, and the operations940

performed in each layer. Furthermore, MiniONN lacks the necessary support for developers and the neural941

networks commonly used in industrial production environments.942

Additionally, [213] introduced GAZELLE, which combines HE with 2PC to enable privacy-preserving943

inference over encrypted data. GAZELLE achieves significant improvements, including a 20–30x reduction944

in latency and a 2.5–88x improvement in online bandwidth. However, its applicability is limited to small945

input sizes and lacks automatic compilation capabilities for secure inference pipelines.946
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Table 9: Summary of privacy-preserving machine learning inference techniques utilizing SMPC

Ref Year Name # Parties Datasets

[215] 2017 BaNNeRS 3 MNIST, CIFAR-10
[212] 2017 MiniONN 2 MNIST, CIFAR-10, PTB
[213] 2018 GAZELLE 2 MNIST, CIFAR-10
[11] 2020 CryptFlow 3 ImageNet

[216] 2020 CryptFlow2 3 ImageNet
[217] 2020 SwaNN 2 –
[67] 2020 MP2ML 2 –

[218] 2020 Otak 2 –
[219] 2020 Delphi 2 CIFAR-100
[220] 2021 SiRNN 2 Google-30, Industrial-72, SCUT Head
[14] 2022 Cheetah 2 CIFAR-100

[221] 2022 SecFloat 2 –
[222] 2022 Llama 2 CIFAR-10, ImageNet, Google-30, Industrial-72
[223] 2022 MPCFormer n IMDb, QNLI, CoLA, RTE
[15] 2023 PUMA 3 CoLA, RTE, QNLI, Wikitext-103 V1

[224] 2023 C2PI 2 CIFAR-10, CIFAR-100
[225] 2023 Privformer 3 –
[226] 2023 Meteor 3 MNIST, CIFAR-10
[227] 2023 CoPriv 2 CIFAR-100, ImageNet
[228] 2023 Compact 3 MNIST, CIFAR-10, ImageNet, CelebA-Spoof
[229] 2024 SecFormer n RTE, MRPC, CoLA, STS-B, QNLI
[230] 2024 CipherDM 3 MNIST
[231] 2024 Roger 2 MNIST, CIFAR-10
[232] 2024 EQO 2 CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet
[233] 2024 HEQuant 2 CIFAR-100, Tiny-ImageNet, ImageNet

2019 - 2020: Broadning techniques and large datasets947

Between 2019 and 2020, significant advancements were made in secure inference techniques. In 2020,948

CryptFlow [11] was introduced, achieving secure inference with accuracy equivalent to plaintext TensorFlow949

while outperforming prior methods. Its successor, CryptFlow2 [216], extended this work by enabling secure950

inference on large-scale datasets, such as those involving ResNet-50 and DenseNet-121 models, with an951

order-of-magnitude reduction in communication costs and 20× to 30× faster computation compared to952

state-of-the-art solutions.953

Also in 2020, SwaNN [217] presented a hybrid approach combining PHE and 2PC. Delphi [219] offered954

a 2PC inference system for neural networks, achieving a 22× improvement in computation time and a 9×955

reduction in communication costs over GAZELLE [213]. A key feature of Delphi is its hybrid cryptographic956

prediction protocol tailored for real-world neural networks. SiRNN [220] introduces a 2PC framework for957

secure Recurrent Neural Network (RNN) inference. It achieves a threefold reduction in communication and958

latency compared to previous state-of-the-art methods. However, SiRNN is limited to two-party settings and959

lacks support for malicious adversaries, restricting its scalability and security guarantees.960

2021 - 2022: Enhanced precision, GPU acceleration, and specialized layers961

After 2021, new frameworks continued to enhance the efficiency and practicality of secure962

inference. Cheetah [14], a 2PC neural network inference system, employed HE protocols to efficiently963
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evaluate convolutional layers, batch normalization, and fully connected layers, while integrating964

communication-efficient primitives for nonlinear functions like ReLU. Experimental results showed that965

Cheetah outperformed CryptFlow2 [216], being 5.6× faster and reducing communication costs by 12.9×.966

However, Cheetah is limited to 2PC and lacks GPU-based acceleration support.967

SecFloat [221] introduced a 2PC library specializing in 32-bit single-precision floating-point operations.968

It achieved six times higher precision and doubled efficiency compared to earlier works like ABY-F circuits969

[64] and MP-SPDZ [63]. Despite its advancements in precision through floating-point arithmetic, SecFloat970

does not support double-precision floating points and lacks security against malicious adversaries.971

Llama [222] presents an end-to-end 2PC inference system leveraging function secret sharing. While972

it optimizes online computation, it incurs significant memory and communication bandwidth in the offline973

phase. Additionally, it is constrained to a two-party setting. MPCFormer [223] proposes an MPC-friendly974

transformer inference approach with knowledge distillation. It demonstrates improved speed and accuracy975

on the IMDb and GLUE benchmarks. However, its knowledge distillation technique employs teacher and976

student models of the same size, and it is evaluated only on a single MPC system.977

2023 - present: Large transformer inference, quantization, and diverse frameworks978

PUMA [15] provided a framework for efficient and secure Transformer model inference in a 3PC setting.979

It offered approximations for functions such as GeLU and softmax without compromising model performance980

and ensured secure implementations for layer normalizations and embeddings. Current limitations of PUMA981

include insufficient support for quantization methods and lack of hardware acceleration.982

C2PI [224] is a 2PC private inference framework for neural networks that leverages MPC protocols only983

in the initial layers. It outperforms prior systems like Delphi [219] and Cheetah [14], with improvements of984

2.89× and 3.88× respectively, and a 2.75× reduction in communication costs. However, C2PI supports only985

the semi-honest threat model and does not defend against malicious client threats.986

Privformer [225] introduced a secure inference method for Transformer models using a 3PC approach987

with an honest majority. Its significant contributions include enhanced MPC performance and achieving linear988

or quadratic computation times with constant and linear communication rounds. It also provides a novel989

MPC protocol for approximating the inverse square root function common in batch or layer normalization in990

neural networks. Despite these advancements, Privformer lacks real-time secure inference capabilities for991

Transformers and does not support parallel computation using GPUs.992

Meteor [226] introduces an efficient 3PC framework for secure neural network inference, outperforming993

SecureNN [9] and Falcon [13] in online communication cost. However, it has a significant overhead during the994

complex setup phase. CoPriv [227] develops a secure 2PC inference framework that optimizes communication995

overhead. However, like many prior SMPC approaches, CoPriv is constrained to the semi-honest threat model996

and lacks scalability beyond two-party settings. Compact [228] introduces efficient and secure activation997

function approximations to facilitate glssmpc adoption in DNNs. It achieves a 2x to 5x speedup over NFGen998

[211] in both 2PC and 3PC settings. However, Compact supports only a limited number of parties, lacks999

GPU acceleration, and remains vulnerable to membership inference and model inversion attacks.1000

SecFormer [229] presents an MPC-based secure transformer inference framework with support for1001

secure GeLU and LayerNorm computations. However, it is restricted to a semi-honest majority setting1002

and supports only encoder-based transformers such as BERT. Further, SecFormer lacks model quantization1003

and pruning support, limiting its efficiency. CipherDM [230] proposes an SMPC framework for secure1004

diffusion model inference based on the ABY protocol. While it marks a significant advancement in securing1005
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diffusion models, it works only with 3PC, lacks hardware acceleration, and remains impractical for real-world1006

deployment using diffusion models.1007

Roger [231] introduces a 2PC secure neural network inference system optimized for GPU acceleration,1008

surpassing the throughput of Piranha [210]. Nevertheless, it is limited to two-party settings and assumes a1009

semi-honest majority, lacking support for malicious adversaries. EQO [232] presents a secure, quantized1010

2PC inference framework for CNN. It reduces communication overhead compared to SiRNN [220] and1011

CoPriv [227] but remains restricted to two-party computation. Also, EQO assumes both parties have prior1012

knowledge of the neural network architecture and does not support malicious adversaries. HEQuant [233]1013

introduces a HE-based and quantized 2PC protocol for DNN inference. It supports low-precision deep1014

learning models and outperforms CryptFlow2 [216], Cheetah [14], and Falcon [13] by more than threefold in1015

both communication cost and computation latency.1016

8 Discussion1017

With the exponential growth in data collection and increasingly stringent privacy regulations, PPML1018

has emerged as a critical area within the broader field of machine learning. PPML enables the utilization of1019

large-scale datasets that might otherwise remain inaccessible due to privacy concerns. Among the techniques1020

within this domain, SMPC has gained significant traction due to recent technological advancements. Despite1021

these developments, the deployment of SMPC-based PPML solutions in production environments faces1022

numerous challenges and demands further refinement.1023

This research offers a detailed analysis of prominent PPML methodologies leveraging SMPC, alongside1024

the theoretical underpinnings necessary for their implementation. The analysis underscores that no universal1025

solution exists to address all challenges associated with PPML. Each method discussed in this study presents1026

distinct advantages and limitations, which must be considered in relation to specific application requirements.1027

Furthermore, the paper identifies critical challenges inherent to SMPC within PPML frameworks and proposes1028

potential research directions aimed at advancing this field. These future directions focus on addressing1029

scalability, efficiency, and practical usability in real-world scenarios.1030

8.1 Challenges / issues / open problems1031

While SMPC demonstrates faster application in practical scenarios, the feasibility of large-scale SMPC1032

applications remains impractical [234]. Despite its potential as a promising approach to PPML, SMPC1033

presents numerous challenges. Regardless of the recent advancements to mitigate these challenges [235,1034

236], a variety of issues and significant hurdles persist when implementing these systems in production1035

environments. These challenges include scalability constraints, the complexity of integrating with existing1036

machine learning frameworks, and ensuring robust security against evolving cyber threats. Consequently,1037

additional research is imperative to surmount these obstacles in SMPC, ultimately fostering the widespread1038

adoption of SMPC in PPML. This research should focus on technological advancements and developing1039

standardized protocols and best practices for implementing SMPC in diverse application scenarios.1040

8.1.1 Cloud-assisted secure multi-party computing1041

In their seminal work, [237] introduced server-assisted SMPC to enhance the runtime performance1042

of SMPC protocols. However, this advancement brings the complexity of heterogeneous computing1043

environments. [195] and SML [201] further explore SMPC in cloud environments, which require secure1044

protocols for information exchange over insecure channels and assume non-colluding parties. Thus, the1045
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above work illustrates the growing complexity of SMPC in cloud settings. Consequently, developing efficient1046

schemes for SMPC in cloud settings with potential colluding adversaries is essential. Unlike the traditional1047

homogeneous SMPC model, these environments involve participants with varied roles and capabilities,1048

necessitating tailored protocols and security measures.1049

8.1.2 Side-channel attacks1050

[238] highlight the vulnerability of the MPC-in-the-head variant to side-channel attacks and demonstrate1051

how strong non-inference can be employed to mitigate such risks. Similarly, [239] reveal that TEEs are1052

also susceptible to side-channel attacks. They propose a hybrid trust MPC model with three levels of trust:1053

complete, partial, and no trust. While this approach shows promise, its security evaluation is limited to SQL1054

query operations. It leaves its applicability to other computational tasks untested, such as distributed model1055

training or more general distributed computations. Furthermore, [240] demonstrate that enclaves face unique1056

threats, such as controlled-channel attacks, due to their dependency on enclave infrastructure. The authors1057

illustrate how adversaries can leverage memory exploitations in enclaves on untrusted operating systems to1058

extract sensitive information. Even frameworks like CRYPTEN [12] are vulnerable to side-channel attacks,1059

showing the critical need for robust solutions to safeguard SMPC implementations. Despite the rigorous1060

security guarantees provided by SMPC protocols, their practical implementations relying on underlying1061

hardware remain susceptible to side-channel attacks, presenting a significant challenge for real-world SMPC1062

applications.1063

8.1.3 Generalizability1064

A significant challenge in most SMPC methodologies lies in their limited generalizability. This constraint1065

is primarily due to the frequent design focus on specific machine learning algorithms or a narrow subset of1066

such algorithms. As highlighted by Zhao et al. [108], there is a pressing need for application-specific SMPC1067

frameworks, such as those tailored to PPML, and secure genomic sequence comparison, which address1068

concrete practical use cases. However, the adoption of a generic SMPC framework often necessitates a1069

comprehensive reevaluation of the associated security architecture when introducing a new model. This1070

reevaluation introduces inefficiencies and negatively impacts scalability, underscoring the need for more1071

adaptable SMPC methods capable of seamlessly integrating with diverse models and algorithms in real-world1072

scenarios.1073

The growing body of literature increasingly emphasizes the necessity for holistic architectural approaches1074

to SMPC in PPML. For instance, [12] points out that current efforts are predominantly centered around1075

particular machine learning models, resulting in a call for more generalized SMPC systems. [179] similarly1076

argue that PPML techniques frequently lack general applicability and often overlook the trade-offs inherent1077

in different physical systems. Moreover, they criticize the omission of incentive-aligned mechanisms in1078

secure collaborative learning paradigms. By integrating features such as policy compliance and auditing, the1079

Cerebro platform [179] exemplifies the potential for more comprehensive and robust PPML frameworks,1080

thereby reinforcing the demand for generalized and resilient solutions.1081

8.1.4 Speed of execution1082

Integrating SMPC in PPML often leads to increased communication and computational costs, negatively1083

impacting execution speed—a crucial factor in machine learning. The primary reasons for these elevated1084

costs are using garbled circuits [9] and performing computations within the encrypted domain. To address1085
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these challenges, several studies [6], have made strides in improving the efficiency of SMPC techniques.1086

These advancements have notably outpaced the speed of FHE, offering a more practical solution for PPML.1087

However, despite these improvements, there is still a need for further reductions in the communication1088

costs associated with SMPC in PPML, indicating that current solutions, while promising, have not yet fully1089

addressed the efficiency issues in this domain.1090

8.1.5 Scalability1091

Scalability remains a critical yet challenging aspect of PPML when using SMPC. The literature highlights1092

that the number of computation parties often limits the scalability of SMPC systems. For example, many1093

existing SMPC techniques are restricted: EzPC [196] is 2PC, ABY3 is 3PC, and Tetrad [209] and Piranha1094

[210] are 4PC. This lack of scalability is evident from the varying performances reported across studies, where1095

some systems show a decline in efficiency as the number of participants increases, while others demonstrate1096

consistent or even improved performance [193].1097

Future research should focus on developing more robust SMPC frameworks to address these1098

inconsistencies. These techniques should also be capable of efficiently handling increasing participants1099

without compromising performance. Addressing these issues could involve optimizing algorithmic efficiency1100

or exploring new architectural designs that better distribute computational loads. Ensuring scalability in1101

SMPC-based PPML is crucial for its practical application in real-world scenarios, showing the ongoing need1102

for research and development in this area.1103

8.1.6 Security assumptions1104

The integration of SMPC in PPML introduces specific security vulnerabilities and susceptibility to1105

various attacks. Addressing these security assumptions is crucial before implementing such systems.1106

For example, a PPML system using SMPC may set a threshold for the maximum number of corrupted1107

parties; exceeding this threshold could compromise data privacy. [241] highlights that SMPC assumes most1108

participants are honest, as secure computation is infeasible without such a majority. To mitigate trust-based1109

risks, Katz proposed using tamper-proof hardware, a solution further explored by [242] through tamper-proof1110

hardware tokens.1111

Additionally, certain SMPC techniques like SPDZ [6], CRYPTGPU [205], and Piranha [210] rely on1112

secure secret-sharing channels for exchanging encryption keys or other sensitive information. Some SMPC1113

settings assume semi-honest parties [66], [3], [12]. According to [12], although SMPC protocols offer robust1114

security guarantees, certain security assumptions made during their implementation can be compromised.1115

Despite stringent security measures, SMPC implementations remain vulnerable to side-channel attacks.1116

8.2 Deployment challenges1117

Deploying inference systems that preserve privacy at scale remains operationally complex [243,244].1118

For example, the cost structure of AWS Clean Rooms using MPC quickly surpasses that of conventional1119

SQL queries. Additional complications arise in cross-cloud environments where latency, egress charges, and1120

throttling penalties increase communication overhead. As a result, engineers often restructure or simplify1121

protocol designs to minimize such penalties. Furthermore, service-level quotas and per-query billing models1122

complicate cost attribution across collaborating entities. Without early agreement on customized cost-sharing1123

mechanisms or the use of nascent payer-decoupling features, collaborative projects tend to stall.1124
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In conclusion, the adoption of new technologies like SMPC in PPML is complex and requires a gradual,1125

informed approach. Organizations and individuals must be familiarized with new data policies, while legal1126

frameworks need to evolve to counteract malicious activities. When designing privacy-preserving machine1127

learning systems based on SMPC, it is imperative to address all potential security threats comprehensively.1128

Although finding a single solution to fully secure collaborative tasks is challenging, advancements in1129

privacy-preserving techniques and refined policies can significantly reduce vulnerabilities.1130

8.3 Future directions1131

SMPC for PPML has matured rapidly, yet important gaps persist. We organise them into (A) application1132

scenarios that drive adoption, (B) enabling technologies that determine feasibility, and (C) security &1133

governance threats that shape trust.1134

8.3.1 A. Application-driven challenges1135

A1. Edge & IoT inference under tight budgets1136

Edge devices such as 32-bit MCUs and smart sensors offer only a few hundred kilobytes of RAM1137

and limited integer support, yet must still deliver sub-second inference in safety-critical settings (e.g. smart1138

grids, wearables). Bridging this deployment gap demands models whose code + state are tiny and whose1139

communication fits low-power radios without sacrificing privacy. Two pressing challenges therefore emerge:1140

compressing SMPC state and code to below 100 kB while retaining passive-adversary security, and pinpointing1141

arithmetic approximations that keep end-to-end latency under 50 ms with at most a one-percentage-point1142

drop in keyword-spotting accuracy.1143

A2. Cross-institution analytics in healthcare & finance1144

Hospitals and banks increasingly need to pool sensitive data to detect rare events (e.g. adverse-drug1145

reactions, fraud rings) without breaching confidentiality mandates [145,245,246]. Pilot deployments show1146

that SMPC can federate up to a dozen parties, but dynamic membership, high-volume streaming and audit1147

compliance remain unsolved. Future work must clarify which consent-management mechanisms enable1148

parties to join or leave without global key resharing.1149

8.3.2 B. Technique-driven advances1150

B1. Federated learning + SMPC1151

FL keeps raw data local yet still leaks gradients and is vulnerable to Byzantine updates [247]. Combining1152

FL with SMPC can hide intermediate updates and provide provable aggregation integrity, but naïve1153

integrations triple communication cost. Key open issues include bounding global-model deviation in the1154

presence of (n, f )-Byzantine parties while limiting traffic blow-up to under 1.5×, and understanding the1155

latency-energy trade-offs between SMPC and trusted-execution enclaves when defending against poisoning1156

attacks.1157

B2. Transfer- and representation-learning1158

Transfer learning promises data-efficient models by sharing representations, yet privacy rules often block1159

direct parameter reuse [136]. When source and target data belong to disjoint owners, SMPC can mediate1160

knowledge transfer, but current approaches require repeated, costly secret reconstructions. Future protocols1161
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should enable task-agnostic feature extractors to be fine-tuned without data ever leaving its owner, and explore1162

whether in-protocol knowledge distillation can reduce uplink traffic without harming accuracy.1163

8.3.3 Security, privacy and governance1164

C1. Robustness against malicious adversaries1165

Most open-source SMPC frameworks assume semi-honest behaviour [216], yet real-world coalitions1166

must tolerate arbitrarily deviating participants and selective aborts. Although malicious-secure protocols exist,1167

they often introduce order-of-magnitude slowdowns; the community therefore aims to design a three-party1168

protocol with abort resilience whose concrete runtime is no more than twice that of SPDZ under the same1169

network conditions.1170

C2. Policy, legal and ethical alignment1171

Cross-border federations must reconcile conflicting data-residency laws (GDPR, CCPA, HIPAA) and1172

still guarantee verifiable compliance. Current SMPC implementations focus on technical privacy but offer1173

limited support for audit trails, consent enforcement or lawful intercept. A key challenge is therefore enabling1174

federations that span multiple jurisdictions to deliver verifiable auditability while fully honouring local1175

data-sovereignty constraints.1176

Tackling these research questions will transform SMPC-enhanced PPML from promise to deployable1177

reality across edge, cloud and cross-border settings.1178

9 Conclusion1179

This survey summarizes Secure Multi-Party Computing (SMPC) in Privacy-Preserving Machine1180

Learning (PPML), focusing on its role in the Machine Learning (ML) pipeline, key protocols, applications,1181

threat models, and evaluation metrics.1182

We reviewed peer-reviewed literature, comparing SMPC protocols, and created a taxonomy of attacks1183

and defenses. Further, we identified SMPC challenges, including high communication costs, scalability1184

issues, deployment difficulties in cloud environments, and limited compatibility with edge devices. Also,1185

we propose using hardware accelerators (e.g., GPUs), integrating SMPC into popular ML frameworks such1186

as TensorFlow, enhancing cloud service provider support (e.g., AWS), and designing more efficient SMPC1187

protocols to mitigate these issues.1188

Promising research directions include enabling low-latency inference on constrained edge devices (e.g,1189

IoT, mobile), supporting dynamic and high-throughput SMPC support in domains such as healthcare and1190

finance, and advancing hybrid approaches that combine SMPC with federated learning and differential privacy.1191

Tackling robustness against malicious adversaries, optimizing SMPC compilers for modern hardware, and1192

aligning with legal and ethical compliance across jurisdictions are also essential to realizing real-world1193

adoption. We hope this survey serves as a foundational reference for researchers, practitioners, and students1194

working to advance SMPC-enabled PPML toward practical, secure, and scalable deployments.1195
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