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Abstract
Next-generation galaxy surveys promise unprecedented precision in testing gravity at cosmological
scales. However, realising this potential requires accurately modelling the non-linear cosmic web.
We address this challenge by exploring conditional generative modelling to create 3D dark matter
density fields via score-based (diffusion) and flow-based methods. Our results demonstrate the
power of diffusion models to accurately reproduce the matter power spectra and bispectra, even for
unseen configurations. They also offer a significant speed-up with slightly reduced accuracy, when
flow-based reconstructing the probability distribution function, but they struggle with
higher-order statistics. To improve conditional generation, we introduce a novel multi-output
model to develop feature representations of the cosmological parameters. Our findings offer a
powerful tool for exploring deviations from standard gravity, combining high precision with
reduced computational cost, thus paving the way for more comprehensive and efficient
cosmological analyses .

1. Introduction

The advent of precision cosmology marks a new era in our understanding of the Universe driven by a variety
of upcoming missions. Among the key ongoing and forthcoming efforts are the Dark Energy Spectroscopic
Instrument (DESI) [1], the Euclid space mission [2, 3], the Legacy Survey of Space and Time (LSST) [4], the
Wide-Field Infrared Survey Telescope (WFIRST) [5], and the Square Kilometre Array (SKA) [6]. These
experiments aim to provide unprecedented measurements that will constrain cosmological parameters with
high precision, with N-body simulations being a crucial component of these efforts. N-body simulations are,
in fact, essential for accurately modelling the large-scale structure of the Universe, understanding the
evolution of cosmic fields, and interpreting the data from these surveys. N-body simulations play a
fundamental role in understanding the physics behind galaxy survey data, as they enable the exploration of
cosmic structures across a range of scales. Although the non-linear regime of structure formation can, in
principle, be approximated by perturbative-based methods, e.g. standard perturbation theory (see [7–9]),
renormalised perturbation theory (see [10, 11]) or effective field theory (see [12–15]), there is currently no
single, universally adopted framework. Simulations not only offer insights into the small-scale behaviour of
galaxy clustering but also provide a reliable means of investigating the clustering in cosmologies beyond the
Λ-Cold Dark Matter (ΛCDM) model. As a result, simulations have become increasingly crucial in exploring
modified gravity models, with f (R) models highlighting a minimal but significant modification of Einstein’s
general relativity (GR). Since deviations from GR are likely to manifest in summary statistics, accurately
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predicting these statistics is crucial for connecting to theoretical models of structure formation. Despite their
advantages, simulations can be computationally expensive, depending on their complexity, such as the
richness of physical phenomena included and the resolution of mass and scale. This has led to the rise of
emulators based on deep learning algorithms that are designed to quickly and accurately predict
cosmological observables. In particular, generative models have emerged as a promising tool in cosmology,
especially for enhancing and accelerating the analysis of simulations. Recent advancements in generative
models offer a powerful approach to efficiently approximate and generate maps where their summary
statistics closely mirror the ones obtained from simulated data. By learning the underlying distribution of the
complex, high-dimensional cosmic structures, generative models can potentially provide faster and more
scalable solutions while maintaining accuracy, opening new avenues for both theoretical and observational
cosmology. Generative models have been widely used in astronomy, such as U-Net/V-Net [16], styled neural
network [17], GAN with autoencoders [18, 19], only autoencoders [20, 21], normalising flows [22–24],
normalising flows applied in HI Maps [25], Psi-GAN [26], GANs [27–29], conditional GANs [30] GAN
using spherical maps [31, 32], GANs emulators as Using Latent Space Interpolation [33], faster
emulators [34–36] and emulators for cross-domain cosmological problems [37–39], have demonstrated to
be powerful tools for simulating samples from complex probability distributions (for a comprehensive
review, see [40, 41]). Recently, the potential of diffusion models has gained increasing attention, with several
studies exploring their application in cosmology for emulating satellite galaxy and subhalo populations [42],
field emulation and parameter inference [43], emulators [44, 45] and image generation [46–48] among
others. Diffusion models have gained significant attention due to their effectiveness in generating
high-quality samples [49, 50]. These models define a forward diffusion (noising) process that gradually
transforms samples from the target distribution into samples from a standard normal distribution. The
reverse diffusion process, which is learned during training, is equivalent to learning the data score, which is
why diffusion models are also referred to as score-based generative models. This framework has
demonstrated remarkable success in photorealistic image generation, as exemplified by Stable Diffusion, and
addresses some of the key limitations of GANs, such as mode collapse—where the model fails to capture all
modes of the distribution, see e.g. [51]. In this work, we apply diffusion models to generate cold-dark-matter
3D-density fields of modified f (R) gravity conditioned on cosmological parameters. By leveraging
conditional diffusion models, we demonstrate their ability to emulate fast and accurate full 3D density fields
while maintaining consistency with the summary statistics, all at a low computational cost, with an accuracy
similar to state-of-the-art N-body simulations of modified gravity models.

The outline of this paper is as follows. In section 2, we describe three diffusion methods employed in this
research and illustrate the algorithms used for training and deploying the models. Section 3 introduces the
modified gravity simulations used for training and evaluating the trained-models, and section 4 we detail
our methodology including the neural network, the use of representation learning for including the
cosmological parameters as conditioned on the generative models, and the n-point statistics for evaluating
the performance of the models. In section 5, we present the results of the predicted observables for the
different methods implemented and assess their performance. Finally, in sections 6 and 7, we discuss the
results and provide the main conclusions of this research.

2. Preliminaries

This section outlines the basis for conditional diffusion models as emulators for N-body simulations. In
addition, we introduce several strategies developed to implement diffusion model flavours.

2.1. Denoising diffusionmodels
Diffusion probabilistic models (DPMs) have rapidly gained prominence as a highly promising generative
technique in recent years. Functioning as latent variable models for sequence modelling, DPMs utilise a
latent space with the same dimensionality as the input data. In contrast to generative adversarial networks
(GANs) [52], which are not probabilistic models, DPMs offer significant advantages, including excellent
parallelisation capabilities and avoidance of adversarial training [51]. This eliminates the well-known
challenges of debugging and convergence difficulties frequently encountered with GAN training.

2.2. Denoising DPM (DDPM)
Generative models aim to learn and approximate complex, high-dimensional data distributions [53]. Among
these, probabilistic diffusion models have recently emerged as a powerful technique, distinguished by their
capacity to transform unstructured noise into highly detailed and structured outputs that closely resemble
the training data distribution [51]. This is achieved through a two-stage process: a forward diffusion process
that progressively adds noise to the data, gradually corrupting its structure, and a reverse diffusion process that

2



Mach. Learn.: Sci. Technol. 6 (2025) 035031 J K Riveros et al

Figure 1. The diagram illustrates the forward and reverse processes in DDPM. The top panel shows the generative 3D density
fields created at each time step τ , with their corresponding 2D projections displayed below. The centre panel presents the power
spectra (PS), followed by the evolution of one bispectrum configuration. The bottom panel depicts the probability distribution
function (PDF) of the voxels (see section 4.3 for definitions of these statistical moments). In the plots, the blue curves represent
the true statistical moments, while the orange curves correspond to those computed from the generated simulation at each time
step τ .

learns to reverse this corruption, iteratively building coherent structures from the noise as it is showed in
figure 1. This bidirectional approach, involving both forward and reverse diffusion, has proven particularly
effective for challenging astrophysical scenarios, most notably in generating high-resolution fields [54],
reconstruction [55], and as emulators [46, 48, 56], setting new benchmarks for generative modelling
performance. The learning aspect of these models involves mastering the reversal of a complex noising
process, where progressively more noise is actively added to an initial image x0 ∼ q(x0) [54]. This noise

3
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sequence is executed through a Markov chain of T steps and systematically introduces Gaussian noise at each
stage, generating a sequence of noise samples x1, . . .,xt. According to [51], during the forward diffusion step,
noise is introduced to a sample xt from the preceding one xt−1 and step sizes are regulated by a variance
{βt ∈ (0,1)}Tt=1 as

q(xt|xt−1) =N
(
xt;

√
1−βtxt−1,βtI

)
(1)

where β1 < β2 < · · ·< βt regulates the reduction in noise between steps. In equation (1) the process assumes
that xt is conditionally Gaussian with a mean

√
1−βtxt−1 and variance βtI, where I is the identity matrix.

The mean term controls how much of xt−1 contributes to xt, while the variance introduces isotropic
Gaussian noise with a magnitude determined by βt [57]. Therefore, by repeatedly applying the forward
diffusion process, the image at a specific time t, denoted xt, can be expressed as a function of the original field
x0. From conditional probabilities, the following joint probability is calculated as

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1) . (2)

The term q(x1:T | x0) represents the overall probability of observing the sequence x1 to xT. Each factor
q(xt | xt−1) denotes the probability of transitioning to state xt from the previous state xt−1, capturing the
Markov property, where the next state is determined solely by the current state [57]. A notable feature of this
process is that sampling at any arbitrary time step can be achieved in closed form by leveraging the
reparametrisation trick [51]. This property allows for direct access to any sample xt eliminating the need to
sequentially compute all t− 1 previous noisy image

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

where αt = 1−βt, with ᾱt =Πt
iαi, and ϵ∼N (0, I). The noise added at each step is systematically removed

during the reverse diffusion phase [51]. As a result, the process begins with a distribution that contains only
noise (the final state of the forward process). Consequently, the noise is removed from the samples step by
step, moving in the reverse direction. As stated in [51], the inverse diffusion process considers x0, and the
events are connected through the conditional probability distribution

pθ (x0:T) = p(xT)
T∏

t=1

pθ (xt−1 | xt) (4)

being the reverse process equals to

pθ (xt−1 | xt) =N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (5)

Here, a neural network with parameters θ is used to compute Eq (4). This express the joint probability
distribution pθ(x0:T) over a sequence of variables x0,x1, . . .,xT parametrised by θ [57]. We can divide this
joint probability into two parts: the marginal probability of the final state p(xT), and the product of
conditional probabilities pθ(xt−1 | xt) over all timesteps t from 1 to T [57]. This structure reflects a reverse
process, where each state xt−1 depends on the subsequent step xt . The variance is usually selected as
Σθ(xt, t) = βtI as [51] reported to be the best performance in their results, while the mean µθ(xt, t) is given
by

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
, (6)

where ϵθ(xt, t) is the neural network outcome of the noise ϵ present in the sample xt. The loss function used
for this optimisation is given by the expectation value [51]

Lt = Et∼[1,T],x0,ϵ

[∥∥ϵ− ϵθ (xt, t)
∥∥2] , (7)

being ϵθ
(
xt, t

)
the neural network prediction of the noise ϵ present in the sample xt, and t∼ [1,T] the time

step drawn from a uniform distribution. By minimising this loss, the model learns to predict and remove the
noise at each step, enabling it to reverse the diffusion process during inference and generate realistic data

4
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Algorithm 1. DDPM training.

1: Randomly select a simulation x0 and its cosmological parameters y from the training dataset distribution q(x0).
2: Draw a Gaussian-noise sample γ ∼ U(0,1)
3: if γ < 0.1 then
4: Discard conditioning from the dataset p(x0,y= ∅)
5: else
6: Keep conditioning from the dataset p(x0,y)
7: end if
8: Randomly select a time step t in the Markov chain from the uniform distribution {1, . . .,T}.
9: Draw a Gaussian-noise sample ϵ∼N (0, I).
10: Compute the sample xt in the tth step of the Markov chain as equation (3).
11: Make a gradient descent step with∇θLt defined in equation (7).
12: Repeat steps 1–5 until converged.

Algorithm 2. DDPM sampling.

1: Draw a Gaussian-noise sample ϵ∼N (0, I).
2: Choose ω = [0,1]: guidance strength.
3: Loop through the backward Markov chain:
4: for t= T, . . .,1 do
5: if t> 1 then
6: ϵ∼N (0, I)
7: else
8: ϵ= 0 ▷No additional noise in the last step
9: end if
10: Compute xt−1 equation (8) where the score estimation is given by equation (12)
11: end for
12: Return x0.

from random noise. The training algorithm is listed in algorithm 1. Once training is completed, we expect to
generate x0 ∼ p(x0) image from noise. In fact, the model learns to approximate the probability distribution
of the training set. Hence, we can sample from this distribution and be able to generate new samples that
obey the same features as the training dataset. This can be done by sampling T times equation (5) crossing
the Markov chain until t= 0 as

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
+
√
βtz, (8)

with z∼N (0, I). Here, the first term is the mean estimate provided by the neural network equation (6)

perturbed by the presence of a Gaussian noise βt akin to a Langevin sampling step [58]. The inference
algorithm is listed in algorithm 2.

2.3. Denoising diffusion implicit models (DDIMs)
DDIMs are implicit probabilistic models associated with DDPMs, since they are trained using the same loss
function [59]. DDIMs present an optimised version of DDPM and offer a more efficient and faster solution
to the image generation problem. Although it uses the same training objective as DDPM, DDIM introduces
non-Markov processes instead of strictly following the Markov approach. This allows DDIM to balance
between the quality of the generated samples and processing time. Furthermore, it can create high-quality
images faster than DDPM and it performs direct interpolations in latent space and reconstructs observations
with minimal error, providing greater flexibility in the generation process [60]. According to [60], the
non-Markov inference process is employed in this case, which leads to the same function applied in the
DDPMmodel mentioned above in equation (1). Therefore, the DDIM model generalises the DDPMmodel
and, in turn, allows modifications to the design of the inverse Markov chains. The expression for the
non-Markovian conditional probability distribution p(xt−1 | xt,x0) is

p(xt−1 | xt,x0) =N
(
xt−1;

√
ᾱt−1x0 +

√
1− ᾱt−1 −σ2

t
xt −

√
ᾱtx0√

1− ᾱt
,σ2I

)
. (9)

5
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Algorithm 3. DDIM sampling.

1: Create a time subset {t1, .., ts} ∈ {t1, .., tT} with s≪ T
2: Choose ω = [0,1]: guidance strength.
3: Draw a Gaussian-noise sample ϵ∼N (0, I).
4: Loop through a subset of timesteps:
5: for t= s, . . .,1 do
6: if s> 1 then
7: ϵ∼N (0, I)
8: else
9: ϵ= 0 ▷ No additional noise in the last step
10: end if
11: Compute xt−1 equation (11) with σt = 0 and where the score estimation is given by equation (12)
12: end for
13: Return x0.

According to [60], the processes for the implicit DDIM diffusion models are defined in two phases. In the
first phase, the forward diffusion process defines x0 and transforms it into xt. Initially, the inference
distribution, the non-Markovian forward process is as follows

p(x1:T | x0) = p(xT | x0)
T∏

t=2

p(xt−1 | xt,x0) , (10)

where p(x1:T | x0) corresponds to the conditional probability of observing the sequence of variables x1:T
evolves from an initial state x0. It shows that the likelihood of a sequence of observations given the initial
conditions can be decomposed in terms of a chain of probabilistic dependencies over time [61]. Equation (9)
can be expressed as

xt−1 =
√
ᾱt−1

xt −
√
1− ᾱtϵθ (xt, t)√

ᾱt
+
√
1− ᾱt−1 −σ2

t ϵθ (xt, t)+σtz, (11)

with z∼N (0, I), ϵθ(xt, t) is the predicted neural network noise ϵt at time t, and σt is a parameter learning
whose variation determines the difference in the posterior distribution. When σt = 0, there is not random
sampling and the sample is generated into a deterministic scenario. This is the core of DDIM model. Besides,
since it does not need to satisfy the Markov process, a subset {t1, .., ts} ∈ {t1, .., tT} with s≪ T can be created
from the original T diffusion time-steps for sampling inference, where s is the number of steps in the new
diffusion subset. The inference DDIM algorithm is listed in algorithm 3. DDPM and DDIM primarily differ
in their approach to sampling. While DDPM relies on a Markov process and requires many diffusion steps to
achieve high-quality results, it tends to be computationally expensive [57]. The DDIM model offers several
improvements over DDPM. It can produce higher-quality samples in fewer steps, enhancing efficiency [57].
Moreover, DDIM maintains a consistency property due to its deterministic generative process, ensuring that
samples conditioned on the same latent variable share similar high-level features [57]. This consistency also
enables DDIM to perform meaningful semantic interpolation within the latent space, resulting in smoother
and more interpretable transitions between samples [57].

2.4. Conditioned generation: classifier-free diffusion guidance
While training generative models on the simulation, it is important to generate samples conditioned on the
cosmological parameters. To explicit incorporate parameter information into the diffusion process, we
employ the Classifier-Free Guidance in our methodology [62]. This technique assumes an unconditional
denoising diffusion model p(x) parametrised through an estimator ϵθ(xt, t) = ϵθ(xt, t,y= ∅)6 and a
conditional model pθ(x|y) parametrised through ϵθ(xt, t,y). Both models are trained with the same neural
network. In fact, the conditional diffusion model is trained on data (x, y), where the conditioning
cosmological parameters y are randomly discarded by γ < 0.1 (being γ a sample drawn from an uniform
distribution [0,1]) such that the model knows how to generate images unconditionally as well. Therefore, the
score estimator can be written as [62]

ϵ̄θ (xt, t,y) = ϵθ (xt, t,y)+ω (ϵθ (xt, t)− ϵθ (xt, t,y)) , (12)

6 Where for the unconditional model we input a null value ∅ for the class identifier y when predicting the score.

6
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Figure 2. Illustration of the generative model based on SIs, which connects two densities ρ0 and ρ1 that represent the feature
representation of the cosmological parameters and the 3D density field respectively. The time-dependent probability density ρ(t)
that bridges ρ0 and ρ1 is found through the the forward stochastic differential equation solutions equation (16) where a drift
function is computed by the UNet. Here, the vector field represented with white arrows describes the drift function.

where ω is a parameter that controls the strength of the classifier guidance. In our experiments, we found
that ω = [0,0.5] provides a suitable range of values to obtain good results. The authors [62] conclude in their
studies that the diffusion model needs to have a part dedicated to the unconditional generation task in order
to produce classifier-free guided scores effective for sample quality. This methodology only has been used to
improve the performance of the model, but also to reduce the memorisation behaviour found in diffusion
models [63].

2.5. Stochastic interpolants (SIs)
Although diffusion-based methods have achieved impressive results in areas such as image generation, there
is ongoing research into methods that provide exact transport between arbitrary (not just Gaussian)
probability densities within a finite time frame. Initially, score-based diffusion models achieved the best
results using Stochastic Differential Equations (SDEs) [64]. However, recent research has shown that methods
based on ordinary differential equations (ODEs) can achieve comparable or even superior performance if the
scoring function is learned effectively. ODE-based methods offer significant advantages, including the
availability of an exact and computationally tractable likelihood formula and the straightforward application
of established adaptive integration techniques for sampling [65]. A recent generative model based on
stochastic dynamics propose the use of SIs xt that connect a base density ρ0 to the target ρ1, but allow for
bases that are more general than a Gaussian density. The dynamics can be described as [65]

x(t) = α(t)x0 +β (t)x1 +σ (t)W(t) , t ∈ [0,1] , (13)

where by construction, it satisfies x(t= 0) = x0 ∼ ρ0, and x(t= 1) = x1 ∼ ρ1. This approach therefore
exactly bridge between samples from ρ0 at t= 0, and from ρ1 at t= 1 as it is showed in figure 2. For a large
class of densities, ρ0 and ρ1 supported on Rd, these distributions are absolutely continuous with respect to
the Lebesgue measure and ρ(t) satisfies a family of forward and backward Fokker–Planck equations [64].
Therefore, equation (13) can be realised by many different processes such as ODEs and SDEs, and whose
densities at time t are given by ρ(t) [65]. Following the work in [55, 66] let us write the functions under
equation (13) as α(t) = σ(t) = 1− t, β(t) = t2, andW=

√
tz with z∼N (0, I) a Wiener process. The authors

in [64, 66] also demonstrate that the velocity field associated with the interpolant, equation (13) takes the
form

v(t,x0,x1) = α̇(t)x0 + β̇ (t)x1 + σ̇ (t)W(t) , (14)

7
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Algorithm 4. SDEs training.

1: Input: Randomly select a simulation x0 and its labels from the training dataset distribution
q(x0).
2: Randomly select a time step t from the uniform distribution {1, . . .,T}.
3: Draw a Gaussian-noise sample z∼N (0, I) and build the Wiener process.
4: Compute x(t) and the velocity field defined in equations (13)–(14) respectively.
5: Make a gradient descent step with∇θL[v̂] defined in equation (15) and compute it via Monte

Carlo sampling.
6: Repeat steps 1–5 until converged.

where the dot in the variables represents differentiation with respect to time t. The velocity field can be
approximately computed with a neural network v̂(t,x(t)) by minimising the loss function

L [v̂] =

ˆ 1

0
dtEx0,x1∼ρ0,ρ1

[
(v̂(t,x(t))− v(t,x0,x1))

2
]
. (15)

Once trained, the velocity field will function as the drift term within the SDE [55]

dx(t) = v̂(t,x(t))dt+σ (t)dW(t) , (16)

whose solutions are such that x(t= 1)∼ ρ(x1|x0) andW accounts for another Wiener process. This equation
expresses the evolution of x(t) in terms of two components, the first term describes the deterministic part of
the dynamics, while the second term accounts for the stochastic component of the process. To suit this
approach to our work, x0 represents a latent representation of the cosmological parameters generated by a
neural network while x1 describes the 3D simulation (see figure 2). Once the model is trained, the velocity
field is substituted by the UNet in equation (16), and the initial volume (x(t= 0)) is given by the feature
representation for the cosmological parameters. The time interval t ∈ [0,1] is divided in 200 steps along
which we solve equation (16). The SDE was solved using the Euler second-order method. At the end, the
emulator should generate distributions of volumes x(t= 1) that resemble the characteristics of the density
field conditioned on the cosmological parameters.

3. Dataset: modified gravity simulations

We used a dataset already generated by [67]. These simulations were created with the COmoving Lagrangian
Acceleration (COLA) algorithm [68, 69], in particular, the authors used MG-PICOLA7 [70], a modified
version of L-PICOLA [71] that has been extensively tested against full N-body simulations and that extends
the gravity solvers to a variety of gravity models.

The dataset consists of 2500 modified gravity simulations varying four cosmological parameters
Θ= {Ωm, h, σ8, fR0}, where h is the reduced Hubble parameter, σ8 the r.m.s. density fluctuation within a
top-hat sphere of 8 Mpc/h radius and fR0 the amplitude of the modified gravity function in the Hu and
Sawicki model (HS) [72]. The remaining cosmological parameters are set to Ωb = 0.048206 and ns = 0.96,
which correspond to the values reported by [73]. The parameter space is sampled with random numbers
uniformly distributed within the specified ranges for each parameter (see table 1). Figure 3 shows the
distribution of the 2500 f (R) cosmologies used in this work, presented in a plane projection and highlighting
the datasets used for training (light blue dots), testing (orange dots) and validation (green dots). Each
simulation follows the dynamics of the particles 1283 in a small box of comoving side-length 256 h−1Mpc,
using 100 timesteps from an initial redshift zi = 49 to a redshift z= 0. The training set comprises 85% of the
data (and validation), while the remaining 15% of the data were used for testing. For each simulation, we
estimate the density field using a cloud-in-cell particle mesh assignment on a grid with 643 voxels. We
consider the effective range of the power spectrum up to the Nyquist frequency, kNy, which in our

7 The code can be found at https://github.com/HAWinther/MG-PICOLA-PUBLIC.
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Algorithm 5. SDEs sampling.

1: Randomly select a simulation x0 and its labels from the training distribution, the trained
model v̂(tn,xn); and define a grid t0 = 0< t1 · · ·< tT = 300.
2: Set∆tn = tn+1 − tn, n= 0 : T− 1.
3: Create a 3D image representation of the labels
4: Draw a Gaussian-noise sample zn ∼N (0, I) and build the Wiener process.
5: Set x1 = x0 + v̂(t0,x0)∆t0 +σ(t0)

√
∆t0z0.

6: for n= 1 : T− 1 do
7: Compute v̂tn(xn, tn) from equation (16).
8: Set xn+1 = xn + v̂(xn, tn)∆tn +σ(tn)

√
∆tnzn.

9: end for
10: Return: xT.

Table 1. The summary of the set-up of the MG simulations. Left: cosmology parameters. Right: set-up parameters used for MG-PICOLA
code.

Cosmologies

Ωm [0.1, 0.5]
h [0.5, 0.9]
σ8 [0.6, 1.0]
0.1 log10 |fR0| [0.4, 0.6]
Ωb 0.0489
ns 0.9665

Cosmologies

Boxsize 256 h−1Mpc
Np 1283

Grid force 1283

IC 2LPT zini = 49
Steps 100
kNy 1.58 hMpc−1

Figure 3. Distribution of the 2500 f (R) cosmologies employed in the diffusion models in selected parameter planes. Light-blue
dots represent the training dataset, orange dots the testing dataset, and green dots correspond to the validation dataset. The
parameter planes shown areΩm versus h, σ8, and fR0.
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Figure 4. 3D UNet modules employed for all models in the paper. (a) UNet architecture composed of ResNet blocks and
connections between blocks at each level of the encoder–decoder. (b) ResNet module schema. (c) Target block schema that
transform the parameter space into a 3D representation to be inserted into the UNet.

simulations corresponds to k≈ 0.75 Mpc h−1. This resolution results from downsampling the original 1283

voxel grid of the simulation data, which has a Nyquist frequency of kNy ≈ 1.58hMpc−1.

4. Methodology

4.1. Neural network architecture
While DDPM and DDIM employ neural networks to predict noise at each time step during reverse diffusion,
SIs use them to estimate the velocity field v̂(t,xt). The architecture used in this research for all approaches is
the 3D-UNet depicted in figure 4. This model starts with 64× 64× 64 voxels with 1 channel, which are
passed to a calculating schedule across T= 1000 timesteps, geometrically (cosine) interpolating noise levels
from a Beta Start of 1× 10−4 to a Beta End of 0.02. Several experiments were performed using linear,
polynomial, and sigmoid functions, however, cosine functions provided the best performance. This UNet
consists of an encoder, the middle module, and its decoder. The feature maps of the same pixel level are
concatenated via shortcut connections between the encoder and decoder. In the encoder, max-pooling is
used to down-sampling layer halves the feature maps, enhancing feature extraction and expanding the
receptive field. On the other hand, up-sampling3D in the decoder increases the feature maps, progressively
restoring the spatial resolution of the original volume. The output of the decoder part is processed with a
group normalisation layer followed by an swish activation and a final convolutional block. In the middle
module, we have different configurations depending on the method used (DDPM or SI). For the SI case, four
ResNet blocks are sequently used. The ResNet block shown in figure 4(b) processes both the feature maps
and the timesteps. The latter is first projected onto an embedding space of dimension 32 using sinusoidal
scaling, and then processed through two dense layers of 32 neurons, each with swish activation functions. In
case that DDPM (and DDIM) is employed, the middle module consists in two paired ResNet-Target blocks
where the cosmological parameter information is inserted into the architecture. Figure 4(c) illustrates the
target block schema, where the cosmological parameters are fed into a pre-trained neural network to get a 3D
feature representation (explained later in section 4.2) of these parameters. The resultant parameter voxel is
then concatenated to the feature maps coming from the encoder part.

4.2. Feature representation for cosmological parameters
We built a 3D volume feature representation for the cosmological parameters to either aggregate it with the
simulation boxes along with the time-steps in DDPM (and DDIM) or define the base density x0∼ ρ0 in the
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Figure 5.Multioutput regression task for predicting the power spectra (PS), probability distribution function of the voxels
(PDFs), and four different configurations for the bispectra ([Bis1, . . . ,Bis4]) from a set of cosmological parameters. Following the
training phase, a submodel is extracted from the layers preceding the Global MaxPool 3D in the neural network. This submodel
enables the generation of a three-dimensional feature representation of the cosmological parameters, capturing their complex
relationships and working as a conditioner for the generative models.

SI approach. We propose to build this parameter volume based on the so-called representation learning, a
powerful technique that enable a neural network to automatically discover and learn the most useful
representations of raw data [74]. First, we developed a multioutput regression model using the neural
network displayed in figure 5. For this task, we compute the summaries for all train, validation and test
volumes such as the power spectra (PS), probability distribution function of the voxels (PDFs), and four
different configurations for the bispectra (Bis). Both the multi-output regression and diffusion models were
trained on the same training set. For hyperparameter tuning, we used the same validation set for both
models, while the test set was reserved exclusively for the final evaluation. Then, we take data pairs ([Ωm, h,
σ8, fR0], [PS, PDFs, Bis1, . . . ,Bis4]) for training the model in a supervised way. The network receives the
cosmological parameters as input, which are then processed by two dense layers, each with 64 neurons,
followed by a sigmoid activation function and batch normalisation. The output features are reshaped into a
(64,64,64,1) volume and passed through three 3D convolutional layers, each employing 16 filters, sigmoid
activations, and batch normalisation. Then, a 3D convolutional layer with one filter along with a sigmoid
activation is applied generating a 3D representation of the input parameters with dimensions matching the
simulation boxes. This sub-neural network yields the 3D representation used in the diffusion models.
Following with the neural network architecture, a 3D global max pooling operation is applied to flatten the
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volume, resulting in six output branches, each corresponding to one of the pre-defined summaries. The
optimised network architecture is shown in figure 5. Training is performed using a Huber loss, with weighted
losses assigned to the PS and PDF to prioritise their accuracy.

4.3. Training and summary statistics
Simulation data normalisation involved clipping values using the minimum of all maximum values found
across the boxes in the training dataset. Subsequently, we applied a logarithmic scale and normalised the data
by subtracting the minimum logarithmic value (logmin) and dividing by the range of logarithmic values
(logmax–logmin), both calculated from the training data. All models were trained using the Huber loss in
equation (7) instead of the standard mean squared error. The models were optimised with the Adam
optimiser employing a learning rate of 10−4, a batch size of 16, and training for 30 epochs. Callbacks were
implemented to mitigate overfitting. The DDPMmodel, with approximately 15million parameters, required
approximately nine hours of training on a 16GB Nvidia T4 GPU, while the interpolant model required
twelve hours on the same GPU.

4.3.1. A quality metric for generated density fields: n-point statistics
The spatial distribution of dark matter is non-Gaussian, and remarkably little is known about the
information encoded in it about cosmological parameters beyond the power spectrum. Therefore, it is
crucial that generative models can learn significant information well beyond its power spectrum. Therefore,
to illustrate the quality generation of our emulators, we compute some summary statistics that provide
information about the Gaussian and non-Gaussian signals. We start using the one-point statistics,
commonly known as the probability density function (PDF). The PDF reveals density variations within the
simulated volume, identifying overdense regions like galaxy clusters and dark matter halos, as well as
underdense regions such as cosmic voids. The values of density contrast δ are binned using logarithmically
spaced bins. The PDF of the cosmic density field is then defined as the normalised number of cells as:

P(δi) =
Ni

Ntotal∆δ
, (17)

where Ni is the number of samples in the ith bin, N total is the total number of samples, and∆δ is the width of
each bin. The next statistical moment is the matter power spectrum defined as〈

δ (k)δ
(
k ′
)〉

= (2π)3 δD
(
k+ k ′

)
P(k) , (18)

where angular brackets denote ensemble average, δD is the 3D Dirac delta function, which enforces the
homogeneity of the density statistics, and k, k ′ are Fourier modes. The fact that the power spectrum depends
only on the magnitude k≡ |k| is required by isotropy, which allow us to provide information about the
Gaussian signal in the data. In addition to the two-point statistics, we also considered the three-point
statistics of the density field. These statistics are able to capture any non-Gaussianities in the density field.
The matter bispectrum B(k1,k2,k3) is defined as

⟨δ (k1)δ (k2)δ (k3)⟩= (2π)3 δD (k1 + k2 + k3)B(k1,k2,k3) . (19)

Unlike the power spectrum, which is only sensitive to the magnitude of Fourier modes, the bispectrum is the
lowest-order correlator that is sensitive to phases. Because homogeneity constraints the wavenumbers
(k1 + k2 + k3) to form a closed triangle, we can also express the bispectrum as a function of two magnitudes
and an angle, i.e. B(k1,k2,θ). It is useful, particularly in analyses of modified theories of gravity to consider
the reduced bispectrum

Q(k1,k2,k3) =
B(k1,k2,k3)

P(k1)P(k2)+ P(k2)P(k3)+ P(k1)P(k3)
, (20)

to remove the information that is already contained in the power spectrum. Note that Q(k1,k2,k3) can be
written as Q(k1,k2,θ) which define a unique triangle given two out of the three arguments. We use the
Pylians3 library to compute these statistics8.

8 https://pylians3.readthedocs.io/.
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5. Results

Having thoroughly examined the methodologies employed for DDPM (and DDIM) as well as SI models, we
now turn our attention to evaluating their performance in generating 3D density fields. To assess the efficacy
of the DDPMmodel, we trained it on the relevant dataset and subsequently generated 50 synthetic samples.
These samples were then rigorously compared against a test set instance with identical cosmological
parameters, focusing on their summary statistics. The outcomes of this analysis for the DDPMmodel are
illustrated in figure 6. The results demonstrate that the DDPM-generated fields exhibit remarkable
consistency with the true field. Not only do they accurately capture the Gaussian signal, but they also
successfully recover a diverse range of bispectra configurations. Specifically, two of the bispectra
configurations analysed were directly aligned with those used during the training of the feature
representation (as detailed in section 4.2), while the remaining configurations represent interpolations
between these key points. This highlights the models ability to generalise and produce physically meaningful
outputs, even for configurations not explicitly encountered during training. Notice that for lower
wavenumbers(k), the predicted power spectrum deviates significantly from the true one. This discrepancy
can be attributed to the finite size of the volumes, which inherently imposes a cut-off on large-scale modes.
Due to the periodic boundary conditions and the limited spatial extent of the simulation boxes, modes with
wavelengths exceeding the box size are effectively truncated. As a result, the power spectrum and bispectra,
are influenced by the absence of these large-scale fluctuations. For the latter, we can observe slight deviations
in their tails. These limitations are particularly significant in cosmological simulations with a small
resolution size, as large-scale modes play a crucial role in shaping the structure of the density fields. As
previously discussed, one of the primary drawbacks of DDPM is the significant computational time required
to generate samples. This is due to the iterative nature of the process, where the neural network must denoise
the image over T= 1000 sequential steps. To address this limitation, DDIM was introduced as an alternative
approach during the inference process after training the DDPMmodel. DDIM accelerates the generation
process by relaxing the Markovian assumption, as detailed in section 2.3. While this modification
substantially reduces inference time, it comes at the cost of a slight degradation in the quality of the
generated samples. This trade-off is evident in figure 7, where the bispectra of the DDIM-generated
simulations show a noticeable, though modest, deterioration compared to those produced by DDPM. The
balance between sample quality and inference time is a critical consideration, particularly in applications
requiring the bispectra to constrain cosmological parameters. During the validation phase, this trade-off
must be carefully calibrated to ensure that the reduction in computational cost does not compromise the
scientific utility of the generated samples. By fine-tuning this balance, DDIM enables the efficient production
of a high number of volume samples in a shorter time, making it a practical choice for large-scale simulations
despite its minor quality trade-offs. Note that in the DDIM model, the small Fourier modes exhibit
behaviour consistent with the ground truth. However, deviations begin to emerge for larger modes, reaching
up to 30% error. This discrepancy can be linked to the slight degradation in quality observed in DDIM, as we
typically expect precise reconstruction at scales below the Nyquist frequency. Despite this, the power
spectrum can be recovered within tens of percent accuracy across the entire range. Finally, the statistics of a
generated sample from the SI approach are illustrated in figure 8. It is evident that the SI method yields lower
performance compared to the previous model. While SI successfully reconstructs the probability distribution
function for the majority of the samples, it struggles to accurately capture higher statistical moments, despite
displaying favourable trends and shapes relative to the ground truth.In table 2, we present the evaluation
metrics for all models using the entire test dataset. We employ the mean square error (MSE), mean absolute
error (MAE), and the coefficient of determination (R2) to assess the accuracy of the statistical moments
derived from the power spectrum, a bispectrum configuration, and the probability density function (PDF).
Our results indicate that the DDPM significantly outperforms the other models, achieving the lowest error
across all metrics. However, DDPM requires more time to generate volumes compared to the other methods.
In contrast, the DDIM generates images in just 9.9 s, making it a practical choice for applications where
faster generation is essential such as a parameter constraints. Additionally, we observe that the Stochastic
Interpolation (SI) model excels at recovering the PDF and generates data in less than a minute. We think that
further refinement through hyperparameter tuning could enhance SI performance, potentially making it a
highly accurate and efficient model in terms of both precision and inference time.

6. Discussion

This work has demonstrated the potential of conditional generative modelling to accurately create 3D dark
matter density fields, capturing high-order statistical moments with considerable success. Our approach
offers a promising avenue for generating realistic cosmological structures, a crucial task for various analyses
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Figure 6. Summary statistics for generated fields with DDPM corresponding to the fiducial value (Ωm = 0.305, σ8 = 0.710,
h= 0.561, and 0.1 log10 |fR0|= 0.43). Each panel shows the probabilistic distribution function PDF with 50 bins, power spectrum
P(k), and four bispectra configuration Q(θ12). Solid orange line represents the mean over 50 generative samples, while the orange
region defines the standard deviation. Bottom plots illustrate the percent error for each summary statistics.

Figure 7. Summary statistics for generated fields with DDIM corresponding to the fiducial value (Ω= 0.5, σ8 = 0.7, h= 0.2, and
fR0 = 0.1). Each panel shows the probabilistic distribution function PDF with 50 bins, power spectrum P(k), and four bispectra
configuration Q(θ12). Solid orange line represents the mean over 50 generative samples, while the orange region defines the
standard deviation. Bottom plots illustrate the percent error for each summary statistics.

in cosmology. The demonstrated consistency with higher-order statistics underscores the model ability to
capture the complex, non-Gaussian nature of the cosmic web, a significant improvement over methods that
rely solely on two-point statistics. This capability is particularly relevant for studying in future phenomena
sensitive to the details of structure formation, such as gravity model, galaxy formation, weak lensing and
developing parameter estimation [75–77]. However, our current model exhibits limitations, particularly at
lower wavenumbers. This increased uncertainty stems from the limited volume of the training simulations.
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Figure 8. Summary statistics for generated fields with SI corresponding to the fiducial value (Ω= 0.5, σ8 = 0.7, h= 0.2, and
fR0 = 0.1). Each panel shows the probabilistic distribution function PDF with 50 bins, power spectrum P(k), and four bispectra
configuration Q(θ12). Solid orange line represents the mean over 50 generative samples, while the orange region defines the
standard deviation. Bottom plots illustrate the percent error for each summary statistics.

Table 2. Assessment of the generative models through the test set, with bold values indicating superior performance. The results show
that DDPM achieves the lowest error for most statistical moments, outperforming the majority of the models. However, SI performs
best in terms of PDF accuracy. Additionally, DDIM stands out by generating synthetic datasets in just 10 s. Here we present the results
specifically for the most standard bispectrum configuration k1 = 2k2. All metrics are dimensionless due to normalisation.

Power spectra Bispectra (k1 = 2k2 = 0.3) PDF

Model MSE MAE R2 MSE MAE R2 MSE MAE R2 Inference time

DDPM 61.67 1.70 0.89 6.95 2.21 0.81 0.31 0.27 0.83 3 m 20.2 s.
DDIM 69.25 1.86 0.80 16.35 3.42 0.72 1.02 0.53 0.41 9.9 s
SI 115.14 2.29 0.72 22.56 3.97 0.64 0.14 0.18 0.89 45.9 s

The relatively small box size restricts the representation of large-scale structures, leading to less accurate
predictions on these scales. This limitation highlights the critical need for training data that encompasses a
wider range of scales to capture the full spectrum of cosmic structures. Future work will therefore prioritise
training our models on significantly larger simulations, which will provide access to a broader range of wave
modes and improve the model performance in the low-wavenumber regime. This will be crucial for
accurately modelling large-scale structure and its impact on cosmological observables [17, 75, 78]. Recently,
people have reported that diffusion models are proposed to produce samples that replicate training data
suggesting memorisation behaviour [63]. To handle this issue, we adapt the classifier-free diffusion
technique in the diffusion guidance as a proposal given in [79], where they observed that the memorisation
can be triggered by conditioning training data on completely random and uninformative labels. Also, we
developed different experiments training models only with the augmented dataset (including flip-right-left
and Gaussian noise additions), finding quite similar results to those when training data also includes the
original images. We plan to transition to latent diffusion models in future studies to address the
computational challenges associated with larger simulations. This approach offers a compelling pathway to
enhance both training and generation efficiency. By learning a latent space that is perceptually equivalent to
the simulation space, we can operate in a lower-dimensional space, significantly reducing the computational
cost. The core assumption of latent diffusion, that noise perturbation in simulation and latent spaces are
compatible with the generative process, allows for efficient sampling and manipulation of the latent
representation. This will enable us to train on larger and more complex simulations, ultimately leading to a
more robust and accurate generative model [80, 81]. Furthermore, exploring the impact of baryonic physics
and different feedback mechanisms is essential for a complete understanding of structure formation. We
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intend to extend our analysis by training our models on data from the CAMELS simulation suite [82, 83],
utilising different astrophysical feedback prescriptions such as those implemented in the IllustrisTNG [84]
simulations. This will allow us to investigate the influence of baryonic processes on the dark matter
distribution and to develop a more comprehensive model of cosmic structure. Additionally, we plan to
incorporate the effects of observational distortions, such as redshift-space distortions and lensing effects, into
our model. This will bring our generated density fields closer to observable quantities and enhance their
utility for cosmological analyses. Finally, we are particularly interested in leveraging our generative model for
parameter inference. By combining our model with MCMC techniques, we can potentially constrain
cosmological parameters and explore the degeneracy between different cosmological models [56, 85, 86].
The ability to generate realistic density fields efficiently opens up new possibilities for exploring the
likelihood surface and constraining the cosmological parameters faster.

7. Conclusions

In this work, we have explored the application of conditional generative modelling, specifically using
DDPMs, along with their accelerated variant DDIMs, and SIs to generate 3D dark matter density fields. Our
analysis demonstrates the significant potential of diffusion models for this task. We demonstrate that DDPM
excels in capturing the complex statistical properties of these fields, accurately reproducing both the power
spectrum and bispectrum, even for configurations not explicitly encountered during training. However, the
computational cost associated with DDPM iterative generation process presents a significant limitation.
While DDIM offers a substantial speed-up in sample generation, it comes at the expense of a slight reduction
in accuracy, particularly at larger wave modes. This trade-off between speed and accuracy is crucial and must
be carefully considered depending on the specific application. Finally, the SI model, while capturing some
trends in the bispectrum and successfully reconstructing the probability distribution function for most
samples, exhibits lower overall performance compared to both DDPM and DDIM, especially in capturing
higher statistical moments. Our quantitative evaluation confirms the superior performance of DDPM,
followed by DDIM, highlighting the potential of diffusion-based generative models for cosmological
applications. Our emulator is designed to accelerate cosmological inference in scenarios where traditional
simulations are computationally expensive. The methods reported in this work might rapidly model
modified gravity simulations and test their statistical summaries against observations. These models can also
enable efficient sampling of high-dimensional cosmological parameter spaces by replacing iterative
simulations with fast-emulated predictions. This emulator is recommended to be used within the trained
ranges of cosmological parameters mentioned in table 1, to avoid hallucinations. Future work will focus on
mitigating the limitations of DDPMs computational cost, potentially through further refinements of DDIM
or exploration of other accelerated sampling techniques, and further exploring the use of these models for
parameter inference and other key cosmological tasks. Additionally, addressing the low-wavenumber
discrepancies observed in all models due to finite simulation volume will be a priority, requiring the use of
larger training simulations. Our code, and scripts used to produce the results in this paper can be found at
Github .
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Appendix. Convergence process of loss function

The training loss curves for each model shown in figure A1 reveal distinct convergence behaviours over
epochs. DDPM demonstrate significantly faster convergence, consistently reaching lower final loss values
compared to DDIM and SI. The latter exhibit higher loss values during training, accompanied by
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Figure A1. Training loss for each model across epochs. The DDPMmodels exhibit faster convergence, achieving lower loss values,
while DDIM and SI show higher loss values with stochastic fluctuations during training.

Figure A2. Comparison between visually the 3D output of the generative model and ground truth.

pronounced stochastic fluctuations. These instabilities may arise from the dependence on stochastic
interpolation, which introduces additional variance in gradient updates. This implies that SI requires
modified optimisation strategies to achieve performance comparable to that of DDPM. Figure A2 compares
the ground truth cosmological simulation box with a synthetic realisation generated by the DDPMmodel.
The model successfully captures key large-scale structures, including filamentary networks, cosmic voids,
and high-density regions. Figure A2(a) shows one representative example from multiple realisations
produced during inference, demonstrating the models ability to reproduce statistically plausible
cosmological fields. Note that the generated boxes appear different from the ground truth because each
inference process produces a distinct realisation of the field. However, while individual realisations may vary,
their statistical properties remain similar to those of the ground truth.
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