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Abstract
Background  Despite the growing adoption of predictive models in healthcare, the development process is often inconsistent 
and lacks methodological rigour. Many models are created ad hoc, without transparent handling of missing data, proper 
validation, or alignment with clinical workflows. These shortcomings have undermined trust, reproducibility, and generalis-
ability, especially in high-stakes environments like emergency care.
Objectives  This position paper aims to advocate for the adoption of structured, transparent, and reproducible methodologies 
in the development of predictive models for healthcare. Drawing on a large-scale national study of emergency department 
(ED) visits in Malta, the paper demonstrates that methodological discipline, guided by data science principles, clinical 
expertise and an understanding of human decision-making behaviour leads to safer, more trustworthy, and clinically relevant 
models.
Methods  Using over 32 million data points from 650,000 ED visits across six years, the study employed a structured mod-
elling pipeline that integrated clinical and administrative data sources. The methodology included Cognitive Task Analysis 
(CTA) to map triage decision-making, rigorous feature engineering based on clinical workflows, handling of missing data 
through informed strategies, and robust model validation using XGBoost with stratified cross-validation and calibration 
analysis. Importantly, domain experts were involved throughout the development lifecycle to ensure clinical relevance and 
interpretability.
Results  The structured methodology enabled the development of predictive models that reflected the real-world complex-
ity of ED triage, achieved strong performance, and gained clinician acceptance. The models aligned with staged clinical 
decision-making and were interpretable, trustworthy, and feasible to scale across healthcare environments. Through trans-
parent documentation, robust calibration, and post-deployment monitoring protocols, the models demonstrated readiness for 
clinical integration.
Conclusions  The study confirms that structured, domain-informed methodologies are not only feasible at scale but essential 
for the responsible deployment of predictive models in healthcare. This approach ensures safety, fosters trust, promotes 
reproducibility and increases the likelihood that the model is used and adopted in real clinical settings. The authors call on 
researchers, developers, and regulators to establish such methodologies as the standard for AI and data-driven approaches in 
healthcare, particularly in high-stakes applications where poor model performance can lead to clinical harm.

Keywords  Digital health technologies · Predictive models · Clinical decision · Healthcare automation · Data-
driven decision support · Health information technology · Digital transformation in healthcare · Healthcare quality 
improvement
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1  Introduction

Predictive models are increasingly recognised as powerful 
tools for enhancing clinical decision-making across diverse 
healthcare settings [19]. Their ability to uncover hidden pat-
terns, support early interventions, and optimise resource 
allocation is driving widespread adoption [5, 28]. In triage 
environments, where clinicians must make rapid decisions 
under uncertainty, data-driven models can augment clinical 
judgement and reduce variability [4, 13]. Recent evidence 
underscores how big-data and machine learning (ML) are 
reshaping patient triage and operational forecasting in emer-
gency care, with such technologies improving accuracy and 
reducing under-triage of high-risk patients, thereby enabling 
more timely clinical responses [1].

This position paper draws on the findings of a previously 
conducted large-scale national study to argue that the lack 
of structured methodologies in predictive model develop-
ment remains a critical barrier to safe and effective adoption 
in healthcare. Inconsistent practices in data handling, fea-
ture selection, model validation, and transparency continue 
to undermine trust and generalisability [8, 18, 20, 26]. In 
clinical settings, where predictive models directly influence 
patient care, such deficiencies can pose serious safety risks, 
erode clinical trust, and potentially lead to harm [29].

This position paper contends that structured, reproduc-
ible methodologies must become the standard in healthcare 
predictive modelling. We support this position with insights 
from a large-scale national study of emergency department 
(ED) visits conducted across Malta’s entire healthcare sys-
tem. The study analysed more than 32 million data points 
derived from over 650,000 patient visits to the national ED 
over a six-year period [2]. This unprecedented scale enabled 
us to examine the complex, real-world decision-making pro-
cesses in triage and to empirically demonstrate how struc-
tured, reproducible methodologies can enhance the safety, 
transparency, and clinical relevance of predictive models in 
such critical environments.

2  Problem statement

Despite growing interest in predictive models, many are 
developed in ad hoc ways [18, 30]. Common deficiencies 
include:

	● Poor documentation of data sources and preprocessing 
[11].

	● Limited attention to handling missing data [12, 15].
	● Inadequate validation and calibration [9, 27].
	● Lack of transparency and explainability [10, 11].

	● Limited attention to behavioural factors shaping clinical 
decision-making [23].

These issues hinder reproducibility and create models that 
may perform well in narrow settings but fail when deployed 
more broadly. In healthcare, this can undermine patient 
safety, erode clinician trust, and hinder the effective adop-
tion of data-driven and AI-enabled systems.

3  Position statement

We take the position that any predictive model used in 
healthcare, especially in time-critical settings such as triage, 
must be developed through a structured, transparent, and 
reproducible methodology, grounded in both data science 
best practices and clinical relevance.

4  Supporting arguments

The argument for adopting structured, reproducible meth-
odologies in healthcare predictive modelling is grounded 
both in foundational principles of data science and in practi-
cal insights drawn from our large-scale study of ED triage. 
In this section, we articulate key elements that are essential 
to building clinically relevant and trustworthy models, from 
data quality and integration to feature engineering, model 
validation, and lifecycle management. Each of these ele-
ments was informed not only by the technical demands of 
machine learning, but also by our Cognitive Task Analy-
sis (CTA) of triage decision-making, which underscored 
the need to align predictive models with the cognitive and 
operational realities of clinical practice [3]. The following 
supporting arguments demonstrate why generic, unstruc-
tured approaches are insufficient in healthcare, and why 
structured methodologies must become the standard.

4.1  Data quality is foundational

The value of a predictive model depends fundamentally on 
the quality and relevance of its input data [21]. Our study 
used retrospective patient-level data from Malta’s national 
Health Information System, encompassing over 653,000 
ED visits between 2017 and 2022, supplemented by labora-
tory data.

A structured methodology for data identification ensures 
that models reflect the complexity and realities of clinical 
decision-making, capturing both initial triage variables and 
later diagnostic indicators.
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4.2  Unified data structuring enables holistic 
modelling

Raw healthcare data are often fragmented, originating from 
disparate systems such as electronic health records, labo-
ratory information systems, and administrative databases 
[22]. This fragmentation can lead to inconsistencies, redun-
dancies, and missing links in the patient journey. To address 
this, our methodology emphasised rigorous data integra-
tion, harmonising variables across multiple platforms using 
a common patient identifier. This ensured that all data 
points whether clinical, diagnostic, or administrative were 
correctly attributed to the same individual across time and 
setting.

Such unification is essential for building robust predic-
tive models capable of learning meaningful patterns across 
the entire continuum of care, from entry at triage to final 
discharge. Without comprehensive integration, models 
risk being trained on incomplete or biased representations 
of patient trajectories, which can undermine performance, 
validity, and generalisability, particularly in high-stakes 
environments like emergency care [14, 16].

4.3  Addressing missing data transparently

Missing data is a common and often unavoidable challenge 
in complex data environments such as healthcare, where 
not all diagnostic tests or clinical inputs are performed or 
recorded uniformly [25]. If not appropriately addressed, 
missing data can introduce bias, reduce statistical power, 
and compromise the validity and generalisability of predic-
tive models. Structured and transparent strategies for han-
dling missing data are therefore essential to maintain model 
reliability and clinical relevance.

Predictive models can approach missing data in several 
ways, including deletion of incomplete records, statistical 
imputation, model-based handling, or categorical encoding. 
In our study, we adopted a dual strategy tailored to both the 
data structure and the clinical context:

a)	 Numerical variables (e.g., lab values) were imputed 
using a default value of zero, allowing the model to pro-
cess the data consistently without removing cases. This 
choice was based on model compatibility and the fact 
that missing values in our context often reflected “not 
tested” rather than an error.

b)	 Categorical variables (e.g., test result labels) were 
encoded using a distinct ‘MISSING’ category. This 
allowed the model to learn patterns associated with the 
absence of information, which can itself be informative 
for example, when the non-performance of a test may 
correlate with triage urgency or clinical suspicion.

This strategy enables machine learning algorithms to treat 
missingness as a potentially informative feature rather than 
as noise, thereby preserving the integrity of the model’s 
predictive patterns. Importantly, transparent and consistent 
handling of missing data is essential to maintain trust and 
accountability in any data-driven application.

4.4  Feature engineering must reflect clinical reality

Feature engineering bridges data science and clinical prac-
tice. In our study, variables were selected to mirror real-world 
triage decision-making, including presenting complaints, 
entry method, age, seasonality, and blood biomarkers.

We adopted a two-stage modelling approach aligned with 
clinical workflows:

	● Stage 1: initial triage decisions based on limited data.
	● Stage 2: enhanced predictions once richer diagnostics 

became available.

Such alignment ensures that models support rather than dis-
rupt clinical processes, as it mimics the real-life process of 
clinical diagnostics, where initial assessments are refined as 
more information becomes available.

A key principle guiding our methodology is the system-
atic integration of clinical domain knowledge at every stage 
of model development. Throughout the project, expert input 
from ED clinicians, triage nurses, and hospital operations 
staff was actively sought and incorporated. Domain experts 
contributed to the initial selection of clinically meaningful 
variables, advised on the relevance and interpretation of 
laboratory markers, and validated data transformations to 
ensure alignment with real-world clinical workflows. In fea-
ture engineering, clinicians provided insight into the tempo-
ral dynamics of triage decisions, informed the grouping of 
complaint categories, and contextualised blood biomarker 
thresholds. Importantly, during model evaluation, feature 
importance plots and calibration curves were reviewed in 
joint clinical, data science workshops to assess whether 
the model’s decision logic aligned with clinical reasoning 
and patient safety expectations. This continuous dialogue 
between data and behaviour scientists and healthcare pro-
fessionals not only enhanced the model’s interpretability but 
also fostered trust and readiness for future clinical integra-
tion. Our experience underscores that domain knowledge 
should not be confined to feature selection but embedded 
throughout the model development lifecycle to ensure 
that predictive models augment rather than disrupt clinical 
judgement.
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in healthcare, model governance must extend well beyond 
initial development and deployment.

5  Counterarguments and rebuttals

a)	 Counterargument - Structured methodologies are too 
slow for innovation in healthcare AI.

Rebuttal - In healthcare, speed must never come at the 
expense of clinical safety, or patient trust. While structured 
methodologies may initially require more deliberate effort, 
they provide a foundation for models that are not only 
more accurate, but also more transparent, explainable, and 
aligned with clinical realities. Our study demonstrated that 
by systematically integrating domain knowledge and adher-
ing to rigorous validation, it is possible to accelerate the safe 
deployment of predictive models. In contrast, generic mod-
els often encounter resistance from clinicians, fail regula-
tory scrutiny, and require costly rework. In the long term, 
structured processes reduce risk, enhance reproducibility, 
and foster innovation that is sustainable and scalable. In a 
domain where lives are at stake, rigour is not an obstacle to 
innovation, it is its enabler.

b)	 Counterargument - Off-the-shelf models or autoML 
tools are sufficient.

Rebuttal - While automation can assist in accelerating cer-
tain aspects of model development, healthcare predictive 
models require careful alignment with clinical workflows 
and transparent handling of complex data challenges, fac-
tors that generic automated tools often fail to address [6, 
17, 20, 24, 26]. Our research combined large-scale ED data 
analysis with CTA to explicitly map how triage decisions are 
made under real-world conditions of time pressure, infor-
mation uncertainty, and clinical judgement. This process 
highlighted the importance of capturing not only structured 
clinical data, but also the implicit reasoning and contextual 
factors that shape decision-making. Feature engineering, 
model validation, and interpretability were therefore closely 
informed by domain knowledge elicited through CTA. 
Generic tools are ill-equipped to handle this level of contex-
tual and cognitive nuance. As such, structured, domain-spe-
cific methodologies grounded in an understanding of actual 
clinical practice such as those developed in this study, are 
essential to building predictive models that clinicians can 
trust, adopt, and use to enhance patient care.

4.5  Rigorous model selection and validation are 
essential

Model selection must be driven by both statistical perfor-
mance and clinical interpretability. We chose XGBoost for 
its ability to handle structured data, missing values, and 
class imbalance [7].

Our training process included:

	● An 80:20 train-test split - divided the dataset into 80% 
for training the model and 20% for evaluating its perfor-
mance on unseen data 

	● SMOTE for balancing rare classes - applied Synthetic 
Minority Over-sampling Technique to generate synthet-
ic samples for under-represented classes in the data.

	● Hyperparameter tuning - Optimised model param-
eters systematically to achieve the best predictive 
performance.

	● 5-fold stratified cross-validation - assessed model per-
formance by training and testing on five data folds while 
preserving class distribution in each fold.

Evaluation went beyond accuracy, using calibration plots to 
assess probability estimation, a critical factor in risk-based 
clinical decision-making [27].

Explainability was enhanced through feature importance 
plots, enabling clinicians to understand the drivers of model 
predictions. Without such transparency, models cannot earn 
trust or regulatory approval.

4.6  Model monitoring and retraining

Predictive models in healthcare operate in dynamic envi-
ronments where patient populations, clinical practices, and 
operational workflows evolve over time. To maintain clini-
cal relevance and safeguard patient safety, it is essential to 
implement robust processes for ongoing model monitoring 
and retraining. In our proposed methodology, we advo-
cate for continuous performance tracking post-deployment 
using statistical process control techniques, calibration 
drift monitoring, and periodic evaluation of model out-
puts against clinical outcomes. Alerts should be generated 
if performance metrics such as AUC-ROC, calibration, 
or recall degrade beyond predefined thresholds. Further-
more, retraining protocols must be established in advance, 
specifying triggers for initiating retraining (e.g., substantial 
population shift or emergence of new clinical guidelines), 
versioning of models, and documentation requirements. 
Importantly, retraining should once again involve close col-
laboration with domain experts to ensure that any updated 
model remains aligned with clinical expectations and regu-
latory standards. This lifecycle perspective recognises that 
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the decision-making realities of frontline healthcare profes-
sionals. Moreover, by embedding cognitive and contextual 
insights through methods such as CTA and by combining 
behavioural science with technology, we demonstrate that 
structured methodologies can bridge the gap between data-
driven insights and clinical intuition.

We therefore call on the broader healthcare AI commu-
nity, researchers, developers, regulators, and journal editors 
to adopt and enforce structured methodologies as a stan-
dard, not an option. This includes mandating transparent 
documentation, rigorous validation, and meaningful clinical 
engagement throughout the model lifecycle. Only then can 
predictive models truly deliver on their promise: to support 
clinicians, safeguard patients, and contribute to the respon-
sible and equitable advancement of data-driven healthcare.
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6  Implications of adopting structured 
methodologies

Adopting structured methodologies in healthcare predictive 
modelling carries significant implications for clinical prac-
tice, policy, and research. For clinical practice, structured 
approaches will improve clinician trust in predictive models 
by enhancing transparency and reliability. They will enable 
more accurate and actionable decision support, directly con-
tributing to better patient outcomes, and will help reduce 
variability and the potential for harm when models are 
deployed in real-world settings.

For policymakers, structured methodologies should 
become a regulatory requirement. Regulators should man-
date transparent documentation of model development pro-
cesses, explicit handling and reporting of data quality issues 
and missing data strategies, and robust validation and cali-
bration procedures to ensure models are safe and effective 
when implemented in clinical environments.

For researchers, structured methodologies provide a clear 
roadmap for advancing the field of healthcare AI. They sup-
port the development of reproducible models, promote the 
open sharing of models and results, and contribute to the 
responsible evolution of healthcare predictive modelling as 
a scientific discipline.

7  Conclusion

In healthcare, predictive models hold the potential to trans-
form patient care, enhancing decision-making, anticipating 
clinical deterioration, and optimising resource allocation. 
However, their impact depends not only on technical perfor-
mance but on how they are developed, validated, and inte-
grated into real-world clinical workflows. As demonstrated 
in our large-scale national study of emergency department 
triage, methodological rigour is not a luxury, it is a prerequi-
site for safety, transparency, and clinical acceptance.

We contend that structured methodologies rooted in data 
science best practices and informed by clinical expertise are 
essential for building trustworthy predictive models. From 
data integration and feature engineering to transparent han-
dling of missing data, validation, and continuous monitor-
ing, every stage of model development must be conducted 
deliberately and systematically. This is particularly vital 
in high-stakes environments like emergency care, where 
flawed models can compromise patient safety and clinician 
confidence.

Our experience in analysing over 32 million data points 
across 650,000 ED visits shows that structured approaches 
are not only feasible at scale but also yield models that are 
clinically relevant, interpretable, and better aligned with 
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