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Summary

The effect of the Coriolis force is demonstrated for chiral continuum models describing waves
in the equatorial region and the polar regions on a rotating sphere. Novel asymptotic features of
equatorial waves are presented in this paper. We show that the shape of a ridge of a polar vortex
can be approximated by the governing equations of a gyropendulum. Theoretical deductions are
accompanied by illustrative examples.

1. Introduction

This paper is the second of a series describing the asymptotic approximations and dynamics of
chiral gravitational waves in discrete structures and atmospheric and oceanic waves. Equatorial wave
phenomena are influenced by the planetary rotation and form an integral part of various aspects
of climate processes and oceanography (1 to 5). In recent years, advancements in computational
techniques and modelling capabilities have enabled researchers to develop increasingly sophisticated
continuum models of equatorial waves [see, for example (6 to 10)]. These models incorporate
parametrisations and simulations, allowing for more accurate predictions of equatorial wave
dynamics.

The discrete lattice models in part 1 discussed the chiral features of waves in the elastic three-layer
lattice, subjected to gravity and gyroscopic forces, which change their orientation across the central
line of the lattice. In those settings, the nodal inertial junctions along the central line are characterised
by zero gyricity. Discrete models with gyroscopic components have been analysed in (11 to 15).
The results of part 1 also include a class of waves that resemble the dispersion of waves known in
the literature as the equatorial inertia-gravity waves [see (16, 17)]. Although there are similarities
between the discrete and continuous settings, we also highlight the differences, particularly in the
low-frequency regime. In the present paper, we develop an asymptotic model, that is consistent with
the Hadley-cell structure (18, 19) for equatorial waves, in contrast with the analysis presented in
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2 A. KANDIAH ET AL.

(16, 17, 20, 21) which includes the study of fields at infinity in the infinite plane. The importance
of boundary effects for the Hadley cell is known: in particular, the global circulation pattern of the
Hadley cells significantly influences the formation of the world’s deserts [see, for example (22)].
In addition to the case when the latitude is small (near the equator), we also derive the asymptotic
approximation for vortex waves in the polar regions, where the latitude is close to 90°N or 90°S
[also, see (11, 23)].

In our analysis, we consider the linearised shallow water equations, in its simplest form, given as
follows [see, for example (17, 24 to 26)]:

o Qsin(gy = g2 (L1)
— —2Qsin(p)yy = —g—, )
o1 8ox

o oh

a_j +20sin($u= g7, (1.2)
oh ou ov

Do) 2o, 13
ot + <6x + 8y> (13)

where u and v denote the velocities in the x- and y-directions (or zonal and meridional velocities)
respectively, & is the height deviation of the fluid surface, r measures time, H is the depth of the
undisturbed fluid, Q is the angular speed of the rotating body, ¢ is the latitude and g is the gravity
acceleration. The terms including the coefficient Q represent the components of the Coriolis force.
The zonal and meridional velocity and height field variables are functions of the horizontal fluid
position (x,y) and time ¢ only. The system (1.1)—(1.3) provides an approximate description of a
shallow layer of fluid of constant density in the presence of rotation. In our study, we consider a
geostrophic approximation, neglect viscous forces, and assume that the surface height deviation is
small compared to the depth, thatis h < H.

Equatorial wave dynamics have been extensively explored using models based on the shallow
water equations [see, for example (8, 17)]. The study of low-frequency oscillations confined near
the equatorial region has been presented in (27, 28). The papers (16, 17, 29, 30) considered zonally
propagating waves that are exponentially localised near the equator, based on the analysis of the
parabolic cylinder functions in an infinite domain. The topological properties of electromagnetic
chiral models in connection with equatorial waves are discussed in (31, 32). In the present paper, we
construct analytical asymptotic solutions of a model in a narrow equatorial band and use appropriate
boundedness conditions at the boundaries of the band in the meridional direction. The analysis is
followed by illustrative examples of the types of waves present in such bands: Kelvin waves, inertia-
gravity waves and Rossby waves. We show that an equatorial fluid layer, subjected to a variable
Coriolis force, can act as a chiral waveguide for propagating inertia-gravity waves and equatorial
Rossby waves.

The structure of the paper is as follows. In Section 2, we present a mathematical procedure to
obtain asymptotic analytical solutions to the shallow water equations in a narrow band, and discuss
the resulting wave motions in connection with the equatorial waves. The refined meridional velocity
equation and the new boundary conditions have been derived using the second-order asymptotic
procedure, and are fully consistent with the assumptions used in the formulation of the governing
(1.1)—(1.3). The equatorial wave dispersion diagrams and examples of eigenfunctions in the vicinity
of the equator are provided. We also discuss the analogies between equatorial waves in a continuum
and elastic waves in the discrete lattice strip. In Section 3, a formal description of the gyropendulum
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DISPERSION AND ASYMMETRY OF CHIRAL GRAVITATIONAL WAVES 3

dynamics is provided in connection with the shallow water equations, with an emphasis on the
approximate polygonal trajectories associated with atmospheric flows in polar regions of rotating
planets.

2. Model of equatorial waves in a strip

Equatorial waves, which consist of eastward- and westward-moving disturbances, are oceanic
and atmospheric waves confined near the equator. These waves can propagate in both zonal and
meridional directions. Equatorial waves significantly influence climate phenomena such as El Nino
(33, 34) and Cromwell currents in deep surface layers (35).

Equatorial waves can be separated into subclasses based on their dynamics, taking into account
their periods, speeds and directions of propagation. The well-known waves in the equatorial
atmosphere are Kelvin, Rossby and inertia-gravity waves. Experimental evidence of equatorial
waves was uncovered using various methods, such as spectral studies and satellite data analysis
[see, for example (29, 36 to 41)]. Initially regarded as a theoretical curiosity, the study of equatorial
waves, rooted in the shallow water equations and Hermite functions, gained attention in the 1960s
with direct measurements of equatorial mixed Rossby-gravity waves and Kelvin waves (42 to 44).

In this section, we provide the full analytical asymptotic solution of the linearised shallow
water equations in a narrow band linked to atmospheric flows near the equatorial region. We also
investigate the dispersion properties of equatorial waves by considering the combined effects of
the rotating system in the presence of gravitational forces. The study presented in this section
emphasises on the asymptotic analysis of continuum models for equatorial regions, analysing
the dynamics of Kelvin, inertia-gravity and Rossby waves, by considering the refined meridional
velocity equation. The refined version of the meridional equation, derived via the second-order
asymptotic approximation procedure, is new, and the coefficient of Y2 includes an additional term.
Through this analysis, the eigenmodes and eigenfunctions for equatorial wave solutions are derived,
which take into account the combined effects of the Coriolis force and gravity. Furthermore,
the standing mode patterns for Rossby and inertia-gravity waves within equatorial channels are
presented. In the appendix we discuss the dispersion characteristics of the harmonic wave solutions
in comparison with the Matsuno model (17).

2.1. Problem formulation of equatorial waves

Given our focus on wave motions near the equator, we consider the linearised shallow water
equations given by (1.1)—(1.3) and prescribe Dirichlet boundary conditions in the meridional
direction for the velocity component v at y = =a, where a is an appropriate positive quantity. This
condition is important for maintaining the validity of the equatorial approximation in our model.
Thus, the following boundary conditions are prescribed on the boundaries of the equatorial region:

v =0. 2.1

y==a -

In meteorology and oceanography, the spatial variation of the Coriolis parameter is of importance.
The Coriolis parameter, given by f = 2Qsin(¢), depends on the angular speed Q and latitude ¢.
We approximate the Coriolis parameter with the latitude being linearly proportional to the distance
from the equator, that is ¢ = y/R, in the radian measure, where R denotes the radius of the Earth.
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4 A. KANDIAH ET AL.

We look for time-harmonic solutions in the form of zonally propagating waves, given by
(u,v,h) = Re{(A(), By), Cp)ec+en), 22)

where k is the (zonal) wavenumber, o is the radian frequency and A(y), B(y) and C(y) are functions
describing the horizontal and transverse velocity components and height field component of the
fluid. Substituting the above assumptions and given expressions into the system (1.1)—(1.3) results
in a set of ordinary differential equations for A, B and C:

iwA(y) — 2Q sin(;)—e)B(y) — _igkC(), 2.3)
. A _ dc
iwB(y) + 20 sm(E)A(y) =55 (2.4)
) . dB
inC(y) + H(zkA(y) n d—y) —0, 2.5)

Sub_]eCt to the Dir IC] llet bOllIldaI y COIlditiOIlS [See (2. 1)]:
B ‘ = 0. 2.6

The above problem formulation in a finite-width equatorial strip differs from the analysis of the
Weber-type equations in an infinite domain discussed in (17, 45, 46).

The solutions of the shallow water equations related to the Kelvin waves, with the dispersion
equation w® = gHk?, are discussed in Appendix A. To obtain other solutions of the shallow water
equations we consider the case when w? # gHk?. In this case, waves of two different types are
obtained as solutions, which are referred to as the inertia-gravity wave and the Rossby wave. Re-
arranging (2.5) for C(y) and substituting into (2.3) yields the representations for the height field and
zonal velocity components, respectively, in the form:

HGKAY) + )

2Quwsin(%)B(y) + gkHZE
Cy)=i —i( wsin () BO) + & a’).

2.7
w? — gHk? @7
Upon substituting (2.7) into (2.4), we obtain the following second-order meridional velocity
component equation together with the associated boundary conditions:

d*B y\  2gkHQ
H —+[ 3 _ gHKw — 4Q° sin2<—)+—
g wdy2 o’ — gHk"w w R R

cos(%)]B(y) —0, B(+a)=0. (2.8)
The above problem is an eigenvalue problem with the general solution consisting of a linear
combination of confluent Heun functions [see, for example (47, 48)]. Here, we consider the shallow
water equations within a horizontal layer of fluid, where the flows are confined near the equator,
that is within —a <y < a. Thus, we neglect higher-order terms in the expansions of sin(y/R) and
cos(y/R). In particular, we present the asymptotic solutions for the eigenvalues and eigenfunctions
of the equatorial waves for two different analytic approximations: first, by neglecting terms of
order O((y/R)Z), and second, by neglecting the terms of order 0((y/R)3) in the meridional velocity
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DISPERSION AND ASYMMETRY OF CHIRAL GRAVITATIONAL WAVES 5

equation in (2.8). It is shown that the dispersion properties of inertia-gravity and Rossby waves
are captured by both approximations, while the second approximation yields additional asymptotic
terms in the solutions for the equatorial waves.

In the following analysis, it is convenient to introduce the dimensionless variables

. R - ~ R -~ H
o=w|—, k=kR, Q=2Q |—, H=—, 2.9)
8 g R

s

where the quantities with the symbol ‘~’ are dimensionless. Hence, we consider the non-
dimensional form of the meridional velocity problem (2.8), given by (the symbol ‘~’ has been
dropped for convenience)

CB 12 22 a2+ Lo B =0, Be—0 2.10
T | K - s+ Zeosm]Bm =0, Bro=0.  @10)

where B(Y) = B(RY) and € =a/R. It is noted that Y = +e€ correspond to the upper and lower
boundaries of the strip.

2.2. Asymptotic models of the meridional velocity equation

2.2.1. Case 1: Dirichlet problem for the Weber-type differential equation. When third-order terms
in the expansions of sin(Y) and cos(Y) are neglected in (2.10), we obtain the following boundary
value problem:

B A—®Y2|B(Y)=0, B(+e)=0 2.11
T5H[A-oer B =0, Bea=0, @.11)
where
2 2
w 5 kQ Q2 kQ
A=— K +—, &= — 4 —. 2.12
H +a) H+2a) ( )

The differential equation shown in (2.11) seems to have first appeared in the paper (49). The above
non-dimensional coefficients are fully consistent with the asymptotic expansions to the order O(Y?).
The coefficient of Y in (2.11), denoted by @, depends on the non-dimensional frequency w and the
non-dimensional wavenumber k. This coefficient is different from that in (17), where the order O(Y?)
terms were missing due to the fact that the cosine term was approximated as a constant, which was an
omission. When A = 0, the solutions are represented by the modified Bessel functions (48), whereas
when ® = 0, the solutions can be written as a linear combination of sinusoidal functions. The
boundary conditions at ¥ = %€ also capture the meridional velocity conditions for the waveforms
in the equatorial band, which are also consistent with the problem assumptions. The analysis of the
above meridional velocity equation is presented in Section 2.6.
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6 A. KANDIAH ET AL.

2.2.2. Case 2: Harmonic oscillator model. If the terms of order O(Y 2) are neglected in (2.10), we
obtain a non-dimensional equation with constant coefficients resembling the well-known harmonic
oscillator:
&’B . )

Nz + AB(Y)=0, B(xe)=0, (2.13)
where the non-dimensional quantities A and € are defined in (2.12) and Section 2.1, respectively.
In this case, the solution for E?(Y) consists of sinusoidal terms; an exact non-trivial solution which
satisfies the boundary conditions at ¥ = %€ can be obtained, as detailed in Section 2.3. Quantitative
comparisons between the dispersion properties of the harmonic waves in a bounded equatorial
channel and those of the trapped equatorial waves in an unbounded channel, derived in (17), are
presented in Appendix B.

2.3. Harmonic waves in an equatorial channel

In this section, the full analytical solution of the shallow water equations is presented by neglecting
terms of order O(Y?). Accordingly, Dirichlet boundary conditions are imposed on the narrow
equatorial channel. The corresponding eigenvalues and eigenfunctions of the equatorial waveforms
are also analysed.

In the vicinity of the equator, by neglecting terms of order O(Y?) in the expansions of sin(Y) and
cos(Y) in (2.10), the non-dimensional meridional velocity component equation takes the form (2.13).
To obtain bounded non-trivial solutions of problem (2.13), we take A > 0, and look for solutions in
the form

B(Y) = bW cos(v/AY) + b sin(v/AY), (2.14)

where b)) and b are arbitrary constants. Applying the conditions at ¥ = =, results in the
following exact form of the meridional velocity component

(€))] .
N b; "cos(\/A;Y), j=1,3,5,...,
Bry=1" (2.15)

Q@) . .
bj sin(,/A;Y), j=2,4,6,...,

where the solvability condition yields

w? kQ  jm
__k2 —:—, ':1,2,3,.... 216
VE = (2.16)

Equation (2.16) is the non-dimensional dispersion relation, describing the connection between the
non-dimensional frequency and non-dimensional zonal wavenumber for a chosen meridional mode ;.
For each j, there are generally three roots of the dispersion equation when H, k, Q and € are specified.
In particular, two of the three roots of (2.16) correspond to inertia-gravity waves, while the third
root to a Rossby wave as shown in Fig. 1. The region corresponding to A > 0 is shaded in Fig. 1.
The representation of the meridional eigenfunction components (2.15) shows that the even modes
(j = 2,4,6,...) are skew-symmetric about the equatorial region and the odd modes (j = 1,3,5,...)
are symmetric.
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H =0.002,e=0.1,2=0.1
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Fig.1 Dispersion diagram for equatorial waves trapped in a narrow strip as a function of the non-dimensional
frequency @, and non-dimensional zonal wavenumber k. The non-dimensional parameter values are H =
0.002,e = 0.1 and Q = 0.1. The anti-Kelvin and Kelvin modes are described in Appendix A and Section 2.6.
The remaining dispersion curves correspond to the solutions of (2.16). Inertia-gravity waves are represented
by the high-frequency curves for the values j = 1,2,3,4, resulting in westward- or eastward-propagating
waveforms, while for the same values of j, the low-frequency curves denote the Rossby waves. The shaded
region corresponds to A > 0.

The group velocity of the equatorial waves is calculated from the dispersion relation (2.16), and
can be approximated by

d_w _ Ho(—2kw 4 Q) 2.17)
dk HQk — 203

Another useful property in the description of equatorial waves is the phase velocity, which is defined
by w/k, and indicates the speed at which the phase of the individual wave components propagate in
the horizontal direction.

As noted previously, there are three main classes of equatorial waves in the narrow strip, which
are inertia-gravity, Rossby and Kelvin waves. The meridionally bounded solutions in the south and
north of the equatorial band introduce an additional mode: a non-dispersive, westward-propagating
anti-Kelvin wave (50 to 52). It is noted that the values of the non-dimensional parameters Q, H and
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8 A. KANDIAH ET AL.

€, results in only the eastward-propagating Kelvin mode to be situated in the shaded region, defined
by A > 0 [where A is given in (2.12)], while the anti-Kelvin mode lies outside the shaded region
(see Fig. 1). The inertia-gravity waves and Rossby waves are within the shaded area as shown in
Fig. 1.

Taking into account (2.9) and substituting (2.15) into the non-dimensional forms of (2.7), yields
the non-dimensional zonal velocity and height field components, respectively, as

HD Qusin(Y)cos(\/A;Y)—kH /Ajsin(\/A;Y) .
—ib; j=13,5,...,

~ 2 _ 2 ’
Aj(r) = o —Hk (2.18)
., (2) Qusin(Y) sin(y/A;Y)+kH \/Ajcos(\/AjY) .
_lbj w2 —Hk2 5 ]227456;-”5

and

ib](])Hkain(Y)cos(\/A__,vY)—w\/A__,vsin(\/A__,vY)’ =135,

A~ 2__ 2
= Qksin(Y)si /C\UY " A AY (2.19)
ib? )S‘“(*/;j;f;/_fms(\/_f ) j=2.4,6,...,

where A;(Y) = A;(RY) and Cj(Y) = \/g Ci(RY).

By introducing the additional variables x = RX and ¢ = /R/gT, where the quantities with the
symbol ‘~’ are dimensionless, and substituting the above expressions for Aj(Y ), Ej(Y) and C'j(Y) into
(2.2), results in the dimensionless zonal and meridional velocities and height field representations
as follows (dropping the ‘~’ for convenience)

il = —Im{A;(Y)}sin(kX + oT),
b = Bj(Y)cos(kX + wT), (2.20)
hj = —Im{C;(Y)} sin(kX + wT).

Equations (2.20) describe the zonally propagating Rossby and inertia-gravity waves in a narrow
equatorial band. We also note that the above non-dimensional eigenfunctions differ from the Kelvin
wave solutions presented in Appendix A.

In the subsequent section, we present examples of the eigenfunctions linked to the propagating
inertia-gravity and Rossby waves, highlighting the zonal and meridional components of the zonal
wave solutions.

2.4. Eigenmodes of Rossby and inertia-gravity waves in an equatorial channel

In Section 2.3, we have shown that the non-dimensional dispersion equation, given by (2.16), can
be used to determine the frequencies and wavenumbers of the waveforms in a narrow equatorial
band. Some examples of the eigenfunctions obtained in Section 2.3 are presented in this section, in
connection with various dispersion characteristics of the different types of equatorial waves.

The non-dimensional eigenfunctions of the Kelvin waves, characterised by the zero meridional
velocity component, are addressed in Appendix A. These waves are non-dispersive and are
associated with wind stress anomalies, the Coriolis force, coastal boundaries and variations in
sea surface height and temperature (53, 54). Kelvin waves are integral to oceanic-atmospheric
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DISPERSION AND ASYMMETRY OF CHIRAL GRAVITATIONAL WAVES 9

Q=0.25 H=0.05,e=0.1

0.006

0.004

0.002

Fig. 2 Non-dimensional frequencies as functions of the non-dimensional wavenumbers defined by the
dispersion relation (2.16) for a range of modes and the non-dimensional parameter values Q = 0.25,H = 0.05
and € = 0.1. The points labelled by 4,3, C, D, E and ¥, shown on the dispersion curves, correspond to the
values of w and k of the eigenfunctions for the equatorial modes described in the text

interactions and climate phenomena [see, for example (55)]. The low frequency modes shown in
Fig. 2 correspond to the equatorial Rossby waves (also known as planetary waves), which propagate
in the atmosphere and oceans. Such waves are characterised by their lower frequencies and longer
wavelengths compared to Kelvin waves. At higher frequencies, the equatorial inertia-gravity waves
are present, linked to the high-frequency curves displayed in Fig. 2; these waveforms can propagate
in various directions. Analysing inertia-gravity waves and Rossby waves is crucial for understanding
and predicting atmospheric and oceanic circulation patterns on regional and global scales.

2.4.1. Eigenfunctions of the zonally propagating equatorial wave solutions. The sinusoidal
solutions of the shallow water equations, describing zonally propagating waves in a channel,
have been derived in Section 2.3. The set of admissible non-dimensional frequencies w, and non-
dimensional zonal wavenumbers k, are defined according to the relation (2.16) for a positive integer
value of j. In addition, for each j, the non-dimensional eigenfunctions of the inertia-gravity and
Rossby modes are given by (2.20). From the analysis presented in Section 2.3 for inertia-gravity and
Rossby waves, if follows that if j is an odd positive integer then ¥ is an even function, and & and h
are odd functions with respect to the non-dimensional variable Y. Conversely, if j is an even positive
integer, the parities of the velocity and height fields are reversed.

In this section, we illustrate the non-dimensional eigenmodes of the equatorial waveforms in
a narrow band, with the focus on the zonal and meridional velocity components. In each figure,
one wavelength in the X-direction is shown. The group velocity, defined by (2.17), is used to
determine the speed and direction of motion of the equatorial waves. In the illustrative examples,
the wavenumbers are chosen as either £ = 30 or k = —30 to observe one wavelength in the X-
direction with a comparable order of magnitude to the meridional domain. Additionally, the equator
runs through the centre of each diagram, with the horizontal boundaries at ¥ = €. The change
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Fig.3 Evolution of the eastward-propagating inertia-gravity eigenmode for the zonal and meridional velocity
components at different normalised times corresponding to j = 1 (see Section 2.3). The eigenfunctions for
the inertia-gravity wave are defined according to (2.20). The non-dimensional zonal wavenumber and non-
dimensional frequency of the oscillations are respectively 30 and 7.5688. The arrows denote the direction of
propagation of the waveforms

in frequency values of the waveforms correspond to different points on the dispersion curves. For
each illustrative example presented in this section, the parameter values are H = 0.05,Q = 0.25 and
e =0.1.

The eigenfunctions for the zonal and meridional velocities of the eastward-moving inertia-gravity
mode forj = 1 at various normalised time steps are shown in Fig. 3. The direction of the propagating
waves is determined by the positive group velocity [see (2.17)], and is represented by the arrows in
Fig. 3. Additionally, the non-dimensional wavenumber and non-dimensional frequency values are
k =30 and w = 7.5688, respectively, and correspond to the point 4 in Fig. 2. The eigenfunctions
have the sinusoidal form derived in Section 2.3, reflecting the oscillatory behaviour of these waves in
both the zonal and meridional directions. It is noted that westward-propagating inertia-gravity waves
are obtained when k = —30 and w = 7.5754, where the waveforms travel in the negative X-direction.
A positive group velocity corresponds to an eastward wave propagation, while a negative group
velocity indicates a westward-propagating wave. The frequencies of the eastward- and westward-
propagating waves differ due to the asymmetry of the inertia-gravity dispersion curves (see Fig. 2),
as a result of the Coriolis force.

In Fig. 4, we present an example demonstrating the evolution of the eastward-propagating
inertia-gravity wave for j = 2, with the zonal wavenumber k = 30 and frequency @ = 9.7113. The
corresponding dispersion diagram is shown in Fig. 2, with the associated point of the equatorial
inertia-gravity mode denoted by 8. Compared to the eigenmodes illustrated in Fig. 3, the parities of
the non-dimensional velocity components presented in Fig. 4 change: forj = 1, ¥ and & are even and
oddin Y, respectively, whereas forj = 2, v and & become odd and even in Y, respectively. In addition,
the frequency of the inertia-gravity waves is higher in the example shown in Fig. 4 compared to
Fig. 3. The eigenmodes shown in Fig. 4 also display a significant zonal velocity component along
the centre of the equatorial band. Fundamental differences between the general structures of the
inertia-gravity modes can also be observed. Furthermore, it is noted that eigenfunctions linked to
the westward-propagating inertia-gravity waveforms also exist when k = —30 and w = 9.7153.
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Fig. 4 Non-dimensional eigenmode for the eastward-propagating inertia-gravity waveform corresponding to
J = 2, with the non-dimensional parameter values Q = 0.25, H = 0.05 and € = 0.1, and a selection of values
for the non-dimensional time variable 7. The non-dimensional wavenumber and non-dimensional frequency
values are 30 and 9.7113, respectively

In Fig. 5, we present examples of the non-dimensional eigenfunctions of Rossby waves
propagating in the narrow equatorial band for two different modes. Fig. 5(a) displays the westward-
propagating Rossby wave forj = 1 with (k, w) = (30,0.0065), whereas Fig. 5(b) shows the eastward-
propagating Rossby wave for the j = 2 mode with (k,w) = (30,0.0040). These points are denoted
by C and D in the dispersion diagram in Fig. 2, and correspond to the low-frequency dispersion
curves. Vortices are observed in the waveforms for both propagating Rossby modes, which differ
from the inertia-gravity modes presented in Figs 3 and 4. As shown by the examples, higher
modes corresponding to higher values of j result in an increase in the number of vortices for the
Rossby modes (see Fig. 5) and greater meridional variations in the flow for the inertia-gravity
modes (see Figs 3 and 4), associated with changes in zonal wavelengths, frequencies and energy
distributions. Rossby waves are characterised by rotational flows, while inertia-gravity waves display
a more divergent behaviour in connection with their shorter horizontal wavelengths and higher
frequencies than Rossby waves. The dominant features of inertia-gravity waveforms in a continuum
(for example eastward or westward propagation and asymmetric properties of the dispersion curves)
are similar to the elastic chiral gravitational waves in a chiral discrete lattice strip presented
in part 1.

2.4.2. Standing mode patterns for Rossby and inertia-gravity waves. Examples of standing mode
patterns for both Rossby and inertia-gravity waves are presented in this section. Equatorial standing
modes represent localised oscillations, and in such cases, the waveform patterns remain stationary in
space. The standing modes of Rossby and inertia-gravity waves are characterised by the vanishing
group velocity defined by (2.17).

There is a historical account of Kelvin waves and Rossby waves significantly influencing the
dynamics of El Nifio events, which may provide insights into the decline of ancient civilisations,
such as the Moche civilisation in northern Peru in the late sixth century [see (56, 57)]. The climate
record suggested that the environmental changes likely included a mega El Nifio that caused
30years of intense rain and flooding on the coast, followed by 30years of drought (56, 58). The
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Fig. 5 Eigenfunctions of the non-dimensional velocity components, given by (2.20), of the Rossby modes
for j=1 and j =2 in parts (a) and (b), respectively; (a) westward-propagating Rossby wave for (k,w) =
(30,0.0065) and (b) eastward-propagating Rossby wave for (k,w) = (30,0.0040). The arrows indicate the
direction of the wave propagation

atmospheric standing waves, particularly the equatorial Rossby waves (59 to 61), modulated by
oceanic conditions could explain the long-term climate impacts experienced during a mega El Nifio
event. These extreme weather phenomena disrupted the Moche way of life and damaged irrigation
systems leading to the collapse of the Moche civilisation [see, for example (56, 62 to 65)].

Standing wave patterns, described by the non-dimensional eigenfunctions (2.20) for j =1,
corresponding to inertia-gravity and Rossby waves are shown in Fig. 6(a) and (b), respectively.
Similarly to the eigenmode diagrams shown in Section 2.4.1, the eigenfunctions in Fig. 6 are plotted
for one wavelength in the X-direction. We note that although the group velocities of the waveforms
are zero, the phase velocities in both presented examples are positive, indicating that the phase of
the wave is moving in the positive X-direction. Furthermore, standing wave modes with negative
phase velocities and zero group velocities can also be obtained with a suitable value of the non-
dimensional parameter Q. The presence of the Coriolis force results in asymmetric dispersion curves
for the inertia-gravity waves, leading to standing modes with non-zero wavenumbers & [see Fig. 6(a)].
For higher modes, additional vortices are observed for the standing Rossby modes, and greater
meridional variations are noticed in the standing inertia-gravity modes.

2.5. Modes of the meridional velocity equation

In this section, we consider the non-dimensional linearised shallow water equations for a horizontal
layer of fluid, where the meridional velocity component is described by the Weber-type differential
equation (48, 66, 67).
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Fig. 6 Standing inertia-gravity and Rossby modes for j = 1, with the parameter values Q = 0.25, H = 0.05
and € = 0.1. The associated dispersion diagram is shown in Fig. 2, with the points £ and ¥ corresponding to the
standing modes in parts (a) and (b), respectively. (a) Standing inertia-gravity wave for (k,w) = (0.0356,3.5124)
with the horizontal scaling X = 8 x 102 X, and (b) standing Rossby wave for (k,w) = (15.7079,0.0080).

When third-order terms in the expansions of sin(Y) and cos(Y) are neglected in (2.10), we obtain
the following meridional velocity equation (see Section 2.2.1):

B + [A cDY2]B 0, B(Y=14e)=0 2.21)
JR— — =0, = €)= , .
dy?
where A and @ are defined in (2.12), and depend on the non-dimensional frequency and non-
dimensional zonal wavenumber. The case of ® = 0 was discussed in Section 2.3.

We consider the solutions to the problem (2.21) subject to the conditions

A>0, ®>0. (2.22)

(We assume that the non-dimensional quantities H and Q (see Section 2.1) satisfy the condition
Q/+/H > 1/2, which holds for the corresponding dimensional parameters on the Earth. Based on
the analysis of harmonic waves presented in Section 2.3, we also take A > 0. Then, it follows that

% -/ %2 + % <k< % + 4/ %2 + %, and taking into account (2.12), it can be deduced that

_0 9, Q [fo? | Q2 _ QX (2 (4Q%—H)+2HOQ?)
@—ﬁ+%>ﬁ+m—m F“rm— > 0.)

Qr, 092 0 |02, Q2
4H? 0?2 7+m+ﬂ wﬁ'ﬁ‘m
The system (2.21) represents an equatorial wave problem for the meridional velocity component,

and its solutions are given by a linear combination of parabolic cylinder functions [see for example
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(48, 51, 66)] as follows

. A A
BY)=6,U|-———, 2c1>1/4y> @ v<——, 2c1>1/4y>, 2.23
¥) =€ ( T V2 U v V2 (2.23)

where 61 and 6, are arbitrary constants, while U and V denote the parabolic cylinder functions (48,
67), which form two linearly independent solutions of the differential equation shown in (2.21).
Applying the boundary conditions at Y = +e¢ results in the following non-dimensional dispersion

relation:
A
U ——,—ﬁ®1/4e>v<——,
< 2/ 2/

A 1/4 > < A 1/4 )
—U| ——,V2D Vi——,—v20 =0. 2.24
< 3 _(D,«/_ € NG V20! /4 (2.24)

When the condition (2.24) is satisfied, there exist non-trivial solutions for the meridional velocity
problem (2.21). Noting the representation (2.12), the equation (2.24) can be solved numerically
yielding approximate non-dimensional eigenvalues associated with the equatorial waveforms.
Moreover, since the boundary value problem (2.21) is of the Sturm-Liouville form, the eigenvalues
form a non-negative increasing sequence in the interval [—e¢,€]. The derivation of the asymptotic
solutions of the non-dimensional dispersion equation (2.24) can be found in Appendix C, where it
is shown that the leading order terms of the solutions correspond to the solutions of the dispersion
equation (2.16) of the harmonic equatorial waves.

In the papers (16, 17, 29), a dispersion equation was derived for the equatorial waves with the
boundary conditions applied at infinity, where the propagating solutions were assumed to decay
away from the equatorial region.

To obtain analytical insights into the solution of the eigenvalue problem (2.21), we construct an
asymptotic approximation of the eigenfunctions and corresponding eigenvalues.

Vil

2.6. Regular perturbation of the Weber-type equation describing the equatorial modes

In this section, we derive the asymptotic approximations of the eigenfunctions and eigenvalues of
the meridional velocity mode, corresponding to the Weber-type differential equation described in
the previous section.

We examine approximations to the solutions by considering the problem (2.21) as a perturbation
eigenvalue problem in the form

—B(Y) + ©Y?*B,(Y) = ApBy(Y), By(e)=0, (2.25)

where @ > 0 and A > 0. Introducing the variables:

4 2
=Y T=<2_6> @, ,1=<2—E) A, (2.26)

2¢”’ T s

the eigenvalue problem (2.25) can be re-written as

GO + VOB = 1Tal©), T (£5) =0, 2.27)
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where %,(¢) = fS’n 2—54‘ . We derive an asymptotic solution for the eigenvalue problem (2.27) for
T

the small perturbation parameter V. The eigenfunctions %,(¢) and eigenvalues 4,, are sought in the
asymptotic forms

Bu(©) = BOE) + YBL (@) + 0¥,
(2.28)
dn =20 gD 4 op2),

where 93510)(5) and /15,0) are the normalised eigenfunction and eigenvalue of the limit problem (2.27)
when ¥ = 0, respectively, and %5,1)(5 ) and /1;1) are the correction terms.

2.6.1. The limit eigenvalue problem. The limit problem of the regular perturbation problem (2.27)
takes the form

T
@@ +aB =0, @ (£3)=0. 229

The eigenvalues and normalised eigenfunctions of the above problem are, respectively, given by
2O 2 n=1,23,.., (2.30)

and

%20)(5) _ {«/2/71’ cos(né), forn odd, 2.31)

V2/7 sin(n¢), for n even.

The above solution corresponds to the meridional velocity mode component for the harmonic waves
in a narrow equatorial band, as discussed in Section 2.3. It is noted that the solutions of the limit
eigenvalue problem also lead to the eigenfunctions in the sinusoidal form. To simplify our analysis,
we re-write the expression (2.31) as follows

B0(&) = \/g (%_l)n) sin(né) + # cos(n§)>, n=1,23,... (2.32)

2.6.2. Evaluation of the first-order correction terms for the eigenfunctions and the eigenvalues. By
substituting the asymptotic forms of the eigenfunction and eigenvalue (2.28) into (2.27) and using
the above representations for the normalised eigenfunction and eigenvalue of the limit eigenvalue

problem, it follows that the correction terms 9735,1) and /1;1) satisfy the boundary value problem

@ @)+l = iR+ AV, B (£5)=0.  @33)

We look for solutions of the inhomogeneous problem (2.33) in the form

> 2 [A+¢=1D) . (A=)
%;1)(5)22%@](0)(5): \/;j:zlanj[Tsm(]fH-Tcos(]f)]. (2.34)
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By taking into account the forms of 93510)(5) and /15,0) in Section 2.6.1 and the above representation

for 923,(11)(5 ), the differential equation in (2.33) can be written as

> 0 = Py B (@) = —AVBYE) + EBYE).
j=1

We note the orthogonality relations of the sinusoidal functions in %;0) ©):

| #Pen = o,
-2

(2.35)

(2.36)

where p is a positive integer and Jj, is the Kronecker delta function. As a result, multiplying (2.35)

by 931(,0)(5 ) and integrating over the interval (—%, %), yields the following

anp® —p) = [ (=D + ABO OBV @)

_r
2

When p = n, we obtain the eigenvalue /1;1):

z 2
2 T
j"(11) _ 52(93,(10)(5))2dé — B _ n=1,2,3,....

202’

%
In particular, if p # n, we derive the coefficients a:

n+p
dnp(—1)2"

1 7 ) (0) ()
G =7 2 /_an + By ()P ©de =75

To obtain the remaining coefficients ay,;,, we normalise 9%,(¢) so that

% 2
B(E)dE = 1.
-z
Then since
B2E) = BV + 2BV OBV (&) + 0(F),

and

? (@BO@)de =1,

-r
2

it follows that

/ * 3OOB(E)de = 0.

T
2

(=D"+(=1)").

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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Finally, (2.34), (2.36) and (2.43) yield the following
3 0 — 0
[ aP( Lo )a=o, .44)
. 2
which implies that a,, = 0.

2.6.3. Asymptotic approximation of the dispersion relation. In this section, we derive the non-
dimensional eigenvalues associated with the frequencies of the equatorial waveforms.
The asymptotic form of the eigenvalues is given by (see previous section)

1 2
n=n*— —¥+"—¥4+0%?, n=1,273,.... (2.45)
n

Noting the variables (2.26), the above equation can be re-written as
2.2 2 2 6
n°rw € 2e 2e 5
A= —0—-—=—=d4+0(—) ©7). 2.46
4¢€? + 3 n?r? + << T ) ) (246)

Then by substituting the representations of A and @ in terms of the non-dimensional frequency w and
non-dimensional wavenumber k, defined in (2.12), into (2.46), we obtain the following asymptotic
dispersion equation:

o 5, kQ nPr? L (Q kQ\ /1 2
S S e te + , n=123, ., (2.47)

H 1) 4¢2 H 20)\3 n2z2

where the non-dimensional quantities Q and H are defined in Section 2.1. The dispersion
equation (2.16) in Section 2.3 is a first-order approximation of the above dispersion relation.
Analytical insights of (2.47) are provided below. The above dispersion relation can also be
derived by considering approximations of the parabolic cylinder functions in (2.24) as detailed in
Appendix C.

2.6.4. Dispersion properties: waves parallel to an equatorial band. We present the asymptotic
solutions of the dispersion equation (2.47), providing an analytic approximation of the non-
dimensional frequencies for the propagating waves in a narrow equatorial band. Approximations
of the non-dimensional eigenvalues for equatorial waves in an asymmetric channel were presented
in (51).

Similar to the non-dimensional dispersion relation derived in Section 2.3, here we also observe
that there are three roots of the dispersion equation (2.47) when H,k,Q and € are specified for a
given mode n: two roots corresponding to inertia-gravity waves and the third to a Rossby wave.
The solutions of (2.47) corresponding to a fixed n > 1 result in the dispersion curves displayed in
Fig. 7, where the shaded region is defined by the conditions (2.22). In particular, we note that the
even-numbered modes (n = 2,4,6,...) of the normalised eigenfunctions derived above are skew-
symmetric about the narrow equatorial region, while the odd-numbered modes (n = 1,3,5,...) are
symmetric. This behaviour is consistent with the eigenfunctions of the harmonic waves detailed
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Fig.7 The dispersion diagram corresponding to the non-dimensional dispersion relation (2.47) forn = 1,2,3
and 4, and the dimensionless parameters Q = 0.1,H = 0.002 and € = 0.1. For each value of n, the low-
frequency Rossby waves and the high-frequency inertia-gravity are observed, which are situated within the
shaded region corresponding to A > 0 and @ > 0 (see Section 2.5). The non-dispersive anti-Kelvin and Kelvin
waves described in Appendix A are also shown; these are defined by the non-dimensional dispersion relation
(A.6). The curve associated with the anti-Kelvin mode is outside the shaded region defined by (2.22)

in Section 2.3. The eigenfunctions of such equatorial modes are also discussed in (50, 51, 68),
in the context of meridionally bounded propagating waves. The set of dispersion curves shown
in Fig. 7 also form a collection of non-intersecting high-frequency inertia-gravity waves and low-
frequency Rossby waves that are inside the shaded region, which can be compared to the curves in
the dispersion diagram shown in Fig. 1. The main properties of these curves were also captured by
the non-dimensional dispersion relation detailed in Section 2.3.

Taking into account the above analysis and computations, we identify the equatorial wave classes
as follows:

e The anti-Kelvin and Kelvin waves that propagate zonally non-dispersively westward and
eastward, respectively, in the narrow equatorial band with the normalised phase speed vH (see
Appendix A). The corresponding group velocities for the eastward- and westward-propagating
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waveforms are given by ++/H, respectively. We note that for increasing values of ¥, the westward-
propagating anti-Kelvin waves have zonally increasing amplitudes, while the eastward-propagating
Kelvin waves are trapped in the narrow band with maximum amplitudes at the equator. The values
of the non-dimensional parameters €, H and ¢, together with the conditions (2.22), resulted in the
dispersion curve of the anti-Kelvin mode being located outside the shaded region as shown in Fig. 7.

e For the high-frequency inertia-gravity waves for large &, the dispersion relation (2.47) yields the
approximate non-dimensional frequencies, valid to O(1/k),

?r2VH  Qn*r? —6)HF 29@)62

, n=1,23.... (2.48)
8ke? 12Hm2 72k "

Q
=TFkvH — —
1,2 =F %k +

The above approximate roots correspond to the equatorial modes associated with the westward-
and eastward- propagating inertia-gravity waves, as illustrated in Fig. 7. We note that the dispersion
curves of the inertia-gravity waves are asymmetric relative to the vertical frequency axis due to the
presence of the Coriolis force. The asymmetry becomes more evident for larger values of |Q|, and
reversing the sign of Q results in a change in the directional horizontal shift of the dispersion curves.
Additionally, such asymmetry feature allows for short-period inertia-gravity waves with zonal phase
velocities in opposite directions compared to the group velocities. An analogous asymmetry in the
dispersion curves was also observed in part 1 for the infinite discrete chiral lattice strip subjected to
gravity, where gyroscopic forces were present instead of the Coriolis force.

e Low-frequency Rossby waves for large k can be approximated by the following, valid to O(1/k),

Q @#@r?-6Q,
w3 = — — €

p T , n=1,2,3.... (2.49)
By neglecting terms of order O(e?), the representation (2.49) shows that the non-dimensional zonal
wavenumber k is positive (resp. negative) for Q > 0 (resp. Q < 0). Thus, the phase velocities of the
low-frequency Rossby waves in the equatorial band result in eastward-moving oscillations (resp.
westward-moving oscillations) for Q > 0 (resp. < 0). The Rossby dispersion curves are presented
in Fig. 7, where it is observed that although the phase velocity of the wave components corresponds
to eastward-propagating disturbances for > 0 (resp. westward-propagating for Q < 0), their zonal
group velocity can result in either eastward- or westward-propagating waves.

The above asymptotic analysis shows that the low-frequency Rossby waves can exhibit eastward
(resp. westward) phase disturbances and westward (resp. eastward) wave propagations for Q > 0
(resp. € < 0) and large k. Kelvin waves, being non-dispersive, move with phase disturbances at the
same speed as their group velocity as detailed in Appendix A. Moreover, inertia-gravity waves can
have either eastward or westward phase velocities, as well as either eastward or westward group
velocities. For low zonal wavenumbers, the direction of the propagating inertia-gravity waves can
vary due to the Coriolis force affecting the phase and group velocities. It is know that inertia-gravity
waves propagate much faster than Rossby waves [see, for example (17, 50, 69)].

3. Gyropendulum approximation of the shallow water equations

In this section, we show that a gyropendulum [see, for example (11)] can be used to approximately
describe the dynamics of a shallow water ridge in the polar regions of rotating planets. In this
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approximation, the shallow water equations are considered at high latitudes, where the large
magnitude of the Coriolis force contributes to the formation and motion of polar vortices. The
articles (70, 71) present the problem of the hexagonal jet stream at the polar region of Saturn as an
unexplained challenge. In particular, the quote from (70), related to the interpretation of numerical
simulations, reads as follows: ‘Imagine we have a rubber band and we place a bunch of smaller
rubber bands around it and then we just squeeze the entire thing from the outside. That central ring
is going to be compressed by some inches and form some weird shape with a certain number of edges.
That’s basically the physics of what’s happening. We have these smaller storms and they 're basically
pinching the larger storms at the polar region and since they have to coexist, they have to somehow
find a space to basically house each system. By doing that, they end up making this polygonal
shape’. Although this explanation may look satisfactory for some, in the present section we show
that the essence of the observed effect is the combined contribution from the rotation of the planet
and gravity. We also provide a simple asymptotic approximation, based on the gyropendulum model,
which gives an approximate polygonal shape of the polar jet stream. We demonstrate that starting
with a linearised form of the shallow water equations and assuming a purely horizontal flow, one
obtains a system of equations resembling the governing equations of an elementary gyropendulum.

The analysis presented in this section provides a new framework for modelling the dynamics
of the rotating fluid ridge. In this case, for a fluid particle, the restoring force, which includes
gravity, returns the particle to its equilibrium position, while the Coriolis force, resulting from the
planet’s rotation, acts perpendicular to the particle’s velocity in the rotating frame of reference.
Conversely, for a gyropendulum, the restoring force arises due to gravity, whereas rotational effects
are introduced through a gyroscopic spinner. Although Coriolis and gyroscopic forces emerge from
distinct physical phenomena, they both induce analogous effects that influence the motions of
structures in rotating systems. This characteristic forms a fundamental basis for our analysis.

We will also present typical examples of the gyropendulum trajectories approximating polygonal
shapes by following the method presented in (11). The approximate polygonal trajectories, described
by the combined action of gyroscopic forces and gravity, are linked to a range of natural phenomena
at different scales, such as polygonal shapes in a partially filled cylindrical container subjected to
a rotating bottom plate [see for example, (72 to 74)] or polygonal patterns in polar observations of
rotating planets (75 to 78). The illustrative examples of the gyropendulum motions with polygonal
approximations are presented in connection with polar jet streams on rotating celestial bodies.

3.1. Transient motion of a gyropendulum and shallow water ridge

The equations of motion for a linearised shallow water system in the vicinity of the South Pole of
the Earth are written as (see Sections 1 and 2)

ou 120 oh ov 0 oh G.1)
— v=—g—, — —2Qu=—-g—. .
ot g@x t & y

It is noted that changing the sign of Q results in the corresponding shallow water model at the North
Pole and thus, without loss of generality we only consider the system at the South Pole.

We investigate the motion of a polar ridge of fluid of constant density, subjected to a clockwise
orientation, which is described by the linearised shallow water equations. In our model, we assume
that the height deviation %, from the undisturbed fluid surface is negligibly small compared to the
fluid depth H (see Section 1). Then, the fluid element corresponding to the maximum elevation
of the perturbed surface can be represented by a ridge. In the following, we show that the motion
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of the fluid ridge can be approximated by the linearised motion of an elementary gyropendulum.
Accordingly, at the fluid height A, the flow is approximated as planar. With reference to the above
assumptions, we note the following:

oh U oh U
=7 =5 (32)
ox L oy L

where U and 7 are the planar displacement components of the fluid particle at the tip of the ridge
in the x- and y-directions, respectively, and L is defined as a characteristic length corresponding to
the length of the gyropendulum arm. For the velocity components u and v along the vortex ridge, we
use the approximation

dUu dv
—_—, V= —.
dt dt

= (3.3)
Substituting the representations (3.2) and (3.3) into the system (3.1), in the linearised approximation,
we deduce the system of coupled differential equations

d>U v U &> du v

W'FZQE-FgZ:O, W_ZQE—FgZ:O. (3.4
The system (3.4) is analogous to the governing equations of a gyropendulum (11), describing the
linearised motion of a pendulum, that swings under gravity, attached to a rotating spinner. Hence, the
shallow water equations subject to the above assumptions provide a connection with the motion of a
gyropendulum. We note that the gyropendulum approximation captures some aspects of the shallow
water model, but it does not fully account for the complexity of the fluid dynamics. A detailed model
of such phenomena would require a comprehensive CFD analysis. The system (3.4) also describes
the trajectory of a Foucault pendulum and the motion of a particle moving on a rotating surface [see,
for example (79, 80)].

In (11, 23), it was demonstrated that by selecting appropriate initial conditions and physical
parameters, the moving gyropendulum can trace a predetermined polygonal trajectory. The full
classification of the gyropendulum trajectories is also provided in (11), which includes the discussion
of various combinations of initial conditions and parameter values on the motion of the structure.
Polygonal trajectories, linked to polar jet streams and vortex flows, also exist at the poles of planets,
influenced by the combined effects of the planet’s rotation and gravity. For example, Saturn’s North
Pole is surrounded by a six-sided jet stream as illustrated in Fig. 8, which was initially discovered by
the Voyager spacecraft in the early 1980s and later observed by Cassini [see, for example (75)]. An
analysis of these observations is detailed in (76). The numerical simulations of Saturn’s atmosphere,
as a three-dimensional spherical layer, were provided in (71) to model the ripples in the jet stream
flows—it is also noted that the hexagonal shape was not shown in the simulations presented in the
paper, but formation of ripples is clearly visible in the computational plots. Here, we demonstrate
that the formation of the approximate polygonal shape is governed by two simple mechanisms:
gyroscopic effects and gravity. Eight cyclonic vortices appear around a central vortex at the North
Pole of Jupiter, while its South Pole consists of five vortices surrounding a central vortex [see (77)].
An approximate pentagonal jet stream is present at the South Pole of Earth as shown in Fig. 9. The
numerical analysis of the shallow water equations to investigate the stability of Mars-like annular
vortices was discussed in (78). Laboratory models demonstrating stable polygonal patterns of vortex
liquid sloshing in cylindrical containers were presented in (72 to 74, 81).
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Fig. 8 Images from NASA’s Cassini mission showing the appearance of Saturn’s North Pole in
June 2013 (left image) and April 2017 (right image), revealing the distinctive six-sided jet stream
known as the ‘hexagon’. Image courtesy of NASA, retrieved from https://www.jpl.nasa.gov/images/
pia21611-saturns-hexagon-as-summer-solstice-approaches as of March 2025

Fig.9 Approximate pentagonal jet stream, of 3rd anuary 2023, at the South Pole of Earth, reproduced from
https://earth.nullschool.net/#2023/01/03/1300Z/wind/isobaric/250hPa/orthographic. The approximate pentag-
onal shape has been highlighted

3.2. Dimensionless system of equations

The dimensionless system of equations of a gyropendulum are expressed as follows (11, 23, 82)

d* (U d (U U 0
S ) ma (D) ()-0)
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where 7 is the dimensionless time variable, I’ characterises the combined effects of gravity and
gyricity as well as the gyropendulum’s geometry, while U = U(F) and ¥ = ¥V (7) represent the
dimensionless transverse displacement components in the x- and y-directions, respectively. The

rotation matrix R is given by
0 1
R= <_1 0). (3.6)

(The dimensionless equations for the transverse displacement components of the gyropendulum
can also be obtained by introducing the dimensionless time 7 = 7./g/L into the system (3.4), where
' =2Q/L/g, U{) = UE/L]g) and V() =V (VL]g).)

The general solution of (3.5) can be written as a linear combination of the normal mode solutions
for each case of the parameter I". We set the initial conditions

~ ~ ~ - dU s 4V L
UO) = Uy, V(0) =", E(O)Z%O’ 7(0)=°1/0, 3.7

where CIZO,%,CIZO and % are given values of the normalised initial displacements and initial
velocities. Assuming solutions of the form U = aexp(ion), Y = t.exp(i®f), where « and 6 are
arbitrary constants, and substituting into the system (3.5), yields the solutions of (3.5), satisfying the
initial conditions (3.7), of the form

/ @1+ @ \—sin(@17) @1 + @y \cos(@ii)

(91) —°170 + @ U ( cos(@17) ) ClLLo + @nTh (sin(cbﬁ))
T)T o tan Y ot

T + @1Uo (cos(@ni) ~Uo + @1 Ty (—sin(@n7)
= — = == | (3-8)
@1 + @y \sin(@y?) w1 + @ cos(@n?)
where

&)12%(—r+\/r2+4), @2:%(F+\/F2+4>. (3.9)

The analysis presented in (82, 83) shows that the transverse displacements of a gyropendulum can
be modelled by the trajectory of a fixed point on the circumference of a circle as the circle rolls
along another fixed circle without slipping. A discussion into the formation of polygonal shapes in
the trajectory of a gyropendulum, resulting from perturbations of the fundamental circular motion, is
provided in (11, 23, 83). In the subsequent section, we present examples of approximate polygonal
trajectories of the gyropendulum.

3.3. Approximate polygonal trajectories
The solutions (3.8) can be written in the complex form (11)
—iant

2() = ce” P 4 cpel® (3.10)

where z(7) = U®F) + iV (7) and cj, forj = 1,2, are complex constants. As discussed in (11), when
is chosen as an integer multiple of @1, polygonal trajectories of the gyropendulum can be obtained. In
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particular, requiring that the ratio @, /@ = n — 1, where n > 3 is the number of sides of the polygon,
results in a gyropendulum motion approximating a regular n-sided polygon for the appropriately
chosen initial conditions. This yields the following value of the quantity I associated with the
approximate polygonal trajectory:

r, = , (3.11)

We also note that approximate polygonal trajectories of the gyropendulum can be obtained for I' < 0
with the appropriate initial conditions. However, here we consider the case of I' > 0. In this case,
the initial conditions at the end of the gyropendulum are chosen as [see (11)]

L RQ2 —n)/n—1

Ao =R, Th=0, Uy=0, T = , 3.12
0 0 0 0 AT (3.12)

where R is linked to the size of the approximate polygon.
The non-dimensional transverse displacements of the gyropendulum, satisfying the initial
conditions (3.12) and approximating an n-sided regular polygon, are then given by

<Clzn> _ Rn(n—1) COS( ni_]> L 2R cos(iv/n — 1)
) i sinfvn—1)/

2 . 2
“n+2 (=) )
n n sin = n n

In Fig. 10(a) and (b), we present the approximating polygonal trajectories of the gyropendulum
with R = 0.01 for a pentagonal and hexagonal shape, respectively. For the example in Fig. 10(a),
n =5 which results in @] = 1/2,@, =2 and I's = 3/2. In this case, the transverse displacements

are given by
Us ! 005(%) 1 (cos(27)
%)~ 110 i o0 \ sin27 3.13
(%) 110 (—sin(%) * 1100 sin(27) )’ (3.13)

and the trajectory is periodic with the period 4z. The transverse displacements in Fig. 10(b) are
associated with n = 6, resulting in @ = v/5/5,@, = +/5 and I's = 4+/5/5, and are given by

g\ 3 (cosBE), 1 (cos(;ﬁ))
(%)‘320 (—sin(;‘T/g) * 1600 \sin(v/3) ) (3.14)

Hence, the period of the approximating hexagonal trajectory is given by 2z +/5. It is noted that the
change in the polygonal trace of the gyropendulum from the pentagonal to the hexagonal trajectory
is associated with a change in the parameter I and a different prescribed initial velocity in the y-
direction. The same method applies for approximating polygonal shapes of a higher-order symmetry,
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(a) Approximating pentagon (b) Approximating hexagon
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Fig. 10 The polygonal approximate trajectories of the gyropendulum. (a) The pentagon approximation with
n=5Ts=3/2, CIZO =0.01, "ﬁo =0, "?10 =0and % = —0.0027, and (b) the hexagon approximation with
n=6,T¢=4v5/5 Uy =0.01, % =0, Uy =0 and Tp = —0.0028.

where the segments do not have to be linear. Moreover, we also note that the polygonal trajectories of
the gyropendulum can be obtained for different orientations of the spinner’s rotation. The analysis
presented in this section demonstrates how the gyropendulum’s polygonal motions change with
different parameters and initial conditions [see also (11, 23)], providing an approximate comparison
with the polygonal formations observed at the poles of rotating planets.

4. Concluding remarks

In this paper we have presented an analytical approach to modelling the shallow water equations in
equatorial regions, as well as polar regions. In the first case, the asymptotic method is fully consistent
with the boundary conditions on the sides of the equatorial band, which allows for a description of
the meridionally bounded propagating waves. The results of the theory presented in this series of
two papers provide a connection between equatorial waves in a continuum and chiral gravitational
waves in a discrete structure, with the primary focus on the combined characteristics of chirality and
gravity in both models.

In the discrete models, studied in part 1 of the paper, chiral gravitational waves possess unique
directional propagating properties due to their physical chirality through the presence of spinners,
as well as the influence of gravity. These characteristics allowed for the description of eastward-
and westward-moving elastic vortex waves along the discrete lattice strip as discussed in part 1.
Conversely, equatorial atmospheric phenomena occur due to the complex inertial and rotational
dynamics in the vicinity of the equator. In equatorial regions, atmospheric and oceanic dynamics
exhibit unique behaviours driven by the interactions between solar heating, the Earth’s rotation,
gravitational forces and atmospheric circulation patterns. These phenomena give rise to processes
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such as equatorial waves, the Intertropical Convergence Zone (ITCZ) (84) and the El Nifio-Southern
Oscillation (ENSO) (85, 86).

For the description of polar vortices, the motion of a single gyropendulum has also been discussed
in connection with the approximate planar flow of a fluid ridge. Polygonal pattern formations of
the gyropendulum are presented, which are also observed on the poles of rotating planets, where
the gravitational and gyroscopic dynamics can result in different types of fluid motions. For a
gyropendulum, controlling the gyricity through the spinner or the gravitational action leads to
changes in its motion, formally providing an approximate analogy to the distinct characteristics
observed in fluid flows.

The novel modelling of waves presented in this paper for various domains provides fundamental
insights into wave dynamics influenced by rotational and gravitational forces. The methods and
results of this paper are directly applicable to analysing the mechanisms governing atmospheric and
oceanic flows.
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Appendix A. Kelvin waves

In this section we analyse the non-dispersive Kelvin waves, which are a type of equatorial waves that occur in
rotating fluid systems. Kelvin waves propagate parallel to the equator or coastlines (50, 87), with no meridional
velocity variations, and thus we take v(x,y,7) =0 (see Section 2). In the description of Kelvin waves, the
conditions at the boundaries of the equatorial band are important since the wave amplitudes can increase
away from the boundaries. Such waves can also propagate along interfaces between regions of different fluid
densities. Then, setting v = 0 in the equations (1.1) and (1.3) of the main text, and eliminating one of the
variables yields the following dispersion relation:

w?* = gHK>. (A1)

The above dispersion equation for Kelvin waves also represents the shallow water gravity waves dispersion
relation [see, for example (88)]. By taking into account (A.1), we write the phase speed of the Kelvin waves in
the zonal x-direction, as follows:

c=%=:|:\/?. (A2)

The quantity (A.2) refers to the velocity at which the phase of the waves propagates in the spatial direction.
Additionally, the group velocities of the Kelvin waves, which represent the velocities of the oscillating wave
packets in the medium, are given by #,/¢gH. The eastward-propagating waves are known as the Kelvin waves,
while the westward-propagating waves are referred to in the literature as the anti-Kelvin waves [see, for example
(50, 51)]. They are distinguished by their amplitudes away from the equator as well as their direction of
propagation.

By combining equations (1.1) and (1.3) of Section 1 with the additional condition that v = 0, we obtain the
following wave equations:

%u %u  3%h a%h

L iy A3
a2 o2 o T2 (A-3)

Thus, the time-harmonic variations of u and % in the domain (x, 7) are given by eikteten) Finally, (1.2) in the main
text is used to determine the y-dependence for the quantities u and 4, yielding the time-harmonic representations
for the zonal and meridional velocities and height field, respectively, as follows

. Re[ B §hoe_ 2(CzR COS(%)eik(x—i_Ct)], v=0, h= Re[hoe_mTR cos(%)eik(x+ct)}’ (A.4)
c

where /g is an arbitrary constant. The sign of ¢ [see (A.2)] determines the direction of propagation for the
travelling Kelvin waves. For Q > 0, if ¢ > 0, the amplitude of the waveform decreases as y increases, whereas
if ¢ < 0, the wave amplitude increases as y increases.

Applying the normalisations (2.9) of Section 2.1 together with x = RX and t = /R/gT, where the quantities
with the symbol ‘~’ are dimensionless, to the dimensional representations (A.4), yields the following non-
dimensional forms for the zonal and meridional velocities and height field of the Kelvin modes (the symbol

3

~’ has been dropped for convenience)
Q
n=——e ¢ cos(¥) cos(k(X + cT)),

v=0, (A.5)

~ Q
Jr = hge™ @ ©W cos(k(X + &T)),

20z 1snBny Oz Uo Jesn uneq Yeses Aq 9i/1918/S0048qU/Z/8./eoe/wewlb/wod dno olwepeoe)/:sd)y Woly papeojumoq



32 A. KANDIAH ET AL.

— = - e O — - - - =
—pp e . w2 e = e = .
—plp e - - e e Y= = ey
—pp e > = = = e————— = . = o —p P
A s e et e - . b
——— — - -}.— -— T——— - - -
—pp e -, -+ = e ———— — - . - = ———>
PP p b =+ e G el G =+ =y
——p e =+ e e ————— = - = — —p—p—p
—plp el - e e = = ¢ Py

30 7 760 60 " T30,

- Y e e ————— =+ - -

— > — = - e e G 4 X— —_ ———>
—pp e > - e e = =  ° = —p—Pp—p
—p e b - o = ¢—4—;—n—o—o— - . . —p
P > = e e —— = - = — —p—p—p
—pp e > = e e Y = .
—pp e - e G e —— = = ¢ o —p
e - e G~ — - -

—>

Fig. A1 Eastward-propagating Kelvin mode for (k,w) = (30,6.7082) with the velocity components defined
by (A.5), for hyg =1 and the dimensionless parameter values Q = 0.25, H = 0.05 and € = 0.1. The non-
dimensional propagation speed is ¢ = 0.2236.

where (X,Y.T) = \/g " (RX,RY, \/g T) AXLY.T) = \/§ v (RX,RY, \/§ T) AX.Y.T)=h (RX,RY, \/g T)

and the normalised velocity is given by ¢ = +=+/H for the Kelvin and anti-Kelvin waves, respectively. The
non-dimensional dispersion relation for the non-dispersive Kelvin waves is

w = k. (A.6)

Thus, the normalised phase speeds and group velocities of the Kelvin waves are given by +£+/H.

A typical example of an eastward-propagating Kelvin wave is shown in Fig. A1, where the zonal velocities
are non-zero and the meridional velocities vanish, for the parameter values H = 0.05,Q2 = 0.25 and € = 0.1.
The non-dimensional eigenfunctions of the Kelvin mode displayed in Fig. Al are defined by (A.5) with
ho = 1. These waves are non-dispersive and propagate either eastward or westward along the narrow equatorial
band, depending on the sign of the group velocity. We note that the phase and group velocities of the Kelvin
waves are either both positive or both negative. Compared to Rossby and inertia-gravity waves discussed
in the main text of the paper, Kelvin waves typically do not exhibit standing modes. Moreover, Kelvin
waves do not display vortices, unlike Rossby modes, and are characterised by their horizontal motion as
shown in Fig. Al. As discussed in the main text, Kelvin, Rossby and inertia-gravity waves show distinct
dispersion and propagation properties, resulting in different spatial and temporal patterns of the equatorial fluid
motions.
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Appendix B. Comparison of the dispersion properties between the harmonic wave model and the
Matsuno model

In this section, we present a quantitative comparison between the dispersion properties of the trapped equatorial
waves found in Matsuno (17) and the dispersion relation of the harmonic waves derived in Section 2.3 of the
main text. The equatorial channel solution derived by Matsuno considered wave motions in an unbounded
plane and neglected the O((y/R)3) term in the expansion of sin(y/R), which is essential in the derivation of the
meridional velocity equation (see Section 2.1). The analysis presented here addresses the equatorial channel
problem formulation with Dirichlet boundary conditions, and introduces a novel asymptotic perturbation
method to examine the eigenfunctions and eigenvalues.

We consider the meridional velocity mode in a narrow equatorial band, reduced to the dimensional form of
the harmonic oscillator equation (see Section 2):

d23+[w2 k2+k'8]B(y) 0, B(+a)=0 (B.1)
JEE— —_— _— =0, a) = 5 .
dy? gH 0}

where f = 2Q/R is the Rossby parameter (89), and the remaining variables and parameters are defined in
Sections 1 and 2.1. Introducing the dimensionless variables

P R Sy ] (B.2)

Y
NN g

where the quantities with the symbol ‘~’ are dimensionless, the eigenvalue problem (B.1) can be re-written as
follows (where the ‘~’ has been dropped for convenience):

f’:

@+ﬁ[ 2_k2+5]1§(¥)—0 B(+a/R)=0 (B.3)
dY2 @w . =Y, a/ — Y% .

where E(Y) = B(RY). Following a similar analysis to that in Section 2.3, and assuming the condition
k
W K24+ = >0, (B.4)
10}

which applies for non-trivial and bounded solutions of the eigenvalue problem (B.3), the following non-
dimensional dispersion equation can be deduced from the above problem:

k
W — K4+ = =T2, j=1,273,.., (B.5)
w

2 JeH
where T = Z? %H, which is dependent on the depth H and strip width 2a. Accounting for the RHS of the
above equation and the j-th equatorial mode, (B.5) is similar to Matsuno’s equation (8) [see (17)], which is
given by

k
-2+ = =2n+1, n=0,1,2,..., (B.6)
()

where n is the meridional mode number [see also (8)]. We note that the special mode corresponding to n = 0
is not captured by the dispersion relation (B.5). This mode corresponds to the mixed-Rossby gravity wave,
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w

g .
Inertia-gravity waves
8 .

Fig. B1 Dispersion curves of the harmonic (solid) and Matsuno (dashed) models for a range of values of the
meridional mode numbers. The Matsuno modes are defined by (B.6), while the harmonic modes correspond to
(B.5) with Y = 2.7274. The shaded region corresponds to (B.4)

and it approximates an inertia-gravity wave at high frequencies and a Rossby wave at low frequencies [see, for
example (8, 17, 50, 69)]. The n = 0 mode is related to the infinite plane approximation used by Matsuno, and
its accuracy compared to the narrow channel solution is discussed in (20).

Taking into account the approximation of the shape of the Earth, we set the Earth’s equatorial radius of R =
6378 x 103 m [see, for example (90, 91)]. The angular speed of the Earth in inertial space can be approximated
by Q = 7.2921159 x 1073 rad/s. Then, noting that the Hadley cells extend from the equator to about 30° S in
the Southern Hemisphere and 30° N in the Northern Hemisphere (92), and that they feature air rising near the
equator, typical within 5° S to 5° N, where the Intertropical Convergence Zone is located [see (93)], we can
approximate the latitude of the channel boundaries between 5° N to 30° N in the Northern Hemisphere and
30° S to 5° S in the Southern Hemisphere. Thus, we approximate the width parameter a [m] as follows

531500
il (~556585) < a < 10637 x 10° (~ 3339513), B.7)

where the approximate sphericity of the Earth is assumed.

In Fig. B1 we provide the diagram of the dispersion curves obtained by the model of Section 2.3 and
the Matsuno model for positive integer values of the meridional mode numbers, which are defined by (B.5)
and (B.6), respectively. The shaded region corresponding to (B.4) is shown in Fig. B1, which contains the
inertia-gravity modes and the Rossby modes. Experimental analysis, involving measurements of frequencies
and wavenumbers, is extremely challenging in the context of acquisition of data, but nevertheless it was possible,
and the paper (94) provides the spectral analysis based on the satellite database accumulated over the duration
of 18years. It is not surprising that there was no uniform match with the Matsuno model, but certain dispersion
curves could be mapped on the spectral peaks for a specific range of the depth values. In (94), the values of
depth were chosen between 12m and 200m. In our illustrative simulation, presented in Fig. B1, we use the
value H = 100 m approximately in the middle of that range, which is also consistent with the constraints of a
barotropic model and the linearised shallow water equations. Moreover, we assume that the channel boundaries
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are at 10° S and 10° N, which gives the approximate value ¢ = 1113171 [m], and thus Y = 2.7274. This
results in the solid dispersion curves of the harmonic model shown in Fig. B1, which are defined by (B.5).
The dispersion curves of the inertia-gravity wave and the Rossby wave of the harmonic model corresponding
to the first mode (j = 1) show a very good agreement with the Matsuno dispersion curves for the n = 1 mode
as illustrated in Fig. B1. It is also noted that the lower bound for the ratio of the minimum frequency of the
inertia-gravity mode to the maximum frequency of the Rossby mode for the harmonic and Matsuno models are
5.265 and 5.828, respectively, which occur at the first meridional mode. Although, this ratio increases for higher
modes in both models, it will always be larger in the harmonic model than the Matsuno model for sufficiently
large meridional mode numbers, which represents a significant difference between the two models. We also
emphasise on the difference in approach of Section 2.3, dealing with the spectral problem in a strip, and the
Matsuno model, addressing equations with unbounded coefficients in a plane.

Appendix C. Dispersion properties of the meridional velocity modes

The eigenvalue problem (2.21) of the main text represents an equatorial wave problem for the meridional
velocity component, and its solutions consist of a linear combination of parabolic cylinder functions as detailed
in Section 2.5, with the asymptotic approximations provided in Section 2.6. The application of the boundary
conditions at Y = =+ resulted in the solvability condition (2.24), which corresponds to the dispersion relation of
the equatorial waveforms. In this section, we present the asymptotic analysis of the non-dimensional dispersion
equation (2.24). In particular, we show that the solutions of the dispersion equation of the harmonic equatorial
waves derived in Section 2.3 provide a good agreement with the asymptotic solutions of (2.24). The method
presented in this section differs from the analysis in Section 2.6.

To gain some insights into the non-dimensional dispersion relation (2.24) provided in Section 2.5, we
examine approximations of the solutions to derive analytical estimates for the eigenvalues. To advance with
the asymptotic analysis, we use the following relations [see (48)]

_z 1 _ b
Bl e Da(+3.42)

: +
RRENCD
—Zr(3_¢t
_e 4 (4 2;)?32”( ))ZM(;+2929222), (C.1)
2
1 e‘%F<l—§>51n(n<l+§)) b 11 22
V(6,2) r(;—b){ : 2;}‘\5 2 M(2+4’z’zz)
2
e*%r<§—§)cos(ﬂ:<l+g)> b 33 2
) 7 ;gw; ;t3 ZM<2+4,2,12>}, (C2)

where the variable z and parameter b can take complex values. In the above representations, U(b,z) and V(b,z)
are the parabolic cylinder functions (see Section 2.5), I'(x) denotes the gamma function and M(x,y,%) is
Kummer’s function of the first kind [see, for example (48, 95, 96)].
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Applying the above relations to the (2.24), yields the following simplified dispersion equation

45(1)1/46—62“/5M< 4f+4 2, 2f> ( o 4 2’ 2\/>)
JT

_0. (C€3)

By taking into account (2.12), (C.3) can be solved numerically to obtain the non-dimensional eigenvalues for
the meridional modes. To derive the eigenvalues, we consider asymptotic approximations to the zeros of the
Kummer functions in (C.3) for large A/VD.

. . 2
C.1. Approximations to the zeros ofM( W + 4, 2, \/_) for large 76

In the following analysis, we consider the asymptotic properties of Kummer’s function valid for large A/+/®,
where the non-dimensional quantities A and ® are defined in (2.12). It is also noted that A and <I) are chosen

such that the conditions in (2.22) are satisfied. An asymptotic result for the zeros of M ( e + 4 2 ,€2J/@ )
with large A/+/® is given by the formula [see (96)]
2, Jo 27, —3)0 —
) J %r (]_% - ) ) 4
e’ = 1 ’ o\ — =1,2,3,... C4
Ve = (+ o2 )+<(A>>,r (C.4)

wherej | , is the r-th positive zero of the Bessel function J 1 (z) of the first kind [see, for example (48)].
2

-1 )= \/TZcos(z) (C.5)

Noting that (97)
we obtain the following representation forj_1 .
2

_Q@r—D=

L=y =23 (C.6)

J_
Applying the above asymptotic relation for the Kummer function, we derive the following approximation for
the solutions of (C.3):

@r—172z2 € 2¢2
A=——— " 4+ _P————— &, r=1,2,3,.... c.7
42 3 Q@r—1)2z2 €7

The dispersion relation (C.7) corresponds to the approximate odd modes of the dispersion equation (2.46) for
the equatorial waves in a narrow band. Taking into account (2.12), the dispersion curves described by the
approximation (C.7) correspond to the odd modes shown in Fig. 7 for n =1 and n = 3 (that is for r =1
and r = 2, respectively). In particular, for each value of r, there are three types of curves associated with
the equatorial waveforms: westward-propagating inertia-gravity waves, eastward-propagating inertia-gravity
waves and Rossby waves. The properties of these waves are discussed in the main text.
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C.2. Approximations to the zeros of M (—L +3.3,e2y CD) for large A
e TE NG
In this section we consider the following asymptotic approximation to the zeros of M (—ﬁ + %, %,62\/6>
with large A /+/®:

Jo Q75 -3

2
Vo2 = 2P 1 2P of (XY= =1,2,3,... C8
€ A ( t Az + A » p=123,.., (C.8)

where j | » is the p-th positive zero of the Bessel function J (z), which is given by
2 2

2
J1(2) =,/ —sin().
2 TZ

By following a similar approach to the previous section, we obtain the following asymptotic result of

__A 4332 .
M( 4\/6-%4,2,6 «/6) forlargeA/\/@.

p27[2 €2 €2

A= -
€2 3 2p2n?

o, p=1,2,3,.... (C9)

Using (2.12), it follows that (C.9) yields an approximate dispersion relation for the waveforms in an equatorial
band. Equation (C.9) also provides an approximation to the solutions of (C.3), and corresponds to the even
modes of the dispersion relation (2.46). The associated dispersion curves are shown in Fig. 7 for n = 2 and
n = 4 (that is for p = 1 and p = 2, respectively). These curves are related to the inertia-gravity waves and the
Rossby waves, and are located inside the shaded region determined by (2.22).

By considering (2.12) together with (C.7) and (C.9), we obtain an approximation for the frequencies and
wavenumbers of the equatorial waveforms. From this approximation, the eigenfunctions of the meridional
velocity mode can be obtained by using (2.23). The above asymptotic analysis further validates the
approximation of the harmonic waves detailed in Section 2.3.
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