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A B S T R A C T

Consensus approaches are applied in different quantitative structure–activity relationship (QSAR) modeling 
contexts based on the assumption that combining individual model predictions will improve prediction reli
ability. This study evaluated the performance of TEST, CATMoS and VEGA models for prediction of oral rat LD50, 
both individually and in consensus, across a dataset of 6,229 organic compounds. Predicted LD50 values from the 
models were compared for each compound, and the lowest value was assigned as the output of the conservative 
consensus model (CCM). Predictive accuracy was then evaluated based on the agreement of predicted LD50-based 
GHS category assignments with those derived experimentally. The aim was to allow for the most conservative 
value to be identified. Results showed that CCM had the highest over-prediction rate at 37 %, compared to TEST 
(24 %), CATMoS (25 %) and VEGA (8 %). Meanwhile, its under-prediction rate was lowest at 2 %, relative to 
TEST (20 %), CATMoS (10 %) and VEGA (5 %). Due to the method applied, CCM was the most conservative 
across all GHS categories. Further, structural analysis demonstrated that no specific chemical classes or func
tional groups were consistently underpredicted or overpredicted. The utility of CCM lies in its ability to establish 
a foundation for contextualizing the general use of consensus modeling, in order to derive health-protective oral 
rat LD50 estimates under conditions of uncertainty, especially where experimental data are limited or absent.

1. Introduction

With advances in toxicology aimed towards the replacement of an
imal testing with suitable alternatives, quantitative structure–activity 
relationship (QSAR) models have been developed in order to support the 
prediction of a variety of relevant endpoints. Acute oral toxicity 
(measured by the lethal dose that kills 50 % (LD50) of test animals) is one 
such metric for which a number of models have been developed [1–3]. 
Currently, rat LD50 data are commonly used as the primary benchmark 
to, for example, establish acceptable human exposure limits, to guide the 
classification of chemical hazards, to assess the potential risk of acci
dental ingestion of chemical toxicants, or else to set appropriate doses 
for repeat dose toxicity assessments [4,5].

QSARs for rat acute toxicity are commercially and publicly available 
[6,7]. In this investigation, three of these models – Toxicity Estimated 
Software (TEST), Collaborative Acute Toxicity Modeling Suite (CAT
MoS) and Virtual models for property Evaluation of chemicals within a 
Global Architecture (VEGA) – were considered for reasons including 
their availability without cost or licence restriction. They have a history 

of use in regulatory contexts within frameworks such as the US Toxic 
Substances Control Act (TSCA), the European Registration, Evaluation, 
Authorization, and Restriction of Chemicals (REACH) regulation, and 
the Canadian Chemical Management Plan [6–8]. Specifically, CATMoS 
has been proposed within the 2023 (and ongoing) review of the REACH 
Annex VII as a potential replacement to the acute oral toxicity test [9]. 
The models are trained on large and diverse chemical datasets, making 
them applicable to a wide variety of chemical compounds. Moreover, 
they employ consensus approaches by integrating multiple QSAR tech
niques, thereby potentially enhancing their predictive reliability.

TEST (containing Hierarchical clustering, Nearest neighbor, and 
Consensus methods) was developed by the United States Environmental 
Protection Agency (US EPA) through a combination of different tech
niques – for example, in the case of Hierarchical clustering method, 
using a genetic algorithm-based technique for generating models 
training clusters or, in the case of Consensus method, taking an average 
of the individual model predictions (provided the predictions are within 
each model’s applicability domains) [8]. CATMoS (a consensus-based 
tool consisting of binary, categorical, and continuous models), 

* Corresponding author.
E-mail address: jerry.achar@ubc.ca (J. Achar). 

Contents lists available at ScienceDirect

Computational Toxicology

journal homepage: www.sciencedirect.com/journal/computational-toxicology

https://doi.org/10.1016/j.comtox.2025.100374
Received 24 October 2024; Received in revised form 12 August 2025; Accepted 18 August 2025  

Computational Toxicology 35 (2025) 100374 

Available online 19 August 2025 
2468-1113/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-0650-1805
https://orcid.org/0000-0002-0650-1805
mailto:jerry.achar@ubc.ca
www.sciencedirect.com/science/journal/24681113
https://www.sciencedirect.com/journal/computational-toxicology
https://doi.org/10.1016/j.comtox.2025.100374
https://doi.org/10.1016/j.comtox.2025.100374
http://creativecommons.org/licenses/by/4.0/


developed by the United States National Toxicology Program (US NTP), 
is an ensemble machine learning tool that combines more than 40 
models (e.g., random forests and artificial neural networks), for which 
the output is the weighted average of these model predictions [10]. 
Similarly, VEGA (available through VEGAHUB as part of software 
encoding more than 90 in silico toxicology tools), developed by the 
Laboratory of Environmental Chemistry and Toxicology, Istituto di 
Ricerche Farmacologiche Mario Negri, Milan, Italy, employs different 
machine learning techniques (e.g., decision trees, k-NN and logistic 
regression), which are combined into a consensus output [11].

A small number of studies have assessed the reliability of the TEST, 
CATMoS, and VEGA models in the prediction of oral rat LD50. For 
example, Nelms et al. [12] analyzed the predictive performance of the 
TEST Consensus predictions, Firman et al. [13] assessed the predictive 
performance of the TEST Hierarchical clustering model, while Bishop 
et al. [14] estimated the accuracy and reliability of CATMoS predictions 
and Pampalakis [15] assessed the ability of VEGA to predict oral rat LD50 
of toxic nerve agents. Weyrich et al. [16] assessed the predicitivity of 
CATMoS, in combination with expert opinion, for GHS classification 
data from regulatory submissions. The general conclusion from these 
works was that the predictive abilities of such models, in terms of ac
curacy and hazard classification sensitivity, were inherently hindered by 
associated uncertainty. Consequently, when used to assign health- 
protective (conservative) LD50 values to compounds, it is advised that 
one should focus on the extent to which the models can accurately 
predict and differentiate between low and high hazard within chemicals. 
In other words, under such conditions of uncertainty, it is most appro
priate to apply the model with lower tendency towards predicting 
chemicals as less toxic than the corresponding experimental data imply 
[17–19]. This is particularly the case where the principle of being 
“conservative” is applied to account for uncertainty, by giving precau
tion to the predicted data [20].

In order to use TEST, CATMoS and VEGA conservatively, the chal
lenge remains of determining which model is most reliable for such a 
purpose. Each has unique attributes which might influence the accuracy 
of its prediction output. Among these may be errors, limitations and 
biases stemming from factors including its parameters and its structure, 
or alternatively, its training data or training process [7,8,11]). One 
possible way to address this challenge is to use a consensus approach 
that combines individual model outputs into a single prediction [18,19]. 
The underlying premise of consensus QSAR modeling is that individual 
models, because of their reductionist nature, only account for limited 
structure–activity information within chemicals (as encoded in their 
structures and in the molecular descriptors used). Consequently, 
combining these predictions will potentially improve the overall reli
ability against the same data [21]. In QSAR literature, consensus 
modeling has been established through combinatorial approaches that 
apply multiple statistical methods within a model software, or else adopt 
several descriptors [3,7,22,23]. However, to our knowledge, little (if 
anything) has been done in order to derive conservative consensus 
model predictions based on a simple comparison of TEST, CATMoS and 
VEGA outputs, following then with the selection of the more conserva
tive (more toxic) chemical-specific predictions as representative of 
health-protective values. Such a conservative approach may prove 
valuable for the replacement of the acute oral toxicity test, whereas a 
single prediction will be more prone to error and underestimate.

The aim of this study was, therefore, to assess the performance of a 
consensus approach of TEST, CATMoS and VEGA, against the individual 
models, in prediction of a conservative oral rat LD50 in a large, diverse 
selection of organic compounds. To this end, prediction accuracy for 
hazard classification using the consensus method was used in order to 
evaluate performance. The utility of this approach lies in its ability to 
establish a foundation to contextualize the use of consensus modeling in 
deriving health-protective oral rat LD50 estimates under conditions of 
uncertainty, especially where experimental data are limited or absent.

2. Methods

The flowchart depicted in Fig. 1 illustrates the step-by-step summary 
of the method applied in the study, from data sourcing to the estimation 
of model prediction accuracy, as further described below.

2.1. Data sourcing

Oral rat LD50 data relating to 8,186 organic compounds, each with 
Chemical Abstract Service Registration Numbers (CASRN), were ob
tained from Firman et al. [13]. These data were originally collated from 
different sources via the efforts of the US EPA and National Toxicity 
Program Interagency Center for the Evaluation of Alternative Toxico
logical Methods (NICEATM), and consisted, in the majority of instances, 
of two or three distinct point estimates of experimentally derived LD50 
(expressed in mg/kg) [12]. The data were processed as in the previous 
analyses, removing duplicates and compounds without defined struc
tures and inorganic compounds, correcting transcription errors, and 
retrieving SMILES and CASRN either from the US EPA’s CompTox 
Chemicals Dashboard or from other public resources (details about the 
processing steps can be found in Nelms et al. [12]). In this study, a 
further processing step was implemented, removing organometallic 
substances and entries with multiple CASRN identifiers. Additionally, 
we retained only compounds that could be predicted using each of the 
TEST Consensus, CATMoS, and VEGA tools. The final dataset consisted 
of 6,229 organic molecules (see Supplementary information, Table S1, 
for the raw data).

Although some of these data were used to develop the TEST, CAT
MoS and VEGA models, the empirical LD50 values present within their 
respective training sets do not exactly match experimental LD50 data 
sourced from Firman et al. [13]. Furthermore, as noted by Bishop et al. 
[14], when making predictions for compounds already in these models, 
consensus tools do not take exact experimental values as the predictions. 
Instead, they generate their predictions based upon consensus of the 
individual models within. That is, the consensus predictions are gener
ated through multistep mathematical simulations that are not based 
upon any specific empirical value in the model datasets, thus ensuring 
that the overlapping compounds within the data from Firman et al. [13] 
and within the model training sets do not necessarily affect interpreta
tion of prediction results [14,24].

2.2. Prediction of the oral rat acute toxicity

Oral rat LD50 values for each of the 6,229 compounds were predicted 
in TEST software (v5.1.2), using the CASRN identifiers as input. The 
compounds were first split into batches, each containing approxi
mately500 entries. Our preliminary analysis indicated that, in not 
exceeding this quantity per prediction exercise, memory issues within 
TEST, CATMoS and VEGA were avoided. The prediction options in TEST 
were set as: endpoint – oral rat LD50, method – consensus, and fragment 
constrain – relaxed. The TEST Consensus method (average of predictions 
generated by Hierarchical clustering and Nearest neighbor methods) is 
considered the most reliable (US EPA, 2015); thus, only TEST Consensus 
(henceforth simply called TEST) predictions (expressed in mg/kg) were 
downloaded and saved. The compound batches described above were 
used in CATMoS (available within the OPERA App, v2.9) and VEGA 
(available within VEGAHUB, v 1.2.4). Accordingly, the CASRN identi
fiers were imported into CATMoS as inputs, whereas SMILES were im
ported into VEGA.

2.3. Deriving conservative consensus model (CCM) predictions

The minimum prediction concept for conservativeness was applied 
to select the lowest (i.e., the most toxic) LD50 value for each compound, 
from across its TEST, CATMoS and VEGA predictions [25]. That is, by 
“consensus”, we mean most conservative [26]. This LD50 was then 
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assigned to the compound as the “conservative consensus model (CCM) 
prediction”. The CCM approach, as applied within this study, i.e., the use 
of more than one single QSAR model, is inherently more conservative 
than use of a single QSAR model alone. As proposed by the European 
Commission in the recent REACH review [9] and scholars [17–19], such 
an approach is recommended for consideration when single models 
yield varying data points, even for the same compound.

2.4. Model predictive accuracy for hazard classification

Predictive accuracy was assessed based on the extent to which TEST, 
CATMoS, VEGA and CCM predictions agreed with corresponding 
experimental data [27]. This was performed by first assigning com
pounds into Globally Harmonized System (GHS) categories (see Table 1) 
[28], based upon their experimental, TEST, CATMoS, VEGA and CCM 
LD50 outputs. Subsequently, predicted GHS vs. experimental GHS cate
gories were compared. An accurate prediction was considered to have 
occurred when a model GSH classification matched the experimental 
classification. Under-prediction was stated to occur when a compound 
was predicted less toxic (i.e., have lower hazard classification) than the 
corresponding experimental data indicate, while over-prediction – 
synonymously called a “conservative” prediction – arose when a com
pound was predicted more toxic (i.e., have higher hazard classification) 
than suggested experimentally [18,29]).

2.5. Performance of predictions by structural class and functional group

In order to determine whether any chemical classes, or chemicals 
containing specific functional groups, were liable to be systematically 
under- or over-predicted by the adopted tools, structures within the 

dataset were profiled using 722 of the 729 ToxPrint chemotypes (MN- 
AM, Version 2.0 r711 (2014-06-11), github.com/mn-am/toxprint, 
accessed on 15 June 2025), seven ToxPrint chemotypes were omitted as 
they related to “elements” and were not considered further. This was 
achieved through use of the Chemotyper application (MN-AM, Version 
1.3 r14761, github.com/mn-am/chemotyper, accessed on 15 June 
2015) [30]. The distribution of under- and over-prediction was inves
tigated with reference to ToxPrint chemotypes matched with com
pounds in the dataset.

3. Results

3.1. Applicability domain

The OECD principles for the validation of (Q)SARs require model 
predictions to fall within a defined applicability domain, in order for 
them to be considered reliable [31]. CATMoS automatically checks the 
applicability domain of entries, where only compounds lying within are 
returned values [7]. Analysis indicated that all 6,229 compounds 
appeared within the model’s applicability domain. In VEGA, applica
bility domain can be determined by the degree of similarity between 
molecules within training and predicted sets, where a similarity score ≥
0.75 is generally considered to indicate reliability [11]. In our analysis, a 
score of ≥ 0.85 was achieved for all compounds, suggesting full domain 
coverage. TEST Consensus predictions are derived by averaging the 
outputs from Hierarchical clustering and Nearest neighbor methods, 
where only compounds predicted in both are considered most reliable 
and in-domain [8,32]). The full data set of 6,229 compounds were found 
to match these criteria. Thus, for the CCM, we defined a compound to be 
in its applicability domain if this was the case for TEST Consensus, 
CATMoS and VEGA models. As such, the complete dataset lies within the 
CCM applicability domain.

3.2. Comparing model predictive accuracy for hazard classification

3.2.1. Agreement with experimental data
Fig. 1 shows the distribution of the GHS categories across the 6,229 

compounds, based upon experimental LD50 data. This distribution in
dicates that the majority (~39 %; 2,449/6,229) fall within category 4, 
with the smallest number found within category 1 (~3 %; 208/6,229). 
As explained in Section 2.4, model predictive accuracy was evaluated 
based upon the agreement of predicted LD50-based GHS categories with 

Fig. 1. Summary workflow illustrating the methodology used within this study, outlining the process from data sourcing to estimation of model prediction accuracy.

Table 1 
GHS classification criteria and associated hazard statements for acute oral 
toxicity.

GHS Category Hazard statement

1 (LD50 ≤ 5 mg/kg) Fatal if swallowed

2 (5 < LD50 ≤ 50 mg/kg) Fatal if swallowed
3 (50 < LD50 ≤ 300 mg/kg) Toxic if swallowed
4 (300 < LD50 ≤ 2000 mg/kg) Harmful if swallowed
5 (LD50 > 2000 ≤ 5000 mg/kg) May be harmful if swallowed
NC LD50 > 5000 mg/kg Not classified

NC: Not classified.
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the corresponding assignment derived from experimental LD50-based, 
depicted in Fig. 2.

Three accuracy parameters were defined: match (denotes accurate 
prediction), under-prediction, and over-prediction. A summary of the 
overall prediction accuracy of the three models is shown in Fig. 3a. 
Approximately 57 % of compounds (3,548/6,229) predicted in TEST 
were seen to match (i.e., were in agreement with) the experimental GSH 
categories, with the overall under-and over-prediction incidences being 
~ 20 % (1,204/6,229) and ~ 24 % (1,477/6,229), respectively. As 
shown in Fig. 3b, most of the matched and over-predictions were 
distributed within categories 3, 4, and 5 (i.e., ≥300 LD50 ≤ 5000 mg/ 
kg), suggesting that TEST was mostly reliable or conservative within this 
range.

CATMoS exhibited approximately 65 % (4,042/6,229) agreement 
with the experimental data, indicating a more accurate hazard category 
prediction rate than TEST (Fig. 3a). The under-and over-prediction rates 
were ~ 10 % and 25 %, respectively, which indicates CATMoS also to be 
more conservative than TEST. Similar to TEST, the majority of these 
accurate and over-predicted incidences occurred within GSH categories 
3, 4, and 5 (Fig. 3b), suggesting that this model was also mostly reliable 
or conservative in predicting this range. Compared to TEST and CAT
MoS, VEGA produced the highest proportion of accurate predictions 
(~87 %; 5,436/6,229), with the lowest under- and over-prediction rates, 
at ~ 5 % (300/6,229) and ~ 8 % (493/6,229), respectively. These re
sults suggest that VEGA was the least conservative among the three 
models. Owing to the nature of the kNN methodology employed within 
the software, this is to be anticipated. When faced with a substance 
present as part of the model training set, the position of the algorithm is 
to default towards returning the associated experimental value (as 
opposed to offering SAR-grounded prediction). This was relevant to 
4,814 from out of the 6,299 dataset members.

For CCM, the GHS classification in ~ 56 % (3,520/6,229) of com
pounds was accurately predicted. This was lower than the accuracy rates 
recorded in TEST, CATMoS or VEGA alone (Fig. 3a). Graham et al. [18] 
reported similar findings, where 89 % (290/326) and 91 % (320/353) 
accurate predictions in CATMoS and Leadscope, relating to pharma
ceuticals, were reduced to 77 % (286/370) in a conservative consensus 
of the two. However, relative to TEST, CATMoS and VEGA, the number 
of under-predictions in CCM was lowest, at ~ 2 % (130/6,229), while 
the number of over-predictions was highest at ~ 37 % (2,285/6,229). 
These results indicate that, by design, CCM was the most conservative. 
As with the individual models, most over-prediction incidences in CCM 
appeared within GSH categories 3, 4, and 5 (Fig. 3b). This similarly 
suggested that CCM was mostly conservative in predicting these cate
gories. Given this concordance, it was considered more informative to 
characterize the level of conservativeness of each model across all GHS 
categories (see the discussion below in Section 3.2.2).

3.2.2. Level of conservativeness of the model predictions
Maximizing the number of over-predictions and minimizing the 

number of under-predictions are each important in ensuring model 
conservativeness [27]. Fig. 3a shows that CCM resulted in roughly 1.6-, 
1.5-, and 5-fold more over-predictions relative to TEST, CATMoS and 
VEGA, respectively, and approximately 9.3-, 4.7- and 2.3-fold fewer 
under-predictions compared to TEST, CATMoS and VEGA, respectively. 
To further understand the level of conservativeness of CCM, the extent of 
coverage of its over-predictions within each GHS category was 
compared to those of TEST, CATMoS and VEGA, as further discussed 
below.

Generally speaking, over-predictions in each model systematically 
increased from GHS category 2 to NC, while under-predictions system
atically decreased from category 1 to NC (Fig. 3b) (recognizing that 
Category 1 could not be overpredicted). Building upon these results, we 
assessed the distribution of each model’s under-and over-predictions 
within GSH “toxic” (LD50 ≤ 2000 mg/kg; categories 1, 2, 3, and 4) and 
“non-toxic” (LD50 > 2000 mg/kg; category 5 and NC) classes [28]. This 
classification may be used in regulatory contexts to communicate haz
ards associated with chemicals [6]. Similar to Alberga et al. [33] and 
Bercu et al. [1], we interpreted the degree of conservativeness to in
crease when a model’s over-predictions were more frequently distrib
uted towards “non-toxic” class compared to “toxic” class, or when 
under-predictions were more frequently distributed towards “toxic” 
class than to “non-toxic” class.

Table 2 shows the distributions of each model’s over-predictions 
(numbers within the green-shaded cells) and under-predictions 
(numbers within the orange-shaded cells). For example, 8/6,229 com
pounds over-predicted in TEST were determined to fall under experi
mental category 1, whereas 99/6,229 compounds under-predicted in the 
same model were determined to fall under experimental category 2. The 
under-and over-predictions were demarcated within GHS “toxic” (out
lined in the red rectangles) and “non-toxic” (outlined in the blue rect
angles) classes.

Within the “toxic” class, CCM consistently recorded the highest total 
number of over-predictions at each category: category 2 (TEST = 8, 
CATMoS = 90, VEGA = 8, CCM = 93), category 3 (TEST = 97, CATMoS 
= 125, VEGA = 49, CCM = 173), and category 4 (TEST = 241, CATMoS 
= 596, VEGA = 99, CCM = 689). A similar observation was made in the 
“non-toxic” categories – i.e., category 5 (TEST = 655, CATMoS = 399, 
VEGA = 177, CCM = 790) and NC (TEST = 476, CATMoS = 368, VEGA 
= 160, CCM = 540) (Table 2). In contrast, the number of compounds 
under-predicted in the models decreased with increasing GHS category, 
with CCM generally recording the lowest total number of under- 
predictions in each: category 1 (TEST = 143, CATMoS = 82, VEGA =
27, CCM = 20), category 2 (TEST = 228, CATMoS = 138, VEGA = 49, 
CCM = 23), category 3 (TEST = 429, CATMoS = 156, VEGA = 99, CCM 
= 50), category 4 (TEST = 330, CATMoS = 186, VEGA = 98, CCM = 33), 
and category 5 (TEST = 74, CATMoS = 47, VEGA = 27, CCM = 4) 
(Table 2).

Overall, the distribution results in Table 2 indicate that CCM, relative 
to TEST, CATMoS and VEGA, provided the highest number of over- 

Fig. 2. GHS categories for the 6,229 dataset compounds, derived from experimental LD50 data.
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predictions (which were more frequently distributed towards less toxic/ 
non-toxic GSH categories), and also the fewest under-predictions (more 
frequently distributed towards more toxic/toxic GHS categories). As 
such, it is reasonable to conclude that CCM possesses the highest level of 
conservativeness [1,33]. Studies have reported that an approach such as 
CCM, with its relatively high level of conservativeness, can be utilized 
for purposes such as providing a more reliable means of establishing 
safety recommendations for a chemical based on worst-case scenario 
considerations, for prioritizing compounds for further assessment, or for 
gaining assurance on non-toxic compounds before releasing them to the 
market [14,21,22,34].

3.2.3. Impact of overlapping compounds on CCM prediction
Using TEST and CATMoS, we analyzed whether overlap between the 

6,229 compounds and the model training sets had an influence upon 
CCM prediction (please note that a similar evaluation was not possible 
with respect to VEGA output, owing to its tendency to adopt experi
mental figures in place of predictions whenever such overlap arose). The 
analysis showed that approximately75% of the compounds were present 
within each training set, while the remaining 25 % were absent. As 
shown in Fig. 4, the proportion of matching GHS classifications for TEST 
was about 58 % for those substances (1,588) absent in its training set 
and 57 % for those present (4,641). For CATMoS, this was about 56 % for 
compounds (1,484) absent and 68 % for those (4,745) present. However, 
the GHS over-prediction rates – the central focus of this study – likewise 

remained relatively consistent, regardless of whether the compounds 
were present or absent in the training sets – i.e., at 23 % (present) and 
25 % (absent) for TEST and 25 % (present) and 27 % (absent) for 
CATMoS (see Supplementary materials S2 and S3 for the full analysis). 
These results reaffirm our earlier note in Section 2.1 that the presence of 
overlapping compounds in the training sets of the three models may not 
necessarily affect CCM’s tendency to conservatively over-predict the 
LD50-based GHS of the dataset members.

3.3. Analysis of predictions by structural class and functional group

All compounds within the dataset were found to match at least one 
ToxPrint chemotype. In total, 515 of the 722 ToxPrint Chemotypes were 
hit – with full analysis reported in Supplementary Table S4 data file. In 
order to further evaluate Chemotypes, the 218 identified as present in 50 
or more molecules were retained. Those Chemotypes associated with 
underprediction and overprediction of toxicity are reported in Tables 3a 
and 3b, respectively. The rates of underprediction are low, with 
maximum occurrence being 6.3 %. No clear or obvious chemical classes 
or functional groups were identified. Conversely, as required by a con
servative approach, rates of overprediction of toxicity were high – 
reaching up to 52 % – with benzimidazoles identified as the chemical 
class most often subject to this.

Fig. 3. Evaluation of model predictive accuracy for GHS classification. (a) The match, under-and over-prediction frequencies for each model, as well as (b) how far 
off each prediction sat from the experimental-based GHS category.
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4. Discussion and conclusion

The aim of this study was to assess the performance of CCM against 
individual TEST, CATMoS and VEGA methods in the prediction of 
conservative (health-protective) oral rat LD50, by leveraging a large and 
diverse dataset (6,229 compounds). Existing QSAR studies on this 
endpoint (e.g., Firman et al. [13] and Graham et al. [18]) have mainly 
focused on model performance in general, based on statistical correla
tion analysis of experimental vs. predicted LD50, or else on hazard 
classification sensitivity of specific models [16]. In this study, we went 
beyond the areas addressed in these works by primarily focusing on 
model conservative predictions – determining the extent to which 
consensus predictions of TEST, CATMoS and VEGA can provide health- 
protective (i.e., conservative) predictions. To our knowledge, no study 
has applied these three models for this purpose. Additionally, we used, 
arguably, the largest dataset (i.e., 6,229 compounds) assembled for such 
an exercise. As further discussed below, we argue that the outcome of 
this study lays a strong foundation to contextualize the use of consensus 
modeling for deriving health-protective predictions under conditions of 

uncertainty, particularly where experimental data are scarce.

4.1. Consideration of CCM under conditions of uncertainty

Uncertainty in model predictions can be addressed through conser
vative approaches, e.g., by applying uncertainty factors or by selecting 
conservative model estimates [18,29,35]. It has previously been 
considered for the prediction of acute toxicity [36]. The current study 
proposes the need to err on the side of over-prediction, accounting for 
potential uncertainty arising from individual model outputs. This 

Table 2 
Confusion matrices showing the distribution of 6,229 compounds within GHS 
categories, organized by in accordance with experimental-based GHS 
assignment.

Experimental

1 2 3 4 5 NC

TEST predicted 1 65 99 25 15 4 0
​ 2 8 282 182 40 5 1
​ 3 1 96 488 401 22 6
​ 4 0 14 227 1878 308 22
​ 5 1 8 27 619 567 74
​ NC 0 3 10 175 288 268
CATMoS predicted 1 126 66 15 1 0 0
​ 2 90 290 127 11 0 0
​ 3 2 123 733 145 10 1
​ 4 1 9 586 1667 177 9
​ 5 0 3 37 359 850 47
​ NC 0 2 9 100 257 376
VEGA predicted 1 181 18 3 5 1 0
​ 2 8 461 28 19 1 1
​ 3 0 49 866 84 11 4
​ 4 0 8 91 2252 81 17
​ 5 0 1 3 173 1092 27
​ NC 0 0 4 38 118 584
CCM predicted 1 188 19 1 0 0 0
​ 2 93 402 23 0 0 0
​ 3 2 171 791 50 0 0
​ 4 1 27 661 1727 33 0
​ 5 1 10 50 729 502 4
​ NC 0 4 17 218 301 204

Fig. 4. Summary of TEST and CATMoS GHS Classifications of the compounds present and absent within their training sets.

Table 3a 
Ten most significant ToxPrints Chemotypes associated with underpredictions 
from the CCM.

ToxPrint Chemotype No. matching 
compounds

Underpredicted by 
one class

bond:CC(=O)C_ketone_alkene_generic 111 6.3 %
ring:hetero_[6_6]_O_benzopyran 81 6.2 %
ring:hetero_[5_5]_Z_generic 53 5.7 %
bond:C=N_imine_N(connect_noZ) 53 5.7 %
bond:C=O_carbonyl_ab- 

unsaturated_aliphatic_ 
(michael_acceptors)

60 5.0 %

bond:COC_ether_alkenyl 60 5.0 %
bond:N[!C]_amino 81 4.9 %
chain:oxy- 

alkaneLinear_ethyleneOxide_EO2
64 4.7 %

ring:hetero_[3]_Z_generic 87 4.6 %
ring:hetero_[6]_N_pyrimidine 88 4.6 %

Table 3b 
Ten most significant ToxPrints Chemotypes associated with overpredictions 
from the CCM.

ToxPrint Chemotype No. matching 
compounds

Underpredicted by 
one class

ring:hetero_[5_6]_N_benzimidazole 144 52.1 %
bond:CX_halide_alkyl-X_secondary 69 40.6 %
bond:CX_halide_alkenyl-X_dihalo_ 

(1_2-)
52 40.4 %

bond:CX_halide_aromatic- 
X_trihalo_benzene_(1_2_3-)

67 40.3 %

ring:aromatic_biphenyl 85 40.0 %
bond:CX_halide_alkyl-F_trifluoro_ 

(1_1_1-)
268 39.9 %

ring:hetero_[5]_N_imidazole 229 39.7 %
ring:hetero_[3]_O_epoxide 72 38.9 %
bond:C=N_carboxamidine_generic 103 38.8 %
bond:CN_amine_sec-NH_aromatic 150 38.7 %
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proposal (established as CCM) combines predictions from individual 
models. Valsecchi et al. [21] and Zhu et al. [3] explain that such a 
method can mitigate the potential influence of outliers from sole model 
predictions. This mitigation potential of CCM could be particularly 
useful when applying the TEST, CATMoS and VEGA tools for regulatory 
assessment of chemicals in the absence of experimental data, where it 
might otherwise become challenging to determine the degree to which 
any of these models alone can reliably predict oral rat LD50 [12,18,19]. 
In other words, the proposed consensus approach has the potential to 
reduce or eliminate conflicting predictions between models; conse
quently, addressing uncertainty due to discrepancies or inconsistency in 
a compound’s estimated LD50 values.

As mentioned above, a key challenge in QSAR modeling is the lack of 
reproducibility of chemical-specific predictions between models. This is 
attributable to factors such as: different models using differing training 
sets with varying degrees of experimental error, the use of different 
model parameters and algorithms, the presence of systematic biases 
within a model, or else the presence of random errors embedded within 
a model’s structure [3,12,18,19]. TEST and VEGA are built upon raw 
LD50 values [37], whereas CATMoS is built upon both these and also 
GHS categorical assignments [7]. While this may not be the sole reason 
for the observed differences in the predictions between the two (Fig. 3 (a 
and b) and Table 2), studies have shown that point and categorical data 
inputs may contribute to QSARs yielding varying outcomes [24,38]. 
This means that if conservative predictions from either of the models are 
used to set health-protective values, even if one model estimate is more 
accurate than the other, uncertainty may still exist to the extent that 
both models may produce conflicting predictions of the same chemical 
[39]. Moreover, uncertainty might arise regarding potential disagree
ment as to which model is the more reliable in conducting a prediction 
[39]. Drawing on the harmonization potential of CCM, it, therefore, 
becomes clear that this approach could be relied upon to reduce the 
effect of such uncertainties or minimize statistical type II errors (i.e., 
incorrectly concluding that a chemical has no adverse health effects) in 
the face of the uncertainties [40]. It should be noted, again, that pre
dictions from VEGA are biased by its offering of experimental data in 
place of predicted quantities (where possible), hence improving the 
apparent accuracy of its score.

The issue of data quality in the development of QSARs has long been 
appreciated [41]. The consideration of data quality and curation is of 
great importance as it underpins the QSAR models, and it is understood 
that predictive accuracy cannot surpass the accuracy of the data them
selves being modeled [42–46]. Another aspect is how the original data 
were manipulated to create the datum point that enters the QSAR model. 
In this study the original data for modeling were largely taken from a 
well curated source, namely the Integrated Chemical Environment (ICE) 
from the US National Toxicology Program Interagency Center for the 
Evaluation of Alternative Toxicological Methods (NICEATM) [47]. Thus 
the underlying toxicological data and chemical structures can be 
considered to have a good level of confidence. Where individual 
modeling approaches vary, however, is with the manipulation of the 
toxicity data when multiple values are available for the same compound. 
1-Chloro-4-nitrobenzene (CAS 100-00-5) is an example of a substance 
for which differing LD50 values are noted within each of the three model 
training sets: 353, 420 and 460 mg/kg in VEGA, TEST and CATMoS 
(respectively). The precise reasoning for this unclear. In the majority of 
instances, however, it is likely to be related to how multiple data points 
are unified into a single point for modeling. There are no hard and fast 
rules for the manipulation of multiple data points, although various 
approaches may be attempted and different approaches will affect the 
outcomes of a QSAR [48]. As the data will vary, even for the same 
compound, within models, the predictivity will also vary, as will the 
statistics arising from the evaluation study.

Structural analysis of the compounds with regard to ToxPrint Che
motypes in Tables 3a and 3b (complete analysis provided within the 
Supplementary Table S5 data file) demonstrates no significant trends, 

other than confirming conservative nature of the CCM approach. The 
analysis indicates fewer underpredictions than overpredictions. There is 
little commonality in the structural classes that are underpredicted, with 
a maximum underprediction rate of 6.3 % likely to be indicative of 
experimental error or bias. Overpredictions are more common in the 
CCM approach (by design). The types of compounds with significant 
overprediction (by approximately 50 %) were the benzimidazoles and 
various halide-incorporating compounds. Using the predictions, as 
presented, would be conservative for such classes in these cases.

4.2. Prioritizing chemicals based on CCM predictions

While it remains for the end user of the model predictions to decide 
on the best practices to prioritize chemicals either for further assessment 
or for safety-based decisions, from a health protection point of view, it is 
not uncommon to use GHS classifications as a factor in prioritizing 
compounds for further assessment [19,28]. An example is the Canadian 
Identification of Risk Assessment Priorities (IRAP) scheme, which 
highlights the importance of using chemical hazard information and 
new scientific techniques (e.g., QSAR) to guide decisions regarding 
whether further (or else no) risk assessment, or additional data gener
ation, is required for a substance [49]. The United States Toxic Sub
stances Control Act (TSCA) also permits the ranking of substances to the 
extent that their health hazards are aligned with GHS categories [50]. As 
illustrated with the example of six compounds within Table 4, we argue 
that CCM can support these prioritization needs.

Compounds may be prioritized in the rank order shown in Table 4, 
established based on CCM GHS categories. For example, 3-penteneni
trile might be considered the highest priority for assessment, or for 
stringent safety measures and handling protocols, due to its high po
tential to cause harm (the compound has the lowest LD50 value of 2 (mg/ 
kg) and falls under GHS category 1). In contrast, the potential of the non- 
toxic lactulose (LD50 = 9,511 (mg/kg); GHS category NC) to cause harm 
is very minimal, meaning that safety measures against it may be the 
most relaxed. The foundation of our argument with this illustration is 
that CCM could hold significant value in supporting interim or internal 
decision-making during the initial stages of compound development, 
where studies typically incorporate rapid screening in order to detect 
potential toxic hazard that may render a compound unsuitable for ex
amination [51]. In such scenarios, predicted oral rat LD50 values are 
often considered non-conclusive; hence, they should be conservative in 
order to account for potential uncertainty in the prediction [51].

Overall, the results obtained from this study can bolster confidence 
that decisions based upon CCM predictions can be the most health- 
protective, especially within chemical screening-level assessments per
formed in the absence of experimental data. Alternatively, in demon
strating that CCM can improve the level of conservativeness in the 
predictions, we argue that it can be adapted for use in regulatory con
texts to contribute to a weight-of-evidence approach that justifies the 
need to prioritize particular chemicals for further assessment. Addi
tionally, regulators can use the information from CCM to balance op
tions or to set precautionary measures aimed at reducing potential 
human health risks by restricting the use of particular chemicals.

Importantly, we wish to reiterate that CCM is proposed here with the 
objective of maximizing conservative predictions. Based on our results 
in Fig. 3 (a and b), CCM significantly expands the number of conserva
tive predictions, underscoring its potential to enhance conservative 
screening of large, structurally diverse chemical inventories. Of great 
importance is its potential application in regulatory contexts, where in 
silico (such as QSAR) modeling is often used to address hazard data gaps 
across broad chemical inventories. For instance, as noted by Collins et al. 
[52], more than 16,000 industrial chemicals listed on Canada’s Do
mestic Substances List (DSL) are amenable to consensus QSAR assess
ment. We argue that CCM is a promising tool that could be applied 
within DSL to conservatively screen and classify these chemicals. Else
where, CCM could be well-suited for screening data-poor and high- 
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production volume chemicals, such as those identified as potential 
endocrine-disrupting substances on the US EPA’s Tier 1 Screening List 
[53].

Put together, the above examples highlight the potential utility of 
CCM within a broader, multi-tiered chemical assessment framework that 
supports prioritization and advancement toward non-animal testing 
approaches across jurisdictions. The need for non-animal data is already 
considered a priority within jurisdictions such as Canada, the EU and the 
US, where, for example, non-experimental rodent data for acute toxicity 
endpoints are submitted for new and existing chemicals, for 
manufacturing concentrates, for metabolites or degradation products, or 
during chemical premanufacture notice [54]. In other words, CCM 
presents an opportunity to fully replace the use of the in vivo oral rat tests 
for determining LD50-based GHS hazard classification and labeling of 
chemicals within regulatory frameworks.

There is increasing interest in the use of QSAR models for the pre
diction of acute oral toxicity, with the possibility of the CATMoS model 
being proposed by the European Commission as a replacement [9]. 
Finally, while acknowledging the importance of CCM as a tool for reg
ulatory applications, several considerations remain for future studies. 
For example, the performance of CCM could be validated using external 
datasets to assess its generalizability across broader chemical spaces, 
particularly for under-predicted chemical groups. A recent example of 
how this may be achieved is provided by Weyrich et al. [16]. Addi
tionally, machine learning methods could be incorporated into CCM in 
order to assess its predictive accuracy based on statistical confidence 
scores, quantifying uncertainty in the predictions to judge their reli
ability for informed regulatory decision-making. Lastly, as noted earlier, 
the CCM, i.e., the use of more than one single QSAR model, will be 
inherently more conservative than use of a single QSAR model alone, as 
is proposed by the European Commission in the recent REACH review 
[9]. As such, it is recommended that consideration be given to a CCM 
approach for the replacement of acute oral toxicity testing.
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