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A B S T R A C T

Adverse drug reactions (ADRs) are a major challenge in drug development, contributing to high attrition rates 
and significant financial losses. Due to species differences and limited scalability, traditional toxicity testing 
methods, such as in vitro assays and animal studies, often fail to predict human-specific toxicities accurately. The 
emergence of artificial intelligence (AI) and machine learning (ML) has introduced transformative approaches to 
predictive toxicology, leveraging large-scale datasets such as omics profiles, chemical properties, and electronic 
health records (EHRs). These AI-powered models provide early and accurate identification of toxicity risks, 
reducing reliance on animal testing and improving the efficiency of drug discovery. This review explores the role 
of AI models in predicting ADRs, emphasizing their ability to integrate diverse datasets and uncover complex 
toxicity mechanisms. Validation techniques, including cross-validation, external validation, and benchmarking 
against traditional methods, are discussed to ensure model robustness and generalizability. Furthermore, the 
ethical implications of AI, its alignment with the 3Rs principle (Replacement, Reduction, and Refinement), and 
its potential to address regulatory challenges are highlighted. By expediting the identification of safe drug 
candidates and minimizing late-stage failures, AI models significantly reduce costs and development timelines. 
However, challenges related to data quality, interpretability, and regulatory integration persist. Addressing these 
issues will enable AI to fully revolutionize predictive toxicology, ensuring safer and more effective drug devel
opment processes.

1. Introduction

The process of drug discovery is a challenging and resource-intensive 
endeavor, often spanning over a decade and costing billions of dollars 
[1]. Despite these investments, the attrition rate of drug candidates re
mains alarmingly high, with adverse drug reactions (ADRs) being a 
significant contributing factor. ADRs, which represent unintended and 
harmful effects of medications, account for a substantial proportion of 
drug development failures, particularly during clinical trials [2]. The 
inability to predict these toxic effects early in the drug development 
process not only results in wasted resources but also delays the 

introduction of life-saving therapies to patients [3].
Traditional toxicity testing methods, including in vitro assays and in 

vivo animal models, have been the cornerstone of drug safety assess
ments for decades [4]. However, these methods have inherent limita
tions that restrict their ability to predict human-specific ADRs accurately 
[5]. Animal models, for example, often fail to replicate the complexity of 
human biological systems, leading to discrepancies in toxicity profiles 
between preclinical and clinical stages [6]. Moreover, traditional 
methods are time-consuming, expensive, and fraught with ethical con
cerns, particularly regarding the extensive use of animals for testing 
purposes [7]. These limitations underscore the urgent need for 
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innovative approaches to toxicity prediction.
The advent of artificial intelligence (AI) and machine learning (ML) 

has introduced a transformative paradigm in the field of predictive 
toxicology [8]. These technologies leverage vast datasets, including 
omics data, chemical properties, and real-world patient records, to 
predict potential toxicities with remarkable accuracy [9]. By identifying 
ADR risks at earlier stages of drug discovery, AI models have the po
tential to significantly reduce the time and cost associated with tradi
tional toxicity testing [10]. Furthermore, the ability of AI to analyze 
complex datasets and uncover hidden patterns offers insights that 
traditional methods may overlook, enhancing the overall efficiency and 
precision of toxicity assessments [11].

In addition to improving predictive accuracy, AI-powered models 
also align with global efforts to minimize animal testing [12]. By 
providing human-relevant predictions and reducing dependency on 
animal studies, these technologies address ethical concerns while 
adhering to the principles of replacement, reduction, and refinement 
(3Rs) in research [13]. The 3Rs framework, first introduced by Russell 
and Burch in 1959, has become the foundation for more ethical and 
humane animal research globally. “Replacement” refers to methods that 
avoid or replace animal use; “Reduction” aims to minimize the number 
of animals used per experiment; and “Refinement” focuses on mini
mizing suffering and improving animal welfare. This framework has 
gained significant regulatory support worldwide, with organizations like 
the European Union's Directive 2010/63/EU and the US FDA Moderni
zation Act 2.0 explicitly endorsing alternative methods to animal testing 
[14,15]. As regulatory agencies increasingly recognize the potential of 
AI in toxicology, its integration into the drug development pipeline is 
becoming more feasible and necessary [16].

The high attrition rates in drug development, largely driven by un
foreseen adverse drug reactions, underscore the critical need for inno
vative approaches to toxicity prediction [17]. Traditional methods often 
fail to accurately predict human-specific toxicity, leading to costly late- 
stage failures and raising ethical concerns about the use of animals in 
research [18]. The advent of artificial intelligence offers a trans
formative solution, leveraging vast and diverse datasets to identify 
toxicity risks with greater precision and efficiency [8].

This narrative review aims to explore the application of AI-powered 
predictive models in drug toxicity screening, with a focus on their ability 
to utilize large-scale datasets, including omics data, chemical properties, 
and patient records, to predict ADRs and minimize toxicity risks. The 
review further seeks to examine validation techniques, compare AI ap
proaches to traditional methods, and discuss the broader implications of 
AI adoption, such as reduced reliance on animal testing and accelerated 
identification of safe drug candidates. By synthesizing current evidence 
and emerging trends, this review provides insights into how AI can 
revolutionize the drug discovery process and address long-standing 
challenges in predictive toxicology.

2. AI vs. traditional toxicity testing methods

The evolution of predictive toxicology from traditional methods to 
AI-powered models represents a paradigm shift in drug development. 
While traditional methods such as animal studies and in vitro assays 
have been the foundation of toxicology, they face critical limitations 
such as ethical concerns, species differences, high costs, lack of systemic 
interactions, limited metabolic capability, and challenges in replicating 
human-relevant exposure and chronic effects, driving the need for 
alternative approaches [19].

2.1. Types of artificial intelligence in toxicology

Artificial intelligence encompasses various approaches with specific 
applications in toxicology. Machine learning represents the most widely 
used AI approach, where algorithms learn patterns from data without 
explicit programming [20]. This includes supervised learning methods 

that use labeled data to train models for toxicity classification or 
regression tasks such as predicting LD50 values. Unsupervised learning 
techniques identify patterns in unlabeled data through clustering or 
dimensionality reduction, proving useful for discovering novel toxicity 
mechanisms without prior assumptions [21]. Reinforcement learning 
optimizes decision-making processes through reward-based mecha
nisms, although its application in toxicology remains limited compared 
to other domains.

Deep learning, a subset of machine learning utilizing neural net
works with multiple processing layers, has shown remarkable success in 
toxicity prediction [22]. Convolutional Neural Networks (CNNs) excel in 
analyzing visual data from high-content cell imaging, detecting 
morphological changes indicative of toxicity. Recurrent Neural Net
works (RNNs) and their variants process sequential data, including 
temporal changes in biomarkers following drug exposure. Transformer 
models have revolutionized handling complex biological text and 
sequence data, extracting valuable toxicity information from scientific 
literature [23].

Natural Language Processing (NLP) represents another critical AI 
domain for toxicology, extracting information from scientific literature, 
clinical reports, and adverse event databases. Recent advancements in 
biomedical NLP have enabled the automated extraction of toxicity re
lationships from millions of publications, significantly enhancing the 
knowledge base available for predictive models [24]. Computer vision 
applications analyze high-content screening images to detect subtle 
cellular changes indicative of toxicity, often identifying effects invisible 
to human observers.

Knowledge-based systems integrate domain expertise with data- 
driven approaches through expert systems that encode toxicological 
rules and knowledge graphs representing relationships between com
pounds, targets, and biological pathways. These systems provide context 
and interpretability to pure data-driven approaches, addressing one of 
the key challenges in AI toxicology adoption [25]. Each AI approach 
offers unique advantages in toxicity prediction, with hybrid systems 
often providing the most comprehensive assessments by combining the 
strengths of multiple approaches.

In contrast to traditional approaches, AI models offer innovative 
solutions that address these challenges, enabling more accurate, effi
cient, and ethical approaches to toxicity prediction [26]. Table 1 com
pares AI models with traditional toxicity testing methods, highlighting 
the superior scalability, time efficiency, and ethical benefits of AI. Un
like conventional approaches, AI leverages human-specific data, such as 
electronic health records (EHRs) and omics datasets, enabling accurate, 
human-relevant toxicity predictions and reducing reliance on ethically 
contentious animal studies.

2.2. Limitations of traditional methods

Traditional toxicity testing methods, particularly animal studies and 
in vitro assays, have been central to preclinical drug development for 
decades. However, these methods are increasingly recognized as insuf
ficient in predicting human-specific adverse drug reactions (ADRs) [5]. 
One of the primary issues with animal studies is the variability in 
species-specific responses. Biological differences between animals and 
humans often result in poor translation of findings [39]. For instance, 
drugs that are safe in animal models may later exhibit significant tox
icities in human clinical trials, as observed with several high-profile drug 
withdrawals e.g., Corticosteroids for septic shock, a Tegenero immu
nomodulatory agent led to severe organ failure in healthy volunteers, 
even though earlier animal studies revealed no significant issues. 
Conversely, potentially beneficial drugs might be prematurely aban
doned due to false-positive toxicity findings in animal models e.g., 
immunosuppressant drugs cyclosporine and tacrolimus [38].

In vitro assays, while useful for mechanistic studies, are limited in 
replicating the complexity of human physiological systems. These assays 
often fail to capture multi-organ interactions, immune system responses, 
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and metabolic processes that influence drug toxicity in vivo [40]. In 
vitro hepatocyte monocultures fail to capture the full extent of acet
aminophen (APAP)-induced liver toxicity, as they lack multi-organ in
teractions and metabolic processes, it's been reported that APAP- 
induced nephrotoxicity, mediated by kidney involvement, is not repli
cated in these models [41]. However, while lung epithelial cell models 
exposed to diesel exhaust particles (DEP) successfully demonstrate 
enhanced expression of inflammatory genes and cellular transformation, 
capturing important immune responses, these in vitro models still lack 
the complexity of multi-organ interactions and systemic immune re
sponses that occur in vivo [42]. Moreover, cyclophosphamide meta
bolism is poorly replicated in in vitro systems, as study demonstrated 
that liver microsomal enzymes, critical for its activation into toxic me
tabolites, are inadequately represented, leading to an underestimation 
of hematological toxicities seen in vivo [43]. Additionally, the scal
ability of traditional methods is constrained by resource-intensive 
experimental setups, making them impractical for high-throughput 
screening of large compound libraries [44].

Beyond scientific limitations, traditional methods are costly and 
time-consuming. Developing and testing a single compound can take 
years, with significant financial investments required for laboratory 
resources, skilled personnel, and compliance with regulatory standards. 
Fig. 1 provides a clear and concise overview of the limitations that drive 
the need for alternative approaches in toxicity testing, such as machine 
learning methods concerns regarding the use of animals in research 

further underscore the need for alternative approaches, aligning with 
global efforts to adopt the principles of Replacement, Reduction, and 
Refinement (3Rs) in research [45].

2.3. Advantages of AI models

AI-powered toxicity prediction models address the shortcomings of 
traditional methods by leveraging advanced computational techniques 
and diverse, human-specific datasets [46]. These models are trans
forming how drug safety is assessed, offering significant advantages in 
accuracy, scalability, and ethical considerations [47]. One key advan
tage of AI models is their ability to utilize human-specific data, such as 
electronic health records (EHRs) and omics datasets, to make person
alized toxicity predictions [48]. By analyzing patient demographics, 
genetic profiles, and environmental factors, AI models can provide in
sights into individual variability in drug responses [49]. This capability 
is particularly valuable for predicting ADRs in diverse populations, 
ensuring broader safety assessments beyond standardized animal 
models.

AI models using EHR data were used to predict acetaminophen 
(APAP)-induced liver toxicity by analyzing genetic variations in CYP450 
enzymes involved in APAP metabolism. The study demonstrated how 
integrating genetic data, such as variations in CYP2E1, could predict the 
risk of toxicity in individuals [50]. Another example is where AI models 
using genomic and proteomic datasets were employed to predict adverse 

Table 1 
Detailed comparison of AI models and traditional toxicity testing methods.

Aspect AI Models Traditional Methods

Data Sources Leverage large-scale datasets such as omics (genomics, transcriptomics), 
chemical properties, and EHRs [27].

Animal models, in vitro assays, and limited clinical observations [28].

Predictive 
Accuracy

High predictive accuracy for human-specific ADRs due to the use of human 
data and advanced algorithms [10].

Limited by species-specific differences and simplified in vitro systems that do 
not mimic human complexity [29].

Ethical 
Considerations

Minimal ethical concerns; aligns with global initiatives to reduce animal 
testing [30].

High ethical concerns due to animal suffering and large-scale animal use.

Scalability Capable of processing thousands of compounds in parallel with high 
throughput [31].

Low scalability; each compound requires separate experiments, increasing 
time and resource requirements [31].

Time Efficiency Significantly faster; AI can analyze toxicity risks within hours to days [32]. Time-consuming, requiring weeks or months for preclinical toxicity studies 
[33].

Cost Efficiency Cost-effective after initial implementation; suitable for large-scale screening 
[34].

High costs due to animal procurement, experimental setup, and labor- 
intensive protocols.

Integration 
Potential

Easily integrated with digital workflows, databases, and computational 
pipelines [35].

Requires dedicated laboratory infrastructure and extensive manual handling 
[36].

Regulatory Status Limited current adoption but growing acceptance as validation and guidelines 
develop [36].

Long-established regulatory frameworks; widely used but increasingly 
scrutinized [37].

Fig. 1. Limitations of traditional toxicity testing methods. The figure provides a simplified representation of the major limitations associated with traditional toxicity 
testing approaches, including poor translation of animal studies to human outcomes, the inability of in vitro assays to replicate complex physiological systems, 
scalability constraints, high costs, and time requirements, and ethical concerns related to animal testing.
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drug reactions (ADRs) for flutamide, based on its hepatic bioactivation 
by cytochrome P450 enzymes, which plays a crucial role in forming 
reactive metabolites that have been linked to fulminant hepatitis, an 
idiosyncratic and potentially fatal liver injury [51]. Also, AI models were 
applied to predict hepatotoxicity in acetaminophen using computational 
simulations of cytochrome P450 enzyme interactions and glutathione 
depletion pathways [52]. This mechanistic model not only helped 
reduce animal testing but also identified potential biomarkers for early 
detection of toxicity. In the case of cyclophosphamide, AI has been used 
to model the cytochrome P450-mediated activation of cyclophospha
mide into toxic metabolites, demonstrating AI's ability to predict 
metabolism-related toxicity more efficiently than traditional methods 
[53].

In a study by Zeish et al. [54], a machine learning model was 
developed that utilized genetic variants to predict the risk of severe 
cutaneous adverse reactions (SCARs), such as Stevens-Johnson syn
drome (SJS) and toxic epidermal necrolysis (TEN), associated with 
carbamazepine and similar drugs. The model achieved a high predictive 
performance, with a median area under the receiver operating charac
teristic curve (AUC) of 0.9815, indicating its potential utility in clinical 
settings. This mechanistic prediction was further validated by genomic 
data analysis, showing how patient-specific genetic information in
fluences drug metabolism and toxicity risks. Similarly, Al-Hammadi 
[55] used AI models to predict anticoagulant-related adverse events 
for warfarin, incorporating genetic data related to VKORC1 and CYP2C9 
variants to personalize treatment plans and reduce adverse reactions.

AI models are also scalable, capable of simultaneously processing 
and analyzing thousands of compounds. Techniques such as high- 
throughput virtual screening allow for rapid assessment of chemical li
braries, enabling the identification of promising candidates and the 
elimination of high-risk compounds early in the drug discovery process 
[56]. AI models are also scalable, capable of simultaneously processing 
and analyzing thousands of compounds, as demonstrated by Guttman 
and Kerem [57] where they developed a deep-learning model to classify 
compounds as CYP3A4 inhibitors or non-inhibitors. They virtually 
screened approximately 60,000 dietary compounds and identified 115 
potential inhibitors, with 31 being previously suggested. Machine 
learning models have been successfully applied to predict hERG potas
sium channel inhibition, a critical factor in assessing cardiotoxicity. For 
example, Chuipu et al. [58] developed a deep learning model named 
deephERG to predict hERG channel blockers. They utilized a dataset of 
7889 compounds, achieving an area under the receiver operating 
characteristic curve (AUC) of 0.967 on the validation set. Additionally, 
Ylipää et al. [59] benchmarked six machine learning techniques 
including support vector machine (SVM), random forest, XGBoost, deep 
neural networks, gated recurrent unit-based deep neural networks, and 
graph neural networks for hERG toxicity prediction. Using an integrated 
dataset of 291,219 compounds from ChEMBL, GOSTAR, PubChem, and 
hERGCentral, with 203,853 compounds for training and 87,366 for 
testing, their SVM model achieved an AUC ROC score of 0.95 on both 
validation and test sets, with balanced accuracy scores of 0.90 and 0.89 
respectively. These machine learning approaches have significantly 
advanced the identification of cardiotoxic risks associated with com
pounds, including known hERG blockers like cisapride and terfenadine.

This efficiency significantly reduces the time and cost associated 
with traditional toxicity testing. Furthermore, AI models excel in 
capturing complex, non-linear relationships between chemical proper
ties, biological pathways, and toxicological outcomes [60]. For instance, 
machine learning algorithms can identify patterns in multi-dimensional 
data that would be challenging or impossible for traditional methods to 
detect [61]. For instance, a study utilizing a Graph Neural Network 
(GNN) with bagging methods successfully predicted mitochondrial 
toxicity in compounds known to induce hepatotoxicity, demonstrating 
its potential in uncovering hidden toxicity mechanisms [62]. These 
studies highlight how machine learning algorithms can identify patterns 
in multi-dimensional datasets, revealing toxicity risks that might 

otherwise remain undetected using conventional approaches.

2.4. Model interpretability and explainable AI

While AI models offer powerful predictive capabilities, their “black 
box” nature can limit understanding of the underlying mechanisms and 
hinder regulatory acceptance. Addressing this challenge, explainable AI 
(XAI) approaches are being developed specifically for toxicity prediction 
[63]. Feature importance analysis techniques identify chemical features 
or molecular substructures most associated with toxicity predictions. 
Methods such as SHAP (SHapley Additive exPlanations) values quantify 
how each molecular feature contributes to toxicity predictions, while 
chemical fragment analysis highlights toxic structural alerts, providing 
medicinal chemists with actionable insights [64].

Attention-based mechanisms applied in deep learning models visu
alize which parts of a molecule receive most focus during prediction. 
These approaches generate heat maps identifying potentially problem
atic regions in molecular structures and demonstrate sequential atten
tion showing which pathway steps are most implicated in toxicity [65]. 
Local Interpretable Model-Agnostic Explanations (LIME) approximate 
complex models with simpler, interpretable ones for specific instances. 
This technique generates simplified surrogate models to explain indi
vidual predictions and is particularly valuable when analyzing unex
pected toxicity predictions [66].

Pathway analysis integration links predictions to known biological 
pathways and mechanisms, connecting statistical predictions to mech
anistic understanding of toxicity and helping bridge computational 
predictions and biological plausibility [67]. Rule extraction techniques 
are used to derive human-readable rules from complex models such as 
neural networks and ensemble methods. These techniques help translate 
mathematical patterns into toxicological principles, aiding in the 
development of safety guidelines and improving the understanding of 
structure-activity relationships (SARs) [68]. The integration of these 
interpretability approaches strengthens the reliability of AI predictions 
and facilitates regulatory acceptance by providing transparency and 
mechanistic insights alongside predictions.

By integrating diverse datasets such as omics data, chemical de
scriptors, and patient records, AI models provide a more comprehensive 
understanding of drug-induced toxicities [48]. Ethically, AI-driven ap
proaches align with global initiatives to reduce reliance on animal 
testing. By offering reliable alternatives that mimic human biology more 
closely, AI models contribute to the ethical advancement of research 
while adhering to regulatory standards [69]. Additionally, the use of AI 
reduces the need for repetitive and resource-intensive experiments, 
freeing up resources for other critical areas of drug development.

While traditional methods provide valuable baseline data and are 
deeply ingrained in regulatory frameworks, they are increasingly being 
complemented or replaced by AI-powered models [70]. Fig. 2. provides 
a visual summary of the main advantages of AI models in toxicity pre
diction. AI offers the precision and adaptability required for modern 
drug development, addressing long-standing challenges in toxicity pre
diction [71]. As AI technologies continue to evolve, their integration 
with traditional methods can create a hybrid approach, leveraging the 
strengths of both systems to optimize drug safety assessments [72].

2.5. Hybrid approaches: integrating ai with traditional methods

The integration of AI with traditional toxicity testing creates 
powerful hybrid approaches that enhance predictive accuracy while 
maintaining biological relevance [73]. These hybrid methods combine 
computational efficiency with mechanistic insights. Sequential testing 
strategies represent one important hybrid approach. Initial computa
tional screening identifies high-risk compounds for focused traditional 
testing through AI-based prioritization. Tiered evaluation progressively 
applies more resource-intensive tests only to compounds that pass initial 
AI screening. This approach has been successfully applied in screening 
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large compound libraries, where AI has identified the most promising 
candidates for subsequent in vitro testing, significantly reducing 
resource requirements while maintaining predictive power [74].

Parallel validation systems simultaneously apply AI and traditional 
methods, analyzing agreement patterns through concordance analysis. 
This approach combines the statistical power of AI with the biological 
relevance of traditional assays. Recent implementations have integrated 
AI-driven predictions alongside experimental assay results to classify 
compounds with greater confidence, especially in borderline cases 
where either method alone might be inconclusive [75]. Model 
enhancement through experimental data represents another valuable 
hybrid strategy. Iterative refinement feeds experimental results back to 
improve AI model performance, while active learning strategically se
lects compounds for testing to maximize information gain for model 
improvement. This approach has been particularly effective in devel
oping models for toxicity endpoints like hERG inhibition, where 
continuous improvement occurs as new experimental data becomes 
available [76].

Organ-on-chip integration combines microfluidic systems that 
replicate human organ functionality with AI-driven analysis of complex 
cellular responses. This physiologically relevant approach has shown 
particular promise in combining liver-on-chip systems with deep 
learning for hepatotoxicity prediction, offering a more human-relevant 
testing platform while minimizing animal use [77]. In silico clinical 
trials represent an advanced hybrid approach that simulates drug effects 
across diverse populations through virtual patient cohorts. These sys
tems integrate physiologically-based pharmacokinetic (PBPK) models 
with AI predictions to model population variability in drug responses 
before human testing begins [78].

These hybrid approaches represent the future of toxicity testing - 
offering reduced animal use, lower costs, and improved prediction of 
human outcomes through strategic integration of complementary 
methods. By leveraging the strengths of both computational and 
experimental approaches, these integrated systems address the limita
tions of each individual approach while maximizing their collective 
potential [79].

3. Large-scale datasets in AI-powered toxicity prediction

The foundation of AI-powered toxicity prediction lies in the ability of 
machine learning algorithms to process and analyze large-scale datasets 
[80]. These datasets encompass diverse and complex information, 
including omics data, chemical properties, and patient-specific records, 
which together provide a comprehensive view of drug-induced toxico
logical effects [81]. By integrating these data types, AI models can un
cover intricate relationships and patterns, enabling more accurate 
predictions of adverse drug reactions (ADRs) [82]. Table 2 categorizes 
the diverse datasets utilized by AI models, including omics data (e.g., 
genomics, transcriptomics, proteomics), chemical descriptors, and real- 

Fig. 2. Flow diagram depicting the advantages of AI models in toxicity prediction. The figure visually emphasizes how these advantages address key challenges in 
traditional toxicity testing methods, such as limited scalability, ethical concerns, and the need for more personalized and accurate predictions.

Table 2 
Types of large-scale datasets used in AI-powered toxicity prediction.

Dataset Type Key Features AI Applications Examples of Use

Genomics Data Variations in DNA 
sequences, such as 
SNPs and gene 
mutations [83].

Identification of 
genetic 
biomarkers for 
susceptibility to 
ADRs [5].

Prediction of 
drug-induced 
hepatotoxicity 
linked to CYP450 
genetic 
polymorphisms 
[84].

Transcriptomics 
Data

Gene expression 
profiles under 
drug exposure 
[85].

Analysis of 
toxicity 
pathways and 
prediction of 
organ-specific 
toxicities [86].

Detecting 
hepatotoxic gene 
signatures from 
human liver cell 
transcriptomes 
[87].

Proteomics Data Protein 
expression, 
interactions, and 
modifications in 
response to drugs 
[88].

Prediction of 
disruptions in 
protein 
networks 
associated with 
toxic effects 
[20].

Identification of 
cardiac toxicity 
through changes 
in cardiac-specific 
proteins [89,90].

Metabolomics Data Biochemical 
changes and 
metabolic profiles 
induced by drug 
exposure [91].

Biomarker 
discovery for 
early toxicity 
detection [92].

Prediction of renal 
toxicity using 
urine 
metabolomics 
data [93].

Chemical 
Descriptors

Molecular weight, 
solubility, 
lipophilicity, and 
structural motifs 
[94].

Structure- 
toxicity 
relationship 
modeling using 
QSAR and deep 
learning models 
[95].

Screening for 
mutagenic 
properties in 
chemical libraries 
[96].

Patient Records 
(EHRs)

Real-world 
clinical data, 
including 
demographics, 
drug history, and 
ADRs [97].

Personalized 
toxicity 
prediction and 
identification of 
population- 
specific risks 
[98].

Prediction of 
drug-induced 
arrhythmia using 
longitudinal 
patient ECG data 
[99].

Pharmacovigilance 
Data

Adverse event 
reports from 
surveillance 
databases [100].

Mining for rare 
or delayed 
ADRs using NLP 
and machine 
learning [101].

Identifying 
patterns of drug 
hypersensitivity 
reactions from the 
FDA Adverse 
Event Reporting 
System [102].

Multi-Omics 
Integration

Combination of 
genomics, 
transcriptomics, 
proteomics, and 
metabolomics 
data [103].

Holistic toxicity 
prediction by 
analyzing cross- 
level biological 
interactions 
[104].

Understanding 
multi-organ 
toxicities from 
simultaneous 
analysis of liver, 
kidney, and 
cardiac datasets 
[86].
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world patient records. These datasets provide a multi-dimensional view 
of toxicity mechanisms, facilitating the integration of molecular, 
chemical, and clinical insights for predictive modeling.

3.1. Data acquisition and preprocessing techniques

The quality and preparation of datasets are critical factors in devel
oping reliable AI models for toxicity prediction. Data acquisition and 
preprocessing techniques ensure data integrity and model performance 
[105]. Public repositories and databases serve as primary sources for 
toxicology datasets. Resources like Tox21, ToxCast, and DrugMatrix 
provide standardized toxicity data for thousands of compounds, while 
omics databases such as Gene Expression Omnibus (GEO) and 
ArrayExpress offer transcriptomic and proteomic datasets from toxi
cology experiments [106]. The LINCS (Library of Integrated Network- 
Based Cellular Signatures) project provides extensive molecular 
response data to drug exposure across multiple cell types. Electronic 
health record repositories and systems have become increasingly valu
able for real-world toxicity assessment, while pharmaceutical industry 
internal databases often contain proprietary toxicity data from preclin
ical and clinical studies that complement public resources [107].

High-throughput screening platforms generate large toxicity datasets 
through automated testing of thousands of compounds across multiple 
endpoints. These technologies include high-content imaging systems 
that capture cellular morphological changes and microfluidic organs-on- 
chips that model human tissue responses to toxic exposures [108]. 
Collaborative research initiatives play a crucial role in data pooling and 
standardization efforts. Consortia like the Innovative Medicines Initia
tive (IMI) eTOX project have established data-sharing frameworks for 
pharmaceutical toxicity data, while initiatives like the Toxicology in the 
21st Century (Tox21) program represent collaborations between regu
latory agencies and research institutions to generate standardized 
toxicity datasets [109].

Data preprocessing and standardization techniques are essential for 
ensuring AI model performance. Quality control procedures identify and 
address issues like experimental artifacts, outliers, missing values, and 
batch effects that could compromise model reliability. Data normaliza
tion and standardization procedures ensure consistent scales across 
different datasets, particularly important when integrating heteroge
neous data sources like omics and clinical measurements [110]. Feature 
engineering and selection techniques identify the most informative 
variables for toxicity prediction, reducing dimensionality and improving 
model performance. Imputation strategies address missing data prob
lems through statistical or ML-based approaches, while data augmen
tation techniques generate synthetic samples to address class imbalance 
issues common in toxicity datasets [111]. Ontology mapping and 
harmonization ensure consistent terminology across datasets, particu
larly important when integrating data from different sources, while 
annotating datasets with relevant metadata enhances interpretability 
and enables more sophisticated analyses [112].

Advanced preprocessing techniques include trajectory-based ana
lyses for time-series toxicity data that capture dynamic responses to 
compounds and cross-platform data integration methods that harmonize 
data from different experimental platforms. Text mining of literature 
extracts toxicity information from published studies, while data 
debiasing techniques identify and mitigate biases in historical toxicity 
data that could lead to unfair or inaccurate predictions for certain 
chemical classes or populations [113].

3.2. Omics data

Omics datasets—genomics, transcriptomics, proteomics, and 
metabolomics—play a pivotal role in understanding the biological 
mechanisms underlying drug toxicity. Each omics layer provides distinct 
insights into cellular and molecular responses to chemical exposures, 
and their integration amplifies the predictive power of AI models [114]. 

Genomics data examines genetic variations that influence individual 
susceptibility to ADRs. AI models can analyze genomic patterns, such as 
mutations or single nucleotide polymorphisms (SNPs), to identify pop
ulations at higher risk of toxicity. Machine learning models can be 
designed to predict the reported irinotecan-induced neutropenia based 
on variations in the UGT1A1*28 allele, allowing for risk stratification in 
different patient groups [114,115]. Genetic polymorphisms in drug- 
metabolizing enzymes like CYP450 are well-documented contributors 
to inter-individual variability in drug responses; for instance, the anal
ysis of TPMT (thiopurine S-methyltransferase) and NUDT15 genetic 
variants accurately predicted severe thiopurine-induced myelosup
pression, guiding safer chemotherapy dosing in leukemia patients [116], 
while CYP2C19 polymorphisms, successfully predict poor metabolism of 
clopidogrel in patients carrying the CYP2C192 and 3 alleles, which are 
linked to reduced drug activation and increased cardiovascular risks 
[117].

AI models can be developed using those studies as templates and by 
incorporating genomic datasets, AI models can provide personalized 
toxicity predictions, aiding precision medicine. A recent study intro
duced the TransTox approach, which integrates organ-specific tran
scriptomic data with AI models to predict multi-organ toxicity [86]. This 
method enhances the precision of toxicological evaluations by analyzing 
gene expression patterns across different tissues. Researchers have 
combined drug-induced gene expression profiles from the Open TG- 
GATEs database with adverse drug reaction data from the FDA 
Adverse Events Reporting System (FAERS). By applying deep neural 
networks, they successfully predicted adverse drug reactions, demon
strating the potential of integrating AI with toxicogenomic datasets 
[118].

Transcriptomics focuses on gene expression profiles under drug 
exposure, and AI algorithms trained on transcriptomic datasets can 
identify patterns associated with toxicological outcomes, such as hepa
totoxicity or nephrotoxicity. Researchers have developed models like 
ToxMPNN, a deep learning framework based on the message passing 
neural network (MPNN) architecture, to predict the toxicity of small 
molecules [119]. ToxMPNN has demonstrated high accuracy in pre
dicting the acute oral toxicity of various compounds, aiding in the 
assessment of chemical safety.

Proteomics explores protein interactions and expression changes 
caused by drugs, and machine learning models leveraging proteomic 
data can predict toxicity by identifying disruptions in protein networks 
or pathways. For instance, a study utilized label-free mass spectrometry 
to identify approximately 2800 proteins in induced pluripotent stem 
cell-derived sensory neurons (iSNs) exposed to bortezomib [120]. The 
analysis revealed alterations in proteins affecting microtubule dy
namics, cytoskeletal organization, and molecular transport, suggesting a 
multifaceted relationship between bortezomib-induced proteotoxicity 
and microtubule cytoskeletal architecture. Integrating AI with proteo
mic analyses could potentially provide deeper insights into the molec
ular mechanisms underlying neurotoxicity and improve the predictive 
accuracy of such models.

3.3. Chemical properties

The chemical structure and physicochemical properties of drug 
candidates are fundamental to understanding their toxicological po
tential. AI models utilize chemical descriptors such as molecular weight, 
lipophilicity, hydrophobicity, and structural motifs as key inputs to 
predict toxicity [121]. Machine learning techniques, including 
enhanced quantitative structure-activity relationship (QSAR) models, 
play a critical role in this domain. QSAR models assess the relationships 
between chemical structures and biological activity, providing valuable 
predictions about a compound's potential toxicity. For example, AI 
models trained on datasets of previously tested compounds can predict 
the toxicity of novel molecules by identifying structural similarities 
linked to known toxic effects. For instance, a study developed a deep 

O.M. Ajisafe et al.                                                                                                                                                                                                                              Life Sciences 378 (2025) 123821 

6 



neural network (DNN) model using extended connectivity fingerprints 
of diameter 4 (ECFP4) to predict DILI (drug-induced liver injury) risk. 
This model demonstrated an accuracy of 73.1 % on the validation 
dataset, suggesting its potential utility in evaluating drug safety [122]. 
Another study introduced an ensemble model combining multiple ma
chine learning classifiers to assess hepatotoxicity risk based on molec
ular fingerprints. This approach achieved a prediction accuracy of 80.26 
% and was validated through external test sets and cross-validation, 
indicating its reliability in predicting liver toxicity [123].

Recent studies have explored integrating chemical structure data 
with biological datasets to assess nephrotoxicity. For example, re
searchers have identified 87 structural alerts for chemical nephrotoxi
city by analyzing molecular substructures, which can aid in predicting 
nephrotoxic potential in drug candidates [124]. Additionally, tran
scriptomic analyses have been employed to understand the differential 
nephrotoxicity of various compounds, revealing that molecular mecha
nisms of nephrotoxicity can be species- and chemical-dependent [125]. 
An AI/ML model that combines physicochemical properties with off- 
target interaction data to enhance the prediction of drug-induced kid
ney injury (DIKI) was introduced. The model was trained on a dataset of 
360 FDA-classified compounds, achieving an accuracy of 79 % and an 
area under the curve (AUC) of 0.87. [126]. Key predictive features 
included off-target interactions and physicochemical properties such as 
the number of metabolites and polar surface area. A machine-learning 
model was developed, that utilizes transcriptomic profiles from human 
cell lines to predict kidney dysfunction in rats, serving as a proxy for 
drug-induced renal toxicity [127]. By combining gene expression data 
with compound chemical structure information, the model aims to 
reduce reliance on animal testing by accurately forecasting toxicological 
outcomes based on in vitro analyses.

3.4. Patient data

Real-world patient data, including electronic health records (EHRs) 
and pharmacovigilance databases, are invaluable for developing 
personalized toxicity prediction models. These datasets capture indi
vidual variability in drug responses, encompassing genetic, environ
mental, and lifestyle factors [78]. EHRs provide longitudinal health 
data, including medication histories, laboratory results, and clinical 
outcomes, which AI models can analyze to identify correlations between 
specific drugs and ADRs. For instance, a developed model was trained on 
EHR data to predict drug-induced liver injury (DILI) by detecting pat
terns in alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) elevations across patients taking amiodarone and methotrexate, 
both known to cause hepatotoxicity [128]. Similarly, applied AI models 
to warfarin-treated patient records, indicates previously unrecognized 
risk factors for bleeding complications, such as specific drug interactions 
and genetic polymorphisms in CYP2C9 and VKORC1 [129]. These ex
amples demonstrate how AI-powered analysis of longitudinal patient 
data can improve ADR detection and enhance drug safety monitoring in 
real-world clinical settings.

Pharmacovigilance databases, such as the FDA Adverse Event 
Reporting System (FAERS), offer large-scale records of ADR reports from 
post-marketing surveillance and are particularly useful for identifying 
rare or delayed toxicity events. Studies have employed machine learning 
models on FAERS data to detect signals for QT interval prolongation 
caused by medications [130]. The study highlighted the role of AI in 
identifying drug safety signals faster than traditional methods, including 
previously underreported drugs linked to this serious heart condition. 
These cases demonstrate how AI-powered systems can mine pharma
covigilance databases to uncover hidden patterns and predict potential 
ADRs for new drugs, improving post-marketing safety monitoring. The 
combination of patient-specific data with omics and chemical datasets 
would enable the development of highly personalized toxicity predic
tion models.

4. Validation techniques for AI models

The validation of AI models is a critical step in ensuring their reli
ability, robustness, and generalizability in predictive toxicology. Proper 
validation builds confidence among researchers, regulatory bodies, and 
the pharmaceutical industry, paving the way for the integration of AI 
models into drug development pipelines.

4.1. Cross-validation

Cross-validation is a foundational technique for evaluating the per
formance of AI models, ensuring their predictions are not overly 
dependent on the specific characteristics of the training data. Cross- 
validation involves systematically partitioning the dataset into 
training and validation subsets to evaluate model performance across 
different data splits. This approach helps assess whether a model has 
learned generalizable patterns rather than simply memorizing the 
training data. Several cross-validation strategies exist, with k-fold cross- 
validation being among the most common in toxicity prediction studies. 
In this approach, the dataset is divided into k equal-sized folds, with the 
model trained on k-1 folds and tested on the remaining fold, repeating 
this process until each fold has served as the test set once [131].

For example, researchers developed machine learning models, 
including random forest (RF) and multilayer perceptron (MLP), to pre
dict drug-induced liver injury (DILI) using a large human dataset. Their 
performance was evaluated through 10-fold cross-validation and 
external testing. Notably, both models successfully identified drug 
candidates previously withdrawn from development due to hepatotox
icity, demonstrating the potential of in silico approaches for early DILI 
risk assessment [132]. Similarly, Kyro et al. [133] utilized a pre-trained 
AI-based framework for predicting and minimizing hERG channel in
hibition while preserving drug efficacy, applied it to an FDA-approved 
compound, pimozide. The model successfully generated analogs with 
significantly reduced hERG activity, most notably identifying fluspir
ilene, which retained pharmacological similarity but showed over 700- 
fold weaker hERG binding—demonstrating its potential to mitigate 
cardiotoxicity early in development.

The selection of appropriate performance metrics is crucial in cross- 
validation. For binary classification tasks (toxic vs. non-toxic), metrics 
such as accuracy, precision, recall, and F1-score provide insights into 
different aspects of model performance. The Area Under the Receiver 
Operating Characteristic curve (AUC-ROC) is particularly valuable as it 
assesses model performance across different classification thresholds. 
For regression tasks predicting continuous toxicity values (e.g., LD50), 
mean squared error (MSE), root mean squared error (RMSE), and coef
ficient of determination (R2) are commonly used [134].

Stratified cross-validation ensures that each fold maintains the same 
class distribution as the original dataset, which is particularly important 
for imbalanced toxicity datasets where toxic compounds might be 
significantly less common than non-toxic ones. Time-series cross-vali
dation is essential when evaluating models trained on temporal data, 
such as longitudinal patient records or sequential drug exposure ex
periments, ensuring that future predictions are not made using data 
from later time points [135].

A toxicity prediction model was validated using the Area Under the 
Receiver Operating Characteristic Curve (AUC-ROC) metric, demon
strating high sensitivity in distinguishing aflatoxin B1 (AFB1) as a potent 
carcinogen. This validation approach not only aids in identifying po
tential overfitting but also offers insights into the model's stability and 
reliability across diverse datasets, enhancing its applicability in real- 
world toxicity assessments [136].

4.2. External validation

External validation involves evaluating AI models on entirely inde
pendent datasets that were not used during training or internal 
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validation. This process assesses the model's generalizability, ensuring it 
performs reliably across diverse datasets, conditions, and environments. 
Such validation helps detect overfitting and provides insights into the 
model's stability and applicability in real-world scenarios [137]. 
External validation represents the gold standard for assessing model 
robustness, as it evaluates performance on truly independent data that 
the model has never encountered during development. This approach is 
particularly critical in toxicity prediction, where models must eventually 
be applied to novel compounds with unknown toxicity profiles.

External validation datasets may come from different sources, 
including new experimental data, data from different laboratories or 
institutions, or data collected using different experimental protocols or 
measurement techniques. The chemical and biological diversity of these 
external datasets is crucial, as it challenges the model with new chemical 
structures, mechanisms of action, or patient populations that may not 
have been represented in the training data [138].

External validation is particularly important for regulatory and in
dustry acceptance, as it demonstrates the model's applicability to real- 
world scenarios. For example, Wang et al. [139] reported an AI model 
on toxicity data specific to pesticides and were tested on a broader 
Tox21 dataset, confirming the model's ability to accurately predict the 
toxicity of non-pesticide compounds, such as dioxins and poly
chlorinated biphenyls (PCBs). Similarly, an external dataset from 
pharmaceutical industry databases has been used to validate a predic
tive model for genotoxicity, highlighting the model's ability to identify 
mutagenic compounds that had been missed in earlier screenings [140].

The domain of applicability represents a critical concept in external 
validation, defining the chemical, biological, or clinical space within 
which model predictions can be considered reliable. Compounds or 
scenarios falling outside this domain may result in less accurate pre
dictions. Techniques for defining and visualizing the domain of appli
cability include principal component analysis of chemical descriptors, 
similarity measures to training compounds, or confidence estimates 
provided by the model itself [141].

For AI models intended for regulatory submission or clinical appli
cation, prospective validation represents the highest level of external 
validation. In this approach, the finalized model is used to predict the 
toxicity of entirely new compounds before experimental testing, with 
the predictions later compared to actual outcomes. This prospective 
approach provides the strongest evidence of model validity and practical 
utility [142].

The outcomes of external validation can highlight potential limita
tions or biases in the training data, as reported by studies that pointed 
out a model trained predominantly on data from preclinical animal 
studies had difficulty generalizing to human-specific toxicities, partic
ularly those related to idiosyncratic drug reactions (IDRs) [143]. Models 
that perform well on external datasets are more likely to be trusted for 
high-stakes applications, such as clinical toxicity prediction or regula
tory decision-making, ensuring that they are robust and reliable in 
diverse real-world contexts.

4.3. Benchmarking against traditional methods

Benchmarking AI models against traditional toxicity assessment 
methods is essential for establishing their advantages in terms of accu
racy, speed, and cost-efficiency. This comparative validation approach 
directly evaluates AI predictions against conventional toxicity testing 
methods, assessing where AI offers improvements and identifying areas 
where traditional approaches might still retain advantages. Such 
benchmarking serves as a crucial bridge between innovative computa
tional approaches and established regulatory frameworks.

The selection of appropriate comparison metrics is critical for 
meaningful benchmarking. These may include predictive performance 
metrics (sensitivity, specificity, accuracy), efficiency metrics (time and 
cost per compound), and practical utility assessments (scalability, 
resource requirements). Ideally, benchmarking should consider multiple 

dimensions of performance rather than focusing solely on prediction 
accuracy [144].

For example, AI predictions compared with in vitro assays and ani
mal studies for hepatotoxicity prediction, demonstrating that AI models 
trained on large-scale adverse drug reactions (ADR) data outperformed 
traditional methods, such as rat liver assays, in predicting hepatotoxicity 
for drugs like acetaminophen and trovafloxacin [68]. Similarly, research 
has highlighted the superiority of AI-based quantitative structure- 
activity relationship (QSAR) models over traditional in vivo testing for 
identifying potential genotoxic compounds, which were correctly flag
ged by AI models but missed in animal trials [145].

Tiered benchmark testing represents a structured approach where AI 
models and traditional methods are evaluated on progressively more 
challenging toxicity prediction tasks. Beginning with well-characterized 
compounds having clear toxicity profiles, the evaluation moves to 
compounds with more subtle or complex toxicities, and finally to com
pounds representing edge cases or rare toxicity mechanisms. This pro
gressive approach helps identify the specific conditions under which AI 
models outperform or underperform compared to traditional methods 
[146].

Mechanistic validation compares not only the predictions but also 
the biological insights generated by different approaches. While tradi
tional testing may provide direct observations of biological effects, 
advanced AI models with explainability features can generate mecha
nistic hypotheses about toxicity pathways. Comparing these insights 
helps evaluate whether AI models capture biologically relevant mech
anisms rather than merely statistical correlations [147].

AI models trained on extensive ADR datasets predicted drug-induced 
liver injury (DILI) with greater accuracy than traditional liver cell-based 
assays, offering improved scalability and rapid results for drugs like 
flutamide and valproic acid [148]. Furthermore, it is evident that AI 
models could process millions of chemical compounds much faster than 
conventional methods, enabling quicker screening of chemical libraries. 
Benchmarking would also facilitate discussions with regulatory au
thorities, as suggested that agencies like the FDA and EMA can now 
make it a requirement for comparative validation of AI models to 
traditional methods before product approval [149]. Successful bench
marking can expedite the adoption of AI models into regulatory 
frameworks, offering a more efficient and reliable pathway for toxicity 
testing.

When designing a benchmarking study, several considerations are 
critical. First, the selection of test compounds should represent diversity 
in chemical structures, mechanisms of action, and toxicity profiles. 
Second, the benchmark should include both positive controls (known 
toxic compounds) and negative controls (known safe compounds) to 
assess both sensitivity and specificity. Third, the evaluation should 
ideally be conducted by independent laboratories or researchers not 
involved in developing the AI model to minimize bias [150].

The outcomes of benchmarking studies should clearly articulate 
where AI models excel (e.g., high-throughput screening of large chem
ical libraries), where they complement traditional methods (e.g., 
prioritizing compounds for more extensive testing), and where tradi
tional approaches may still offer advantages (e.g., detecting novel 
toxicity mechanisms not represented in training data). This balanced 
assessment supports the development of integrated approaches that 
leverage the strengths of both AI and traditional methods [151].

5. Challenges and future directions in AI-powered toxicity 
prediction

Table 3 outlines the challenges and future directions for AI in pre
dictive toxicology, emphasizing the need for standardized data, model 
interpretability, regulatory acceptance, and ethical considerations.
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5.1. Reducing reliance on animal testing

The reliance on animal testing for toxicity assessment has been a 
standard practice in drug development for decades. However, ethical 
concerns, scientific limitations, and the need for human-relevant testing 
methods have spurred the exploration of alternatives [6]. AI-powered 
predictive models have emerged as a transformative solution, address
ing these challenges while aligning with the principles of Replacement, 
Reduction, and Refinement (3Rs) in animal research [160]. Animal 
testing, while historically valuable, is increasingly viewed as ethically 
contentious. The suffering inflicted on animals during toxicity studies 
has drawn significant public criticism, with advocacy groups and regu
latory bodies demanding alternative methods [161]. Moreover, the 
scientific limitations of animal testing have become evident. Biological 
differences between animals and humans often result in poor translation 
of findings, where drugs deemed safe in animal studies may cause severe 
adverse reactions in humans [162]. Conversely, potentially effective 
compounds might be prematurely discarded due to false-positive 
toxicity results in animals. These discrepancies underscore the need 
for testing methods that more accurately predict human responses.

The integration of AI-powered models into toxicity prediction offers 
a scientifically robust and ethically sound alternative. By utilizing 
human-specific data such as genomics, chemical properties, and patient 
records, AI models replace the need for animal studies in many instances 
[163]. These models can analyze complex biological interactions and 
predict toxicities with greater accuracy, reducing the reliance on animal 
experiments. Furthermore, AI models help prioritize compounds with 
favorable safety profiles, allowing researchers to focus limited resources 
on the most promising candidates and reducing the number of animals 
required for testing [38]. AI technologies also refine the experimental 
process by providing more precise and targeted predictions of toxicity 
risks. This refinement enables researchers to design more focused in vivo 
studies, avoiding unnecessary experiments and minimizing animal use 
[148]. By improving the relevance and efficiency of toxicity assess
ments, AI not only reduces animal testing but also enhances the overall 
quality of preclinical research.

Cutting-edge research in alternatives to animal experimentation has 
accelerated in recent years, driven by both ethical imperatives and sci
entific advancements. Organ-on-chip technologies represent one of the 
most promising developments, with microfluidic devices containing 
living human cells arranged to mimic organ functionality. Multi-organ 
platforms now enable the study of complex inter-organ interactions 
critical for toxicity manifestation. For example, liver-heart-kidney con
nected systems have successfully modeled drug-induced toxicity cas
cades that would be impossible to observe in isolated cell cultures [164].

Advanced in vitro spheroid and organoid models have evolved 
dramatically, moving beyond simple cell monolayers to three- 
dimensional structures that better replicate tissue architecture and 
function. Human induced pluripotent stem cell (hiPSC) derived orga
noids for liver, kidney, brain, and cardiac tissues now demonstrate key 
physiological responses to toxic insults. When combined with AI analysis 
of high-content imaging data, these systems can detect subtle cellular 

changes indicative of toxicity mechanisms earlier than conventional 
endpoints [165].

In silico toxicology has expanded beyond traditional QSAR ap
proaches to include sophisticated physiologically-based pharmacoki
netic (PBPK) modeling integrated with systems biology. These 
approaches simulate the absorption, distribution, metabolism, and 
excretion of compounds alongside their effects on biological pathways. 
When coupled with machine learning algorithms trained on human 
biomarker data, these models can predict patient-specific adverse re
actions with increasing accuracy [166].

Human tissue biobanking initiatives have created extensive re
positories of diverse human samples for toxicity testing, allowing re
searchers to capture population variability in drug responses. Advanced 
“exposure systems” can now maintain these tissues in functional states 
while exposing them to test compounds under physiologically relevant 
conditions, generating human-specific toxicity data for AI model 
training [167].

Text mining and automated literature analysis tools scan millions of 
published studies to extract toxicity information and build knowledge 
graphs of compound-effect relationships. These systems facilitate evi
dence integration across multiple studies and are particularly valuable 
for identifying rare toxicities that might be missed in individual in
vestigations. When these knowledge bases are coupled with machine 
learning, they can identify patterns and mechanisms that inform safer 
drug design [168].

In addition to addressing ethical concerns, AI-driven approaches 
meet the growing demand for high-throughput toxicity screening in 
modern drug discovery [169]. Unlike animal testing, which is time- 
consuming and resource-intensive, AI models can process large-scale 
datasets rapidly, offering scalable solutions for screening extensive 
chemical libraries. This efficiency makes AI an indispensable tool for 
reducing reliance on traditional methods, aligning with both scientific 
and ethical imperatives [170].

6. Accelerating the identification of safe drug candidates

The drug discovery process is notoriously time-consuming and 
resource-intensive, with high attrition rates that often stem from un
foreseen toxicity issues. AI-powered predictive models are revolution
izing this process by enabling the early identification of safety risks, 
thereby prioritizing compounds with favorable toxicity profiles for 
further development. This capability significantly reduces the likelihood 
of late-stage failures, streamlining research and development timelines 
while cutting costs. Table 4 illustrates the key applications of AI models, 
such as high-throughput screening, hepatotoxicity prediction, and 
personalized medicine, demonstrating their transformative impact on 
the drug discovery process by accelerating the identification of safe drug 
candidates.

6.1. Early identification of toxicity risks

AI models excel in detecting potential toxicity risks during the initial 

Table 3 
Challenges and future directions in AI-powered toxicity prediction.

Challenge Description Future Direction Potential Outcomes

Data Quality and 
Scarcity

Inconsistent, biased, or incomplete datasets 
hinder model training and validation [111].

Standardizing toxicology datasets and promoting 
data-sharing across research institutions [106]

Improved model accuracy and generalizability 
across diverse compound classes.

Model 
Interpretability

Difficulty in understanding how AI models make 
predictions (black-box nature) [152].

Developing explainable AI (XAI) tools to clarify 
feature importance and decision pathways [153].

Increased trust among researchers, regulators, 
and stakeholders.

Regulatory 
Acceptance

Lack of clear guidelines for AI adoption in toxicity 
prediction [154].

Establishing collaborative frameworks between AI 
developers and regulatory agencies [155].

Faster integration of AI models into regulatory 
workflows.

Computational 
Demands

High resource requirements for training complex 
AI models [156].

Optimizing algorithms and leveraging cloud-based 
computing for scalability [157].

Reduced costs and enhanced accessibility for 
smaller research institutions.

Ethical 
Considerations

Risk of bias in datasets leading to inequitable 
predictions [158].

Implementing bias mitigation techniques and 
promoting diverse dataset inclusion [159].

Fair and equitable predictions across all 
populations.
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phases of drug discovery by analyzing large datasets such as chemical 
properties, omics profiles, and patient-specific information to predict 
adverse drug reactions (ADRs) before significant resources are invested 
in preclinical and clinical studies. For instance, a developed AI model 
predicted hepatotoxicity in early-stage drug candidates like troglita
zone, using chemical structure and gene expression data, identifying 
potential risks before moving into costly animal studies [5]. This early 
identification is particularly crucial, as late-stage failures due to toxicity 
not only incur substantial financial losses but also delay the introduction 
of potentially life-saving therapies to patients, as seen in the situation of 
the thalidomide recall, which resulted from severe teratogenicity 
discovered only after clinical trials [185]. This predictive power allows 
researchers to deprioritize compounds with unfavorable safety profiles, 
and focus on those with a higher probability of success, improving the 
efficiency of the discovery pipeline.

6.2. Reducing late-stage failures

Late-stage failures in drug development particularly during clinical 
trials are among the costliest setbacks for pharmaceutical companies, as 
noted in the toxicological issues not detected during preclinical testing 
but later resulted in the withdrawal of darapladib due to unforeseen 
hepatotoxicity [186]. AI models mitigate this risk by providing more 
accurate and human-relevant predictions than traditional animal-based 
methods. By incorporating various datasets, such as patient electronic 
health records (EHRs) and pharmacovigilance reports, AI models can 
simulate human-specific responses, reducing the likelihood of unex
pected toxicities in clinical trials. For instance, Organ on Chips has 
demonstrated that AI models incorporating EHR data and genomic in
formation would successfully predict drug-induced liver injury (DILI) 
with higher accuracy than traditional rat hepatocyte assays, successfully 
flagging some candidates as high-risk drugs [187]. Moreover, the ability 

of AI to uncover complex, non-linear relationships between chemical 
properties and biological responses enhances its predictive accuracy. AI 
models have identified a correlation between molecular size and car
diovascular toxicity in compounds like sotalol and quinine, which had 
not been recognized through conventional testing [188]. For example, 
machine learning algorithms can identify patterns in multi-omics data 
that indicate potential organ-specific toxicity, such as hepatotoxicity or 
cardiotoxicity, which might not be evident in conventional in vitro or in 
vivo studies, further underscoring the value of AI in reducing late-stage 
clinical trial failures.

6.3. Enhancing efficiency and cost savings

The integration of AI models into drug discovery accelerates the 
identification of safe drug candidates by automating the evaluation 
process. Unlike traditional methods, AI-powered systems can process 
and analyze vast chemical libraries in a fraction of the time. This high- 
throughput capability enables researchers to screen thousands of com
pounds simultaneously, rapidly narrowing down the pool of viable 
candidates [189]. The cost savings associated with AI-driven toxicity 
prediction are substantial. By reducing the need for extensive preclinical 
testing and minimizing late-stage failures, pharmaceutical companies 
can allocate resources more effectively, ultimately reducing the overall 
cost of bringing a drug to market. Additionally, the scalability of AI 
models makes them ideal for evaluating the safety profiles of drug 
candidates in emerging areas such as personalized medicine and tar
geted therapies [190].

6.4. Transforming the drug discovery landscape

AI's ability to prioritize safe drug candidates is transforming the drug 
discovery landscape, fostering a more targeted and efficient approach to 
pharmaceutical research [8]. By integrating predictive models into 
early-stage decision-making processes, researchers can streamline 
development timelines, reduce costs, and increase the likelihood of 
successful outcomes [191]. As AI technologies continue to evolve, their 
role in accelerating the identification of safe drug candidates is expected 
to expand, paving the way for a more innovative and effective drug 
development paradigm [192].

7. Conclusion

AI-powered predictive models are revolutionizing the field of drug 
toxicity screening, offering unparalleled advancements in accuracy, 
scalability, and efficiency. By leveraging diverse, large-scale data
sets—including omics profiles, chemical properties, and patient-specific 
records—these models provide a comprehensive approach to predicting 
adverse drug reactions. The integration of advanced machine learning 
algorithms and rigorous validation techniques ensures their robustness, 
enabling more reliable and human-relevant toxicity assessments.

This review has highlighted several key advancements and benefits 
of AI in predictive toxicology. The ability to integrate and analyze het
erogeneous data sources from molecular structures to patient records 
enables a more holistic understanding of toxicity mechanisms than 
previously possible with conventional methods. Machine learning and 
deep learning algorithms have demonstrated superior predictive per
formance across multiple toxicity endpoints, including hepatotoxicity, 
cardiotoxicity, nephrotoxicity, and genotoxicity. The emergence of 
explainable AI addresses critical transparency issues, making these 
powerful models more interpretable for researchers and regulators alike.

The comparative analysis between AI and traditional toxicity testing 
methods reveals complementary strengths that can be optimized 
through hybrid approaches. The convergence of computational models 
with advanced in vitro systems like organoids and organs-on-chips 
represents a particularly promising direction, offering human-relevant 
insights while reducing animal testing. Moreover, the application of AI 

Table 4 
Key applications of AI in predictive toxicology.

Application 
Area

Specific Use Benefits to Drug 
Discovery

Examples

High- 
Throughput 
Screening

Rapid screening of 
large chemical 
libraries for 
toxicity risks 
[171].

Saves time and 
resources; allows 
prioritization of 
safer candidates 
early in the 
pipeline [172].

Screening 
100,000+
compounds for 
cardiac toxicity 
using deep learning 
models [173].

Hepatotoxicity 
Prediction

Identifying drugs 
likely to cause 
liver damage 
[174].

Reduces risk of 
late-stage failures; 
enables safer drug 
designs [26].

Predicting DILI 
using 
transcriptomic 
biomarkers from 
treated liver cell 
lines [175].

Cardiotoxicity 
Prediction

Assessing drugs 
for QT interval 
prolongation or 
other cardiac risks 
[71].

Improves 
cardiovascular 
safety profiles 
during preclinical 
stages [176].

Predicting 
arrhythmogenic risk 
using patient ECG 
and EHR datasets 
[177].

Dose-Response 
Modeling

Simulating 
toxicity 
thresholds based 
on exposure levels 
[178].

Provides precise 
dose optimization 
for therapeutic 
and safety 
margins [179]

Modeling 
nephrotoxicity at 
different exposure 
levels using 
metabolomics data 
[148].

Personalized 
Medicine

Tailoring drug 
safety profiles to 
individual genetic 
and 
environmental 
factors [180].

Enhances patient 
outcomes and 
reduces ADRs in 
diverse 
populations 
[181].

Predicting ADR risk 
for oncology drugs 
using patient- 
specific multi-omics 
data [182].

Environmental 
Toxicology

Assessing impact 
of drugs on 
ecosystems and 
non-human 
organisms [183].

Promotes 
sustainability and 
compliance with 
environmental 
regulations [183].

Predicting aquatic 
toxicity of 
pharmaceuticals 
using QSAR-based 
AI models [184].
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throughout the drug development pipeline—from early candidate 
screening to clinical trial monitoring creates multiple opportunities to 
identify and mitigate toxicity risks before they result in costly failures.

Looking toward the future, several research priorities emerge. First, 
the development of standardized, high-quality datasets specifically 
designed for toxicity prediction will be crucial for improving model 
performance and generalizability. Initiatives like the Innovative Medi
cines Initiative (IMI) and Toxicology in the 21st Century (Tox21) pro
grams are making important contributions in this area, but more 
coordinated efforts are needed. Second, continued advancement in 
model interpretability will be essential for regulatory acceptance and 
scientific credibility. Third, establishing clear frameworks for validating 
AI predictions against gold-standard toxicity assessments will help build 
confidence in these novel approaches.

The implications of these advances extend beyond pharmaceutical 
development. Environmental toxicology, consumer product safety, and 
chemical risk assessment all stand to benefit from AI-powered toxicity 
prediction. Additionally, the potential for personalized toxicity assess
ments based on individual genetic profiles could transform clinical 
practice, enabling safer medication regimens tailored to patient-specific 
risks.

While challenges remain in data quality, model interpretability, and 
regulatory integration, the trajectory of advancement in AI-powered 
toxicity prediction is clear. Through collaborative efforts between 
computational scientists, toxicologists, clinicians, and regulatory bodies, 
these challenges can be systematically addressed. The result will be a 
more efficient, ethical, and accurate approach to toxicity assessment 
that ultimately benefits patients through safer medications developed in 
less time and at lower cost.

Despite these advancements, challenges remain in data quality, 
model interpretability, and regulatory integration. Ensuring access to 
high-quality, standardized datasets and enhancing transparency in AI 
model decision-making will be crucial for gaining broader acceptance. 
Collaboration among researchers, developers, and regulatory bodies will 
also be key to establishing guidelines and standards that facilitate the 
adoption of AI in predictive toxicology. As these challenges are 
addressed, AI is poised to become an indispensable tool in drug devel
opment. By enabling safer, faster, and more effective toxicity screening, 
AI-powered models are paving the way for a new era in pharmaceutical 
innovation, ultimately improving patient safety and accelerating the 
delivery of life-saving therapies to market.
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[59] E. Ylipää, S. Chavan, M. Bånkestad, J. Broberg, B. Glinghammar, U. Norinder, 
I. Cotgreave, hERG-toxicity prediction using traditional machine learning and 
advanced deep learning techniques, Curr. Res. Toxicol. 5 (2023) 100121, https:// 
doi.org/10.1016/j.crtox.2023.100121.

[60] L.G. Valerio Jr., Predictive analytics for toxicology: applications in discovery 
science, CRC Press (2024), https://doi.org/10.1201/9781003230465.

[61] S. Thudumu, P. Branch, J. Jin, J. Singh, A comprehensive survey of anomaly 
detection techniques for high dimensional big data, J. Big Data 7 (2020) 1–30, 
https://doi.org/10.1186/s40537-020-00320-x.

[62] Y. Igarashi, R. Kojima, S. Matsumoto, H. Iwata, Y. Okuno, H. Yamada, Developing 
a GNN-based AI model to predict mitochondrial toxicity using the bagging 
method, J. Toxicol. Sci. 49 (3) (2024) 117–126, https://doi.org/10.2131/ 
jts.49.117.

[63] Y. Li, X. Pan, P. Hai, Y. Zheng, Y. Shan, J. Zhang, All-in-one nanotheranostic 
platform based on tumor microenvironment: new strategies in multimodal 
imaging and therapeutic protocol, Drug Discov. Today 104029 (2024).

[64] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions, 
Adv. Neural Inf. Proces. Syst. 30 (2017) 4765–4774.

[65] X. Jia, T. Wang, H. Zhu, Advancing computational toxicology by interpretable 
machine learning, Environ. Sci. Technol. 57 (46) (2023) 17690–176906, https:// 
doi.org/10.1021/acs.est.3c03662.

[66] M.T. Ribeiro, S. Singh, C. Guestrin, "Why should I trust you?" Explaining the 
predictions of any classifier, in: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. 
Discov. Data Min, 2016, pp. 1135–1144, https://doi.org/10.1145/ 
2939672.2939778.

[67] J. Jiménez-Luna, F. Grisoni, G. Schneider, Drug discovery with explainable 
artificial intelligence, Nat. Mach. Intell. 2 (10) (2020) 573–584, https://doi.org/ 
10.1038/s42256-020-00236-4.

[68] C. Bai, L. Wu, R. Li, Y. Cao, S. He, X. Bo, Machine learning-enabled drug-induced 
toxicity prediction, Adv. Sci. 2413405 (2025), https://doi.org/10.1002/ 
advs.202413405.

[69] I. Bentwich, Pharma’s bio-AI revolution, Drug Discov. Today 28 (5) (2023) 
103515, https://doi.org/10.1016/j.drudis.2023.103515.

[70] S. Pal, K. Kumari, S. Kadam, A. Saha, The AI Revolution, IARA Publication, 2023. 
https://www.iarapublication.com/books/pdf/the-ai-revolution-future-unveiled. 
pdf.

[71] S. Sampathi, N. Bhatia, AI-enabled models in the restoration of drug efficacy and 
drug design, in: Biosystems, Biomedical & Drug Delivery Systems: 
Characterization, Restoration and Optimization, Springer Nature Singapore, 
2024, pp. 83–103, https://doi.org/10.1007/978-981-99-7765-8_5.

[72] A.I. Visan, I. Negut, Integrating artificial intelligence for drug discovery in the 
context of revolutionizing drug delivery, Life 14 (2) (2024) 233, https://doi.org/ 
10.3390/life14020233.

[73] F. Shaki, M. Amirkhanloo, M. Chahardori, The future and application of artificial 
intelligence in toxicology, Asia Pac. J. Med. Toxicol. 13 (1) (2024).

[74] T. Sterling, J.J. Irwin, ZINC 15–ligand discovery for everyone, J. Chem. Inf. 
Model. 55 (11) (2015) 2324–2337, https://doi.org/10.1021/acs.jcim.5b00559.

[75] S. Arvidsson McShane, E. Ahlberg, T. Noeske, O. Spjuth, Machine learning 
strategies when transitioning between biological assays, J. Chem. Inf. Model. 61 
(7) (2021) 3722–3733, https://doi.org/10.1021/acs.jcim.1c00449.

O.M. Ajisafe et al.                                                                                                                                                                                                                              Life Sciences 378 (2025) 123821 

12 

https://doi.org/10.1021/acs.jcim.3c00282
https://doi.org/10.1021/acs.jcim.3c00282
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0135
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0135
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0135
https://doi.org/10.1016/j.jpba.2017.07.023
https://doi.org/10.1016/j.isci.2024.108236
https://doi.org/10.3389/fddsv.2024.1355044
https://doi.org/10.1038/s41586-023-05907-x
https://doi.org/10.1038/s41586-023-05907-x
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1016/B978-0-12-823876-6.00016-X
https://doi.org/10.1016/B978-0-12-823876-6.00016-X
https://doi.org/10.1016/S2589-7500(22)00042-5
https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/10.1128/CMR.00045-20
https://doi.org/10.1128/CMR.00045-20
https://doi.org/10.1016/j.heliyon.2024.e28868
https://doi.org/10.14573/altex.2312151
https://doi.org/10.1177/02611929231170326
https://doi.org/10.1177/02611929231170326
https://doi.org/10.1098/rsob.210333
https://doi.org/10.3389/fbioe.2022.845360
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0210
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0210
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0210
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0210
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0210
https://doi.org/10.1016/B978-0-323-54293-0.00016-9. Not Found
https://doi.org/10.1016/B978-0-323-54293-0.00016-9. Not Found
https://doi.org/10.1080/27660400.2024.2292486
https://doi.org/10.1080/27660400.2024.2292486
https://doi.org/10.1371/journal.pone.0300031
https://doi.org/10.1146/annurev-pharmtox-100923-103123
https://doi.org/10.1146/annurev-pharmtox-100923-103123
https://doi.org/10.1007/978-3-031-23321-0_5
https://doi.org/10.1007/978-3-031-23321-0_5
https://doi.org/10.13335/j.1000-3673.pst.2024.01.002
https://doi.org/10.3389/fmed.2024.1365524
https://doi.org/10.1021/acs.chemrestox.8b00054
https://doi.org/10.1021/acs.chemrestox.8b00054
https://doi.org/10.3389/fdrgd.2021.768792
https://doi.org/10.3390/molecules29020428
https://doi.org/10.1080/03602532.2020.1836261
https://doi.org/10.1080/03602532.2020.1836261
https://doi.org/10.3389/fphar.2019.01550
https://doi.org/10.1016/j.compbiomed.2024.108702
https://doi.org/10.1016/j.compbiomed.2024.108702
https://doi.org/10.1021/acs.jafc.1c07505
https://doi.org/10.1021/acs.jcim.8b00769
https://doi.org/10.1016/j.crtox.2023.100121
https://doi.org/10.1016/j.crtox.2023.100121
https://doi.org/10.1201/9781003230465
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.2131/jts.49.117
https://doi.org/10.2131/jts.49.117
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0310
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0310
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0310
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0315
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0315
https://doi.org/10.1021/acs.est.3c03662
https://doi.org/10.1021/acs.est.3c03662
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1002/advs.202413405
https://doi.org/10.1002/advs.202413405
https://doi.org/10.1016/j.drudis.2023.103515
https://www.iarapublication.com/books/pdf/the-ai-revolution-future-unveiled.pdf
https://www.iarapublication.com/books/pdf/the-ai-revolution-future-unveiled.pdf
https://doi.org/10.1007/978-981-99-7765-8_5
https://doi.org/10.3390/life14020233
https://doi.org/10.3390/life14020233
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0360
http://refhub.elsevier.com/S0024-3205(25)00456-4/rf0360
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.1c00449


[76] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method 
for quantitative structure–activity relationships, J. Chem. Inf. Model. 55 (2) 
(2015) 263–274, https://doi.org/10.1021/ci500747n.

[77] C. Caballero-Gaudes, R.C. Reynolds, Methods for cleaning the BOLD fMRI signal, 
Neuroimage 154 (2017) 128–149, https://doi.org/10.1016/j. 
neuroimage.2016.12.018.

[78] L. Marques, B. Costa, M. Pereira, A. Silva, J. Santos, L. Saldanha, I. Silva, 
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