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A B S T R A C T

Traditionally, statistical and machine learning (ML) algorithms have been used to develop risk prediction models 
for adverse clinical events, such as atrial fibrillation (AF) after stroke. However, these algorithms often fail to 
encapsulate or exploit possible connections between patients, assuming each patient is fully independent. This 
study builds a graph of patients interlinked by their medical histories to create a graph-based risk prediction 
model for AF. We investigate the ability of Graph Convolutional Networks (GCN) and Graph Attention Networks 
(GAT) to predict AF risk in critically ill stroke patients. We introduce a novel, patient-specific approach for 
computing similarities between GNN nodes and explore several methods for GNN explainability, including node- 
specific Shapley value analysis and node relationships based on the attention coefficients of the GAT model. Our 
findings show that GCN and GAT models, with AUCs of 0.81[0.78–0.84] and 0.84[0.81–0.87], consistently 
outperform traditional algorithms such as Random Forest, XGBoost, and Logistic Regression, which had the best 
AUC of 0.78 [0.74–0.82]. This superior performance is observed when our proposed custom similarity metric is 
used to construct the graph, highlighting the importance of task-specific graph design in enhancing model 
effectiveness. The attention mechanisms in GAT models likely contributed to this improved performance. This 
study highlights the strength of GNNs in capturing complex relationships and provides insights into model 
predictions, demonstrating the generalisability of our methodological approach to other risk prediction models.

1. Introduction

Stroke is a serious medical condition that occurs when blood flow to 
the brain is interrupted, resulting in brain damage, and potentially 
leading to permanent disability or death [1]. Currently, more than 101 
million people live with the effects of stroke; a figure that has doubled 
during the last 30 years, with around 63 % of cases occurring to people 
under 70 years of age [2]. Many patients who present with a stroke (both 
ischaemic or haemorrhagic) are at high risk of mortality, and morbidity, 
including from incident cardiovascular events, the so-called stroke heart 
syndrome [3–5].

Atrial fibrillation (AF) is the commonest sustained cardia rhythm 
disorder and is an important predisposing factor for ischaemic stroke 
[6]. AF affects over 2 % of the European population and accounts for 
approximately 59 million cases globally [7]. Stroke is usually more 

severe when it is related to AF, is often more severe, making the iden
tification of AF risk after a stroke crucial for preventing recurrence [8]. 
Notably, an estimated 1.5 million new cases of AF occur annually 
following a stroke [9,10]. While around 20 % of ischemic stroke patients 
have a pre-existing AF diagnosis, an additional 10–20 % of patients may 
be diagnosed with AF after undergoing cardiac monitoring [10].

In 10 % of patients with ischaemic stroke, new AF is detected after 
standard diagnostic workup, and up to 10 % could be diagnosed with 
extensive workup, including in-hospital monitoring or ambulatory 
monitoring for several days in most hospitals [11,12]. However, a sub
stantial proportion of patients with AF will still remain undiagnosed, 
posing them with a higher risk of recurrent stroke, and opportunities for 
targeted management, including thromboprophylaxis, will potentially 
be lost. Hence the importance of identifying patients at risk of devel
oping AF after suffering from a stroke.
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Traditionally, statistical methods (e.g. Logistic Regression) and, 
more recently, machine learning (ML) algorithms have been used for the 
development of risk prediction models of adverse clinical events, such as 
AF after stroke (e.g. Refs. [13,14]). However, such algorithms often do 
not properly encapsulate or exploit possible connections between pa
tients (i.e. patients sharing similar characteristics), often treating stroke 
risk factors in isolation or in a binary (yes/no) manner. Also, these al
gorithms often assume that every patient is fully independent of others. 
In this work, we take the approach of building a graph of patients, under 
the assumption that stroke patients have some commonality with their 
past medical histories, to develop a graph-based risk prediction model of 
AF post-stroke.

Graphs are a common way to analyse relationships between objects. 
As such, they are used for numerous real-world problems, e.g. social 
media [15], bioinformatics [16], epidemiology [17], network analysis 
[18] and computer vision [19]. The unique ability of graphs is that 
structural relationships between data can be obtained, which can allow 
for more information to be gained than through analysis of the data in 
isolation. Despite this, it is often very difficult to solve learning problems 
in graphs, partly because many types of data are not typically structured 
as graphs and secondly, the underlying connectivity patterns of 
graph-structured data are often complex and diverse [20].

Graph Neural Networks (GNNs) belong to the family of ML algo
rithms capable of processing graph data, allowing for the discovery and 
modelling of complex interactions between multiple factors and 
learning from the relationships between nodes. Unlike conventional 
models, GNNs can identify and weight associations between various 
factors and how these interrelationships can influence a given outcome 
[21]. Although several GNN architectures have been proposed, perhaps 
the most popular ones are Graph Convolutional Networks (GCNs) and 
Graph Attention Networks (GATs). GCNs have been proposed to solve 
several different problems [22]. Compared to other models, GATs can 
learn the information from the neighbours of a node, by weighting each 
neighbour according to its relevance to the node of interest [23]. This 
approach allows GATs to be a more flexible model with a higher level of 
interpretability, as attention coefficients can be considered to indicate 
the importance of each neighbour, and they have been used in various 
applications, with several reviews available [24,25].

GNNs have been implemented in the risk prediction of outcomes of 
patients in and emergency and critical care, particularly to exploit the 
use of time series, diagnosis and medical data simultaneously, in addi
tion to the relational data found by connecting patients with similarities 
[26,27]. For example, Tong et al. [26] approached the prediction of 
patient in-hospital mortality and length of intensive care unit (ICU) stay 
through the combination of a Long-Short Term Memory (LSTM) network 
and a GNN that could use both ICU time series and neighbouring patient 
data. It was shown that the additional use of data from patients with 
similar characteristics allowed for a better performance of outcome 
prediction compared to models that learned from time series data alone. 
In the study by Xu et al. [28], the authors also developed a predictive 
decision-support model of two typical ICU interventions, again using 
temporal and spatial (through graph representation) patient data in 
tandem, focusing on models that can be clinically interpreted and 
therefore used by medical practitioners. The hybrid approach was also 
demonstrated as an improvement in performance, compared to a variety 
of traditional ML methods, LSTM and CNNs.

Leveraging recent developments in GNNs, we aimed to investigate 
their ability to predict AF in critically ill stroke patients based on data 
from the Medical Information Mart for Intensive Care (MIMIC)-IV 
database [29]. During this process, we define a novel approach for 
computing the similarities between GNN nodes that is more instance (i. 
e. patient) specific than the popular cosine similarity method. We also 
explore several methods for GNN explainability, specifically node spe
cific Shapley value analysis, and node relationships based on attention 
coefficients of the GAT model, thus highlighting the strength of GNNs in 
capturing complex relationships and providing insights into how our 

models have produced their predictions. The performance of the 
resulting GCN and GAT models are compared with the more traditional 
algorithms; Random Forest, XGBoost, and Logistic Regression. 
Furthermore, the methodological approach employed in this work is not 
limited to AF prediction alone but is generalisable to many applications 
of GNNs.

2. Methods

2.1. Dataset extraction

Data was extracted from the MIMIC-IV database (version 2.2), which 
houses from than 200,000 patients from Boston, MA, USA [29]. Only 
those patients diagnosed with stroke in their admission evaluation or 
during their hospital stay were included in this study. For each of these 
patients, we obtained the following data: records of medical diagnoses 
and evaluations (using the WHO’s International Classification of Dis
eases version 10, ICD-10); demographic information; averages of vitals 
and blood tests taken during the first 24 h of their ICU stays; in addition 
to the presence of AF after their first 24 h (model outcome). This was 
supplemented by patient history information, namely the number of 
prior hospital admission for stroke or otherwise, and the number of days 
since their last admission. This data forms a table where each row is a 
patient, and each column pertains to one of the above data types (or 
variables). Patients with AF episodes during the first 24 h after ICU 
admission were excluded. Data pre-processing details are included in the 
Supplementary Materials.

2.2. Machine learning algorithms

For the classification task of predicting the risk of developing AF, we 
evaluate the of use of traditional ML algorithms as well as GNNs. Details 
of the hyperparameter selection are included in the Supplementary 
Materials.

2.2.1. Traditional algorithms
The traditional algorithms evaluated were Logistic Regression, 

XGBoost and Random Forest. We use them as a comparative basis for the 
assessment of GNNs. Logistic regression, used for binary classification, 
employs the logistic (sigmoid) function to transform a linear combina
tion of inputs into the probability of a binary outcome, which can then 
be thresholded for class prediction. XGBoost is an efficient imple
mentation of gradient boosted decision trees, which builds an ensemble 
of trees sequentially to correct the errors of the previous ones. It uses 
regularisation and parallelisation to prevent overfitting and improve 
accuracy. Random Forest is another ensemble learning method that 
combines the predictions of multiple decision trees through majority 
voting and each tree is trained on random subsets of data and features 
(for classification) to reduce variance and control overfitting.

2.2.2. Graph neural networks (GNNs)
GNNs are designed to process data structured as graphs consisting of 

nodes (representing data instances with defining features) and edges 
(representing the relationships between instances). The basic principle 
of GNNs is to learn from the relationships between nodes through a 
process of passing information along the edges connecting them. In this 
work, we evaluate the use of GCN and GAT models for prediction 
modelling.

The operation of a GCN, whose fundamental functions are graph 
convolutions, is based on learning through an embedding and weighted 
aggregation process of each node in a graph, using the information of 
adjacent nodes and characteristics of the nodes themselves. The 
convolution weights and combines node and edge characteristics from 
neighbouring nodes to generate new representations of each node. In 
general terms, a GCN is similar to a Convolutional Neural Network 
(CNN), where each convolution layer extracts the most relevant 
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characteristics of the node and transmits this information to the next 
layer until it has a complete learning of the data. The process is repeated 
across multiple convolutional layers to capture increasingly complex 
patterns. In this work, we follow the general representation and meth
odology of a multi-layer GCN described in Ref. [30].

GATs extend the functionality of GCNs by introducing an attention 
mechanism. This allows the model to assign different levels of impor
tance (captured by attention coefficients) to each neighbour of a given 
node. The computed attention coefficients reflect the relevance of 
neighbours to the target node, are normalised in the vicinity of each 
node and are used to weight the features of neighbours before their 
aggregation. The importance scores in each iteration are then normal
ised in the vicinity of each node using a Softmax function and the 
importance of the neighbourhood in the model is calculated by a process 
of self-attention between each pair of nodes. This approach facilitates 
more nuanced and flexible node representations, as GATs can focus on 
the most relevant neighbours. The attention mechanism aids the inter
pretability of the model, as the attention coefficients provide details of 
the importance of each neighbour [23]. In this study, we followed the 
generalised architecture and approach outlined in Ref. [23].

2.3. Graph construction

The GNNs require a graphical representation of data training inputs. 
While the node information is typically presented as a table of patients 
and their associated features, the edges are represented by way of an 
adjacency matrix, where some similarity measure of the connection 
between every pair of nodes is stored. The following details how we 
define the nodes and edges and compute the similarities for the adja
cency matrix.

2.3.1. Nodes and edges
Each node in the graph represents a patient along with their asso

ciated patient data, which consists of variable values, apart from the AF 
target variable. The connection between nodes, i.e. edges, are repre
sented by the similarity of diagnoses between patients. This serves as a 
measure of the relationship between nodes.

Each patient’s diagnoses form a list of ICD codes, where each code 
represents a particular condition, for example, codes I63.432, R47.01, 
and R13.10, represent cerebral infarction, aphasia, and dysphagia, 
respectively. To calculate the similarity between patients, it is first 
necessary to one-hot-encode the diagnoses.

The calculation of similarity coefficients between patients that form 
the adjacency matrix is performed using two different methodologies, 
which are assessed in terms of model performance as part of the model 
optimisation stage.

2.3.2. Cosine similarity
For the first method, we compute the cosine similarity between two 

vectors in diagnosis space using the following equation: 

cos(θ)=
A⋅B

‖A‖⋅‖B‖
=

∑n
i=1AiBi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1A2
i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1A2
i

√ (1) 

Here A and B are one-hot encoded vectors representing the diagnoses of 
two different patients, where each element in the vector indicates the 
presence or absence of one of n specific ICD codes (n=4129).

2.3.3. Custom similarity measure
The second methodology is a novel method we propose in this work 

and can be represented through the following set of equations. 

Zj

{
1 for Aj = 1,Bj = 1
0 otherwise (2) 

Similarity=

∑n− 1
j=0 Zj

max(‖A‖, ‖B‖)
(3) 

Z is the vector formed by comparing each position j in the diagnosis 
vectors A and B and setting each element Zj to 1 if the diagnoses match 
and 0 otherwise. The similarity coefficient is then calculated by dividing 
the sum of Z by the greater of the total number of diagnoses for the two 
patients, whose diagnoses are represented by A and B, respectively. This 
method considers diagnoses in common and the total number of di
agnoses, where the latter accounts for the disparity in the overall 
number of diagnoses between patients.

In both cases, the result is a m x m adjacency matrix, where m is the 
number of patients analysed and each value at position (i, j) of this 
matrix corresponds to the similarity measure between patients accord
ing to their diagnoses.

In summary, our graph consists of nodes that represent patients, with 
node feature vectors incorporating patient data that included de
mographic information and 24-h averaged blood and vital tests. Edges 
between nodes were constructed based on a similarity measure between 
the one-hot encoded vectors of patients’ conditions, in the form of ICD 
records of medical diagnoses, on admission. If the similarity between 
patients was above an optimised threshold, an undirected, unweighted 
edge was created between the nodes.

In our modelling approach, we optimise both the method of simi
larity measure and the total number of diagnoses considered during the 
hyperparameter tuning for the GAT and GCN models separately. Our 
graph construction and GNN model framework is shown in Fig. 1. To 
achieve this, we employed the Optuna hyperparameter optimisation 
package [31], which uses adaptive tree-structured Parzen estimators 
(TPE) to efficiently explore the hyperparameter space and identify the 
combination that yields the best model performance. This adaptive 
sampling strategy allows for a more intelligent and directed search, 
reducing computational cost while increasing the likelihood of finding 
an optimal configuration. Further implementation details are provided 
in Section 2.2 of the supplementary materials.

2.4. Evaluation and assessment methods

Evaluation of the models was performed using accuracy, recall (or 
sensitivity), precision, and area under the ROC Curve (AUC). For model 
interpretability purposes, we use SHAP (SHapley Additive exPlanations) 
plots (specifically, the beeswarm plot) for assessing variable (or feature) 
importance for the base models [32]. Feature importances for the GNN 
models are calculated using the GNNExplainer module of PyTorch [33]. 
For our GAT model, we construct a visualisation focusing on a particular 
node and signifying the attention weight by the thickness of the 
connection between nodes that are connected to it, to help understand 
the neighbouring nodes that are most influential in the model’s attention 
mechanism [26]. As a final examination of the GAT model, the final 
attention layer, upon which predictions are based, is modelled with 
t-SNE [34]. This helps visualise the effectiveness of the attention 
framework in separating patients with and without AF.

3. Results

3.1. Resulting dataset

The extracted dataset comprised 1949 stroke patients, with an 
imbalanced frequency distribution such that 12 % of patients had an 
episode of AF after 24 h of ICU admission, while the remaining 88 % did 
not. Putting aside the medical diagnoses and the outcome variable, more 
than 37 % of the variables had a considerable amount of missing data, 
where missingness was as high as 98 %.

Table 1 lists the variables that were used for modelling following the 
pre-processing stages. The mean, standard deviation and interquartile 
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ranges are provided for continuous variables, and frequencies and pro
portions for the categorical ones. The medical diagnoses of each patient 
in the form of ICD codes are supplied as complementary information. 
The codes form a list, the length of which is determined by the number of 
medical diagnoses the patient has. These diagnoses form part of the GNN 
input. There are 4129 different diagnoses, and each patient may be 
diagnosed with multiple conditions, therefore a matrix of 1949 rows 
(one per patient) and 4129 columns (one per diagnosis) is the result. The 
data were randomly split into training and test sets in a 75:25 ratio, with 
both sets maintaining the same prevalence of AF as the full dataset.

3.2. Base model optimal hyperparameters

For the base models, hyperparameter optimisation was performed 
using a 5-fold cross validation, with Table 2 showing the optimal 

hyperparameters found.

3.3. GNN model optimal hyperparameters

With the aid of the Optuna package, the optimisation of the GNN 
models was performed in two stages, the optimisation of the graph 
layout and the optimisation of the GNN architecture.

3.3.1. Graph optimisation
The optimal graph properties for the GCN and GAT models are 

shown in Table 3. For both GCN and GAT, that the optimal methodology 
for computing the similarities between nodes was found to be our 
custom-made approach. The number of diagnoses considered was 
significantly reduced, while at the same time around 80 % of the node 
linkages were retained, which considerably reduces the computational 
complexity.

3.3.2. GNN model optimisation
Optimal hyperparameters are given in Table 4. We see that optimal 

model architectures are not required to be particularly complex, with 
networks less than 4 layers deep and a drop-out fractions close to 0.5.

3.4. Model results

Table 5 shows the performance of each of our evaluated AF risk 
prediction models as measured using the test subset. ROC curves for 
each model are given in Fig. 2. In Tables S2 and S3 of the Supplementary 
Materials, we also provide the confusion matrices for the optimised 

Fig. 1. Overall methodological framework. The modelling data are structured as a patient graph. Patient characteristics such as vital signs, demographics and drugs 
constitute the graph nodes, while the edges represent patient-to-patient similarities based on the number of shared medical conditions. GNNs are employed to predict 
whether patients are at risk of developing AF.

Table 1 
Variables selected for model training (mean ± standard deviation and inter
quartile ranges are provided for continuous variables; and frequencies and 
proportions for categorical ones). GCS: Glasgow Coma Score; Stroke Diagnosis 
Priority: importance given in the diagnosis, with 1 and 4 representing the 
highest and lowest levels of priority, respectively; Blood Pressure: mean of 
Systolic and Diastolic Blood Pressure.

Variable Characteristics

AF (Target Variable) [Yes] 239 (12.3 %)
Age (years) 66.5 ± 15.4 [57–78]
Sex Male [Yes] 1023 (52 %)
Stroke Diagnosis Priority (number) 3.4 ± 4.6 [1.0–4.0]
Previous Stroke Admissions (number) 0.1 ± 0.4 [0.0–0.0]
Previous Other Admissions (number) 0.6 ± 1.9 [0.0–0.0]
Days Since Previous Admission (number) 500.4 ± 710.7 [31.5–713.0]
GCS Eye Responsea 3.0 ± 1.0 [2.4–4.0]
GCS Motor Responsea 5.1 ± 1.4 [4.5–6.0]
GCS Verbal Responsea 3.2 ± 1.7 [1.0–5.0]
Temperaturea (◦C) 36.9 ± 0.5 [36.7–37.1]
Diastolic Blood Pressurea (mmHg) 65.5 ± 12.8 [55.6–73.9]
Systolic Blood Pressurea (mmHg) 128.4 ± 18.7 [114.3–141.4]
Blood Pressurea (mmHg) 83.3 ± 12.74 [73.5–91.9]
Heart Ratea (beats per min) 79.2 ± 14.1 [69.4–88.1]
Respiratory Ratea (breaths per min) 18.9 ± 3.6 [16.4–20.7]
Oxygen Saturationa (%) 96.6 ± 2.5 [95.6–98.3]
Haemoglobina (g/dL) 11.3 ± 2.1 [9.8–12.9]
Glucosea (mg/dL) 139.0 ± 44.8 [109.7–155.8]
Anion Gapa (mEq/L) 14.0 ± 3.3 [12.0–16.0]
Creatinea (mg/dL) 1.2 ± 1.3 [0.7–1.2]
Magnesiuma (mg/dL) 2.1 ± 0.4 [1.8–2.2]
Phosphatea (mg/dL) 3.5 ± 1.0 [2.9–3.9]
Platelet Counta (K/uL) 213.6 ± 95.4 [152.6–257.0]
Potassiuma (mEq/L) 4.1 ± 0.5 [3.8–4.4]
Prothrombin Timea (seconds) 13.8 ± 4.0 [11.9–14.4]
Weighta (kg) 80.0 ± 21.0 [65.9–91.9]

a For these variables, the values used are the mean averages of the associated 
measurements.

Table 2 
Optimal hyperparameters for traditional models.

Algorithm Hyperparameter Value

Logistic Regression Penalty L2
​ C 100

XGBoost Maximum Depth 2
Number of Trees 200
Learning Rate 0.01

Random Forest Number of trees 100
Max Features sqrt
Max depth 4
Criterion gini

Table 3 
Optimal Graph properties for GNN models.

Model Diagnosis Matrix Method Number of Diagnoses Similarity Threshold

GCN custom 446 0.205
GAT custom 313 0.218

C.Y. Rivera-Juzga et al.                                                                                                                                                                                                                       Computers in Biology and Medicine 197 (2025) 111095 

4 



traditional ML and GNN risk prediction models, respectively.
The Random Forest model produces the strongest overall perfor

mance amongst the traditional (or base) models, producing the highest 
accuracy, recall and precision scores, and AUC similar to the highest 
scoring base model (Logistic Regression). However, the results indicate 
that the GNN models outperformed the base ML models across most 
performance metrics. The GAT model achieved the highest accuracy at 
0.80, significantly surpassing the best base model for this metric. 
Moreover, the GNN models demonstrated enhanced recall and precision, 
with GAT leading in recall at 0.73 and in precision at 0.35. In terms of 
AUC, both GNN models excelled, with GCN reaching 0.81 and GAT at 
0.83, both higher than the best base model, showing the effectiveness of 
GNN models to capture complex relationships and dependencies be
tween nodes. When comparing F1-scores, the GAT performs best, with a 
score of 0.47 compared to the next best models of GCN and Random 
Forest that both achieve a score of 0.43. In specificity, both GAT and 
GCN models also lead in performance, achieving scores of 0.81 and 0.78, 
respectively, compared to 0.75 values in all the base ML models.

Both GNN models achieved better performance with our custom- 
defined similarity measure, outperforming the cosine similarity 

method in every metric provided. Specifically, the GCN model saw an 
improvement in AUC from 0.76 to 0.81, while the GAT model improved 
from 0.77 to 0.83. The improvements from using the custom over cosine 
method are generally more pronounced in the GAT model, which can be 
attributed to its dynamic attention mechanism. The GAT model is more 
likely to benefit from improvements in the connections between nodes, 
compared to a GCN model that uses a simpler method of neighbour 
information aggregation.

In summary, the GNN models, particularly those using our custom- 
defined similarity method, demonstrate advantages over the base ML 
models. Specifically, the GAT [custom] model performed best across all 
metrics given in Table 5, achieving the highest AUC, accuracy, recall, 
precision, F1-score and specificity. The GCN [custom] model also 
showed improvements over traditional methods, particularly in recall 
and F1-score. While the Random Forest model performed well among 
the base models, it did not surpass the performance of the GNN models, 
highlighting the potential of GNNs to capture more complex relation
ships and patterns within the data by connecting patients (nodes) with 
similar conditions.

3.5. Feature importances

3.5.1. Base models
The feature importances, in the form of beeswarm SHAP plots, are 

obtained for the best performing base model, Random Forest, shown in 
Fig. 3.

The Glasgow Coma Scale (GCS) [35] is a clinical tool used to assess a 
patient’s level of consciousness, based on eye-opening, verbal response 
and motor response. They appear to be significant variables in the pre
diction of AF according to Fig. 3. The mean GCS motor response was 
found to have the greatest relevance; the result is supported by a study 

Table 4 
Optimal GNN model hyperparameters.

Hyperparameters GCN Model Values GAT Model Values

Number of Layers 4 2
Number of Hidden Channels 57 56
Drop Out 0.43790 0.60081
Learning Rate 0.02175 0.01308
Decay 0.00004 0.00003
In Head – 3
Out Head – 10

Table 5 
Performance metrics for ML models. AUC 95 % confidence intervals are given in brackets.

Model AUC (95 % CI) Accuracy Recall Precision F1-score Specificity

Logistic Regression 0.77 [0.73–0.81] 0.74 0.65 0.28 0.39 0.75
XGBoost 0.76 [0.72–0.80] 0.73 0.63 0.27 0.38 0.75
Random Forest 0.78 [0.74–0.82] 0.75 0.71 0.31 0.43 0.75
GCN [cosine] 0.76 [0.71–0.79] 0.75 0.67 0.28 0.40 0.76
GCN [custom] 0.81 [0.78–0.84] 0.77 0.71 0.31 0.43 0.78
GAT [cosine] 0.77[0.73–0.81] 0.72 0.72 0.26 0.38 0.72
GAT [custom] 0.83 [0.81–0.87] 0.80 0.73 0.35 0.47 0.81

Fig. 2. AUC ROC Curves for each ML model. a) The labels RF, XGB, LR_CV refer to the Random Forest, XGBoost and Logistic Regression models, respectively. b) For 
GNNs with a similarity method in the graph construction given by the label in the square brackets.
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that found a significant association between a low GCS score and the 
presence of AF, suggesting a decline in the level of consciousness may be 
related to an increased risk of AF [36]. We can see this aspect in the 
distribution, higher values of the GCS score correspond to positive SHAP 
values, i.e., more likely to be predicted as not having AF.

Patient age is deemed significant in the prediction of AF, supported 
medically with links between increased age and the development of AF 
[37]. Again, the distribution of ages in Fig. 3 reflects this, higher ages are 
associated with negative SHAP values, i.e., higher likelihood of devel
oping AF. Diastolic blood pressure is another variable deemed influen
tial in AF prediction, appearing within the top 4 of the feature 
importances, again in agreement with medical findings of links between 
elevated diastolic blood pressure and increased risk of developing AF 

[38].

3.5.2. GCN model
For the GNN, feature importances are computed at node level based 

on calculations of mutual information for the subgraph associated with 
the selected node [39]. We obtain the feature importances of patients 
indexed at rows 218 and 1643, which were selected at random from the 
dataset. These are shown in Fig. 4.

In Fig. S1 of the Supplementary Materials we can make a comparison 
of feature importances between the two selected nodes (patients). What 
is evident is that the level of importance a particular feature has for AF 
prediction differs between the two patients. Differences in importances 
from patient to patient are reasonable to assume, given that no two 
patients are identical. We can further emphasise this with Fig. 4, in 
which the features are arranged by feature importances. Most relevant 
for the AF prediction of patient 218 is the stroke diagnosis priority, while 
for patient 1643 it is the number of previous admissions for stroke. Such 
differences in the order of relevance are present as we look further down 
each patient’s ordered importance list (e.g., see relative positions of sex, 
heart rate and weight). These node specific importances represent an 
advantage over the overall measures used in traditional models, 
providing a level of interpretation that would be particularly advanta
geous in a clinical setting where patient level understanding is key.

Examining the feature importances in general, the number of days 
since the last hospital admission and the number of previous admissions 
due to ischaemic stroke are particularly relevant. The latter is supported 
by various medical studies that have shown and discussed the inverse 
relationship between ischemic stroke and AF in the patient, i.e., the 
presence of AF in the patient increases the risk of the patient presenting a 
scenario of ischemic stroke [40–42]. Studies have also shown an asso
ciation between hyperglycaemia and the risk of developing AF [43,44]; 
a relation also reflected in GCN model that found that the mean glucose 
level was a significant variable for its AF prediction.

3.5.3. GAT model
The feature importances for the GAT model, based on the same 

method as for the GCN, are shown in Fig. S2 of the Supplementary 
Materials. What is immediately clear is that there is little difference in 
feature importance between each of the variables in comparison to the 
GCN where clear differences exist. One may attribute this to the GAT 
model assigning a higher priority to the relationship that exists between 
neighbouring nodes and their connection strength than the GCN model, 
that may focus more on the node features.

Comparing the importances between the same two patients (Fig. S2) 
one can see that importances are higher for all variables for patient 

Fig. 3. Beeswarm SHAP plot based on SHAP values for the Random For
est model.

Fig. 4. Feature importances for nodes 218 and 1643 in the GCN model, showing the top 15 most important features per node, organised in descending order 
of importance.
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1643. However, only through analysis of Fig. 5 may we identify any 
difference between the patients. Differences in the order of relevance are 
present, e.g., diastolic blood pressure and prothrombin time, though 
with differences in importance scores minor for each patient, the sig
nificance of the ordering can be deemed minor. This merely reflects 
what is mentioned in the previous paragraph.

Despite this, it is evident that the mean of the respiratory rate is 
significant in AF prediction for the GAT model. This aligns with studies 
[45,46] showing that the presence of AF in patients with elevated res
piratory frequency is associated with an increased risk of developing 
cardiovascular complications and cerebrovascular events. Furthermore, 
as with the GCN, the GAT places significant importance to historical 
patient data, e.g., days since last hospital admission and the number of 
admissions due to ischaemic stroke.

3.6. GAT attention visualisations

Fig. 6 displays the five most relevant nodes to node 218 according to 
attention coefficients. Based on the thickness of the connections (cor
responding to the attention coefficients), node 1389 holds the greatest 
relevance to node 218, followed by nodes 875, 568, 1329 and 1277. By 
examining the nodes further, we may understand the reasons behind 
their relevance. Therefore, in addition to Fig. 6 we provide Table 6, 
which provides several of the variables for patients associated with each 
node.

The top three rows of Table 6 list patients diagnosed with AF, 
showing that their blood pressure, haemoglobin, and diastolic blood 
pressure are lower than those of the patients in the last three rows (non- 
AF). Additionally, the respiratory rate for AF patients is higher 
compared to non-AF patients. This pattern indicates that these varia
bles—blood pressure, haemoglobin, diastolic blood pressure, and res
piratory rate—play a significant role in predicting AF for node 218. The 
GCS verbal response variable values tend to lie within a range of 4–5, 
while the interquartile range of the variable considering all patients is 
1–5. The GAT model, therefore, may consider values with the range 4–5 
significant in identifying nodes most relevant to 218. This relevancy is 
further emphasised for the haemoglobin variable, where the most rele
vant node, 1389, has a very similar value to node 218.

To conclude our GAT attention visualisation, Fig. 7 provides the 
reduced dimensionality representation of the node embeddings of the 
final attention layer of the GAT model. The dimensionality reduction is 
performed with the scikit-learn implementation of t-SNE using the rec
ommended perplexity value of 30. It is evident that the model tends to 
group patients (nodes) by the existence of AF, thus learning from the 
patient characteristics and connections to ultimately lead to a strong 

predictive performance.

4. Discussion

Understanding the risk of AF in stroke patients is critical for effective 
prevention and management of recurrent strokes, and the integration of 
advanced ML technologies offers transformative potential by enhancing 
risk stratification and early detection [47]. In this study, we present a 
novel application of graph neural networks (GNN) for the prediction of 
AF after stroke. Our findings highlight the significant advantages of 
GNNs, demonstrating their superiority over traditional machine 
learning and biostatistical methods in this context.

The use of GNN was based on patient medical diagnoses, ICU data, 
and demographic data, and the performance analysis reveals a clear 
advantage of GNNs over traditional ML models in the task of node 
classification. We compared the performance of traditional ML models 
(Logistic Regression, Random Forest, and XGBoost) to more advanced 
neural network models in the form of GNNs, more specifically GCNs and 
GATs. We proposed a novel custom similarity measure for defining the 
links between nodes in the graphs that serve as GNN inputs. Further
more, we demonstrated methods for interpretability of the both the 
traditional and GNN based models.

Fig. 5. Feature importances for nodes 218 and 1643 in the GAT model, showing the top 15 most important features per node, organised in descending order 
of importance.

Fig. 6. Attention visualisation for node 218. Displayed are the five most rele
vant nodes linked to node 218 based on attentions scores. The thicker the line 
connecting to node 218, the higher the attention coefficient, and in turn, the 
higher the relevance of the connecting node. Blue coloured nodes denote pa
tients without AF, while those coloured red denote patients diagnosed with AF.
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While the Random Forest model stands out among the base models, 
delivering the highest accuracy, recall, and precision scores, its perfor
mance is ultimately surpassed by the GNN models. Specifically, the GAT 
model achieves the highest performance overall (AUC: 0.83 
[0.81–0.87]; accuracy: 0.80; recall: 0.73; precision: 0.35) a notable 
improvement over the best performing base model. This enhanced 
performance highlights the GAT’s superior ability to capture intricate 
patterns and relationships within the data and between examples, which 
traditional models may find harder to identify. Although we did not 
directly assess the effect of the GAT’s attention mechanisms on the 
models, we believe that the role they play could explain their observed 
higher performance.

The differences in results found in Figs. 3–5 can attributed to several 
factors. Firstly, Fig. 3 shows the aggregated SHAP values from the 
Random Forest model across all patients in dataset, whereas the GNN 
results in Figs. 4 and 5 present SHAP values for two specific patients 
(nodes 218 and 1643), providing a more individualised interpretation. 
Secondly, the differences observed in Figs. 4 and 5 highlight funda
mental distinctions between how GCN and GAT models aggregate and 
weigh node features. Unlike GCN, GAT models employ attention-based 
aggregation, learning individualised attention weights for neighbour
ing nodes based on their relative importance. This dynamic, learned 
weighting naturally leads to a distance – and often more nuanced – 
distribution of SHAP values. As a results, when GCN and GAT models are 
trained with independently optimised hyperparameters or graph struc
tures (e.g., varying the optimal number of diagnoses or similarity met
rics), as in our study, the resulting SHAP values will inherently differ due 

to variations in structural definitions and feature relationships. It is 
important to emphasise here that the primary objective of our study was 
hyperparameter and graph optimisation for model performance com
parison, rather than on interpretability.

Direct comparisons of our model performances with other works that 
predict AF may be limited by differences in databases used, patients, 
input data types, and the specific ML algorithms used amongst other 
factors. To highlight this point, there are numerous studies outlined in 
our review [48] that report the application of ML for AF modelling, 
although reported scores are mostly for AF detection rather than risk 
prediction. Also, electrocardiograms (ECGs) were used in most studies 
with input either directly or following some transformation. AF detec
tion is a significantly easier task than risk prediction. AUC scores range 
from 0.92, achieved by Ref. [49] using ECGs transformed with wavelet 
transform as input for a convolutional neural network, to 1.00 by Faust 
et al. [50] though with only 23 ECG records directly input into a LSTM 
network. More relevant work for comparison would be our prior study 
[51], which presents a logistic regression model for the prediction of AF 
in critical care patients, though using data (AmsterdamUMCdb) and a 
different study design (not specific for stroke patients). Model AUC 
scores were 0.82 for ventilated patients and 0.91 for non-ventilated 
cohorts. However, one must emphasise the myriad of differences in 
the data and methodologies used when comparing this work to that of 
others.

During the graph optimisation process, the use of our custom simi
larity measure led to stronger GNN predictive performance than the 
cosine similarity method. This success can be attributed to the method’s 

Table 6 
Characteristics of patients displayed in Fig. 5.

Node (Patient) Outcome Blood Pressure (mmHg) Respiratory Rate (breaths/min) Haemoglobin (g/dL) Diastolic Blood Pressure (mmHg) GCS Verbal Response

218 AF 76.50 21.65 7.67 56.00 4.17
1389 AF 65.75 17.67 7.78 45.23 5.00
568 AF 64.21 26.53 10.33 50.94 4.67
1329 Non-AF 88.25 17.60 15.40 76.27 4.00
1277 Non-AF 86.25 14.63 13.10 73.38 5.00
875 Non-AF 98.96 16.23 13.80 83.83 5.00

Fig. 7. t-SNE reduced dimensionality representation of the node embeddings of the final attention layer of the GAT model. Patients (nodes) detected with AF are 
coloured in yellow, while those without AF detection are coloured purple.
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normalisation by the maximum number of diagnoses between two pa
tients. This normalisation accounts for the disparity in the overall 
number of diagnoses between patients. Patients with many diagnoses 
inherently have a higher chance of sharing some diagnoses with others 
simply due to the volume of diagnoses. By normalising by the maximum, 
the custom method mitigates this effect, ensuring that the similarity 
score does not disproportionately favour patients with more diagnoses. 
Unlike the cosine similarity, our custom method effectively emphasises 
overlaps in diagnoses and, by directly counting shared diagnoses, fo
cuses on commonalities rather than the overall similarity of diagnosis 
patterns.

We integrated our custom approach with an optimisation process 
focused on the number of diagnoses and node linkages, restricting the 
latter to those with the highest similarity scores. By limiting the included 
diagnoses in this way, we ensure that only the most relevant diagnoses 
are retained, effectively reducing dimensionality. This reduction not 
only enhances the efficiency of GNN training but also improves the 
model’s capacity for generalisation. Additionally, optimising node 
linkages ensures that only the most meaningful connections are pre
served, maintaining critical relationships while minimising noise and 
enhancing the overall interpretability of the network.

It is important to note, however, that in our graph construction, 
edges were defined solely based on shared patient medical conditions 
(diagnoses), while other types of clinical data—such as patient vitals, 
medications, and laboratory tests—were reserved exclusively as node 
features. This design choice, while simplifying graph topology and 
reducing noise from potentially redundant connections, introduces a 
limitation by excluding potentially informative inter-patient similarities 
that could arise from non-diagnosis modalities. Alternative approaches, 
such as Patient-GAT [52], demonstrate how multimodal data fusion can 
be integrated directly into edge construction and attention mechanisms, 
enabling richer representations of complex patient relationships. Their 
method dynamically incorporates weighted similarities across hetero
geneous data types, allowing for a more nuanced graph structure that 
may better reflect underlying clinical patterns. Future work could 
explore similar multimodal edge definitions to assess whether incorpo
rating these additional relationships enhances predictive performance 
or interpretability.

GNN models, like any ML model, must be interpretable and trust
worthy to be effectively utilised as decision-support tools in clinical 
settings. Understanding the factors (e.g., variables) that influence pre
dictions is essential for validating the model’s effectiveness and reli
ability through alignment with established medical knowledge. This 
validation process not only aids in model refinement but also ensures 
that the predictions are based on clinically relevant information. To this 
end, our feature importances and attention visualisations for the GNNs 
provide valuable insights, going as far as including patient-specific in
terpretations. Moreover, comparing these interpretations across 
different models—both traditional and advanced—can further enhance 
our understanding of their performance and applicability, thereby 
facilitating more informed and effective use in practice. Referring to this 
study as an example, we have found that the mean respiratory rate and 
patient history information play a significant factor in our GNN models. 
Furthermore, with methods to link patients, in this case with diagnoses, 
GNNs allow a further layer of depth to prediction tasks.

With regard to our focus on AF risk prediction, interpretative ana
lyses have provided valuable insights that deepen our understanding of 
the underlying mechanisms. Specifically, the inclusion of patient clinical 
history has been shown to significantly enhance model performance by 
capturing longitudinal and contextual data that are crucial for accurate 
prediction. Moreover, the features most relevant to AF prediction appear 
to vary between individuals, underscoring the importance of personal
ised approaches in predictive modelling. Additionally, attention visu
alisations generated by the model have proven useful in uncovering 
feature-specific characteristics, allowing the identification of shared 
patterns and relationships among patients with similar clinical profiles. 

These patterns, revealed through the application of GNNs, offer critical 
insights for both researchers and the medical community, supporting the 
identification of key attributes that inform medical evaluations, improve 
triage processes, and ultimately guide more targeted interventions.

The proposed methodological approach represents a pivotal 
advancement towards achieving more accurate and meaningful repre
sentations of patient data, which serve as a foundation for the person
alised management of AF-related stroke, a key objective of large-scale 
initiatives such as the European project TARGET [53,54]. By prioritising 
the most relevant diagnoses and connections, the model effectively 
captures patient-specific nuances, thereby facilitating tailored in
terventions and fostering improved clinical outcomes.

Finally, although this study prioritised the risk prediction of AF as an 
adverse event, the proposed methodology is highly versatile and could 
be readily adapted to predict a wide range of other adverse clinical 
events, offering broad applicability in healthcare research and clinical 
decision-making.

5. Conclusions

This study analysed the use of GNNs to develop a model that allows 
for the prediction of the risk (probability) of developing AF for critically 
ill stroke patients from information present in the MIMIC-IV database. 
Our models allow for the exploration of the multilateral associations of 
adverse risk, developing links between patients based on similar di
agnoses and characteristics. As part of the GAT and GCN model con
struction, we assessed two methods of obtaining the similarity between 
patients; the typical cosine distance and our own novel approach that 
evaluates and compares diagnoses between patients. In this context, we 
found that GNN models present a better risk prediction performance 
compared to that of traditional Logistic Regression, XGBoost and 
Random Forest methods, obtaining an AUC score of 4 percent better.
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M. O’Donnell, A. Laupacis, R. Côté, M. Sharma, J.A. Blakely, A. Shuaib, 
V. Hachinski, S.B. Coutts, D.J. Sahlas, P. Teal, S. Yip, J.D. Spence, B. Buck, 
S. Verreault, L.K. Casaubon, A. Penn, D. Selchen, A. Jin, D. Howse, M. Mehdiratta, 
K. Boyle, R. Aviv, M.K. Kapral, M. Mamdani, Atrial fibrillation in patients with 
cryptogenic stroke, N. Engl. J. Med. 370 (2014) 2467–2477, https://doi.org/ 
10.1056/NEJMoa1311376.

[10] L.A. Sposato, S. Chaturvedi, C.-Y. Hsieh, C.A. Morillo, H. Kamel, Atrial fibrillation 
detected after stroke and transient ischemic attack: a novel clinical concept 
challenging current views, Stroke 53 (2022), https://doi.org/10.1161/ 
STROKEAHA.121.034777.

[11] C. Dussault, H. Toeg, M. Nathan, Z.J. Wang, J.-F. Roux, E. Secemsky, 
Electrocardiographic monitoring for detecting atrial fibrillation after ischemic 
stroke or transient ischemic attack, Circ. Arrhythm. Electrophysiol. 8 (2015) 
263–269, https://doi.org/10.1161/CIRCEP.114.002521.

[12] L.A. Sposato, L.E. Cipriano, G. Saposnik, E.R. Vargas, P.M. Riccio, V. Hachinski, 
Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a 
systematic review and meta-analysis, Lancet Neurol. 14 (2015) 377–387, https:// 
doi.org/10.1016/S1474-4422(15)70027-X.
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