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Abstract

Alzheimer’s disease (AD) is a progressive and degenerative neurological disorder that

profoundly impacts daily life. As the most common form of dementia, accounting for up

to 80% of all cases, AD is marked by a gradual decline in memory, thinking, and behav-

ior. What often begins with mild symptoms progresses to severe cognitive and physical

impairments that compromise independence and quality of life. Despite affecting more

than 55 million people worldwide, the precise causes of AD remain unclear and no cure

currently exists, though treatments can help manage symptoms and slow progression.

This thesis investigates the classification and prediction of AD by applying machine

learning (ML) and data analytics techniques to genetic and multi-source datasets. A

key challenge in AD research lies in the immense size of genetic data, which makes anal-

ysis computationally intensive. To overcome this, transfer learning is introduced—an

approach not previously applied in this domain. Convolutional Neural Networks (CNNs)

were first trained on genome-wide association study (GWAS) data from the Alzheimer’s

Disease Neuroimaging Initiative, and deep transfer learning was subsequently used to

refine the model with a separate AD GWAS dataset. The final feature set extracted

from this process was classified using a Support Vector Machine, achieving an accuracy

of 89% and demonstrating the effectiveness of the proposed strategy.

Beyond predictive accuracy, high-dimensional data raises challenges for interpretabil-

ity. To address this, the thesis develops a hybrid feature selection method combining

association testing, principal component analysis, and the Boruta algorithm to iden-

tify key predictors of AD. The selected features were then applied to wide and deep

neural network models, which maintained high accuracy despite the dimensionality re-

duction—highlighting the robustness of the approach.
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Expanding beyond genetic data, a further methodology was applied using the multi-

source dataset from the National Alzheimer’s Coordinating Center was analysed, en-

compassing 45,923 participants, 1,023 variables, and 169,408 records across baseline and

follow-up visits. Using the Boruta algorithm, a relevant subset of features was extracted,

and among the tested classifiers, Random Forest achieved strong and balanced perfor-

mance.

Finally, recognising that the “black-box” nature of ML models can limit clinical adop-

tion, this work emphasises interpretability. Extended experiments uncovered meaningful

patterns and risk factors for AD, with the Clinical Dementia Rating tool emerging as

a particularly significant predictor. These findings not only strengthen the predictive

framework but also provide clinically relevant insights into AD progression and risk

profiling.
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1.1 Introduction

Alzheimer’s disease (AD) is the most prevalent kind of dementia, accounting for 80%

cases of dementia [1]. It impairs memory, thinking, conduct, and overall capacity to do

everyday tasks such as eating and bathing etc. The illness can generally be classified

into two subcategories: early-onset AD (EOAD) and late-onset AD (LOAD) [2]. The

EOAD is almost entirely a genetic disease with heritability ranging from 92% to 100%

[3] where the affected first-degree relatives account for 35% to 60% of EOAD patients.

Usually, the EOAD patients experience their first symptoms between the age of 30 and

65, with the majority of EOAD patients diagnosed between the ages of 45 and 60 years

[4]. In contrast to EOAD, the LOAD affects elderly people (usually over 65 years of age)

acounting 90-95% of the AD cases [5]. LOAD appears to be a more complicated illness

induced by genetic as well as the environmental and lifestyle factors.

AD poses significant challenges to individuals and their families, but these challenges

can be decreased with the use of medical systems. The development of medical informa-

tion systems has been of paramount importance to medical societies all over the world.

Such developments have been aimed at improving the utilisation of technology in med-

ical applications. To this end, new and emerging technologies such as expert systems

and various Artificial Intelligence (AI) methods and techniques have been employed and

developed to enhance the decision support tools used in the medical field. The field of

scientific research employs Machine Learning (ML) models as a strong powerful tech-

nique according to [6]. Through this technology computers learn from data to develop

predictive models for medical diagnosis and prognosis. Medical field processes can be-

come automated through these models which deliver both fast and precise diagnosis and

treatment solutions. ML models enable the analysis of big data to detect patterns which

leads to important discoveries about disease causes and mechanisms. These models as-

sist medical professionals to make improved decisions through data analysis which leads

to better patient care [7].

During the last ten years ML analytics have gained widespread use for AD through the

application of Support Vector Machine (SVM), Artificial Neural Network (ANN) and

Deep Learning (DL), a specialised subset of ANN that focuses on deeper architectures,

being the most widely used classification techniques. The ability of DL to handle big

datasets makes them ideal for feature extraction which leads to better learning model

performance [8] [9], [10], [11], [12]. The accuracy of Alzheimer’s classification improves
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through ensemble methods which combine predictions from multiple models [13]. The

method provides advantages through reduced overfitting risk which results in better out-

comes. Researchers have investigated Transfer Learning (TL) [14] as a method to apply

knowledge obtained from one task to another. The application of TL to Alzheimer’s

could provide advantages because it enables the utilisation of existing data from other

diseases for Alzheimer’s research. The ML techniques show promise to enhance our

understanding of AD diagnosis which will lead to better care for affected patients.

1.2 Problem Statement

AD represents a degenerative neurological disorder which causes permanent damage to

individuals and their families as well as healthcare organisations and economic systems

across the world. Dementia affects 55 million people worldwide and disproportionately

affects elderly individuals. The annual number of dementia diagnoses reaches 10 million

according to available statistics. The disease remains incurable and no person can avoid

developing AD [15].

The disease produces a slow deterioration of memory functions which eventually re-

sults in patients losing their ability to identify family members and remember things

and follow basic instructions. The disease progression brings both physical destruction

to patients and emotional suffering to their families because they lose their important

memories and essential abilities.

The diagnosis of AD at an early stage combined with precise identification remains es-

sential for initiating proper interventions which lead to better treatment results. ML

techniques demonstrate promising capabilities for AD classification through the analysis

of neuroimaging data, genomic information and clinical record information. The devel-

opment of effective ML models for AD classification faces substantial obstacles in the

current research landscape. The development of ML models for AD classification faces

three major obstacles which include managing large datasets and dealing with imbal-

anced classes and maintaining model interpretability.

The research addresses these obstacles through the development of new ML algorithms

and methodologies which were aimed for AD classification. The study will focus on:

Developing robust feature selection techniques to effectively leverage genetic and multi-

source data. Developing new methods to achieve precise cognitive state classification
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with both high accuracy and balanced performance. The research applies interpretable

ML models to achieve transparent decision-making while delivering meaningful insights

about the decision processes. The research aims to improve current AD classification

methods using ML techniques which will lead to earlier diagnosis with better accuracy.

By integrating ML tools into clinical practice, this study seeks to enhance patient care

and contributing to the global fight against AD.

Research Questions:

Can ML algorithms accurately classify individuals with AD from Normal Controls (NC)

using genetic markers?

Can AI algorithms be developed to identify novel biomarkers in AD data that have not

been previously identified by traditional statistical methods?

How can TL and domain adaptation be employed to improve the generalisation and

robustness of AI models for AD classification across different populations and datasets?

What are the most effective neural network architectures for classification of AD using

GWAS data?

Can AI be used to differentiate between different classes of individual’s cognitive state?

Can AI predict individual’s cognitive state in the future?

How can interpretable AI techniques be applied to AD data analysis to enhance the

understanding and transparency of the decision-making process?

1.3 Aim and Objectives

This research project focus on developing ML-based approaches for classifying and pre-

dicting AD using genetic markers and multi-source data. The proposed approach is

designed to continuously evolve and improve its analysis of AD risk factors, as well as

accurately predict the onset of the disease at an early stage. This research aims to

enhance the knowledge of AD risk factors and assist clinicians in making informed de-

cisions. Additionally, the proposed approach is intended to be cost-effective, enabling

early detection and management of AD. The objectives are as follows:

1. Conduct a comprehensive review and identify gaps in the literature.

2. Identify and access appropriate open-source datasets from AD institutions.

3. Determine best practices for Quality Control (QC) in order to eliminate bias and
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inaccurate data.

4. Solve the issue of dimensionality reduction by using appropriate feature selection

approach(s) and address the data size challenges associated with the GWAS.

5. Develop effective and reliable ML approaches for classification and prediction of AD.

6. Extract patterns in data to serve for the ML model interpretability and highlight the

most important factors related to AD.

1.4 Contributions to Knowledge

This research project presents new approaches for analysing AD datasets to enable the

classification of cases and controls. The approaches presented provide a reliable data

pipeline for pre-processing multi sources and genetic data, selecting relevant features,

and utilising ML algorithms for data modeling. As a result, the research discusses vari-

ous contributions:

Major Contributions

• Robust Feature Selection for SNPs in AD Classification Developed a hy-

brid dimensionality reduction and feature selection approach to identify the most

promising Single Nucleotide Polymorphisms (SNPs) for AD classification. En-

hanced model performance and robustness through the selection of distinguishing

genetic features. (Related to Objectives 3 and 4)

• New Methodology for Multiclass Classification of AD Proposed a novel

methodology to classify individuals into NC, Mild Cognitive Impairment (MCI),

or AD. Achieved high and balanced accuracy using a small number of features,

demonstrating efficiency and potential for real-world diagnostic use. The method

outperforms existing approaches and is generalisable to other chronic diseases.

(Related to Objective 5)

• Application of Deep Transfer Learning in GWAS Pioneered the use of deep

TL to address data size challenges in GWAS for AD. Explored and compared

various TL techniques for improved model generalisation and accuracy. (Related

to Objective 5)
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Minor Contributions

• Systematic Review on ML in GWAS for AD Conducted a comprehensive

systematic review on the application of ML algorithms in the analysis and inter-

pretation of GWAS data for AD. Covered topics including supervised and unsu-

pervised learning, deep learning techniques, evaluation metrics, and comparison of

existing approaches. (Related to Objectives 1 and 2)

• Neighbour SNP Selection Approach Proposed an approach to evaluate the

impact of neighbouring SNPs on classification accuracy in GWAS-based models.

(Related to Objective 4)

• Extraction of Human-Readable Rules from ML Models Enhanced model

interpretability by extracting human-readable rules from AD data. Facilitated

understanding of significant contributing factors and underlying data patterns.

(Related to Objective 6)

1.5 Structure of the Thesis

The reminder of the of this thesis organised as follows:

Chapter 2 - Literature Review: This chapter discusses what AD is and the common

types, as well as the treatments currently used to mitigate the severity of the disease.

It provides information on the risk factors associated with AD and outlines diagnosis

strategies. Chapter 2 delves further into the literature review related to ML and current

algorithms used to analyse AD datasets.

Chapter 3 – Machine Leaning Overview: This chapter provides an in-depth exploration

of the various ML models, learning algorithms, and classification techniques that can

be utilised to solve a variety of problems in the area of AD. It will discuss the different

types of models, algorithms, and techniques available. Additionally, it will discuss the

various types of feature extraction techniques that can help with the problem of curse

of dimensionality. Finally, it will provide an overview of the approaches and techniques

that can be used for rule mining and extracting human readable rules from the data.

Chapter 4 – Deep TL in GWAS: In this chapter, for the first time in literature, TL

was used to build a classification models for AD and NC from GWAS data. After QC
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steps and feature selection, a pre-trained model of GWAS data on human and animals

is transferred to be used on another human GWAS dataset. This is conducted to solve

the data size associated with GWAS (extremely high numbers of features and only small

sample size).

Chapter 5 – Wide and deep learning approaches in GWAS: in this chapter, different

neural network architectures have been utilised, wide (single hidden layer with high

number of neurons) and deep (multiple hidden layers with small number of neurons in

each layer) learning are used in order to increase the classification accuracy of AD and

test which architecture can better classify AD through different experiments.

Chapter 6 - ML for AD classification: In this chapter, access to the National Alzheimer’s

Coordinating Center dataset has been granted to build reliable and high accuracy ML

models for AD classification and prediction state of cognitive state of a person four years

ahead. The methodology employed in the chapter consist of several stages starting from

data cleaning to feature selection and classifiers constructing. In addition, rule mining

techniques are employed to extract human-readable rules to understand factors that in-

fluence the risk of AD.

Chapter 7 - Conclusion and future work: The conclusion section of the research presents

the overall findings of the study and discusses its outcomes highlighted in this chapter.

Future work is also discussed that can be done to improve the research domain.

1.6 Chapter Summary

The chapter highlights the growing prevalence of AD and the challenges faced in its early

detection and diagnosis. It emphasises the need for advanced AI techniques to analyse

large and complex datasets associated with AD, such as multi sources and genetic data.

The research objectives are then presented, outlining the specific goals and inquiries of

the study. These objectives include developing novel algorithms for feature selection,

data preprocessing, and utilising ML algorithms to model AD data accurately.

Lastly, the chapter concludes by providing a brief outline of the subsequent chapters in

the thesis. This roadmap highlights the structure and content of the thesis, indicating

how the research will unfold, and what readers can expect from the subsequent chapters.



Chapter 2

Literature Review

Parts of the research defined in this chapter has been published in IEEE Access.

S. Alatrany, A. J. Hussain, J. Mustafina and D. Al-Jumeily, ”Machine Learning Ap-

proaches andApplications in GenomeWide Association Study for Alzheimer’s Disease: A

Systematic Review,” in IEEE Access, vol. 10, pp. 62831-62847, 2022, doi: 10.1109/AC-

CESS.2022.3182543. [16]
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2.1 Introduction

Elderly people affected by AD are experiencing a progressive decline in cognitive abilities,

slowly losing their memories, independence, and ability to understand their surround-

ings. This challenging experience is endured by the individuals affected, as well as their

caregivers and families. Therefore, it is crucial to conduct extensive research into this

condition and its associated risk factors, symptoms, and diagnostic methods, to provide

the best possible care and support to those affected.

In this chapter, an in-depth background research is conducted into AD, exploring the

pathological development of the illness, the types of risk factors, the symptoms of the

condition, and the latest diagnosis methods. A comprehensive overview of the use of

ML in the classification and prediction of AD was also provided.

2.2 Medical Diagnosis

A medical diagnosis is the process of determining which condition or disease is respon-

sible for a person’s symptoms. This typically requires gathering information from the

patient’s medical history and conducting a physical examination. During the diagnosis

process, one or more diagnostic procedures, such as medical tests, may also be performed

to aid in identifying the underlying cause of the symptoms.

Diagnosing a medical condition can be challenging due to the nonspecific nature of many

symptoms. For instance, a reddened skin symptom (erythema) can indicate many dif-

ferent conditions, making it impossible for a healthcare practitioner to determine the

underlying problem by looking at it alone. Therefore, differential diagnosis, which in-

volves comparing and contrasting different possible explanations, is necessary.

This process involves identifying all possible diseases or conditions that could cause the

signs or symptoms and then eliminating or at least reducing the likelihood of each entry

through further medical tests and other processes. The aim is to reach a point where

only one condition or disease remains probable after all other possibilities have been

ruled out or deemed less likely. [17].

No single test can be used to diagnose AD disease. Instead, physicians assess a combi-

nation of medical history, symptoms, physical exams and tests [21]. By reviewing the

medical history and physical exam, other conditions causing similar symptoms may be
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eliminated.

Currently, diagnosing AD in its earliest stages is a complex process. The diagnosis of

Alzheimer’s requires a comprehensive medical assessment which includes an evaluation

of medical records, mental health testing, physical and neurological exams, and imaging

tests such as brain scans. The difficulty of diagnosing this condition depends on which

stage it is found; recognising it in its early stages is far more challenging.

The initial step in diagnosing AD is recognising its signs and symptoms, which become

more noticeable as the condition progresses. If the symptoms are obvious, patients will

then be encouraged to do some tests. In cases where the indications are not straight-

forward or peculiar, doctors may suggest that a brain imaging test such as magnetic

resonance imaging is done to affirm the existence of AD and distinguish it from other

kinds of dementia or neurological issues [18].

2.3 Overview of Neuron Structure

A thorough examination of this fatal brain condition requires first studying the normal

functioning of the human brain and the structure of neurons. Human brain operations

depend on complex electrical and chemical systems which control all bodily activities.

Neurons function as electrically excitable cells which conduct information by transmit-

ting electrical and chemical signals. The brain contains vast neural networks which make

up a substantial portion of the nervous system [19].

The human nervous system contains two fundamental elements.

• The Central Nervous System (CNS) functions as the body’s control centre and

contains both the brain and spinal cord. The system functions to receive sensory

information then process it while generating motor responses.

• The Peripheral Nervous System (PNS) includes every neuron together with neuron

components that exist outside the CNS. The system performs two main functions

which include sending sensory data to the CNS and controlling motor outputs to

produce body responses [20].

A neuron functions as a distinct unit which accepts information from other neurons then

processes the input and delivers the output to additional neurons. The human nervous
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system consists of three neuronal types which serve different functions including sen-

sory neurons motor neurons and interneurons. The nervous system obtains information

through sensory neurons which operate as its primary information gathering agents.

These cells obtain environmental information together with internal data which they

deliver to the brain for processing. The motor neurons act as transmission agents be-

cause they deliver instructions from the brain and spinal cord to muscles and organs and

glands for physical action. Interneurons serve as connectors within the nervous system.

The neural network functions through interneurons which receive signals from certain

neurons before transferring them to other neurons to maintain system communication.

These three neuron types create a complex web of communication which allows the

human body to detect and understand and generate reactions to environmental stimuli.

To gain a deeper understanding of this severe brain disorder, it is essential to first

understand how the human brain operates and the structure of neurons. The human

brain functions through intricate chemical and electrical processes that regulate bodily

functions. Neurons, which are electrically excitable cells, communicate and transmit

information through electrical and chemical impulses. These neurons form vast networks

within the brain, which together constitute a significant part of the nervous system [19].

2.3.1 Anatomy of a Neuron

The main functions of neurons which consist of information reception and processing

occur at the dendrites together with the cell body as illustrated in Figure 2.1. The

signals that reach neurons have two functions: excitatory signals can activate the neu-

ron to generate electrical impulses and inhibitory signals work to stop the neuron from

producing electrical signals.

Most neurons possess many dendritic trees which receive various input signals and each

neuron has multiple dendritic sets that process thousands of signals. All received signals

determine how likely a neuron will produce an electrical impulse. The neuron fires an

impulse when the total input value surpasses a particular threshold point.

A neuron depends on its axon to distribute electrical signals to other neurons. The

electrical signals begin at the soma which serves as the main body of the neuron before

moving through the axon. The axon extends beyond the soma into multiple branches

which create connections that reach other neurons. It comprises A critical feature of the
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neuron includes two main parts which are the axon hillock for electrical signal generation

and the axon terminals that create synaptic connections with other neurons. The size

of the human hair represents the typical scale of the axon thickness although the length

and dimensions change based on the specific neuron type.

The formation of connections between neurons occurs through dendritic and cell body

attachment which creates synaptic junctions. Synapses function as essential communica-

tion points which transfer information from the presynaptic neuron to the postsynaptic

neuron [21].

Most synapses use chemical messengers known as neurotransmitters to transfer informa-

tion between neurons. The termination of electrical signals in an axon leads to neuro-

transmitter molecule release from the presynaptic cell. The neurotransmitter molecules

pass through the synaptic cleft space to bind with receptors on the postsynaptic cell

membrane thus sending inhibitory or excitatory signals [22].

Figure 2.1: Structure of biological neuron. Taken from

[23]

The human body contains various types of neurons responsible for relaying information.

In the brain, neurons play a key role in storing and communicating information. Diseases

like dementia damage these neurons, disrupting communication within neural networks.

AD is a progressive and fatal illness that develops gradually. It begins with the formation

of two abnormal protein fragments called plaques and tangles (see Figure 2.2). These

proteins build up in the brain and damage its cells. In the early stages of AD, clusters

of protein fragments (plaques) form between nerve cells, surrounding and damaging

healthy brain cells. Over time, these plaques lead to the formation of twisted strands of

another protein, known as tangles [24].

Although there is no conclusive evidence that plaques and tangles are the main cause of

neuron death, they are considered the leading suspects in current research [25]. Plaques
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are made up of beta-amyloid, small protein fragments that clump together, often in the

fatty coating surrounding nerve cells [26].

Plaques and tangles first appear in the hippocampus, the brain region responsible for

forming memories [27]. As they accumulate, they damage and kill cells in this area,

making it harder for individuals with AD to form new short-term memories, such as

recalling events from a few hours or days ago.

As the disease progresses, plaques and tangles spread to other areas of the brain, causing

further neuron death. This progression explains the stages of AD. Since the hippocampus

is affected early, people with AD typically struggle with short-term memory loss. Later,

language skills are impaired, making it difficult to speak or form sentences [28].

Over time, the disease affects the part of the brain responsible for logical thinking,

making it hard for individuals to plan activities or solve problems. Eventually, it spreads

to areas that control emotions, leading to mood swings and anxiety [29].

When plaques and tangles reach the emotional centres of the brain, patients experience

ongoing mood changes. As the damage continues, these proteins affect the sensory areas,

which are responsible for understanding the environment. At this stage, individuals may

have trouble recognizing their surroundings and can experience delusions.

Figure 2.2: Pathological hallmarks of AD brains. Taken from

[30]

2.4 Risk factors for Alzheimer’s Disease

Age is found to be one of the well-known risk factors for AD. It is mostly seen in those

over 65 years old, and it is rare for younger individuals to develop the disease. The aging

process can cause multiple organs and cell systems to be affected as well as decrease in

brain volume and weight. Thus it is difficult to distinguish from normal aging process

when it comes to early AD detection [31].
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Research has revealed that genetics are a significant contributor to the onset of AD. Of

all AD cases, 70% have been linked to genetic influences. Furthermore, most cases of

EOAD appear to be inherited [32].

Environmental factors like air pollution, diet, and infections can cause oxidative stress

and inflammation, thus increasing the likelihood of AD [33]. Additionally, older people

with AD typically suffer from medical issues such as obesity and diabetes; all of which

are linked to a higher risk of AD [34].

2.5 Genome Wide Associations Study

GWAS is a powerful method for uncovering the genetic basis of complex diseases which

have traditionally been difficult to study. By using genome-wide data, GWAS is able to

detect and identify risk factors for diseases such as AD which would have otherwise been

difficult to detect. By examining the genetic architecture of a disease, researchers can

better understand its underlying mechanisms, which could in turn lead to the develop-

ment of new treatments and therapies. This kind of analysis is particularly important

for understanding the genetic basis of diseases, as it can help us to identify which ge-

netic variants are associated with the phenotype and how strongly they are associated.

By understanding the relationship between genetic variants and disease, it can better

predict an individual’s likelihood of developing the disease [35].

Recent advances in Deoxyribonucleic Acid (DNA) sequencing technology have made it

possible to sequence the entire human genome within a single day. This has been made

possible by the development of next-generation sequencing technology, which is more

cost-effective and rapid than previous methods such as Sanger sequencing [36].

GWAS have had a significant impact on the field of human genetics, but there are still

some challenges associated with computational and statistical methods that can make

conducting such an analysis difficult. One of the main challenges is the scalability of

the dataset [37]; GWAS datasets can contain hundreds of thousands to millions of SNPs

with hundreds of individuals. This means that the algorithms used for GWAS need to

be extremely scalable in order to avoid using huge amounts of computational resources

and reducing the time it takes to conduct GWAS.

In addition, GWAS is successful in detecting single SNPs associated with a phenotype

under study. Nevertheless, GWAS could not be able to detects multi-SNPs interactions
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in chronical diseases such as AD. This is due to the complexity of the disease, multiple

SNPs could together influence the initialise the disease instead of a single SNP. Each

of these SNPs might have only a weak relation to the disease making it difficult to be

detected alone. Therefore, multi-SNPs analysis needs to be utilised [35].

2.6 Machine learning in Alzheimer Disease

The application of ML can help early detection and diagnosis of AD. ML algorithms may

be able to identify individuals at risk of developing AD before the onset of significant

symptoms by analysing patterns in brain scans or cognitive test scores [38] [39] [40] [41]

[42] This could allow for earlier intervention, potentially slowing disease progression.

2.6.1 Machine learning in GWAS for Alzheimer’s Disease

There are several related work addressing the use of ML in GWAS data for AD. Araujo

et al. [43] suggested to use biologically motivated SNP selection as an input to Random

Forest (RF) for predicting patient risk of developing AD. The findings reveal that non-

disease-related SNPs perform similarly to or better than disease-related SNPs. As the

identification of novel relevant markers is the most important effort in GWAS. These

findings suggest that SNPs from unrelated sets might be new candidates for AD [43].

Similarly, authors in [44] proposed an approach to find SNPs linked with AD in a GWAS

data collection of 550 controls and 861 cases. The authors employed single-locus analysis

to filter the data depending on a p-value threshold, resulting in a subset of SNPs that

were used by RF to perform a multi-locus analysis. The single-locus analysis yielded 199

SNPs. Using 10-fold Cross Validation (CV) in RF modelling, these SNPs, together with

other SNPs that associated to AD, produced a predictive subgroup for AD prediction

with an average error of 9.8% [44].

In addition, RF was also included in a methodology proposed by [45]. The method

begins by performing a p-value assessment to identify a cut-off point that separates the

SNPs into two separate groups: those that are informative and those that are irrele-

vant. The informative SNPs group is further broken down into two sub-groups: highly

informative SNPs and weak informative SNPs. These two sub-groups are the only SNPs

considered when sampling the SNP subspace for constructing the trees of the forest.
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Whenever a node is split at a tree, the feature subspaces always contain highly informa-

tive SNPs. This ensures that the trees of the forest are built with the most informative

SNPs, providing the forest with a solid foundation for making accurate predictions. The

approach also helps to reduce the dimensionality of the data, meaning that the model

can be trained with less data and still achieve good results [45].

In a similar manner, SVM classifiers of various kernels were applied to GWAS data based

on chosen 21 variations most related with AD using two techniques, Correlation-based

and Chi-squared. The authors indicated that the results for SVM trained model utilising

an RBF kernel reached the highest accuracy of 76.70 percent [46].

Chang et al. [47] introduced GenEpi, a computational package that uses L1-regularized

regression to find epistasis related with phenotypes. GenEpi uses a two-stage modelling

methodology to identify both within-gene and cross-gene epistasis. The ML model was

trained and evaluated on genetic data of 364 individuals. A total of 24 SNPs from 12

genes were used in the final model. This model has achieved a 2-fold CV accuracy of

0.83 and a leave-one-out CV accuracy of 0.83 [47].

FRESA.CAD’s (Feature Selection Algorithms for Computer Aided Diagnosis) bench-

marking tool was employed to forecast a person’s risk of acquiring AD by contrasting

and evaluating several ML models, including Bootstrap Stage-Wise Model Selection

(BSWiMS), Least Absolute Shrinkage and Selection Operator (LASSO), and Recur-

sive Partitioning and Regression Trees (RPART). The Area Under a Receiver Operating

Characteristic Curve (AUC-ROC) varied between 0.60 and 0.70. The BSWiMS, LASSO,

and RPART performed similarly. However, the authors indicator that an ensemble model

of all approaches performed the best, with a AUC-ROC score of 0.719 [48].

Romero-Rosales et al. present a comparison of three ML models: genetic algorithm, step-

wise, as well as LASSO approach for developing models for AD classification trained on

data of 813 cases and 1,017 controls. Their initial results conclude that LASSO outper-

formed the other two methods. Their hypothesis is to use the markers of the incorrectly

classified samples to train the model, so that it can better identify and classify similar

samples in the future. By doing so, the authors found that the accuracy of LASSO

improved by around 5%, reaching 0.84 Area Under the Curve (AUC) [49].

Aflakparast et al. [50] present a novel strategy, cuckoo search epistasis, for detecting

epistatic interactions in case–control studies. This technique combines a Bayesian scor-

ing function with a heuristic search algorithm. The algorithm was able to find SNPs

that were reported to be associated with AD according to the literature [50].
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Stokes et al. assess the efficacy of label propagation, a multivariate graph-based ap-

proach for effectively ranking SNPs in GWAS. The top-ranked SNPs were evaluated in

terms of classification performance, and prior evidence of being linked with AD. label

propagation performed much better in categorisation than other control approaches.

There were 14 SNPs in one dataset among the 25 top-ranked SNPs found by label prop-

agation that had evidence in the literature of being linked with AD [51].

Li et al. present a novel Deep-Learning Genomics (DLG) model and apply it to the mul-

titasking categorisation of AD progression. For the DLG model, the ResNet framework

was employed using 1461 patients’ genotyping data including 366 NC, 473 MCI and 622

Alzheimer’s cases. The results of the DLG model were compared to those obtained using

a basic Convolutional Neural Network (CNN) structure. When applied to the course of

AD, the authors claimed that DLG model can obtain improved accuracy and sensitivity

[52].

Moore et al. present Crush, a stochastic search technique to explore relations between

genes in genome-wide data as an application of multifactor dimensionality reduction.

Applying the approach to an AD GWAS dataset, results showed that Crush multifactor

dimensionality reduction was capable of identifying a collection of interacting genes with

biological linkages to AD [53].

By leveraging tree-based ML methods and a set of 145 SNPs associated with AD that

were previously documented in DisGeNET which is an invaluable platform that offers

comprehensive data on human genes and their associated variants that are related to dis-

eases. The authors indicated that the ML models were able to accurately classify cases

of LOAD and healthy control subjects with high performance. The model achieved an

accuracy of 0.80 and an AUC-ROC of 0.91 when using gradient boosting algorithm [54].

In reference [55], the authors accessed GWAS data of 431 participants (divided into 304

AD cases and 127 NC) from ADNI with the intention to find non-linear SNPs epistasis

interactions. After data pre-processing 447,538 SNPs retrieved for subsequent analysis.

To reduce the number of SNPs, they applied three association test methods, to test the

association of each SNP with AD. A p-value of 0.01 used as a threshold for signification

SNPs. 3,502 significant SNPs resulted from intersection of the three association tests,

this number then was further reduced to 1050 SNPs using TuRF algorithm. An en-

semble learning approach includes Classification and Regression Trees, extreme gradient

boosting and RF is utilised, by integrating the top 20 ranking SNPs from each method

to identify key SNPs that are involved in non-linear epistasis interactions in GWAS of
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AD. Multifactor dimensionality reduction used to find from 2-way up to 5-way SNPs

interaction from the identified SNPs. The accuracy of 5-way models varied between

0.8674 and 0.8758. Their proposed framework for identifying disease-causing genes can

identify high-risk genes and epistasis interactions.
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The summary table from the literature review shows how different studies have addressed

the difficulties of creating reliable ML models from GWAS data for AD. The majority of

these studies have one main weakness which is their dependence on small datasets. The

models may produce biased results because of inadequate training data which restricts

their ability to generalise and perform well. GWAS research has extensively documented

this issue because obtaining large datasets needs both substantial financial support and

expert participation.

The majority of studies included validation methods to reduce bias while improving

model accuracy in their research. The most popular validation method used was cross-

validation but the authors of [43] chose out-of-bag error and [53] did not implement any

validation strategy. The majority of studies maintained balanced case-control ratios to

address class imbalance issues. The study based on UK Biobank data [54] demonstrated

a major class imbalance issue because it contained many more control samples than

Alzheimer’s disease cases. Different studies applied different methods to address class

imbalance and dataset bias which resulted in inconsistent and sometimes inadequate

methodological approaches.

The analysis of validation methods used in reviewed studies shows internal validation

through cross-validation was common yet external validation with independent datasets

was rarely found. The majority of studies used internal validation techniques which

included 10-fold, 2-fold and Leave-One-Out Cross-Validation (LOOCV) to assess model

performance. Study [44] used 10-fold CV to validate a Random Forest model which

reduced overfitting and produced more dependable performance metrics. The research

by Chang et al. [47] used both 2-fold CV and LOOCV to achieve a 0.83 accuracy score

which demonstrated strong internal model stability. Despite these advantages, there

were notable limitations. The majority of research failed to present essential statistical

measures which included accuracy score variance and standard deviation across different

folds. The absence of these critical metrics prevents complete evaluation of model sta-

bility together with performance variability which are essential for assessing ML model

robustness. The main weakness of these studies was their failure to conduct external

validation through testing models on separate datasets. The studies failed to validate

their results through external datasets which makes it difficult to determine how well

the models would perform with different populations or real-world clinical data.

The studies from the literature also shows that robustness and data reliability receive

inadequate attention despite being essential elements for machine learning applications
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particularly those working with complex high-dimensional data like GWAS. The major-

ity of studies do not explain their methods for handling missing data which remains a

frequent and critical issue in genomic datasets. The studies [43], [44], [45], and [55] do

not provide information about missing value treatment which makes readers uncertain

about the management of potential data gaps. The studies [47], [49] and [50] presented

more transparent approaches by implementing reference-based imputation and median

substitution methods for data handling. The studies lack standardisation because re-

searchers did not establish clear reporting practices. The process of hyperparameter

tuning which is essential for building robust models remains poorly documented. The

majority of studies either selected parameters manually or omitted description of their

process while [49] and [51] used cross-validation or empirical testing for model tuning.

The failure to document this process restricts both the interpretability and replicabil-

ity of the results from machine learning models that work with small sample sizes and

extensive feature sets.

2.6.2 Challenges of Using ML in GWAS

Machine learning models encounter multiple issues with applying GWAS data because

of its inherent properties. The main challenge in GWAS datasets arises from their high

dimensionality because they contain between hundreds of thousands and millions of

SNPs while the sample number stays relatively small. Models become vulnerable to

overfitting because of the large feature space relative to sample size which creates the

“curse of dimensionality” problem when they select noise instead of meaningful biologi-

cal signals. Model performance becomes misleading when dimensionality reduction and

feature selection techniques are not applied because of which models fail to generalise.

The small sample sizes found in multiple studies from the review act to worsen this

situation. The scarcity of available samples reduces statistical power for models and

produces false positive results. The genetic effects in Alzheimer’s disease and other

complex diseases become challenging to detect because they remain subtle and multiple

interacting factors influence them. The small number of participants in studies creates

challenges to divide data according to important variables such as age, sex or ancestry

which may result in confounding variables that affect model prediction accuracy.
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The quality and preprocessing of data together with GWAS data dimensions affect the

reliability and reproducibility of machine learning results. The reviewed studies used

different levels of preprocessing method complexity in their pipelines especially when it

came to SNP filtering, imputation, normalization and feature selection. Multiple studies

implemented biological feature selection approaches to decrease data dimensions while

keeping important genetic data points. Araujo et al. [43] and [45], for example, used

SNPs derived from the AlzGene database, leveraging prior biological knowledge to guide

model input selection. The studies [44], [46], and [50] used p-value thresholds and ² sta-

tistical tests to select informative SNPs which reduced noise and focused on potential

causal variants.

Preprocessing strategies showed inconsistent approaches despite the implemented ef-

forts. The full documentation of essential preprocessing procedures such as genotype

imputation and quality control filters like minor allele frequency thresholds and Hardy-

Weinberg equilibrium checks remains incomplete in various studies making it difficult

to reproduce their results. The large variations in dataset size from under 200 cases [45]

to more than 75,000 controls in [54] indicate substantial differences in data availability

and quality. The absence of standardization in pipelines creates biases and reduces the

ability to compare model performance metrics due to heterogeneity.

The application of ML to GWAS data faces a major limitation because it lacks the abil-

ity to interpret results. Complex models including Random Forests [43], [44], [45] and

Support Vector Machines [46] and DL approaches like ResNet [52] achieved competitive

accuracy yet they operate as ”black boxes” which prevents understanding the biological

mechanisms behind their predictions. The inability to understand how specific SNPs

and their interactions contribute to results creates an obstacle for clinical and transla-

tional research to discover biomarkers and develop hypotheses. The implementation of

interpretability techniques through LASSO [48] [49]and epistasis-focused algorithms [47]

[50] remains limited and lacks thorough biological validation.

2.6.3 Machine Learning in Multi-sources Data for Alzheimer’s disease

In this section various ML strategies have been implemented for the diagnosis of AD us-

ing muti-modal data, including SVMs, ANNs, RFs and DL models. In [56], SVMs were

utilised to differentiate between Alzheimer’s and MCI based on Magnetic Resonance
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Imaging (MRI) scans, yielding a classification accuracy of 90.5% for classification of AD

and NC [56]. Additionally, ANNs and RFs were applied to classify Alzheimer’s from

functional MRI images with an accuracy of 87.5% using ANNs and 90% using RFs.

DL models have been applied to AD, such as CNNs and Recurrent Neural Networks

(RNNs). Different CNN architectures and methodologies were used to identify AD,

MCI and NC from MRI scans with high accuracies [57] [58] [59]. Other works utilized

an RNN model to predict the progression of AD [60] [61]. While in [62], the authors

proposed a framework, combining CNN and RNN for longitudinal analysis of structural

MR images, yielded an AD classification accuracy of 91.33% when compared to NC.

In addition to MRI scans, ML has been used in the diagnosis of AD through the anal-

ysis of other data sources such as electroencephalography and cerebrospinal fluid cere-

brospinal fluid biomarkers. For example, one study combined SVMs with electroen-

cephalography data to distinguish between AD and MCI with 96% accuracy [63]. An-

other research project combined SVMs with cerebrospinal fluid biomarkers to differen-

tiate between AD and non-demented controls, achieving 93.2% accuracy [64].

The combination of GWAS with neuroimaging and clinical records data has become a

fundamental research method for AD because it helps scientists understand how genetic

factors interact with disease symptoms. This method overcomes the restrictions of stan-

dard GWAS because it considers the diverse characteristics of AD pathology.

GWAS research has proven effective when combined with multimodal imaging data

to improve understanding of AD progression. In the study [65] implemented a new

multimodal neuroimaging phenotype which combined cortical amyloid burden with hip-

pocampal volume to run a GWAS that revealed the LCORL gene variant protects against

AD progression from mild cognitive impairment. The research demonstrates how unit-

ing genetic information with imaging biomarkers reveals protective genetic elements and

reveals disease process mechanisms.

Scientists have investigated the combination of GWAS with transcriptomic and imaging

data to understand the molecular basis of AD. For example in [66] researchers, devel-

oped the GEIDI federated model which detects genetic and transcriptomic effects on

brain structural MRI measurements while generating genotype-dependent personalised

inferences. The integration of multiple data types shows promise for both understanding

AD heterogeneity and developing personalized medical approaches.
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The integration of GWAS with multimodal data continues to face challenges despite re-

cent progress. The combination of large datasets with different formats and the require-

ment for extensive well-identified participant groups creates major analytical obstacles.

The analysis of diverse datasets requires strong analytical frameworks and tools because

their processing complexity is high. The ongoing methodological developments and re-

search initiatives improve our ability to merge GWAS with multimodal data which leads

to promising breakthroughs in AD research and therapeutic development.

2.7 Chapter Summary

Over time, AD causes a gradual decline in cognitive functioning and memory, leading

to a loss of the ability to recognise family members, retain memories, and even follow

simple instructions.

Although the cause of AD is still unknown, there are several risk factors that have been

identified which may contribute to its development. These risk factors include medical

history, lifestyle choices, family dementia history and personal characteristics. By taking

action to address these risk factors, it may be able to prolong the onset of AD and allow

people to live longer, more independent lives.

The use of data science and ML to study AD has become increasingly popular, with

several research approaches exploring this field. The available research has taken a

comprehensive approach to studying AD risk factors, looking at both behavioural and

biological markers. By doing this, the hope to gain an understanding of the early signs of

the onset of the disease, or even to be able to predict when an individual may be at risk

of developing AD in the future. This chapter has studied a wide variety of approaches,

including genetics, cognitive abilities, and other biological markers, to determine whether

there are any patterns that could be used to help predict or diagnose the disease in its

earlier stages. The research is ongoing, and it is hoped to be able to provide more insight

into the factors that contribute to the onset of AD. Next chapter will address ML models

employed in the current work.
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Overview of Machine Learning
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3.1 Introduction

ML analytics have become an increasingly important tool in the medical field, offering

the potential to enhance the prediction of outcomes for diseases such as AD. This chap-

ter will provide an overview of the different learning algorithms that form the foundation

of ML, including supervised and unsupervised learning approaches. Additionally, the

background of ML models, feature selection methods and rule extraction procedures will

be discussed.

The use of ML analytics to classify and predict AD has been made possible by the use

of multimodal data. This data includes imaging, genetics, laboratory assessments, and

other types of patient information. By combining these types of data, ML models can

be used to identify patterns and correlations to improve the accuracy of diagnosis and

prognosis. ML can also be used to identify biomarkers that can be used to detect early

stages of the disease, as well as to identify potential treatments.

3.2 Machine Learning

ML is a subfield of AI, simulates human learning by allowing computers to recognise

and gain knowledge from observations made from the actual world. ML was explored

as a separate discipline in the 1990s [67]. Apart from computer science, ML analyt-

ics have been applied in a variety of fields, including business [68][69][70], advertising

[71][72], and medicine [73][74][75]. The ML classification process is illustrated in Figure

3.1. First and most important step for any ML model development is the existence of

an appropriate dataset (i.e. accurate, complete, reliable, relevant). After data collection

or requesting, the data is split into two sets: a training set used to train the ML model

for the required task (for example classification), on the other hand, the test is used to

evaluate the trained model and test how well it generalises on unseen samples. Some

models use a another sub set of the dataset called validation set which is used to validate

the model performance during training. Then several pre-processing steps are usually

conducted to ensure the quality of the data is up to the required standards. In addition,

the performance of a classification algorithm is evaluated by counting the number of test

instances that the model correctly or incorrectly predicted.
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Learning is the process of gaining information, because of their ability to reason, humans

naturally learn from their experiences. Conventional computers, on the other hand, do

not learn by thinking rather by following algorithms. There are several ML analytics

presented in the literature nowadays. They may be divided into groups based on how

they approach the learning process, supervised, unsupervised, semi-supervised, and re-

inforcement learning are the four primary learning algorithms [76]. In sections (3.2.1

and 3.2.2) supervised and unsupervised learning will be discussed, respectively.

Figure 3.1: A general process of machine learning

3.2.1 Supervised Machine Learning

A supervised learning algorithm involves the use of labelled data [77]. For example,

using genetic data to classify individuals as case or control. The learning approach

allow the ML classifiers to learn the relationship between the features of the dataset and

the output. After using both the features and outputs for training, the model is then

tested on unseen individuals features to predict the class label. Figure 3.2 illustrates a

workflow of a typical supervised learning process.
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Figure 3.2: Supervised machine learning process

3.2.2 Unsupervised Machine Learning

With unsupervised learning, outputs are not available for training data samples, and

ML algorithms are used to extract useful information from inputs [78]. Cluster analysis

is one of the main uses of unsupervised learning to find patterns within the dataset

[79]. For instance, in the area of genetics, unsupervised learning can be used to cluster

genes that have a common characteristics [80]. Figure 3.3 shows the workflow of an

unsupervised learning approach.

Figure 3.3: Unsupervised machine learning process

3.3 Machine Learning Models

ML is a method of training computers to extract knowledge from large datasets by using

algorithms based on computational models. Each ML model has its own algorithm for

using the data set and discovering different patterns. They can either classify the data
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or predict future data using their algorithm. The choice of selecting a ML model will

mostly depend on the studied problem and type of data. For instance, a classification

model should not be used to solve a regression problem. In this section, ML models

utilised in the current thesis will be briefly described.

3.3.1 Random Forest

A RF is a ML algorithm that constructs an ensemble of decision trees to create a power-

ful and robust classifier. RF uses the bagging technique, where multiple trees are trained

on bootstrapped datasets—random samples with replacement from the original dataset.

For classification tasks, the algorithm aggregates the predictions of individual trees by

majority voting, while for regression tasks, it averages their outputs [81].

To ensure diversity among trees and reduce overfitting, RF also randomly selects a sub-

set of features to train each tree. Typically, this subset size is the square root of the total

number of features for classification or the logarithm of the total features for regression.

This process helps decorrelate the trees, improving the overall model’s generalisation.

When a new data point is introduced, it is passed through all trees in the forest, and

the model combines their predictions through aggregation to produce the final output.

The bagging and bootstrapping mechanisms ensure that the model avoids overfitting

and achieves robustness by leveraging multiple uncorrelated trees.

While RF is computationally efficient, particularly for high-dimensional datasets, reduc-

ing the number of features can further enhance its training speed and interpretability.

Figure 3.4 illustrates the RF process, including dataset sampling, tree training, and

result aggregation. For more detailed mathematical insights, including tree-splitting

criteria like Gini impurity or information gain, refer to [82].
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Figure 3.4: Random Forest in genetics application

3.3.2 Support Vector Machines

Support Vector Machines (SVMs) are supervised learning algorithms commonly used

for classification and regression tasks [83]. They are particularly effective in high- di-

mensional spaces, such as genetic data, where the number of features often exceeds the

number of observations. The core objective of SVMs is to identify a hyperplane that

separates data points into different classes while maximising the margin the distance

between the hyperplane and the nearest data points (support vectors) from each class.

The dimensionality of the hyperplane is determined by the number of features in the

dataset. For example, with two features, the hyperplane is a line, while with three

features, it becomes a plane. As the number of features grows, the hyperplane exists

in higher-dimensional spaces, making it challenging to visualize. However, support vec-

tors—data points closest to the hyperplane play a critical role in defining its position

and orientation.

For non-linear classification problems, SVMs use the ”kernel trick” to map data into

higher- dimensional spaces indirectly. This approach enables SVMs to identify non-

linear decision boundaries without explicitly performing high-dimensional transforma-

tions, thereby reducing computational complexity [84]. However, the choice of kernel

function (e.g., linear, polynomial, or radial basis function) and parameter optimisation

is critical to the model’s success.

Figure 3.5 illustrates the classification process of an SVM model separating cases and

controls. For a deeper understanding of the mathematical foundations refer to [85].



31

Figure 3.5: An example of SVM model

3.3.3 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is a supervised machine learning algorithm widely used

for classification and regression tasks across various domains [86]. It operates on the

principle of assigning a given data point to a class based on the majority class among

its kk nearest neighbors in the feature space. These nearest neighbors are identified

using a distance metric, such as Euclidean or Manhattan distance, which measures the

proximity between points in the dataset.

KNN is a non-parametric algorithm, meaning it makes no assumptions about the under-

lying distribution of the data. This flexibility allows it to adapt well to diverse datasets.

Additionally, KNN is simple to implement and effective for tasks like pattern recognition

and predictive modeling. However, KNN is computationally intensive for large datasets,

as it requires calculating the distance between the query point and all training points.

Despite these challenges, KNN remains a versatile algorithm for various applications,

particularly when interpretability and simplicity are priorities.

3.3.4 Naive Bayes

Naive Bayes is a widely used supervised learning algorithm based on Bayes’ rule, which

calculates the probability of a class given a set of features [87]. The algorithm assumes

that features are conditionally independent given the class label, an assumption that

simplifies computations but is often violated in real-world scenarios [88]. Despite this,

Naive Bayes performs well in many practical applications
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One of the key advantages of Naive Bayes is its computational efficiency, making it

suitable for large datasets and problems with high-dimensional feature spaces. It is

particularly popular in domains like text classification, spam filtering, and sentiment

analysis due to its simplicity and effectiveness.

However, Naive Bayes can struggle with correlated features, as the independence as-

sumption may lead to suboptimal predictions in such cases. Additionally, it may perform

poorly on imbalanced datasets.

3.3.5 Artificial Neural Networks

In the same manner as the brain is composed of a network of neurons, Neural Networks

(NN) are made up of connected units or nodes and are also known as artificial neurons.

NNs are essentially dense networks of interconnected layers, which are further divided

into perceptrons [89], which draw their basic functionalities from neurons. A perceptron

consists of three parts: input, a processing unit and an output as shown in Figure 3.6. A

perceptron receives signals from preceding ones and pass their output to following per-

ceptrons after processing their inputs. At each neuron, the weighted sum of the input

is passed to an activation function to generate an output [90].

The three layers L1, L2 and L3 shown in Figure 3.7 provide a number of neurons that

Figure 3.6: An illustration of a perceptron

are interconnected with each other. By using layer L2 as a reference layer, it receives

the input from L1 and pass its output to L3. The inputs of the layer is represented by a

vector X=[x1,x2,x3]. While the outputs are represented by vector y =[y1,y2,y3,y4] each



33

of which symbolised the outputs of each perceptron of L2. Alongside side the input a

weight is also given in a layer. Within a network, a weight determines how the input

data will be transformed. The weight matrix is represented by W, each element of the

matrix is represented by W[r,q], were r and q represent row and column, respectively.

Input elements and corresponding perceptrons in a given layer are connected by weights

in W. the index r in the weight matrix represents the element of the input to L2, while

index q identifies the perceptron in L2 where the input is entering.

Figure 3.7: A neural network with one hidden layer

The procedure known as forward propagation and can be summaries in the following

equation:

Z = W T .X + b (3.1)

Final step in forward propagation is to utilise an activation function for non-linear

transformation.

During forward propagation, each layer of the network gives out a vector output, which

is used as an input vector by the next layer, and so on until last layer. The final

output of the network is produced at the final layer. During the first iteration of the
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forward propagation, weights and biases are randomly initialised. These are known as

the parameters of the network. The parameters are tuned (i.e. changed) according to

the dataset via another process called back propagation.

In order to tune the parameters, the error of the output of network needs to be calculated

in respect to the expected output. To mathematically represent the error a loss function

is constructed. It is a function that maps parameters on to a scalar value that indicates

how well they achieve the intended outputs. The loss function output a large value when

the predictions of the network are poor. In contrast, a small error is produced when the

predictions are as desired. Loss function is mathematically expressed as:

Loss(y, ŷ) =
n∑

i=1

(y − ŷ)2 (3.2)

Where y represents desired output, n is the total number of samples in the dataset and

y is the predicted output and given by:

f(b+
n∑

i=1

xiwi) (3.3)

Where F (z) is the activation function at a perceptron. The final step is to determine the

optimal parameters that result in the minimum value of the loss function. This achieved

by gradient descent algorithm. One gradient descent iteration changes the parameters

W and b.

3.3.5.1 Multi-Layer Perceptron (MLP)

MLP considered as a simple type of NNs comparing to other types. They are feedfor-

ward networks in which the connections of layers are in one direction. The input layer

passes the input signal to the next layer and the process continued until it reaches the

output layer, in which an output is produced. Figure 3.8 shows basic structure of an

MLP network consisting of two hidden layers and a single output node. There is no

limit or constraints on the number of inputs, outputs, layers, or nodes per layers. The

output of such neural networks depends totally on the current input therefore nodes are

memoryless.
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Figure 3.8: A MLP architecture with two hidden layers

3.3.5.2 Convolution Neural Networks (CNN)

CNNs are a widely recognised neural network architecture known for their efficiency

across various domains. They reduce the number of connections between the input and

hidden layers by applying filters over the input matrix, resulting in neurons in the hidden

layer being connected to localised regions of the input. For improved results, multiple

hidden layers are typically added. Each layer can utilise a unique filter, enabling the

extraction of diverse patterns from the input data [91]. The initial layers focus on captur-

ing low-level features such as edges and gradient directions. As the network progresses

through the hidden layers, it adapts to identifying high-level features, resulting in a neu-

ral network capable of a deeper understanding of the input data. Figure 3.9 illustrates

the structure of a CNN, which consists of several key layers. The three primary layers

are summarized as follows [92]:

Convolutional Layer:

This is the first layer following the input layer. It extracts features from the input by

performing a mathematical convolution operation between the input data and a filter

of size N×NN×N. The filter slides over the input matrix, producing a feature map that

highlights important characteristics such as edges. This feature map is then passed to

subsequent layers for further feature extraction.

Pooling Layer:

The pooling layer reduces the dimensions of the feature map generated by the convolu-

tional layer, lowering computational costs and preventing overfitting. Common pooling
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methods include max pooling, which retains the maximum value in a region, and average

pooling, which calculates the average.

Fully Connected Layer:

As in ANNs, neurons in the fully connected layer are connected to all neurons in the pre-

ceding and succeeding layers. This layer maps the learned features to the final output,

aiding in tasks like classification and prediction.

Figure 3.9: A typical CNN architecture

3.3.5.3 ML Models Selection

The selection of SVM, RF, KNN, NB and CNN models for AD classification stems from

their common usage in related studies and the lack of a universally accepted best model

for this classification task. The models differ in their underlying mechanisms, levels of

complexity, and learning strategies which makes them suitable for testing across diverse

datasets. The nature of Alzheimer’s-related data can vary significantly from clinical

features to genetic and imaging data, and it is important to explore how different models

perform in capturing relevant patterns. This study adopts a comparative approach to

evaluate both traditional ML and DL techniques rather than relying on a single method.

DL, such as CNNs, has gained popularity in recent work involving complex biomedical

data like genomic sequences, and its inclusion allows for a direct comparison against

classical algorithms. Since model performance can be highly dependent on the data

characteristics, and that there are no established guidelines for model selection in this

domain, experimenting with a variety of algorithms ensures a more robust and unbiased

assessment. This comprehensive approach increases the likelihood of identifying the

most effective model for accurate and reliable AD classification. futhermore, Table 3.1

provide a comparison of the ML classifiers.
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Table 3.1: Comparison of ML classifiers.

Model Strengths Weaknesses

SVM Good for high-dimensional data Sensitive to parameter tuning
Effective with clear margin separation Less efficient with large datasets

RF Handles non-linearity well Can be computationally intensive
Robust to overfitting Less effective on sparse data
Interpretable

KNN Simple and intuitive
Sensitive to noisy data and
irrelevant features

Effective with well-separated classes Poor performance on large datasets

Naive Bayes Fast and efficient
Can underperform if features
are correlated

Works well with small datasets
Assumes feature independence
(often unrealistic)

Handles categorical features

CNN
Excellent at learning
spatial/hierarchical features

Requires large datasets

Suitable for complex data
like images/genomics

High computational resources

3.3.5.4 Risk of Bias in ML Development

ML models achieve high performance across numerous tasks. These models encounter

multiple challenges including bias together with overfitting and data quality problems

which become especially significant in healthcare settings. The presence of bias in ML

models stems from unbalanced datasets which include disproportionate control to case

ratios and population stratification in GWAS which generates incorrect associations.

The solution to these problems requires applying stratified sampling to the data and

multiple evaluation metrics for assessing models from different viewpoints. The per-

formance of ML models depends heavily on the amount of data used for training and

testing because missing values and genotyping errors significantly affect model results

thus requiring proper data quality measures to select only high-quality SNPs and sam-

ples. Machine learning development often faces the problem of overfitting which occurs

when models perform exceptionally well on training data yet fail to deliver good results

on test data. The recommended solution to reduce this problem includes cross-validation

and an independent test set and an external data set for better results. The reduction

of methodological bias requires complete documentation of data pre-processing methods

and model analysis procedures.
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3.3.5.5 Computational Challenges of Training Deep Learning Models on

Genomic Data.

The increasing interest in using DL models for genomic data analysis faces important

computational challenges that need attention. The large dimensionality of genomic

datasets requires extensive preprocessing steps which makes model training more com-

plicated. The effective generalisation of DL models particularly CNNs requires extensive

amounts of labeled data which is often difficult to obtain in biomedical research. The

training process for these models requires significant computational resources because

it needs GPUs or TPUs and extended training periods. The process becomes more

complicated because of hyperparameter tuning and architecture selection and manag-

ing overfitting. The deployment of DL for genomic analysis faces significant practical

challenges because of its computational requirements which become problematic in en-

vironments with limited resources. The potential of CNNs to detect complex patterns

in genetic data requires evaluation against their computational expenses and practical

implementation in research and clinical environments.

3.4 Transfer Learning (TL)

The input feature space and distribution of training and testing data in traditional ML

are the same. ML classifiers performance can be reduced when the training and test data

have different distributions. It can be difficult and costly to obtain training data whose

features and distribution characteristics match those of the test data. This necessitates

results in creation of a new design methodology called TL. In order to improve learning

in the target domain, TL involves gaining knowledge from a dataset (source domain),

and then transferring that knowledge to a new dataset (target domain) [93]. The weights

of a pretrained model trained at “problem A” transferred to solve “problem B” [94].

for the TL process,given a source domain (Ds) and source task (Ts) to improve the

performance on a target domain (Dt) with target task (Tt) where Ds ̸= Dt or Ts ̸= Tt.

A domain consists of a feature space X and a marginal probability distribution P (X).

Thus, the condition Ds ̸= Dt can be further extended as Xs ̸= Xt or/and P (Xs) ̸=

P (Xt). The TL is heterogeneous when the source dataset and target dataset come from

different domains, with different marginal distributions, predictive distributions, and
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feature spaces. Homogeneous TL is defined, on the other hand, when the source and

target datasets are less different from one another [95].

3.5 Feature Selection Algorithms

An important step in developing a ML approach is feature selection which is to reduce

the number of original dataset features. Models can perform better if the number of

input variables is reduced to only important ones, resulting in both a reduction in

computation costs and, in most cases, improving the performance [96]. In the next

sub-sections, feature selection algorithms used in this work will be explained.

3.5.1 Principal Component Analysis

Principal Component Analysis (PCA) is a powerful statistical method widely used in

research for reducing the number of variables in a dataset and selecting important fea-

tures [97]. The main idea of PCA is simple: it reduces the number of variables while

retaining as much information as possible.

Before applying PCA, it is important to standardise the data, especially for continuous

variables. This step ensures that variables with larger values don’t dominate over those

with smaller values, helping to avoid biased results.

PCA works by creating new variables called principal components (PCs). These PCs

are linear combinations of the original variables, and they follow a specific order. he first

PC captures the largest amount of variance in the data. This is essentially the average

squared distance of the data points from the origin when projected onto a line. The

second PC captures the next highest variance while being completely uncorrelated with

the first PC.

This process continues, creating as many PCs as there are variables in the dataset. The

PCs are ordered by how much variance they explain, with the first PC being the most

important. Once all the PCs are generated, the next step is to decide how many to

keep. Less important components (those explaining little variance) can be discarded to

simplify the analysis. While PCA is commonly used for feature extraction, it can also

serve effectively as a feature selection technique, as demonstrated in studies such as [98]

and [99]. Feature selection using PCA involves identifying the original features (e.g.,
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SNPs) that contribute most significantly to the principal components that capture the

highest variance in the data. This ensures that the resulting feature vector reflects the

most informative and varied aspects of the dataset [100].

In this context, the component loadings—which represent the correlation coefficients be-

tween the original GWAS features and the principal components—are key. By applying

component rotations, PCA maximizes the sum of variances of these squared loadings.

The absolute sum of these rotations is then used to compute an importance score for

each feature, effectively allowing features to be ranked based on their contribution to

the variance captured by the selected components.

The number of principal components used to calculate feature importance is determined

by the cumulative variance they explain, ensuring that only the most informative com-

ponents are retained. A more detailed explanation of this PCA-based feature ranking

method can be found in [97].

3.5.2 Boruta Algorithm

The Boruta algorithm [101] is a feature selection technique designed to identify relevant

features in a dataset. It leverages the principles of the RF classifier by introducing

randomness to assess feature importance. Specifically, the algorithm compares the im-

portance scores of the original features with those of randomised (shuffled or permuted)

versions of the features.

Through an iterative process, Boruta selects or rejects features based on their impor-

tance scores, continuing this process until a stable set of relevant features is identified.

This method is particularly advantageous in high-dimensional datasets, where effective

feature selection is critical for optimising model performance.

This approach allows Boruta to capture both linear and non-linear interactions, and

to maintain sensitivity to weak but relevant signals, which is particularly valuable in

complex diseases like AD where multiple SNPs may contribute small but meaningful

effects. Table 3.2 shows the strengths and limitations of PCA and Boruta algorithms.
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Table 3.2: Strengths and Limitations of PCA and Boruta Algorithms

Method Strengths Limitations

PCA
Reduces dimensionality efficiently

Captures variance structure

Does not consider disease
labels (unsupervised)

Limited biological interpretability
of components

Boruta

Identifies all relevant features

Incorporates feature importance
from Random Forests

Supports interpretability and
biological insight

Computationally intensive
for large GWAS

Depends on performance
of base classifier

May select redundant features

3.6 Rule Extraction Techniques

State-of-the-art ML algorithms (such as tree-based classifiers or NNs) are known for

their powerful predictive performance. However, this high level of performance comes

from complex prediction mechanisms. Because of the long processing computations to

reach an output, these models considered as black-box. This block-box issue limits the

application of these intelligent models, especially within areas where the interpretability

of a decision is of high importance such as healthcare. Alternatively, an approach called

rule extraction can find patterns in data and help in explain how these models reach a

final decision. Following sub-sections will highlight briefly the rule extraction algorithms

utilised in the current thesis.

3.6.1 Class Rule Mining

As a special case of conventional rule mining [102], Class Association Rules (CARs)

can be used, where target classes are only used as a consequence. CARs are commonly

used to identify common patterns in large datasets that can be readily interpreted by

humans. In most cases, confidence (c) and support (s) metrics are used to determine

the strength of a rule (X) and therefore the strength of its association where support is

mathematically defined in Eq 3.4 [103]:

s(X ⇒ Y ) =
frq(X ∪ Y )

N
(3.4)
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Where N indicates how many observations/records there are in the dataset. In a rule,

confidence (c) represents the probability that factor Y occurs with factor X present and

defined mathematically as in Eq 3.5.

c(X ⇒ Y ) =
frq(X ∪ Y )

frq(X)
(3.5)

Rules are typically evaluated by varying thresholds for the ’s‘ and ’c’ criteria [104]. These

metrics might, however, misinterpret the significance or importance of an association.

The reason for this is that only the popularity of X is considered, not that of Y . An

additional measure called lift accounts for the popularity of each constituent item (i.e.,

X and Y ), which indicates how the X affects the Y , and is calculated as follows (Eq

3.6):

lift(X ⇒ Y ) =
s(X ∪ Y )

s(X) ∗ s(Y )
(3.6)

X and Y are independent when lift(XY ) = 1, whereas lift(XY ) > 1 indicates that

they are positively dependent. Further detailed information on CAR can be found in

[105].

3.6.2 Stable and Interpretable Rule Set (SIRUS)

Stable and Interpretable RUle Set (SIRUS) [106] is a rule extraction algorithm designed

to produce interpretable models by leveraging a modified version of the RF algorithm.

SIRUS generates a large set of potential rules and selects those that exceed a specified

redundancy threshold, which is controlled by the tuning hyperparameter p0.

The optimal value of p0 is determined using cross-validation, which identifies the number

of relevant rules to extract. This process evaluates the frequency with which a rule

appears across the trees in the RF model, ensuring that only consistently relevant rules

are retained. Rules meeting this criterion are included in the final rule set. For a detailed

explanation and mathematical formulation, refer to the original work [106].
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3.7 Machine Learning Evaluation

ML models get assessed through evaluation metrics which measure their success in data

prediction or classification tasks. These evaluation metrics enable researchers to anal-

yse model accuracy, precision, recall and additional performance characteristics. The

selection of evaluation metrics depends on the analysis type and characteristics of the

examined data set. The evaluation metrics used in this work include:

Accuracy: Accuracy measures the correct predictions over the total instances to provide

a general idea about the model’s prediction ability. The single use of accuracy proves

insufficient for imbalanced datasets which contain unequal class distributions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

Precision: Precision determines the correct positive instances True Positives (TP) rela-

tive to the total number of positive predictions which includes TP and False Positives

(FP). It centres on the precision of positive predictions and proves valuable when the

consequences of FP are significant.

Precision =
TP

TP + FP
(3.8)

Recall (Sensitivity): Recall or sensitivity and true positive rate define the ratio between

correctly identified positive instances (TP) and all actual positive instances (TP + False

Negatives (FN)). It evaluates the model’s proficiency in recognising all positive instances

and holds significance when the repercussions of FN are substantial.

Recall =
TP

TP + FN
(3.9)

F1 Score: The F1 score calculates the average of precision and recall to provide a bal-

anced evaluation metric. A single value combines both precision and recall to provide a

complete evaluation metric. The F1 score proves its value when class distributions are

unbalanced between positive and negative instances.

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
(3.10)
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AUC-ROC: The AUC-ROC serves as a prominent metric that ML practitioners use

for performance evaluation. The AUC-ROC curve shows how true positive rate (sen-

sitivity) relates to false positive rate (1-specificity) when using different classification

thresholds. The overall classification performance becomes better with an increased

AUC-ROC value.

Researches have extensively studied classification algorithms through various techniques

according to a state-of-the-art study [107]. The research community has not established

a definitive performance metric that surpasses all others. A specific performance met-

ric provides strong assessment of a classifier for certain perspectives but demonstrates

weak performance for other aspects. The use of multiple evaluation techniques provides

essential insight into a classifier’s complete performance evaluation.

In healthcare, ML models play a crucial role in making decisions related to human health.

However, the accuracy of models is not the only concern. The necessity of explainabil-

ity becomes critical when making model decisions in AD classification because these

decisions affect medical understanding and future intervention strategies. DL models

together with complex ensemble methods demonstrate excellent predictive accuracy but

fail to explain their results which creates issues regarding trust and transparency and

limits clinical use. Post-hoc explainability methods SHAP (SHapley Additive exPlana-

tions) and LIME (Local Interpretable Model-Agnostic Explanations) have become in-

creasingly important to address these issues. SHAP as a cooperative game theory-based

framework allows for unified output explanation through individual prediction feature

contribution analysis. SHAP proves essential in AD models for determining the effect of

specific SNPs and phenotypic elements on disease classification predictions. This method

delivers both global and local interpretability that proves essential for patient-specific

predictions because it shows general model feature dependencies and specific prediction

reasoning. The LIME approach creates understandable explanations for complex mod-

els by developing a basic explainable linear regression model to represent the behavior

around each particular prediction. The localised explanation method lets researchers

and clinicians understand particular model decisions while the overall model structure

remains undecipherable.

Rule extraction techniques provide additional interpretability through human-readable

representations of complex model knowledge by converting learned patterns into decision

paths and rules. Decision tree surrogates and rule sets from ensemble trees and logic-

based decompositions prove best for genomics-based AD models because they enable
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the interpretation of ”if-then” conditions between SNP patterns and disease likelihood.

Rule-based representations combine transparency benefits with the capability to link

computational model outputs to domain expertise so researchers can check model be-

haviors against established biological mechanisms. SHAP, LIME and rule extraction

techniques together make black-box models ML learning deployment for AD diagnosis.

3.8 Chapter Summary

In this chapter, different types of ML architectures such as supervised and unsuper-

vised have been discussed. Additionally, ML-based feature selection techniques have

been reviewed and their significance in constructing strong models has been highlighted.

Moreover, this chapter has focused on the extraction of human-readable rules to facil-

itate understanding of the decisions taken by models. Next chapter will dive into the

use of TL to classify cognitive state of individuals based on genome wide data.
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4.1 Introduction

AD has been identified as a complex condition that is caused by a combination of hered-

itary and environmental factors [109]. Since there is no definitive cure for AD, studying

the genes that are involved in its progression can help with early identification, close

monitoring of at-risk patients, and the implementation of early treatment and preven-

tion strategies.

GWAS is a commonly used strategy for determining the association between common

DNA sequence variants and a phenotype. These large-scale studies collect genetic di-

versity in the form of SNPs across the human genome, and each variation is statistically

assessed to identify links to a well-defined trait that is being investigated [110]. The

most prevalent strategy used in GWAS is the case-control design, where the cases refer

to a cohort that has been affected by the disease under study, while the controls refer

to healthy (i.e., normal) subjects.

Studies in the literature have reported that genetic factors play a significant role in AD.

In 2013, one of the largest AD GWAS studies identified 19 risk loci that were related

to AD [111]. More recent studies have identified additional risk loci (now totaling 40)

[112] [113] [114] which clearly demonstrate the significant contribution of GWAS towards

understanding the genetic components associated with AD.

Although classical ML methods have achieved significant success in various practical ap-

plications, they face certain challenges in specific real-world scenarios. Supervised ML

typically relies on a large volume of labeled training data that shares the same distri-

bution as the test data. However, obtaining enough labeled data is often prohibitively

costly, time consuming, or even infeasible [94]. To address this issue, TL has become

a widely used approach. TL leverages the knowledge gained from solving one problem

using a large dataset and applies it to other problems with relatively smaller datasets.

This involves initially training a base model on a larger dataset for a specific task, fol-

lowed by fine-tuning it on a smaller dataset in the target domain [94].

Although there have been many studies [48] [49] [115] [116] [117] that have used ML in

the area of GWAS, there are some limitations to these studies. The study in [115] reveals

that the research has a small sample size which limits the generalisation of the results.

The SVM model achieved promising sensitivity at 70% but its moderate specificity at
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61% shows there is potential to enhance predictive performance. In [116], researchers

used multimodal data to create a predictive model for AD conversion from mild cogni-

tive impairment through a multistep training process. The initial training step of this

method transforms each modality into optimised feature vectors independently for MCI

conversion prediction. The independent optimisation approach restricts the model from

utilising all possible cross-modal interactions. The SWAT-CNN framework proposed

in [117] demonstrates effective AD classification but requires significant computational

resources for genome fragmentation and repeated CNN models training which restricts

its practical use in limited computational environments. In this chapter, multiple types

of TL are used for a reliable classification of AD using GWAS data. In contrast to other

existing literature, the proposed study in the current chapter comprises the following

novelties:

a) To the best of my knowledge, this is the first study to use deep TL to address the

data size challenges associated with GWAS.

b) A comprehensive analysis of multiple types of the TL models has been proposed.

c) A robust feature selection approach is utilised to identify the most promising SNPs

contributing to the AD classification.

4.2 Review of TL in Bioinformatics

TL is typically divided into three main subcategories: inductive, transductive, and un-

supervised TL. These categories are defined based on the differences in context between

the source and target domains and the tasks [93]. TL has been in found extensive ap-

plication in various fields of bioinformatics [118] [119] [120]. For instance, Zhao et al.

[121] introduced a TL-based polygenic risk score (PRS) method called TL-PRS. In this

approach, an ML model trained on a large GWAS dataset from one ancestry group is

fine-tuned to align with the target dataset. This method was applied to individuals of

South Asian and African ancestry in the UK Biobank, focusing on seven quantitative

traits and two dichotomous traits. Compared to the standard PRS method, TL-PRS

demonstrated an average relative improvement in predicted R-squared of 25% for South

Asian samples and 29% for African samples.

In the context of using TL in GWAS, the authors of [122] developed a TL-Multi which
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is an approach developed to create PRS for populations outside of Europe. This method

involves using a TL framework to gain insights from the European population, thereby

improving the learning accuracy of the target data [122]. Similarly, Muneeb et. al. [123]

proposed the prediction of genotype-phenotype using DL models through TL while util-

ising simulated data.

Unlike the previously mentioned studies, particularly those employing TL in GWAS with

simulated data or focusing on gene-level classification of AD, the approach proposed in

this chapter applies TL to real GWAS data. Initially, a CNN model is trained on one

GWAS dataset and subsequently used to extract features from another GWAS dataset

related to AD. These extracted features are then input into a SVM model to classify

individuals as healthy or unhealthy at the SNP level.

The implementation of transfer learning in GWAS for AD shows great promise as a

method to increase model performance when dealing with restricted labeled data. The

pre-training of models on extensive related datasets enables them to learn general fea-

tures which can then be adapted to specific AD-related genomic data for better gener-

alisation and reduced need for extensive training from scratch. The acquisition of large

well-annotated datasets in AD research faces significant obstacles. CNNs demonstrate

exceptional capability in modelling genomic data because they detect local patterns, and

hierarchical structures present in sequence-based data. The success CNNs achieve in im-

age recognition enables them to detect motifs and dependencies and spatial relationships

in genomic sequences which could be linked to disease phenotypes. The CNN architec-

ture performs automatic feature extraction which gives it an advantage over traditional

GWAS methods that use manually defined SNP features. The combination of CNNs

with TF enables them to use learned representations from large biological datasets to

improve their robustness against noise and variability in smaller AD-specific datasets.

The combination of CNN architectures with TF creates a strong framework which en-

ables researchers to discover intricate nonlinear connections between genetic variants to

better understand AD genetics.

4.3 Materials and Methods

The proposed approach exploits TL where multiple datasets are used to train a deep

ML model and transfer the learned knowledge efficiently to target domain. Detailed
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experiments were conducted to analyse the effectiveness of varying types of TL and

to investigate the impact of knowledge transfer from one dataset to another in GWAS

analysis. The proposed approach is composed of several components that include quality

control, association test, feature selection and classification. A detailed description of

each task is provided in the following sub-sections.

4.3.1 Datasets

The following three datasets comprise the GWAS data sets used in this study:

Dataset A: ADNI GWAS dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [124] dataset is a large-scale,

longitudinal dataset that has been collected as part of a collaborative research effort to

better understand and track the progression of AD. The dataset includes comprehensive

clinical, imaging, genetic, and biomarker data from individuals with AD, mild cognitive

impairment, and healthy controls.

The ADNI dataset has been collected from multiple sites across North America and

has undergone rigorous QC measures to ensure data reliability and consistency. It en-

compasses various data modalities, including structural and functional MRI positron

emission tomography scans, cerebrospinal fluid biomarker measurements, genetic data,

and clinical and cognitive assessments.

The ADNI dataset provides a valuable resource for researchers studying AD and re-

lated neurodegenerative disorders. It allows for the exploration of disease progression,

identification of biomarkers and development of diagnostic and prognostic models. The

longitudinal nature of the dataset enables the investigation of changes over time and

the examination of factors contributing to disease progression or conversion from MCI

to AD.

Within the ADNI dataset, there is a subset specifically designed for GWAS Studies re-

lated to AD. The ADNI GWAS subset includes genetic data from participants. These

genetic variants are analysed to identify associations with AD risk and disease progres-

sion.

Researchers can utilise the ADNI GWAS subset to perform large-scale genetic analyses,

such as identifying genetic risk factors, exploring genetic interactions, and investigating
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the relationship between genetic variants and various phenotypic measures. To fulfil the

objectives of the proposed study, GWAS data from ADNI1 were accessed, where indi-

viduals with CN or AD were chosen. A total of 388 subjects were identified, producing

174 cases and 214 controls.

The dataset is originally presented in plink file format, with three files: ’bim’, ’bed’, and

’fam’ files. In the ’fam’ file, subject characteristics are recorded, while SNP (feature)

characteristics are stored in the ’bim’ file, including location, name, and allele represen-

tation. Finally, ’bed’ files contain machine codes that are unreadable to humans and

comprise 8-bit codes representing the genotype codes, as well as map the information

between fam and bim files. In this study, SNPs were used as features to classify the

individuals into CN or AD cases. Table 4.1 shows the statistics of the dataset includ-

ing age and Mini-mental State Examination (MMSE) is 30-point questionnaire used to

measure cognitive impairment. Table 4.1 also shows that most cases carry at least one

of copy of APOE4 gene.

Dataset B: AD GWAS Dataset

Table 4.1: Characteristics statistics of Alzheimer’s disease and normal subjects of
ADNI dataset.

Age
Sex

(M/F)
Education
(years)

MMSE APOE4 ADAS11

Cases 75.35 92/82 15 23 1 18.11

Controls 75.66 115/99 16 29 0 5.83

The second dataset used in this study is a GWAS case-control dataset obtained from

[125]. The inclusion criteria for participants are: a) self-reported European ethnicity, b)

compliance with National Alzheimer’s Coordinating Centre standards, and c) late-onset

AD confirmed by board-certified neuropathologists in cases and no neuropathology in

controls. Plaque and tangle assessments, which are unique structures that affect cells in

the brain and could contribute to the pathophysiology of the disease, were conducted

on all cases and controls. Samples with a history of stroke, Lewy bodies, or any other

neurological disorder were excluded. The final dataset includes 191 males and 173 fe-

males partitioned into 176 cases and 188 controls, each with genotyping information of

502,627 SNPs. The DNA of participants was genotyped via the Affymetrix GeneChip

Human Mapping 500K Array Set. Detailed information regarding the dataset can be

found in the primary study [125].
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Dataset C: AdaptMap goat GWAS dataset

Unlike the two datasets mentioned above, which contain human records, the third

dataset we use in this study is AdaptMap [126]. It comprises 4,653 animals repre-

senting 169 populations from 35 countries spread across six continents. The animals

were genotyped using an Illumina GoatSNP50 BeadChip with 53,347 SNPs [127].

The application of TF to combine animal genetic data with human GWAS provides

a new method for studying complex diseases such as AD. The direct application of

models trained on animal GWAS data to human AD datasets remains scarce but the

concept receives backing from related studies. Biomedical research has depended on

animal models to advance knowledge about human diseases including neurodegenera-

tive conditions [128] [? ] [129]. Reference [130] explain how high-throughput animal

models enable researchers to functionally verify GWAS signals while demonstrating how

animal studies can help advance human disease research. The Dlgap2 gene emerged

as a protective candidate in a genetically diverse mouse model of AD which later re-

ceived verification through human GWAS studies [131]. The use of animal data remains

valid because animal models share genetic and physiological features with humans which

enable researchers to discover disease mechanisms and therapeutic targets.

4.3.1.1 SNPs as features

SNPs are the most common type of genetic variation found in individuals’ DNA se-

quences [132]. They are single base pair differences occurring at specific positions in the

genome, where one nucleotide (adenine, cytosine, guanine, or thymine) is substituted

by another. SNPs can be present throughout the human genome and can vary in their

frequency within populations.

SNPs play a crucial role in human genetics and have been extensively studied to under-

stand their association with various traits, diseases, and drug responses [133]. They can

influence phenotypic differences among individuals, including susceptibility to certain

diseases, response to treatments, and variations in physical and physiological character-

istics.

The Human Genome Project and subsequent advancements in DNA sequencing tech-

nologies have greatly contributed to the identification and cataloging of millions of SNPs

across the human genome. These SNPs serve as markers that allow researchers to inves-

tigate genetic variation within populations and explore their relationship with specific
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traits or diseases.

SNPs can have different effects on gene function and protein synthesis. They can occur

in coding regions, affecting the amino acid sequence of a protein and potentially altering

its function. SNPs can also be found in non-coding regions, including regulatory regions

that control gene expression. Changes in regulatory SNPs can impact the binding of

transcription factors and alter the levels of gene expression [133]. Due to their abun-

dance and wide distribution in the genome, SNPs have become a key focus in genetic

association studies. GWAS often rely on genotyping large numbers of SNPs to iden-

tify associations between specific genetic variants and diseases or traits of interest. By

studying the patterns of SNPs across populations and their correlation with phenotypic

traits, researchers can gain insights into the genetic basis of complex diseases, genetic

diversity, and population history.

4.3.1.2 Data Representation

This section outlines the representation of genetic data and the binary transformations

used to convert the information into a format suitable for statistical manipulation. In

this study, bi-allelic SNPs are used. These SNPs can be represented in two ways: as

individual alleles or as genotypes. The allele representation refers to each of the two

possible variants at a single SNP position. The genotype representation, on the other

hand, describes the combination of the two alleles present in an individual at that

position. Examples of this type of representation can be seen in Table 4.2 and Table 4.3.

To make the data more suitable for statistical manipulation, binary transformations are

employed. This involves converting the genetic data into a binary format, which can be

used to generate a numerical value. This numerical value can then be used to perform

statistical tests and analyse the data.

Table 4.2: Allele Representation

SNP

Allele 1 Allele 2

Table 4.3: Genotype Representation

SNP

AA AB BB
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SNPs are classified not only by their frequency and their alleles. Alleles are identified as

either dominant or recessive, or commonly referred to as major or minor, respectively, as

demonstrated in Table 4.4. It’s important to note that the genotypic expression within

the focus population determines which allele is dominant or minor. The dominant allele

or major allele is the one that is presented in most of the population, and it generally

masks the contribution of the recessive allele. In other words, the dominant allele is

more likely to be expressed than the recessive allele.

Table 4.4: Dominant and recessive allele representation

SNP

Allele 1 Allele 2

Dominant Recessive Dominant Recessive

A B A B

When combined, these alleles create one of three genotype states as displayed in Table

4.3. These states can also be described in terms of their respective characteristics, as

represented in Table 4.5. If both alleles are dominant (AA), the genotype is referred to

as dominant homozygous. Conversely, if both alleles are recessive (BB), the genotype

is referred to as homozygous recessive. Finally, if allele 1 is dominant and allele 2 is

recessive (AB), then the genotype is referred to as heterozygous.

Table 4.5: Homozygous and Heterozygous representation

SNP

Dominant Homozygous Heterozygous Recessive Homozygous

AA AB BB

4.3.1.3 Data Format

GWAS data is typically stored in three PLINK files: the .fam file, the .bim file, and the

.bed file. The .fam file is a PLINK binary file that contains crucial information about

the study subjects, such as their characteristics and identity codes. The data of .fam

file is provided in two tables: Table 4.6 and Table 4.7. The .bim file, which contains

information on each SNP, is shown in Tables 4.8 and 4.9. The .bed file (Table 4.10)

contains the genotype data encoded in a binary format. All three files are required to

perform statistical analysis in PLINK. It is important to note that the .fam file is used
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to link the subject data to the genotype data in the other two files.

Table 4.6: Format of a PLINK .FAM file

IID FID PID MID Sex Phenotype

1 Fam1 0 0 2 1

2 Fam2 0 0 2 2

3 Fam3 0 0 1 1

Table 4.7: Variables Description of PLINK .FAM file.

Variable Description

IID Individual ID

FID Family ID

PID Individual’s father’s IID (Paternal ID)

MID Individual’s mother’s IID (Maternal ID)

SEX 1 for male, 2 for female

Phenotype 1 for control, 2 for case

Table 4.8: Format of a PLINK .BIM file

Chromosome SNP ID POS BP Allele 1 Allele 2

8 rs4734674 110.849 103963502 C T

10 rs17436819 94.9892 77437096 G A

10 rs386976 46.6912 19972134 C T

Table 4.9: Variables Description of PLINK .BIM file

Variable Description

Chromosome Chromosome Code

SNP ID SNP ID

POS Position of SNP

BP Base-pair coordinate

Allele 1 Usually minor allele

Allele 2 Usually major allele

Table 4.10: Genotype data description in PLINK .BED file

Genotype Code Description

00 Homozygous for first allele

01 Missing

10 Heterozygous

11 Homozygous for second allele
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4.3.1.4 Features Encoding

The representation of SNP data as categorical or numerical features is an important

consideration when choosing a classification algorithm. categorical features can be rep-

resented as discrete categories, such as AA, AG or GG, and numerical features as integer

values, such as 0, 1 and 2. Algorithms such as the Decision Tree and RF are able to work

with categorical features, while others such as the SVM and ANN are only able to work

with numerical features. Therefore, it is necessary to encode the SNPs as numerical

features in order to use these more advanced algorithms.

Label encoding is a method of encoding categorical features that can be used when

dealing with genetic data. It involves assigning each genotype a numerical value that

corresponds to the number of minor alleles in the genotype. For example, homozygous

major alleles are encoded as 0, heterozygous alleles are encoded as 1, and homozygous

minor alleles are encoded as 2. This encoding technique helps to preserve all the in-

formation while also minimising the number of generated features. This is especially

important when dealing with large datasets with many different genotypes. By using

label encoding, the data can be processed and analysed more efficiently [134].

Another encoding algorithm is one-hot encoding scheme is a convenient and popular

way to represent genotype information in binary form. It is especially useful in detect-

ing gene-gene interactions, as shown in [135]. In this scheme, three features are created

for each SNP, and each feature encodes whether its corresponding genotype is present or

not. This means that only one of the three features is set to 1, while the other two are

set to 0. By taking this approach, the genotype information is effectively represented

in an easy-to-understand way, which makes it a popular choice for encoding genotype

information. Table 4.11 shows an example of both encoding methods.

Table 4.11: Encoding methods for SNP data with two alleles A (major allele) and B
(minor allele). The label encoding represents each genotype through minor allele count.
While one-hot encoding represents SNP with three feature, one for each genotype.

SNP Label Encoding Genotype (One-hot Encoding)
AA AB BB

AA 0 1 0 0

AB 1 0 1 0

BB 2 0 0 1



57

4.3.2 Quality Control

In the proposed study, individuals and SNPs were subjected to QC and filtering pro-

cedures in accordance with conventional QC protocols and guidelines as shown in [136]

using PLINK software.

In GWAS, QC measures are employed to identify and eliminate low-quality DNA sam-

ples and markers. These measures help ensure the reliability and accuracy of the genetic

data used in the study. Some common QC steps in GWAS include:

Sample QC: This involves assessing the quality of DNA samples used in the study.

QC measures may include checking for sample-related biases. Samples that do not meet

predefined quality thresholds may be excluded from further analysis which are defined

as below:

1) Genotyping Call Rate: The genotyping call rate measures the proportion of success-

fully genotyped markers for each DNA sample. Samples with low call rates may indicate

poor DNA quality or technical issues during genotyping and can lead to unreliable re-

sults. Setting a minimum threshold for genotyping call rate helps exclude samples with

insufficient data [137].

2) Relatedness and Duplicate Samples: Duplicate samples or samples from closely re-

lated individuals can introduce bias and inflate false-positive associations. QC includes

identifying and removing duplicate or closely related samples using methods like identity-

by-descent estimation or genetic relatedness calculation [138].

3) Genetic Ancestry and Population Stratification: Genetic differences between popula-

tions can lead to spurious associations in GWAS. Samples showing significant differences

in genetic ancestry from the study population may indicate population stratification and

require appropriate adjustments [139].

Marker QC: Marker QC focuses on evaluating the quality of genetic markers used in

the study. Markers with low quality are removed using the following:

1) Call Rate and Missing Data: The marker call rate assesses the proportion of suc-

cessfully genotyped samples for each genetic marker. Markers with low call rates may

indicate technical issues or genotyping errors. Similarly, markers with excessive missing

data may compromise statistical power and introduce bias. QC filters are applied to

exclude markers with low call rates or high rates of missing data [138].
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2) Hardy-Weinberg Equilibrium (HWE): The HWE test assesses whether the observed

genotype frequencies of markers in a population conform to the expected frequencies un-

der certain assumptions. Markers deviating significantly from HWE expectations may

suggest genotyping errors, population stratification, or other biases. QC filters can iden-

tify and exclude markers that deviate from HWE [140].

3) Minor Allele Frequency (MAF): MAF refers to the frequency of the less common

allele at a genetic marker in a population. Very low MAF can limit the statistical power

to detect associations. QC measures may exclude markers with low MAF, depending on

the study design and sample size [35].

By implementing these QC measures, the integrity, and reliability of GWAS results can

be improved by removing low-quality DNA samples and markers, reducing false posi-

tives. This ensures more accurate and robust genetic associations in GWAS studies.

The QC steps are essential to the process of obtaining reliable and accurate results from

a genetic dataset are summarised in Table 4.12. By using these criteria, it is possible

to identify and remove any SNPs or individuals that could potentially produce biased

results.

Table 4.12: GWAS Quality Control Steps Description

QC Step Description

SNPs missingness Missing SNPs in a large percentage of the Individuals
are excluded.

Individuals’ missingness Individuals with a high rate of genotype missingness
are excluded.

Sex discrepancy Check sex of individuals depending on their X chro-
mosome homozygosity

Autosomes Chromosomes Only selecting SNPs of 1 to 22 Chromosomes

MAF SNPs above a MAF threshold are included.

HWE SNPs that deviate from HWE are excluded.

Relatedness Generates a list of persons with relatedness degree
greater than a specified threshold.

Population stratification Individuals from different populations present in the
study.

For Dataset A, there were initially 620,901 SNPs before genotyping trimming. Based

on the HWE test, 72,490 markers were excluded (with p = 0.1); 61,065 markers failed

the HWE test in cases, whereas 72,490 markers failed the HWE test in controls. The

missingness test failed 31,368 SNPs (GENO ¿ 0.1). A total of 154,598 SNPs failed

the frequency test (MAF ¡ 0.1). In total, 411,077 SNPs remained after frequency and
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genotyping trimming. One individual was removed for low genotyping (MIND ¿ 0.1).

After all QC stages, a total of 398 individuals and 411,077 SNPs were left for subsequent

analysis.

To filter out low-quality genetic markers in Dataset B, several QC were performed. First,

SNPs with a missing genotype rate greater than 5% were eliminated. Markers also

filtered for HWE with a p-value less than 0.001 and a MAF less than 0.05. Individuals

were subjected to QC processes, including checks for missing genotyping data (less than

5%), relatedness, and sex-homozygosity. After these QC steps, 356,499 SNPs remained

for subsequent analysis.

For Dataset C, SNPs and samples are filtered out for missing genotype data (0.1) and

the MAF was less than 0.05. a total of 51117 SNPs and 2765 samples pass filters and

QC.

4.3.3 Association Analysis

Association analysis is an incredibly versatile concept, encompassing a wide array of

methodologies that are used to identify and analyse relationships between variables.

This can include anything from simple statistical filtering to more complex relationship

modelling techniques, utilising both univariate and multivariate data. Association anal-

ysis can be applied to a variety of fields to uncover valuable insights from data.

Univariate analysis is one of the most important methods used in this field of research,

as it allows researchers to measure the association between a single variable (X) and

a response (Y). An example of this is the analysis of the association between a single

genetic variant and the expressed phenotype. This type of analysis is not a definitive an-

swer to a question, but rather a tool used to provide insight into potential relationships

between two variables. Univariate analysis is often used to filter data statistically and

to identify patterns that can be further analysed. For instance, if a researcher is looking

for a certain genetic variant associated with a specific phenotype, univariate analysis

can be used to narrow down the data set to those variants that are most likely to be

associated with the phenotype. Once the data has been filtered, further analysis can be

done to confirm the association.

In standard practice, a GWAS as is commonly conducted will involve a univariate anal-

ysis of the data. This analysis can be performed using a variety of methods, such as

Fisher’s Exact Test, Chi-Squared Test, or Logistic Regression [141]. The choice of which
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test to be utilised depends on the type of data being used, and its size [37]. For family-

based association testing, the Transmission Disequilibrium Test [142] is commonly used,

while logistic regression is typically used for population-based association testing with

unrelated samples. When it comes to sample size, Fisher’s exact test is more appropriate

for small samples [37] while Pearson’s Chi-Squared test can be used with larger samples.

Because the resulting information from association analysis varies, it is critical to select

the appropriate method for the given context. The association of all SNPs (in Dataset

A and Dataset B) within the study with disease status of binary variables (0/1) for case

and control patients was assessed using logistic regression. An association test between

SNPs and the AD was carried out to decrease the computationally enormous number of

genetic variants. The SNPs are sorted in ascending order by p-value, and only the first

5000 SNPs are retrieved for further analysis.

Quantile-quantile plots are often employed in standard case-control approaches to assess

the success of QC protocols. While this is not a precise measure, it can certainly act

as a flag for any issues in the data such as population stratification. Figures 4.1 and

4.2 illustrate a tail-end deviation from the assumed values when the null hypothesis is

assumed. Generally, the deviation begins at ¿3, which indicates that the QC process

was satisfactory for both datasets.

Figure 4.1: Quantile-quantile plot shows the deviation from the null hypothesis line
for Dataset A.

Figures 4.3 and 4.4 depict Manhattan plots for Dataset A and B respectively, which
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Figure 4.2: Quantile-quantile plot shows the deviation from the null hypothesis line
for Dataset B.

reflect the -log10 p-values generated through the standard case-control approach. Those

values that surpass the blue threshold are marked as ‘suggestive significance’. In GWAS

literature, a significance threshold 5108 is commonly used as a reference value of a

convincing association, yet none of the SNPs in Dataset A exceeded that threshold. On

the other hand, in Dataset B, two SNPs (rs429358 and rs4420638) surpassed the GWAS

threshold, indicating higher significance. Thus, the Manhattan plots provide a useful

visual representation of the significance of the SNPs, particularly with respect to the

different thresholds.
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Figure 4.3: Manhattan plot of standard case-control shows association of between
genotypes and AD for Dataset A.

Figure 4.4: Manhattan plot of standard case-control shows association of between
genotypes and AD for Dataset B.

4.3.4 Feature selection

GWAS involve high-dimensional data, making direct interpretation challenging, as most

SNPs are irrelevant or lack meaningful information. Therefore, identifying the most

important SNPs is essential. This offers three key benefits: First, it simplifies the inter-

pretability of the ML model, Second, it reduces the model’s variance, thereby minimizing

the risk of overfitting, and Finally, it decreases the computational cost of training the
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ML model by working with fewer features. At this stage, the results of the association

analysis are used to select features that are significantly linked to the target phenotype.

In this study, the Gini measure, which is one of the RF methods for measuring feature

relevance, is used as a feature selector. A substantial number of SNPs are identified as

irrelevant with extremely low significance values. Therefore, any SNPs with a Gini value

of 0.0009 or higher are included in the feature set for classification. The significance cri-

terion of 0.0009 was chosen by a trial-and-error approach because it can identify the

SNPs that reflect favourable results in the classification task. RF selected a total of 120

SNPs as important features for the classification task of both of Dataset A and Dataset

B in which each dataset has 60 significant SNPs. However, for Dataset C, only 57 SNPs

are significant according to the analysis by Bertolini et al. [143].

Table 4.13 shows the top 10 SNPs chosen by RF during the feature selection stage.

The rs429358 SNP exists within the APOE 4 allele that represents the main genetic

risk factor for developing late-onset AD. People who possess one or two copies of the 4

allele face a significantly elevated danger of developing AD. The 4 allele leads to higher

amyloid-beta accumulation and reduced clearance that both play a role in Alzheimer’s

disease development.

The rs4420638 SNP exists close to the APOC1 gene and commonly occurs together

with APOE 4 inheritance. Research indicates that the G allele of rs4420638 increases

the chances of developing Alzheimer’s disease and cognitive deterioration. The APOE

gene’s proximity to this variant suggests that its AD associations stem from genetic

linkage disequilibrium with the 4 allele.

The rs7718940 SNP exists within the APOE gene sequence. The SNP exists in a posi-

tion that could indicate linkage disequilibrium with rs429358 which leads to an indirect

association with AD risk.

The rs862245 SNP exists as an intronic variant within the APOC1 gene. The gene

expression or splicing processes may be influenced by this variant although direct AD

associations remain less established. The close location of this variant to APOE indi-

cates possible relevance through linkage disequilibrium.

The rs153864 SNP exists in the ATP6AP1L gene which functions as a vacuolar ATPase

to maintain lysosomal acidification [144]. The SNP shows potential links to AD through

its association with lysosomal dysfunction [145] although this relationship needs further

investigation.

The KIF2A gene contains two SNPs known as rs37032 and rs16890651 which encode
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kinesin family proteins that regulate microtubule dynamics and neuronal development

[146]. The association between KIF2A variants and AD needs additional research to de-

termine their involvement because these variants have been linked to other neurological

conditions. These SNPs indicating that the model is effective in identifying the most

promising features relevant to the disease.

Table 4.13: Characteristics of the top 10 SNPs being selected as important features

SNP Location Function Gene

rs2937774 5:74124992

rs26642 5:62488562 Intron Variant IPO11

rs153864 5:62425115 Intron Variant IPO11

rs7718940 5:86207592

rs862245 5:82289918 Intron Variant ATP6AP1L

rs429358 19:44908684 Coding Sequence Variant APOE

rs4420638 19:44919689 Downstream Transcript Variant APOC1

rs12374530 5:63761206

rs37032 5:62388203 Genic Downstream Transcript Variant KIF2A

rs16890651 5:62333712 Intron Variant KIF2A

4.3.5 Transfer Learning

In order to improve learning in the target domain, TL involves gaining knowledge from

a dataset (source) and transferring that knowledge, in the form of a pre-trained model,

to a new dataset (target). There are different settings of TL depending on the difference

in task and domain of source and target datasets. For inductive TL, the target task is

different from the source task, regardless of whether the source and target domains are

similar or different. In contrast, transductive TL is used when the tasks in the source

and target are the same, but the domains differ. For example, in this study, the source

and target datasets for human GWAS vary in terms of genotyping platforms. Since

genotyping platforms influence marker selection strategies and the number of markers,

these variations affect the data, necessitating a transfer learning approach to account

for these differences [147].

4.3.6 Experiment Design

The proposed model framework is illustrated in Figure 4.5. GWAS data undergoes

preprocessing and filtering to retain only high-quality samples and markers, utilizing
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appropriate QC methods across all datasets. Logistic regression-based association test-

ing identifies SNPs strongly linked to the disease. Additionally, the RF algorithm is

employed to select key features and reduce dimensionality, ensuring the feature count

aligns with the number of available observations.

Through trial-and-error testing, convolutional layers between 2 and 4 were selected. Ex-

cessive layers risk overfitting the model, while too few may restrict its functionality [148].

Following best practices from related literature [117] [149] [150], convolutional layers and

other DL model hyperparameters were determined [151] [152] [153]. For SVM and RF

classifiers, a grid search was performed to optimise user-defined hyperparameters. The

structures of the DL models are detailed in Table 4.14.

In this study, TL is applied in three ways:

• Classification: Using the pre-trained model to classify new observations directly.

• Fine-tuning: Adjusting the classifier, or part of it, by retraining on a new dataset.

• Feature extraction: Feeding the output of the final layer of the pre-trained model

into a ML model.

After completing data processing and filtering, several experiments were conducted to

evaluate TL’s effectiveness in GWAS:

Experiment 1 (EXP1): Transductive TL was applied to train a model using source and

target datasets from different domains but with the same task. Dataset A was used as

the source dataset and partitioned into 80% for training and 20% for testing. A base

CNN was pre-trained on Dataset A after testing multiple CNN architectures, with the

best-performing architecture selected (details in Table 4.14.A). The trained base CNN

was then used for prediction, fine-tuning, and feature extraction on Dataset B, the target

dataset.

Experiment 2 (EXP2): Inductive TL was applied using source and target datasets from

different domains with different tasks. The model was trained on GWAS data from

Dataset C (animal data) to classify goats into 11 subcontinental breeds, as detailed

in Table 4.14.B. The model trained on Dataset C was then fine-tuned and applied to

classify individuals in Dataset B.
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Experiment 3 (EXP3): Inductive TL was extended by using the pretrained model from

Experiment 2. The model, trained on Dataset C, was fine-tuned and applied to classify

individuals in Dataset A, treating Dataset A as the target dataset for this experiment.

Experiment 4 (EXP4): Inductive TL was further applied using the pretrained model

from Experiment 2. This time, the model was fine-tuned and applied to an aggregated

dataset that combined individuals from Dataset A and Dataset B, treating the combined

dataset as the target for this experiment.

All experiments employed ML analytics built with the Scikit-learn Python library [154].

The PyPlink library [155] was used for genotype data processing in Python. DL models

were developed using Keras with TensorFlow as the backend [156].

Table 4.14: Architectures of the Proposed CNNs; (A) for exp1 and (B) for Exp2, 3
and 4

CNN Model A CNN Model B

Layer Type Description Layer Type Description

Conv1D F = 16, K = (5,), ReLu Conv1D F = 16, K = (5,), ReLu

Conv1D F = 16, K = (3,), ReLu Conv1D F = 32, K = (3,), ReLu

Pool1D Max Pooling (2,) Pool1D Max Pooling (2,)

Dropout 10% Dropout 10%

Reshape Flatten Conv1D F = 32, K = (3,), ReLu

Dense F = 64, Sigmoid Pool1D Max Pooling (2,)

Dropout 10% Dropout 10%

Dense F=2, softmax Conv1D F = 32, K = (3,), ReLu

Pool1D Max Pooling (2,)

Dropout 10%

Reshape Flatten

Dense F = 64, Sigmoid

Dropout 10%

Dense F=2, softmax
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Figure 4.5: The proposed Transfer Learning Framework. On left side, quality control
and feature selection are conducted on human data (Dataset A), then a CNN model is
trained on Dataset A as a base model to be transfer to Dataset B for EXP 1. On right
side, a CNN is trained on animal data (Dataset C) as a base model to be transferred

to both Dataset A and Dataset B for EXP 2,3 and 4.

4.4 Results and Discussions

4.4.1 Evaluation Criteria

In this study, a deep TL model was trained to distinguish between healthy and LOAD

subjects using GWAS data. To evaluate the performance of the proposed approach,

standard metrics were employed, including accuracy, precision, recall, F1 score [157], and

AUC [158], using a held-out testing set comprising 20% of the patients in all experiments.

The results presented in the following sections are reported based on the testing set.
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4.4.2 Transductive Transfer Learning Based AD classification (EXP1)

A CNN model is trained and tested on Dataset A in EXP1. The pre-trained model

was saved for TL purposes, so that it could be reused in the target domain, Dataset B.

The pre-trained model was first used after training only the fully connected layers to

classify the samples in Dataset B. Then unfroze pre-trained model’s layers and trained

the transfer model on 80% of the observations in Dataset B, and tested on the remaining

observations in Dataset B. Finally, the fine-tuned model was used as a feature extractor

and served as an input to ML classifiers (i.e., SVM and RF in this case).

The results obtained during this experiment are presented in Table 4.15, which shows

that the highest accuracy (89.04%) and F1 score (88.57%) were achieved by customising

the pre-trained model as a feature extractor and feeding it into an SVM with rbf kernel.

However, utilising the pre-trained model for the prediction task did not generalise well

to the target dataset and showed a significant decrease in accuracy up to 39%. Despite

the drop in accuracy, the model achieved a high recall score compared to other models

in EXP1. This suggests that the accuracy metric alone is not enough to evaluate the

true performance of a model, especially in cases of biasedness towards a specific class.

It should be noted that the choice of kernel type also influenced the model’s performance.

There was an improvement of around 2% in both accuracy and F1-score when using rbf

kernel compared to a linear kernel. Similarly, more balanced performance was achieved

using FE+SVM with rbf kernel in terms of precision and recall, which was not the case

for other models.

Table 4.15: Results of EXP1 Transductive Transfer Learning (Transfer from Dataset
A to Dataset B)

Model Use Accuracy Precision Recall F1-score AUC

classification 0.39 0.43 0.75 0.55 0.42

Fine-tuning 0.76 0.80 0.69 0.74 0.76

FE+RF 0.89 0.96 0.80 0.87 0.89

FE+SVM with
linear Kernel

0.87 0.93 0.80 0.86 0.87

FE+SVM with
rbf Kernel

0.89 0.91 0.86 0.88 0.89
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4.4.3 Inductive Transfer learning Based AD Classification (EXP 2, 3

and 4)

In EXP2, the source dataset used is GWAS data of animals to train a CNN model to

classify the goat into 11 subcontinental breeds. The pretrained model, as in EXP1,

adapted to classify the samples of target dataset (Dataset B) by a) only changing and

training the top layer, b) fine-tune the model to make them relevant for the target task,

c) as a feature extractor. The detailed statistical outcomes of this experiment are shown

in Table 4.16. Similar to EXP1 results, the pre-trained model generalised well when

fine-tuned and used as feature extractor followed by an SVM with rbf kernel. However,

the model shows accuracy of 60.27% when used directly (without fine-tuning the pre-

trained model’s layers) to predict the class in the target dataset. This is a significant

drop in model’s performance which clearly indicates the usefulness of fine-tuning of TL

for the task of AD classification. Even though a high accuracy of 84% achieved after

fine-tuning and utilising the pre-trained model to classify samples in Dataset B, there is

clearly a biased performance in terms of precision (93%) and recall (75%) metrics which

shows biasedness towards one class. In construction, balanced performance of 87% and

80% for precision and recall was achieved when customising the pretrained model as

feature extractor followed by SVM.

In EXP3, the same pre-trained model from EXP2, is used for the TL over Dataset A.

The main objective is to investigate if the pre-trained model is able to generalise well

for different datasets. Following the same TL strategies, Table 4.17 lists the statistical

results from EXP3. Unlike the outcomes from EXP2, the pre-trained model did not

perform well in general, however, achieved better recall scores than precision. After fine-

tune the model to make it more relevant to Dataset A, 67.5% and 59.37% of accuracy

and f1-score were achieved, respectively. These statistical outcomes clearly indicate that

employing the pre-trained model as a feature extractor could not help in improving the

model performance in this experiment.

Similar to outcomes from EXP1 and EXP2, the rbf kernel outperforms linear kernel

which may be due to the non-linear nature of the dataset.

In EXP2 and EXP3, the pre-trained model is reused in target domains of Dataset A

and Dataset B individually, to examine the generalisation of pre-trained model on both

datasets. Furthermore, the pre-trained model utilized in both EXP2 and EXP3, is
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Table 4.16: Results of EXP2 (Transfer from Dataset C to Dataset B)

Model Use Accuracy Precision Recall F1-score AUC

classification 0.60 0.60 0.55 0.57 0.6

Fine-tuning 0.84 0.93 0.75 0.83 0.85

FE+RF 0.80 0.84 0.75 0.79 0.81

FE+SVM with
linear Kernel

0.76 0.78 0.72 0.75 0.78

FE+SVM with
rbf Kernel

0.84 0.87 0.80 0.84 0.85

employed as base model to be fine-tuned over aggregated dataset of A and B. the main

intention is to investigate how the pre-trained model will behave in varying settings.

Table 4.18 demonstrate the results achieved through experiment (EXP4). The statistical

outcomes show that the accuracy dropped to 58% when customising the pre-trained

model over the aggregated dataset. This could be due to the effect of Dataset A, as

the model in EXP3 did not perform very well. Similar to EXP2, the model achieved

highest performance of 69.28% and 64.66% of accuracy and f1-score, respectively, when

fine-tuned over the aggregated dataset and used as a feature extractor followed by an

SVM.

Table 4.17: Results of EXP3 (Transfer from Dataset C to Dataset A)

Model Use Accuracy Precision Recall F1-score AUC

classification 0.58 0.41 0.4642 0.44 0.56

Fine-tuning 0.67 0.52 0.67 0.59 0.68

FE+RF 0.63 0.48 0.5 0.49 0.61

FE+SVM with
linear Kernel

0.62 0.47 0.57 0.51 0.61

FE+SVM with
rbf Kernel

0.65 0.5 0.53 0.51 0.62

Table 4.18: Results of EXP4 (Transfer from Dataset C to aggregated dataset of
Dataset A and dataset B)

Model Use Accuracy Precision Recall F1-score AUC

Prediction 0.58 0.57 0.38 0.46 0.57

Fine-tuning 0.66 0.65 0.54 0.59 0.65

FE+RF 0.64 0.63 0.51 0.56 0.63

FE+SVM with
linear Kernel

0.66 0.67 0.52 0.59 0.67

FE+SVM with
rbf Kernel

0.69 0.68 0.61 0.64 0.69



71

4.4.4 Benchmark with Related Work

Table 4.19 presents performance comparison between the proposed TL based AD clas-

sification approach and related works from the literature. It can be noticed that the

approach in the current study outperforms the existing methods in terms of almost all

performance metrics with an increase of 5% of accuracy and AUC, and 8% increase in

F1-sore comparing to the second best model. In addition, it is very important to note

that the proposed approach uses only 60 features as input to ML model as compared

to state of the art [49] which uses over 500 features. This caused the proposed model

to be less noisy, light weight, and efficient model. Furthermore, identification of fewer

most contributing feature to AD might be useful to set a baseline for further analysis

and future research direction. The proposed model shows high accuracies, as well as

balanced performance in terms all metrics. In contrast, gradient boosted decision tress

[54] showed an increase of 11% in terms of AUC comparing to other metrics.

Table 4.19: Comparison of related work in the literature

Study ML
model

Dataset Feature
No.

AccuracyPrecisionRecall F1
score

AUC

[54] gradient
boosted
decision
trees

UK-
BioBank

145 80% 80% 80% 80% 91%

[117] 1D CNN ADNI 4000 75% - - - 81%

[48] Ensemble
of sev-
eral ML
algo-
rithms

ADNI 2500 ∼70% - 70% - 72%

[49] LASSO NIA-
LOAD

501 84% - 82% - 84%

PropsedTransfer
Learn-
ing +
SVM

ADNI 60 89% 91% 86% 88% 89%

4.4.5 Discussions

The genetics of phenotypes such as AD is of complex nature. Multiple genetic markers

play a role in the emergence of complicated human disease. Despite the fact that GWAS

were successful in identifying SNPs associated with complex diseases, this strategy lacks
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the identification of variants with low influence that might play a significant role when

combined with other variants [159]. Additionally, traditional GWAS have only discov-

ered SNPs that can only account for 33% of the estimated 79% [160] of genetic risk

related with AD.

ML algorithms have been shown to be more effective in discovering candidate SNPs

and predicting complicated genetic diseases [161] [162] [163]. In the last decade, the

application of ML-based techniques for genetic-based precision medicine has expanded

and it is expected to continue [164].

The results shown in Table 4.15 demonstrate that TL can be used as an effective tool for

classifying GWAS data. This is due to the fact that DL models require a large amount

of data for training. Given the high dimensionality of GWAS data, training DL models

is challenging, and TL from one dataset to another can help to address this issue. How-

ever, careful selection of the source dataset for the pre-trained model plays a major role

in determining the model’s performance when it is transferred to another dataset.

As shown in EXP1 (Table 4.15), TL in a similar task, from Dataset A to Dataset B,

yielded the best performance. Despite the slight differences in population type between

the two datasets (Dataset A consisted of European participants, whereas Dataset B con-

tained non-Hispanic participants), the pre-trained model generalised well on the target

dataset. Since the majority of GWAS data comprises European participants [165], this

will pave the road for research of minor population. Particularly, where limited GWAS

data exists, proposed approach might be effective to be used. When using a GWAS data

from animal population in light of the similarities in biological function among species

[166], TL the pre-trained model was effective in classifying participants in Dataset B, but

did not perform well on Dataset A (Table 4.17). This may be because of the selection

of genotyping platform, as the data is known to be influenced by the selection strategy

and number of markers generated by genotyping platforms [147]. The genetic modifi-

cation of animal models to express human disease-related genes or mutations does not

eliminate their fundamental differences from human genomic architecture and biological

pathways. The findings become less transferable because of this limitation. The poly-

genic nature of AD together with its complex traits requires animal models to replicate

numerous gene-environment interactions which might not fully match human conditions.

Some genetic loci which are linked to human AD risk do not exist in animals or function

differently which makes it challenging to study gene-environment interactions and pre-

dict treatment responses accurately. This requires more investigation to clarify why the
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model was able to perform well on one dataset but not on another similar one. Results

shows that the classification accuracy was reduced when the pre-trained model used for

aggregated dataset. This suggests that the pre-trained model may have failed to learn

GWAS-specific features, and instead, relying on dataset-specific features.

The use of TL allows researchers to use information from a similar domain but it bears

from overfitting issues especially when the source and target datasets have different

distribution patterns and feature representations as demonstrated in the previous ex-

periments. Overfitting occurs when the transferred features fail to capture the essential

characteristics of the target domain.

The datasets high quality helped minimise the risk of overfitting in our analysis. The

target dataset contained enough information with training and evaluation subsets that

were balanced. The implementation of standard techniques including early stopping

helped decrease the possibility of overfitting. The results require careful application to

external datasets because population structure and genotyping platform differences may

affect their validity.

Three TL customisations were used for the classification of AD. Except for one exper-

iment (EXP3), the other three experiments demonstrated that the pre-trained model,

utilised as a feature extractor followed by ML model, outperformed the other customi-

sations. In only one experiment (EXP3), fine-tuning the pre-trained model had better

accuracy than the other two strategies. This implies that re-purposing previously learned

feature maps (from the source domain) for the target dataset can help achieve better

performance with TL.

It was also observed that RF was capable of selecting SNPs that have been previously

linked to AD. Therefore, SNP selection based on RF could be a valuable tool for identify-

ing clinically significant risk factors. These findings are consistent with previous studies

that have shown that the APOE 4 gene is the primary risk factor for AD [167].

For highly accurate clinical diagnostic, the genetic component alone forms a barrier.

Complementing the genetic-based approaches with imaging or clinical data could be one

of the possible answers to this challenge. The genetic study might be used to identify

subjects who are at a higher risk of acquiring AD and therefore, such subjects can be

tracked with imaging technology on regular basis to detect the disease’s onset as soon

as feasible.

Alongside the proposed study’s contributions, small sample size of dataset limits this

study; increasing the sample size is expected to increase the forecasting performance of
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the deep TL models. As a result, these models are predicted to have a potential for

diagnosing AD and other complex diseases.

4.5 Chapter Summary

The outcomes of utilising TL followed by the SVM, to estimate the risk of acquiring

LOAD entirely from genetic variation data, were presented in this chapter. The feature

selection methodology utilised to decrease the large number of SNPs has the potential to

lead to the discovery of new disease-related genetic markers. Based on the preliminary

results, the proposed methodology is expected to be a robust tool for the classification of

AD. Furthermore, this chapter demonstrates that TL is an effective method for analysing

and leveraging a large number of genetic markers that might be utilised for a variety

of complicated disorders, such as Alzheimer’s. In this study, transductive TL is utilised

as a feature extractor, which resulted in the highest classification performance when

compared with other settings and customisations of TL. Next chapter will utilise various

neural networks architectures for classification of AD cases and NC.
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5.1 Introduction

In recent years, numerous computational approaches have been developed to enhance

the diagnosis or uncover novel gene candidates linked to AD. For example, GWAS stud-

ies [168] are widely recognised for identifying genomic regions associated with various

complex diseases and traits. These studies analyse data from large population samples,

examining a vast number of loci (over 100,000 SNPs) across the human genome. Vari-

ations at certain loci can result in altered biological functions, potentially leading to

disease. These variations are identified by analyzing genotypes from individuals with

and without the characteristic of interest [169].

The literature highlights various methods for evaluating SNP susceptibility in GWAS,

with each SNP assessed independently [170]. However, it has been observed that only a

small fraction of SNPs significantly influence complex disease traits, while most exhibit

low individual penetrance [171]. Conversely, many common human diseases are associ-

ated with complex interactions among multiple SNPs, known as multi-locus interactions

[172].

Beyond traditional methods for GWAS analysis, ML algorithms have been increasingly

applied to identify SNPs linked to various diseases. ML techniques have shown ex-

ceptional adaptability in handling non-linear problems and high-dimensional datasets,

making them well-suited for the complexities of GWAS data analyzed in this study. The

literature identifies three primary applications of ML in the context of GWAS [173].

First, ML models have been developed to classify disease cases and healthy controls [174]

[48] [52]. Second, ML techniques have been employed to uncover novel genetic markers

associated with specific diseases, such as AD [175] [51] [176]. Third, ML has been used

to identify interactions between SNPs that contribute to the development of common

human diseases [177] [53] [47].

The primary objective of integrating ML in these studies is to create predictive models

that achieve optimal classification accuracy between cases and controls. However, a

significant challenge persists: managing the computational complexity posed by the

vast number of markers in GWAS data relative to the smaller sample sizes (i.e., data

records) available [173].
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In [178], a study introduced iGnet, a DL model for AD classification that integrates

two datasets containing MRI and genetic information. The model employs a computer

vision approach to process MRI scans and natural language processing to analyse genetic

data. The proposed method was tested on the ADNI dataset, achieving a classification

accuracy of 83.78% using MRI data combined with selected SNPs from chromosome 19.

In contrast, the proposed novel approach utilises wide and deep learning models to

classify NC and AD individuals. The process begins with an association test to identify

the most significant SNPs related to the disease, followed by a hybrid feature selection

technique to significantly decrease the number of features. The newly introduced method

is then employed to select neighboring SNPs, creating a final set of SNPs for training

the wide and deep learning classification models for NC and AD subjects. The key

contributions of this work in this chapter include:

a. Developing a hybrid dimensionality reduction approach towards identification of the

most distinguishing features, leading to robust classification performance.

b. Propose a neighbour SNPs selection approach to test the impact of neighbour SNPs

over the classification accuracy.

c. Propose a wide and deep learning models for classification of individuals into NC and

AD.

d. Extract human understandable rules from the trained ensemble model, to serve for

the ML model’s interpretability.

In this chapter the materials and methods of this study will be presented. As well as

the experimental design. Finally, the results corresponding to the experimental design

along with discussions about the chapter outcomes will be shown.

5.2 Materials and Methods

The proposed method for AD classification integrates data processing, feature selection,

and ML algorithms. Initially, quality control is applied to ensure that only high-quality

features and samples are included. Then, logistic regression is used to evaluate the as-

sociation between each feature and AD. The processed dataset is then passed through

a hybrid feature selection approach that combines PCA and Boruta algorithms. The
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selected features are subsequently used to train machine learning models for AD classifi-

cation. Figure 5.1 illustrates the overall methodology for the proposed AD classification

Figure 5.1: A graphical representation of proposed approach for AD and NC classi-
fication. First block represents the PLINK analysis in which quality control procedure
and association test is conducted. Second the genotype data convert into one-hot rep-
resentation. Third feature selected utilizing Boruta and PCA algorithms. Finally, AD

classification is performed using the different feature sets.

5.2.1 ADNI Dataset

The dataset used in this study is obtained from the Alzheimer’s Disease Neuroimaging

Initiative database. The ADNI was launched in 2003 as a public-private partnership with

the primary objective to test whether serial MRI, positron emission tomography, other

biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. The dataset is described in Chapter 4 of

this thesis.
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5.2.2 Quality Control

To eliminate irrelevant information from both genetic markers and samples, various

techniques have been explored and applied in genetic data quality control, particularly

focusing on SNP data. The methods outlined in Chapter 4 represent best practices for

removing individuals and SNPs that could introduce bias or lead to false positive results

[136]. The dataset prepared in this study is refined to include a representative set of

SNP features and subjects that are more likely to reveal genetic signals associated with

the phenotype by removing subjects and SNPs that do not meet the criteria established

by these procedures. Initially, there were 620,901 SNPs, which were reduced to 487,037

SNPs following the operations outlined in Table 5.1.

Table 5.1: Quality control procedure applied for both samples and genetic markers

Filtering approach Threshold Used

SNPs missingness 0.02 genotyping rate

Individuals’ missingness 0.2 genotyping rate

Sex discrepancy An estimate of the X chromosome homozy-
gosity >0.8 for males and <0.2 for females.

Autosomes Chromosomes -

Minor allele frequency 0.05 due to sample size.

Hardy–Weinberg equilibrium SNPs are first filtered out within the con-
trols for HWE p-values of 1e-6, then in cases
for HWE with p-value of 1e-10.

Relatedness employ 0.2 pi-hat threshold.

Population stratification Only non-Hispanic European participants
chosen.

5.2.3 Feature Selection

In the feature selection and dimensionality reduction process of the proposed method-

ology in this chapter, an association test was performed using logistic regression (as

described in section 4.3.3 Association Test) to assess the relationship between each SNP

and AD. The top 1000 SNPs, ranked by their significance values (i.e., p-value), were

selected for further analysis. These 1000 SNPs were then processed using a combination

of feature selection techniques, including PCA [97] and the Boruta algorithm [101], both

of which have been applied in various similar fields [99] [100].
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5.2.3.1 Principal Component Analysis

The top-ranked 50 features (out of 1000 SNPs) selected by the PCA algorithms (as

most important) are shown in Fig. 5.2, including rs12498138 located on gene GOLGB1,

rs4072374 located in gene RNASEH1, rs2309772 in TENM3, rs7005164, and gene LOC105375901.

Figure 5.2: Top-ranked 50 features (out of 1000 SNPs) selected as important, by the
PCA algorithm

5.2.3.2 Boruta Algorithm

SNPs with substantially high scores identified by the Boruta algorithm includes: rs17365991

gene TEF, rs8141950 gene PARVB, rs2654986 gene LUNAR1, and rs2036109 gene

ADRA1A. A list of top 50 important features selected by the algorithm is presented

in Table 5.2.
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Table 5.2: Top 50 features selected by Boruta algorithm

rs6116375 CC rs11768384 GG rs6585082 TG rs11706690 CC rs10491109 AC

rs17365991 GG rs2075650 AA rs6505403 TT rs327079 TT rs12670401 CC

rs8141950 CC rs7342676 CC rs1927605 AA rs10790928 TT rs2208322 AA

rs2654986 TC rs12822144 AA rs6585082 GG rs2654986 CC rs10871809 TC

rs2036109 TT rs11253696 GG rs327079 CT rs4795895 GG rs1387089 TT

rs12804305 CT rs4351677 TC rs10491109 CC rs6577539 GA rs1233651 AA

rs10133989 AA rs4351677 CC rs2883782 TT rs11160481 CC rs3775770 AA

rs17365991 AG rs12804305 TT rs4778636 AG rs1797779 CT rs3004297 TT

rs8141950 TC rs3857224 TT rs7146951 GG rs7159863 TT rs1387089 CT

rs2042599 GG rs4964453 TT rs1981542 GT rs4635275 AA rs4566279 CT

5.2.3.3 Hybrid Feature Selection

Although both PCA and Boruta algorithms are widely used for feature selection, their

underlying mathematical principles differ. By combining the results from both methods,

the goal is to eliminate as many irrelevant features as possible while preserving the most

important information from the original dataset. A hybrid feature selection strategy

was employed, combining the outputs of Boruta and PCA. First, the results from both

algorithms were sorted based on feature rankings, reflecting their importance. Then,

the top 25% of features identified by both Boruta and PCA were selected, resulting

in 121 key features. Boruta uses a wrapper method around random forest to identify

features for classification that are based on their predictive power, thus capturing non-

linear interactions and features relevant to classification performance. PCA on the

other hand ranks features based on variance explained, regardless of the outcome label,

thus capturing the informative structure of the data. Thus, the aim to retain both

the statistical relevance and the biological signal. Instead of using PCA’s transformed

components, which can reduce the interpretability, the component loadings were used to

assign an importance score to the original features (SNPs). This allow to rank the SNPs

directly from PCA, which made them more comparable to Boruta’s feature importance

scores.

PCA and Boruta can rank features differently, for instance, PCA may select a SNP

for high variance and Boruta may not consider it as a relevant feature because of its

weak predictive power. However, by cross checking both rankings, to see weather able

to identify features that converged SNPs that were important from both structural and

predictive viewpoints might improving robustness of the selection.

The choice to retain the top 25% of features from each of the methods was based on
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previous empirical benchmarks and the trade-off between dimensionality reduction and

classification accuracy. Although the threshold is somewhat arbitrary, it resulted in a

reasonable number of features that could be used for downstream analysis. A full list

of the commonly selected features is provided in Table 5.3. It is evident that some of

the highest-ranked SNPs, such as rs6116375 on the PRNP gene and rs2075650 on the

TOMM40 gene, are strongly associated with AD.

Table 5.3: List of final feature-set identified as significant using the intersection of
selected features from both PCA and Boruta algorithm

rs6116375 CC rs10176603 TT rs7747741 GG rs4290760 CC rs16864809 TT

rs2654986 TC rs10031325 CC rs701880 CC rs11680332 GG rs7679260 CC

rs11768384 GG rs16889565 GA rs9296691 TC rs628482 GG rs9389952 TT

rs2075650 AA rs2877347 CC rs4953672 CC rs518385 TT rs10804812 CC

rs7342676 CC rs6114605 GA rs10068900 GG rs2577322 CC rs618236 CC

rs4964453 TT rs7618348 CC rs2834714 TT rs11869174 CT rs1945624 AA

rs10790928 TT rs9595108 CC rs6838005 CC rs11733633 AA rs2577322 TT

rs2208322 AA rs17068548 GG rs10514486 CC rs911892 TT rs7807731 TT

rs7519796 AA rs13211072 TT rs7149949 TT rs3812568 AA rs2136613 TT

rs10222715 TT rs6132022 TT rs2725790 CT rs799447 GG rs344783 TT

rs10793982 TT rs793291 AA rs11655031 TT rs17745021 CT rs1495813 CC

rs775879 GG rs3771389 CT rs2833427 CC rs13245564 GG rs9410486 GG

rs4837137 AA rs6695731 CC rs8007000 TT rs2305252 AA rs7096762 AA

rs1789250 AA rs10044783 CC rs17430865 CT rs4472075 AA rs2309777 GG

rs4868468 AA rs17345545 CC rs3815360 CC rs4793902 TT rs9515168 GT

rs11752811 TT rs871049 CC rs17430865 TT rs168825 GG rs6569364 AA

rs2075650 GG rs4953672 AA rs11922179 AA rs6838005 TC rs12988856 TT

rs2697303 AA rs2075650 GA rs1186685 TT rs775879 AA rs1891265 GG

rs362584 AA rs1479884 GG rs7320494 AA rs6903956 AA

rs8000805 GG rs11253696 AA rs7206002 GG rs12480224 AA

rs10879839 TT rs13135230 GG rs367369 TT rs2339298 TT

rs2286343 AA rs10888578 TT rs1328179 TT rs7413155 AC

rs939720 CC rs7999171 GG rs4689705 TT rs9595108 AC

rs7165661 TT rs12312628 CC rs705904 CC rs6929400 CC

rs2867922 TT rs10101666 TT rs9381936 CC rs268909 TT

The aforementioned features (PCA, Boruta, and composite of both) are then used to

train and validate the multiple ML models for the task of AD classification over unseen

instances.

5.2.4 Proposed Alzheimer’s Disease Classification

Once the most relevant features were identified from the original dataset, various well-

established classification methods, such as RF and ANN, were applied to classify AD.
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To ensure accurate and efficient classification, different combinations of features were

tested with the selected models. This approach not only improved the classification of

AD but also helped identify the most significant set of features.

5.2.4.1 Random Forest for Proposed AD Classification

RF is an ensemble learning model known for its effective for high-dimensional datasets.

Ensemble learning is a powerful technique that combines multiple learning algorithms to

enhance overall accuracy. One of the key benefits of ensemble methods is their ability to

address the challenge of small sample sizes by averaging and integrating multiple classi-

fication models, thus reducing the risk of overfitting the training data. This makes the

training dataset more efficient, which is particularly valuable in biological applications

where sample sizes are limited. Figure 5.3 illustrates an example of trees that gener-

ate multiple results, each using a different subset of features (with bootstrapped data

samples) from the proposed RF-based AD classification model.

Figure 5.3: Random Forest sub-trees for proposed AD classification using GWAS
data. The input to the RF is the bootstrapped SNPs features. In the first step (boot-
strap step) refers to the process of training each tree in RF on a subset of the training
samples. While in the second step (aggregation step) the class with the majority votes
from the trees is chosen as the final output (in above example 2/3 votes are in favour

of Normal control)
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5.2.4.2 Deep Wide Artificial Neural Networks for Proposed AD Classifica-

tion

Neural networks were applied with gradient descent optimisation using the backpropa-

gation learning method for binary classification tasks. The neural network architecture

comprises input, hidden, and output layers, each containing a predefined number of neu-

rons. In this study, different types of neural network structures are used: a Wide Neural

Network (WNN), which has a single hidden layer with a large number of neurons, and

a Deep Neural Network (DNN), which features multiple hidden layers, each with fewer

neurons.

Expanding on the concept of ANNs, a wide and deep neural network (as shown in Fig

5.4) combines a DNN with a linear model based on a limited set of features. This ar-

chitecture has proven beneficial in similar applications, such as cell type classification

[179] and recommender systems [180]. GWAS data characteristics including its high di-

mensionality and sparsity together with biological linkage disequilibrium (LD) structure

influences how ML architectures should be designed for predicting phenotypes or classi-

fying diseases such as AD. The combination of wide and deep neural networks presents

a proposed solution for this situation. The proposed architecture benefits from deep

learning capabilities for complex pattern detection in large datasets and linear model

advantages for feature memorisation and interpretability.

The deep network part utilised in GWAS data because it can analyse neighbouring SNPs

to detect nonlinear genomic interactions. The model requires this capability because AD

result from polygenic effects and subtle interactions which linear models cannot detect

independently. The wide component of the network models a selection of biologically

important SNPs which were identified during previous feature selection processes (e.g.,

those in Table 5.3). These SNPs demonstrate established connections to AD while

also functioning as regulatory elements or coding sequences. The wide layer enables the

model to focus on important genetic markers which enhances both biological understand-

ing and model clarity. The dual-pathway structure utilises GWAS data heterogeneity

to combine strong disease-linked variant detection with the ability to discover new non-

linear patterns in large genomic datasets.

For the proposed AD classification (shown in Fig 5.4), the final set of selected features
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(Table 5.3) is passed into the wide component. For each SNP listed in Table 5.3, neigh-

boring SNPs are identified and used as input to the deep component of the network.

Figure 5.4: Proposed Wide and deep NN for AD classification using GWAS Data

5.2.5 Experiment Design

Several experiments are conducted using the features identified through the proposed

hybrid feature selection method (refer to Section 5.2.3 Feature Selection) from the ADNI

GWAS dataset to train the AD classifiers (RF, WNN, and DNN). The dataset is split

into training (70%) and testing (30%) sets. To ensure an accurate and consistent eval-

uation, 5-fold cross-validation (5-CV) is applied for performance assessment of the AD

classifiers. The optimal hyperparameters for all machine learning classifiers are deter-

mined through a trial-and-error approach and are outlined in Table 5.4. Quality control

and association testing are performed using PLINK software [181], while the ML models

are implemented using the Scikit-learn library in Python [154]. The PyPlink library

is used to process genotype data in Python [155], and neural network implementation

is carried out using Keras and TensorFlow as backends [156]. Based on these config-

urations and feature sets, the following experiments are conducted in the proposed study:

Experiment 1 (EXP1): The intersection of the top 25% features ranked by both Boruta

and PCA algorithms is used as the combined feature set (called Intersection feature set)

to train RF, WNN, and DNN classifiers to determine the best-performing AD classifier.
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Experiment 2 (EXP2): The top 25% of features ranked by Boruta are selected as the

feature set (called Boruta feature set) for AD classification using RF, WNN, and DNN

algorithms.

Experiment 3 (EXP3): The top 25% of features ranked by PCA are selected as the

feature set (called PCA feature set) for AD classification using RF, WNN, and DNN

algorithms.

Experiment 4 (EXP4): To assess the impact of neighboring SNPs, for each SNP in the

interaction feature set (from EXP1), the SNP and its six neighboring SNPs (three from

each side) are retrieved to create a new feature space called the neighboring features set.

The features from EXP1 are used as input to the wide component, and the neighboring

features set is used as input to the deep component to train and test the proposed wide

and deep model (as illustrated in Fig 5.4).

Experiment 5 (EXP5): The top 25% of features selected by logistic regression are used

as the feature set (called original feature set) for AD classification using RF, WNN, and

DNN algorithms.
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5.3 Results and Discussion

Using the experimental configurations described above, detailed results and performance

metrics were obtained using the testing set. This study successfully identified and ex-

tracted a smaller yet highly effective set of features that significantly improved the classi-

fication of AD. Among these, several genes were found to be significantly associated with

AD, aligning with findings from related literature. These include including rs6116375

on gene PRNP [182], rs2075650 on gene TOMM40 [183], rs10793982 on gene LAMC3

[184], rs2208322 on gene NEURL1 and rs7519796 on gene KAZN [185], This alignment

with existing research highlights the effectiveness of the feature selection approach. Ad-

ditionally, the study identified potential novel (SNPs) significantly associated with AD,

including rs2654986 on the LUNAR1 gene and rs2208322 on the NEURL1 gene. A com-

plete list of the significant SNPs identified in this study is provided in Table 5.3.

To evaluate the effectiveness of the feature selection process, a RF classifier and neural

networks with varying parameter configurations are employed to classify the AD pa-

tients. The performance of the classifiers is presented in Table 5.5 when evaluated over

the unseen subjects using features set described in EXP1. It can be noticed that regard-

less of selected ML model, high performance measures are achieved. WNN indicates an

accuracy and f1-score of 94% and 93%, respectively. Followed by a DNN which showed

a slightly decline in performance (i.e., 93%) in respect to accuracy. While RF indicate

more deteriorations in performance with 89% accuracy and 88% F1 score, which is in

line with the existing similar work [186], where higher accuracy is reported using ANN

as compared to RF (for preterm birth classification). Oriol et al. [48] employed RF in

classification of AD and NC using GWAS data, where they reported accuracy of 67%

(significantly lower than proposed approach). Similarly, RF was not the best classifier

to discriminate between AD cases and controls as reported in a similar work [54]. It is

also important to note that the performance balance from WNN and DNN (in Table

5.5) as compared to RF, which indicates more biasedness towards the precision (96%)

as compared to recall (81%).

Table 5.6 summarises outcomes for EXP2 where all classifiers indicated similar perfor-

mance when trained and tested over the top-ranked (i.e., 1st quartile) features selected

by Boruta algorithm. It can be noticed that the overall accuracy of each model is

increased specifically, the WNN and DNN which indicate 99% accuracies for unseen
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Table 5.5: Comparison of ML algorithms for classification of AD and healthy indi-
viduals using intersection features selected by Boruta and PCA from the top 25% (Exp

1).

Model Accuracy Precision Recall F1 AUC

RF 89% 96% 81% 88% 90%

Wide NN 94% 91% 98% 93% 92%

Deep NN 93% 89% 96% 92% 94%

instances. This clearly shows the effectiveness of selected features as well as the model’s

configurations.

Table 5.7 presents the outcomes for EXP3 where the features identified from PCA al-

gorithm are used to train the ML models. It can be noticed that WNN and DNN

models outperformed the RF producing overall 96% and 94% accuracies, respectively,

as compared to 84% from RF. Likewise, the performance clearly indicates the balance

between recall and precision which is not the case for RF. Overall, the RF demonstrated

a notable reduction in performance.

Table 5.6: Comparison of ML algorithms for classification of AD and healthy indi-
viduals using top 25% features selected by Boruta algorithm (Exp 2).

Model Accuracy Precision Recall F1 AUC

RF 92% 99% 84% 91% 92%

Wide NN 99% 99% 99% 99% 100%

Deep NN 99% 99% 99% 99% 100%

Table 5.7: Comparison of ML algorithms for classification of AD and healthy indi-
viduals using top 25% features selected by PCA algorithm (Exp 3).

Model Accuracy Precision Recall F1 AUC

RF 84% 99% 68% 81% 84%

Wide NN 96% 99% 92% 96% 97%

Deep NN 94% 96% 91% 93% 97%

To assess the impact of the neighbouring SNPs (of the identified most important SNPs)

towards the classification of AD, the performance of WDNN classifier was evaluated in

EXP4 (Table 5.9). Despite the performance of WDNN is substantially reduced (around

80%) as compared to EXP1-EXP3, it is still inline or outperforms most of the existing

related works as shown in Table 5.9, particularly in the domain of GWAS. For the final

experiment, we tested the models’ performances over the original dataset (EXP5 as

illustrated on Figure 5.1) before feature selection (Table 5.8). It can be noticed that

the classification performance from each model is nearly as accurate as in EXP2 (Table

5.6). Likewise, the RF indicates a biased performances in terms of precision and recall.
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Table 5.8: Comparison of ML algorithms for classification of AD and healthy indi-
viduals using original features set (Exp 5).

Model Accuracy Precision Recall F1 AUC

RF 91% 99% 81% 89% 91%

Wide NN 99% 99% 98% 99% 99%

Deep NN 99% 99% 98% 98% 99%

5.3.1 Comparative Analysis

Finally, Table 5.9 compares the performance of proposed method with existing similar

approaches, towards the classification of AD based on genome-wide data (SNPs). It is

evident that the proposed approach outperforms the Decision tress [54], CNN [117], en-

semble models [48], and LASSO [49]. The proposed approach shows stable performance

throughout the evaluation metrics including ROC. Whereas, the decision tress utilised

in reference [54] showed an increase AUC of 11% comparing to the model’s accuracy.

Likewise, our work shows the superiority of Boruta algorithm in selecting the optimal

number of features and eliminating the redundant SNPs, which reflects the high perfor-

mance in the classification task. The results indicate that Boruta algorithm is better

than other feature selection techniques such as statical techniques applied in [49]. More-

over, the proposed model uses only 121 features as input to the WNN as compared to

LASSO [49] which uses over 500 features, and CNN-based approach utilising 400 features

[117]. This leads to a less noisy, lighter, and more efficient model. The identification of

fewer contributing features to AD may be useful to set a baseline for further analysis

and direction in future research.
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5.3.2 Discussions

it should be noted that this study is first of its kind to examine GWAS data using a

wide and deep neural network approaches as far as the knowledge of the author. Using

a relatively small number of identified feature set (only 121 features), the proposed

classifying models achieved high performance (Table 5.5), which reveals the robustness of

the proposed feature selection methodology. Furthermore, experimental outcomes show

that using appropriate classifier can improve the accuracy better than increasing the

number of features (See Table 5.7). In addition to performance efficiency, experiments

1,2 and 3 show the strength of neural networks in the existence of complex relations

within the dataset. The results demonstrate the effectiveness of the proposed approach

(e.g., via the cross validations) which can be easily applied to other chronical disease

where larger GWAS datasets are available.

Similar to other related studies, when interpreting the findings, some limitations are also

noticed in the proposed work. First, the sample size is relatively small however, this is

consisting with other related work that uses the same dataset [48] [187] [188] and other

work which use GWAS data with a similar or lower sample size [115] [189]. Second,

number of features (SNPs) highly exceeded the number of samples within the original

dataset however, this was addressed by substantially reducing the number of features

using advanced statistical approaches and highlighted the significant SNPs.

Experiments were conducted to compare the performance of WNN (one hidden layer

with a large number of neurons) and DNN (multiple hidden layers with smaller number

of neurons in each layer) to explore the implication that architecture selection has in the

model performance. The ANNs have variety of parameters to choose from, including

the number of hidden layers and neurons per layer. These parameters distinguish the

network’s architecture and influence how the model performs. It was noticed that in

almost all of the experiments, WNN outperforms the DNN that may be because of the

size and nature of the dataset.

Furthermore, it can be noticed that the WNN and DNN showed better performance than

RF in GWAS domain (Tables 5.5,5.6 and 5.7). However, there is a trade-off between

model accuracy and model interpretability. The RF can lead to an interpretable model

and extract useful explanation on how the model reached a decision (case or control)

which to go beyond simply using a model to get the best possible predictions. The

RF model can produce insights which a human expert (e.g., physicians) can use to
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understand how the model help in AD diagnosis through genetic data. For this purpose,

a list of human understandable rules is extracted from the best performing tree of the

RF model as shown in Table 5.10.

From the extracted rules, it can be notice that if a person has the genotype of CC

Table 5.10: Rules extracted from best tree of RF model

if (rs705904 CC >0.5) and (rs4953672 CC <= 0.5) and
(rs799447 GG >0.5) and (rs701880 CC <= 0.5) then class: Control
(proba: 100.0%) — based on 20 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA >0.5) and (rs1789250 AA <= 0.5)
and (rs939720 CC <= 0.5) and (rs268909 TT <= 0.5) and (rs7342676 CC <=
0.5) and (rs1479884 GG <= 0.5) then class: Control (proba: 100.0%) — based
on 17 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA <= 0.5) and (rs871049 CC >0.5)
and (rs2577322 TT <= 0.5) and (rs8000805 GG <= 0.5) then class: Case
(proba: 100.0%) — based on 14 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA >0.5) and (rs1789250 AA <=
0.5) and (rs939720 CC <= 0.5) and (rs268909 TT >0.5) and (rs793291 AA <=
0.5) and (rs7342676 CC <= 0.5) and (rs11922179 AA >0.5) and (rs628482 GG
<= 0.5) and (rs2577322 CC <= 0.5) and (rs1495813 CC <= 0.5) then class:
Control (proba: 100.0%) — based on 10 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA >0.5) and (rs1789250 AA <= 0.5)
and (rs939720 CC <= 0.5) and (rs268909 TT >0.5) and (rs793291 AA <= 0.5)
and (rs7342676 CC <= 0.5) and (rs11922179 AA >0.5) and (rs628482 GG <=
0.5) and (rs2577322 CC<= 0.5) and (rs1495813 CC>0.5) and (rs11680332 GG
<= 0.5) and (rs9296691 TC <= 0.5) and (rs9515168 GT <= 0.5) then class:
Control (proba: 100.0%) — based on 9 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA <= 0.5) and (rs871049 CC
<= 0.5) and (rs16864809 TT <= 0.5) and (rs1328179 TT <= 0.5) and
(rs6116375 CC <= 0.5) and (rs4837137 AA <= 0.5) and (rs3771389 CT <=
0.5) then class: Case (proba: 100.0%) — based on 8 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA <= 0.5) and (rs871049 CC <=
0.5) and (rs16864809 TT <= 0.5) and (rs1328179 TT >0.5) then class: Case
(proba: 100.0%) — based on 6 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA <= 0.5) and (rs871049 CC
<= 0.5) and (rs16864809 TT <= 0.5) and (rs1328179 TT <= 0.5) and
(rs6116375 CC >0.5) then class: Control (proba: 100.0%) — based on 6 sam-
ples

if (rs705904 CC <= 0.5) and (rs2075650 AA >0.5) and (rs1789250 AA >0.5)
and (rs871049 CC >0.5) then class: Case (proba: 100.0%) — based on 5 sam-
ples

if (rs705904 CC <= 0.5) and (rs2075650 AA <= 0.5) and (rs871049 CC
<= 0.5) and (rs16864809 TT <= 0.5) and (rs1328179 TT <= 0.5) and
(rs6116375 CC <= 0.5) and (rs4837137 AA >0.5) then class: Control (proba:
100.0%) — based on 4 samples

if (rs705904 CC <= 0.5) and (rs2075650 AA <= 0.5) and (rs871049 CC >0.5)
and (rs2577322 TT <= 0.5) and (rs8000805 GG >0.5) and (rs799447 GG <=
0.5) then class: Case (proba: 100.0%) — based on 4 samples
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for SNP rs705904 and GG for SNP rs799447 or AA for SNP rs11922179, they are less

likely to be diagnosed with AD. Furthermore, genotype of AA for SNP rs2075650 is

highly associated with controls. On the other hand, a person with genotype AA for

SNP rs1789250 or genotype other than AA for SNP rs2075650 is most likely to be a case

of AD.

5.4 Chapter Summary

In this chapter, a reliable ML classifier to classify patient with AD and CN was proposed.

Both of Boruta and PCA algorithms utilised as feature selectors to reduce the number

of features and identify the most promising set of SNPs. detailed experiments were

conducted, by training the ML models on different features subsets. Wide and Deep

Learning approaches proposed for classifying AD and non-AD subjects. All models

achieved high performance; WNN found to be the best classifier with a stable perfor-

mance of 99% accuracy. The outcomes clearly demonstrate the effectiveness of proposed

hybrid feature selection. Although the models used to classify AD patients it can be ex-

tended to other chronic disease. Next chapter will address the utilisation of interpretable

ML for classification of AD.



Chapter 6

An Explainable Machine Learning

Approach for Alzheimer’s Disease

Classification
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proach for Alzheimer’s disease classification. Sci Rep 14, 2637 (2024). https://doi.org/10

.1038/s41598-024-51985-w.

95



96

6.1 Introduction

Although ML models have shown impressive results in a variety of medical applica-

tions, their black-box nature makes them difficult to use in real-world health situations.

As a result, ML techniques in the clinical domain often do not employ sophisticated

models, instead opting to use simpler, interpretable statistical models (e.g. linear) that

are only capable of achieving limited accuracy [190]. In many studies, researchers have

studied complex models and attempted to open the black box of their decision-making

processes [191]. In the domain of AD, very few recent researchers have focused on the

interpretability and explainability of ML models. To become acceptable and trusted by

physicians, these models must be comprehensible, explainable, and traceable. Therefore,

these models must explain how a specific medical decision or diagnostic task is achieved.

A recent work presented in [192] used ML to investigate some factors reported to have

an important impact on the occurrence and progression of AD. Their approach includes

training the XGBoost model to discriminate different stages of the disease which reached

a f1-score classification of 84%. A SHapley Additive exPlanations (SHAP) model is used

on top of the trained ML model to produce both local and global explanations. SHAP

model was also used in another study [193] in addition to the RF classifier to clas-

sify three classes: normal controls, cognitive impairment, and dementia using cognitive

scores as input.

Danso et al. [194] used two tree-based algorithms to build ML models on a dataset

from the European population to predict the risk of AD, then transfer learning the best

model on another dataset from the UK population. In addition, they apply SHAP to

visualize individual and population-level risk factors.

Despite the considerable amount of research conducted, its impact on clinical practice

is often limited due to several reasons. First, many studies rely exclusively on a sin-

gle method of analysis, particularly neuroimaging. This narrow focus may overlook

valuable information from other modalities. Second, the emphasis on improving the

accuracy of ML models has overshadowed the importance of its interpretability which

poses challenges in clinical settings where practitioners may not be familiar with the

machine-based complex analysis and decision making. Additionally, ML models often

require large amounts of data to achieve accurate predictions, which may pose challenges

in real-world applications. To address these limitations, the proposed study presents re-

liable ML algorithms to classify different cognitive states of a person, with following
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contributes:

• Leveraging extensive data: Utilisation of a big dataset of comprising 169408 ob-

servations and 1024 features. This extensive dataset provides a robust foundation

for our research.

• Accurate Multiclass Classification: classifications of individuals into multiple AD

classes, including NC, MCI and AD with high and balanced performance.

• Long-term prediction of cognitive state: Developing a mode capable of predicting

the cognitive state of an individual four years after their baseline visit. Predict

the cognitive state of a person four years after their baseline visit. This prognos-

tic capability has significant implications for early intervention and personalised

treatment strategies.

• Rule extraction in AD classification: This the first time in literature, SIRUS or

CAR algorithms have been applied to AD classification. Through these models, we

extract human-understandable rules that elucidate the interrelationships between

the most significant factors contributing to development of AD.

6.2 Methods and materials

This research focuses on identifying key features strongly linked to the progression of

AD by leveraging a combination of feature selection techniques and ML algorithms. Ad-

ditionally, it explores interpretable ML models to derive human-readable insights from

complex data patterns and algorithmic decisions, highlighting potential risk factors for

the disease. The proposed methodology, illustrated in Figure 6.1, begins with acquiring

data from the National Alzheimer’s Coordinating Center (NACC). The dataset under-

goes preprocessing to handle outliers, missing values, and format adjustments. Dimen-

sionality reduction is performed using correlation analysis and the Boruta algorithm,

followed by implementing ML models for Alzheimer’s classification and prediction.

A suite of data analytics methods is then applied to interpret the ML model and pinpoint

the most significant features. Beyond achieving dependable classification accuracy, this

study provides novel insights into risk factors associated with AD. Moreover, it seeks to
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enhance model transparency by generating human-understandable rules, offering find-

ings that could ultimately lead to improved treatment strategies and better patient

outcomes.

Figure 6.1: Workflow Overview of the Proposed Methodology. The process begins
with data acquisition from NACC and proceeds through several key stages: (a) Data
preprocessing, including the selection of relevant features inspired by existing literature,
partition of the dataset based on class labels, division into training and testing subsets,
and data transformation and cleansing using the training set as a reference. (b) Feature
importance is evaluated using the Boruta algorithm, and only the identified features
are retained for subsequent analysis. (c) Construction of four widely recognized ML
classifiers to address various tasks related to the classification of cognitive states. Ex-
ternal validation of these models is performed using additional data from the ADNI.
(d) The final step involves the extraction of human-readable rules from the trained
machine learning models, facilitating the interpretation of factors associated with AD.

6.2.1 Dataset

In this chapter, a dataset from the National Alzheimer’s Coordinating Centre (NACC)

(https://naccdata.org/) was utilized, which was provided to us under a special per-

mission for research purposes. The data collected by NACC researchers from study

volunteers was done using a standard set of protocols and procedures to make sure

that all the data was collected in an accurate and consistent manner. The data was

collected from 37 active Alzheimer’s Disease Research Centers which are located in 26

states across the United States. Up to the date of Aug, 2022, NACC has collected a

total of 169408 samples belonging to 45923 adults. This study employed data collected

from baseline visits and further longitudinal data at successive visits.
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A total of 45,923 samples from the baseline visit were divided into four distinct groups

based on the diagnosis given during examination. The first group consisted of NC with

18,171 samples. The second group included individuals who showed impairment but did

not meet the criteria for MCI, comprising 2,022 samples. The third group comprised

10,043 samples diagnosed with MCI. Finally, the fourth group consisted of 15,687 sam-

ples diagnosed with AD and dementia. All criteria and definitions for each group are

detailed on the NACC website (https://naccdata.org/). Additional demographic infor-

mation for these samples can be found in Table 6.1. Data from Only NC, MCI and AD

patients were retrieved and utilised in the subsequent sections of this chapter.

The NACC database is an extensive collection of over 1000 variables from various mea-

sures and assessments, which were carefully selected to provide a comprehensive overview

of each subject’s condition and functionality at each visit. These variables include scores

from a wide variety of neuropsychological tests and standard questionnaires, both from

the participant and study partner. Such tests and questionnaires are commonly used

in screening processes to detect memory deficits and behavioural symptoms associated

with AD. They are particularly helpful in providing objective information on the pro-

gression of the disease. The data categories are explained as follows.

Subject Demographics: This category includes information about the individuals par-

ticipating in a study, such as age, gender, ethnicity, education level, and socioeconomic

background. The demographic data of the subjects provide important contextual infor-

mation that helps researchers understand the characteristics and diversity of the study

population. It allows identification of demographic patterns, risk factors, and possible

variations in the manifestation and progression of the condition under investigation.

Physical: The physical data category encompasses objective measurements and assess-

ments related to an individual’s physical health. This may include data such as body

mass index, blood pressure, cardiovascular health indicators, and other relevant physi-

ological measurements. Physical data provide insight into the general health status of

participants, potential comorbidities, and the association between physical health and

the condition being studied.

Subject Health History: Subject health history refers to the past medical records and

personal health information of participants. It includes details about previous illnesses,

medical diagnoses, treatments received, surgeries, family medical history, and lifestyle

factors. Subject health history helps researchers identify pre-existing conditions, genetic

predispositions, familial links, and other factors that may influence the development,
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progression, or management of a particular health condition.

Geriatric Depression Scale (GDS): The GDS is a widely used questionnaire designed

to assess the presence and severity of depressive symptoms in older adults. It consists

of a series of questions that evaluate mood, feelings of sadness or hopelessness, loss of

interest in activities, and other symptoms associated with depression. The scale helps

researchers and healthcare professionals identify and measure the presence of depressive

symptoms in the target population, which can be important in understanding the im-

pact of depression on overall health and well-being.

Functional Activities Questionnaire (FAQ): The FAQ is a tool used to assess an indi-

vidual’s ability to perform activities of daily living (ADLs). ADLs include tasks such as

dressing, bathing, eating, managing finances, and using transportation. The question-

naire provides a structured approach to evaluate functional impairments and limitations

in carrying out these essential daily activities. It helps assess the level of functional inde-

pendence, monitor changes over time, and evaluate the impact of a particular condition

or intervention on an individual’s ability to perform ADLs.

Neuropsychiatric Inventory Questionnaire (NPIQ): The NPIQ is a comprehensive as-

sessment tool used to evaluate neuropsychiatric symptoms in individuals with cognitive

disorders, such as Alzheimer’s disease. It covers a range of behavioral and psychological

symptoms, including agitation, aggression, anxiety, depression, hallucinations, and sleep

disturbances. The questionnaire provides a standardized method to assess and quantify

the presence and severity of these symptoms, aiding in the diagnosis, management, and

monitoring of neuropsychiatric manifestations in the target population

Global Clinical Dementia Rating (CDR) plus NACC frontotemporal lobar degeneration

(FTLD): the global CDR plus NACC FTLD is determined by assessing the severity of

impairment across eight specific domains: Memory, Orientation, Judgment and Problem

Solving, Community Affairs, Home and Hobbies, Personal Care, Behaviour, and Lan-

guage. Each domain is individually rated based on standardised criteria, capturing the

level of impairment or functional decline in that particular area.

Collecting and analysing data in these categories provides a comprehensive understand-

ing of AD by considering demographic factors, physical health, personal history, depres-

sive symptoms, functional impairments, and neuropsychiatric manifestations. Integrat-

ing multiple data categories enhances the evaluation, diagnosis, and management of AD,

ultimately contributing to improved patient care and advancing research in the field.

In light of the large number of features and the sparse data set problem, a subset of
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features was selected in line with other related studies [60] [195] using the same dataset.

Results in selecting a number of features which are informative for the majority of pa-

tients, including Subject Demographics, Subject Health History, Physical, GDS, FAQ,

NPIQ, CDR Plus NACC FTLD. Table 6.2 lists the features used in this study for fur-

ther investigation. The dataset size and number of subjects splitting into training and

testing sets demonstrated in Figure 6.2. In the prediction tasks concerning NC vs MCI,

MCI vs AD, and NC vs MCI vs AD, a downsizing approach was applied to randomly

select samples from the NC and AD classes. This selection process aimed to match the

size of the MCI class, addressing the issue of class imbalance.

Table 6.1: NACC Subjects Demographics by Cognitive Status.

NC
Impaired,
not MCI

MCI AD

Age (Years)

<65 3076 543 2541 5394

65-85 7805 844 4084 6032

>85 7181 617 3344 4005

Sex

Female 11857 1160 5052 8152

Male 6314 862 4991 7535

Education (Years)

<=12 3076 543 2541 5394

13-16 7805 844 4084 6032

>=17 7181 617 3344 4005

Missing 100 7 61 194

RACE

White 14349 1439 7901 13077

Black or African American 2855 410 1513 1641

American Indian or Alaska Native 155 23 81 146

Native Hawaiian or Other Pacific Islander 15 3 7 24

Asian 528 53 320 334

Unknown or ambiguous 269 94 221 465

ADNI The ADNI dataset was obtained from the ADNI database (http://adni.loni.usc.edu).

Established in 2003 as a collaborative effort between the public and private sectors,

ADNI’s primary objective is to explore the potential of magnetic resonance imaging,

positron emission tomography, biological markers, clinical assessments, and cognitive

evaluations for tracking the progression of MCI and early-stage AD. The ADNI dataset

serves as an external source for the validation of ML models. The ADNI dataset was

pre-processed to align with the NACC dataset, including value mapping and feature
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Table 6.2: Feature categories and variable name selected from NACC dataset at initial
stage of proposed work

NACC Cate-
gories

Variable Name

Subject Demo-
graphics

SEX, HISPANIC , HISPOR, HISPORX, RACE, RACEX,
RACESEC, RACESECX, RACETER, RACETERX, PRIMLANG,
PRIMLANX, EDUC, MARISTAT, NACCLIVS, INDEPEND,
RESIDENC, HANDED,NACCAGE, NACCAGEB, NACCNIHR

Physical
WEIGHT, HEIGHT, NACCBMI, BPSYS, BPDIAS, HRATE,
VISION, VISCORR, VISWCORR, HEARING, HEARAID,
HEARWAID

Subject Health
History

TOBAC30, TOBAC100, SMOKYRS, PACKSPER, ALCOCCAS,
QUITSMOK, ALCFREQ, CVHATT, HATTMULT, HATTYEAR,
CVAFIB, CVANGIO, CVBYPASS, CVPACDEF, CVPACE, CVCHF,
CVANGINA, CVHVALVE, CVOTHR, CVOTHRX, CBSTROKE,
STROKMUL, NACCSTYR, ALCOCCAS,ALCFREQ, HATTMULT,
CBTIA, TIAMULT,NACCTIYR, PD, PDYR, PDOTHR, PDOTHRYR,
SEIZURES, NACCTBI, TBI,TBIBRIEF, TRAUMBRF, TBIEXTEN,
TRAUMEXT, TBIWOLOS, TRAUMCHR, TBIYEAR, NCOTHR,
NCOTHRX, DIABETES, DIABTYPE, HYPERTEN,
HYPERCHO, B12DEF, THYROID, ARTHRIT, ARTHTYPE,
ARTHTYPX, ARTHUPEX, ARTHLOEX, ARTHSPIN, ARTHUNK,
INCONTU, INCONTF, APNEA, RBD, INSOMN, OTHSLEEP,
OTHSLEEX, ALCOHOL, ABUSOTHR, ABUSX, PTSD, BIPOLAR,
SCHIZ, DEP2YRS, DEPOTHR, ANXIETY, OCD, NPSYDEV,
PSYCDIS, PSYCDISX’

Geriatric Depres-
sion Scale (GDS),

NOGDS, SATIS, DROPACT, EMPTY, BORED, SPIRITS,
AFRAID, HAPPY, HELPLESS, STAYHOME, MEMPROB,
WONDRFUL, WRTHLESS, ENERGY, HOPELESS, BETTER,
NACCGDS

Functional
Activities Ques-
tionnaire (FAQ),

BILLS, TAXES, SHOPPING, GAMES, STOVE, MEALPREP,
EVENTS, PAYATTN, REMDATES, TRAVEL

Neuropsychiatric
Inventory Ques-
tionnaire (NPI-
Q)

NPIQINF, NPIQINFX, DEL, DELSEV, HALL, HALLSEV,
AGIT, AGITSEV, DEPD, DEPDSEV, ANX, ANXSEV,
ELAT, ELATSEV, APA, APASEV, DISN, DISNSEV,
IRR, IRRSEV, MOT, MOTSEV, NITE, NITESEV,
APP, APPSEV

CDR® Plus
NACC FTLD

MEMORY, ORIENT, JUDGMENT, COMMUN, HOMEHOBB,
PERSCARE, COMPORT, CDRLANG

Target Class NACCUDSD

name adjustments, as demonstrated in Tables 6.3 and 6.4. The data size and number

of subjects splitting into training and testing sets demonstrated in Figure 6.3.
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Figure 6.2: The sizes of the NACC data subsets for each task. In the prediction tasks
concerning NC vs MCI, MCI vs AD, and NC vs MCI vs AD, a downsizing approach was
applied to randomly select samples from the NC and AD classes. This selection process
aimed to match the size of the MCI class, addressing the issue of class imbalance.

Figure 6.3: The sizes of the ADNI data subsets for each task.

6.2.2 Data Pre-processing

In most cases, ML techniques rely on a data set that is supposed to be complete or

noise-free. Despite this, real-world data is far from perfect or complete. As part of data

pre-processing, techniques are often used for removing noisy data or for imputing (filling

in) missing data [196]. Due to the many challenges that incomplete data can pose in

both data analysis and building an intelligent model, all subjects and attributes are
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Table 6.3: Mapping values of ADNI dataset features to match corresponding values
of matching feature of NACC dataset using the ADNI and NACC datasets dictionaries.
Since the downloaded data from ADNI has text as values in the features step inmoved

mapping this text to corresponding integers.

Feature Names Mapping values

’FAQFINAN’,’FAQFORM’,’FAQSHOP’,
’FAQGAME’,’FAQBEVG’,’FAQMEAL’,
’FAQEVENT’,’FAQTV’,’FAQTRAVL’

’Normal (0)’: 0,
’Never did, but could do now (0)’:0,
’Never did, would have difficulty now (1)’: 1,
’Has difficulty, but does by self (1)’: 1,
’Requires assistance (2)’: 2,
’Dependent (3)’: 3

’GDMEMORY’
’No(0)’: 0,
’Yes(1)’: 1

’NPIC’,’NPIE’,’NPIG’,’NPII’,’NPIJ’
’No’: 0,
’Yes’: 1

‘DX’- Class label
’CN’: 0,
’MCI’: 1,
’Dementia’:2

Table 6.4: Conversion of ADNI feature names to match the corresponding feature
names in the NACC dataset to ensure compatibility with ML classifiers.

ANDI Feature Name NACC feature Name

’CDMEMORY’ ’MEMORY’

’CDORIENT’ ’ORIENT’

’CDJUDGE’ ’JUDGMENT’

’CDCOMMUN’ ’COMMUN’

’CDHOME’ ’HOMEHOBB’

’CDCARE’ ’PERSCARE’

’GDMEMORY’ ’MEMPROB’

’GDTOTAL’ ’NACCGDS’

’NPIC’ ’AGIT’

’NPIE’ ’ANX’

’NPIG’ ’APA’

’NPII’ ’IRR’

’NPIJ’ ’MOT’

’FAQFINAN’ ’BILLS’

’FAQFORM’ ’TAXES’

’FAQSHOP’ ’SHOPPING’

’FAQGAME’ ’GAMES’

’FAQBEVG’ ’STOVE’

’FAQMEAL’ ’MEALPREP’

’FAQEVENT’ ’EVENTS’

’FAQTV’ ’PAYATTN’

’FAQTRAVL’ ’TRAVEL’

screened to remove incomplete data. The following steps explain the data pre-process

techniques employed in the current study.
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6.2.2.1 Missing Values and Unmeaningful Features

Missing values pose a challenging problem in data pre-processing, which can be overcome

in a variety of ways [197]. Firstly, variables that exhibit the same value in 90% of

the participants are removed, this has reduced number of variables from 172 to 118.

Secondly, all variables and subjects (i.e., participants) comprising missing values in

more than 50 percent of their occurrences are removed. This resulted the number of

variables to be further reduced to 67. Likewise, the number of records is reduced from

27087 to 26722 for the training set of the CNvsAD subset. We then impute the missing

data of the remaining variables using a simple and widely used imputation technique

[60]. For continuous variables, mean of the variable was used while for the categorical

variables, mode imputation is used. These processes are first applied to the training set

then reflected onto the testing set.

6.2.2.2 Correlation analysis and Data Standardisation

Due to the nature of data collection within NACC, a high degree of correlation among

variables is frequently observed. For example, variables like RACE and NACCNIHR,

which both relate to a subject’s ethnicity, often overlap. Including such closely related

variables can impact the reported outcomes. To mitigate this issue, correlation analysis

was conducted to identify and remove highly correlated features using the Cramer’s V

method [198]. This approach is particularly suited for categorical variables.

To handle continuous features, they were discretised into categories based on existing

literature. For instance, BMI was categorised into groups such as ‘underweight,’ ‘nor-

mal,’ ‘overweight,’ and ‘obesity,’ with similar transformations applied to other contin-

uous variables. Details of these conversions are presented in Table 6.5. For categorical

features, encoding methods were chosen based on the variable type: nominal variables

(where order is not important) were one-hot encoded, while ordinal variables (where

order matters) were label encoded.

6.2.2.3 Outliers Detection

Outliers are data points that diverge significantly from conventional patterns or are not

in accordance with expected normal patterns for the measure under consideration [199].
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Table 6.5: Discretised continuous values inspired by literature. *Years of education
converted into no Bachelor’s degree (0), with Bachelor’s degree (1), with a postgraduate

degree. **Years of smoking converted into bins depending on quantile analysis.

Feature Name Categories bins

NACCAGE >60, 60 - 75, >75], labels=[0,1,2]

NACCBMI <18.5, 18.5 - 25, 25 - 30, >30], labels=[0,1, 2,3]

BPSYS <90, 90 - 140, >140, labels=[0,1, 2]

BPDIAS <60, 60 - 90, >90, labels=[0,1, 2]

EDU* <12, 12 – 16 , >16, labels=[0,1, 2]

HRATE <60, 60 - 100, >100, labels=[0,1,0]

SMOKYRS** <15, 15 - 30, >30, labels=[0,1, 2]

Despite the importance of this step, several research studies in AD classification ignore

this step or may not report it properly. In this study, two approaches were utilised to

deal with outliers. Firstly, for categorical features, the percentage of each value in a

variable was calculated and then substitute the mode of the variable in all values that

have a percentage of less than 3% of the total values. For the numerical features, Inter-

Quartile Range (IQR) was used to identify the outliers within each continuous feature.

In IQR, the interest falls on the lower quartile (Q1) and the upper quartile (Q3), where

IQR is calculated as follows:

IQR = Q3−Q1

Outliers are then identified using Eq 2 and 3, representing a decision threshold where

the data points falling outside the range are treated as outliers. The decision range is

calculated as follows:

Lowerbond = (Q1− 1.5 ∗ IQR)

Upperbond = (Q1 + 1.5 ∗ IQR)

The term outlier in this study refers to data points that fall outside the Lower Bound

or that exceed the Upper Bound.

6.2.3 Experiment Design

The present study employs a combination of algorithms to identify the most significant

features from the NACC dataset and to derive interpretable rules for AD classification,
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enhancing the explainability of machine learning models. In all experiments, the dataset

is split into 80% for training and 20% for testing to evaluate performance on unseen data.

Experiment 1 (EXP1):

This experiment assesses the ability of ML models to classify clinical stages of cognitive

impairment using the NACC dataset. The process begins with pre-processing steps,

followed by training and evaluation of the models, as depicted in Figure 6.1. ML models

are trained with 64, 55, 67, and 66 features (before feature selection) for the subsets NC

vs AD, NC vs MCI, MCI vs AD, and NC vs MCI vs AD, respectively.

Experiment 2 (EXP2):

This experiment evaluates the effectiveness of the proposed feature selection algorithm.

The reduced feature sets include 24 features for NC vs AD, 10 for NC vs MCI, 17 for

MCI vs AD, and 18 for NC vs MCI vs AD (as detailed in Table 6.7). ML models,

configured as in EXP1, are trained and tested on these reduced subsets to examine their

classification performance using the selected key features.

Experiment 3 (EXP3):

Building on EXP2, this experiment uses the same feature sets to train and test ML

models but shifts the focus to predicting an individual’s cognitive state four years after

their baseline visit (i.e. the features used to train the model are taken from the baseline

visit, but the labels were obtain from a follow-up visit four years later). This investiga-

tion is pivotal for determining whether the identified features (Table 6.7) are effective

in forecasting cognitive outcomes over an extended timeframe.

Experiment 4 (EXP4):

The aim of this experiment is to evaluate the generalisability of the best-performing

models from EXP2 and EXP3. Using an external dataset (the ADNI dataset), the

classifiers are tested for their ability to perform both classification and prediction tasks

across different datasets.
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Experiment 5 (EXP5):

In this experiment, the CAR and SIURS algorithms are applied to extract interpretable

rules that capture significant patterns in the data. These rules provide valuable insights

into an individual’s cognitive state. To ensure the robustness of the selected features,

the results from CAR and SIURS are compared with outputs from SHAP and LIME

models, further validating the findings.

6.3 Results and discussions

Detailed results as retrieved from the various experiments (Section 6.2.4 Experiment

Design). For each experiment, results are shown from multiple classifiers that include

RF, KNN and NB and SVM. For each classifier, detailed metrics are retrieved to compare

the classifiers’ performances in corresponding experiments that are described as follows.

Data Pre-processing Outcomes

To verify that the pre-processing steps did not bias the dataset, we first examined the

effects of data imputation. Figure 6.4 shows the mean and standard deviation of some

feature before and after data imputation to ensure the imputation did not affect the

statistics of the features. While Table 6.6 shows the number of participants and imputed

values for each data subset.
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Figure 6.4: Mean and Standard deviation for some variables of NC vs AD training
subset before and after filling missing values.

Table 6.6: Numbers of participants with imputed data and imputed values for each
dataset.

Data Subset
Number of
Participants

Participants
with
imputed Data

No. of
Non-Missing
Values

No. of
Imputed
Values

NC vs AD Training set 27,087 18,667 1,851,437 90,115

NC vs AD Testing set 6,771 4,522 469,606 20,635

NC vs MCI Training set 22,572 13,621 1,348,079 40,875

NC vs MCI Testing set 5,642 9,249 343,093 9,249

MCI vs AD Training set 20,584 15,793 1,494,011 83,520

MCI vs AD Testing set 5,146 3,903 375,781 19,192

NC vs MCI vs AD
Training set

35,121 24,351 24,11,249 112,823

NC vs MCI vs AD
Testing set

8,780 5,970 606,386 26,309

The influence of outlier handling was then examined. For categorical features, Fig 6.5

shows the distribution of values in 9 categorical features, the variable “CDRLANG” has

the value of 3 in very few samples of the dataset. Therefore, these values are substituted

with value 0 which is the mode of the variables “CDRLANG” as shown in Fig 6.6. the

same process was performed for the remaining categorical variables. While figure 6.7

shows a boxplot for some of the continuous variables in their original form. It can be

noticed that the distribution of data points improved after applying IQR-based outlier

removal as shown in Figure 6.8.
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Figure 6.5: The distribution of values of some variables of NC vs AD training dataset.

Figure 6.6: The distribution of values of some categorical features from NC vs AD
training subset after substituting the mode of the feature instead of the values that

account of 3% of the feature.
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Figure 6.7: Boxplot to show the distribution of data points of continuous variables
from NC vs AD training subset.

Figure 6.8: Boxplot to show the distribution of data points of continuous variables
after removing outlier data points from NC vs AD training subset.
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Feature Selection Outcomes

Table 6.7 shows the selected features for each data subset identified as most relevant

using the Boruta algorithm. It can be noticed that the number of identified features are

substantially reduced to 24 only (compared to 64 in original NC vs AD data subset).

Furthermore, seven of the selected features belong to CDR which measures the relative

severity of dementia by assigning a score between 0 (no impairment) and 3 (severe im-

pairment) [200]. A clinician’s clinical judgment and a semi structured interview with

the subject and caregiver (informant) determine CDR score. On the other hand, nine

features fall with FAQ which measures difficulty with daily living activities and was

found to be a valid and reliable measure according to studies in the literature [201].

Five features among the selected ones belong to the NPI-Q which was developed by

Cummings [202], to assess behavioural symptoms associated with dementia and found

to be an effective tool for the assessment of dementia in different populations [203] [204].

Two feature belongs to GDS and one from subject’s Demographics.

In contrast to NC vs AD data subset, Boruta algorithm identified only 10 features as

important for NC vs MCI subset. Out of these, six aligns with the CDR, two with GDS

and two with FAQ. Similarly, for the MCI vs AD subset, 17 features are identified as in-

formative. Finally, 18 variables were selected for multi-class category NC vs MCI vs AD.

The selected variables for each data subset are shown in Table 6.7. Across all classifica-

tion tasks, we consistently observe a shared set of features, namely MEMORY, ORIENT,

JUDGMENT, COMMUN, CDRLANG, MEMPROB, NACCGDS, BILLS, and TAXES.

These features consistently demonstrate their significance in distinguishing cognitive

states, emphasising their crucial role in AD diagnosis. In addition to these common

features, the NC vs. AD classification task incorporates task-specific features such as

COMPORT, AGIT, ANX, APA, IRR, and MOT. Notably, the inclusion of features re-

lated to behavioural domains (AGIT, ANX, APA, IRR, and MOT) gains importance

when classifying NC vs. AD. Additionally, it is noteworthy that the feature HOME-

HOBB is shared among all tasks, except in the case of NC vs. AD. This distinctive

pattern further emphasises the importance of certain features in differentiating between

cognitive states.

To externally validate the ML classifiers, data from ADNI was incorporated. However,

it’s noteworthy that three features, namely COMPORT, CDRLANG, and INDEPEND,

were not present in the ADNI dataset (refer to Figures 6.9, 6.10, 6.11, and 6.12 for
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final feature sets). Consequently, we opted to exclude these features. Subsequently, we

trained the ML classifiers on the remaining selected features and proceeded with the

external evaluation of the classifiers using the ADNI dataset. Although these features

could be clinically relevant—behavioural symptoms, language function and functional

independence—their removal was necessary to preserve the integrity of external valida-

tion. Including them would have required imputation or estimation of completely missing

data, which poses several methodological issues. This is not a suitable context for impu-

tation since these features are completely missing for all ADNI participants and not just

a subset. In this case, there is no within-dataset information to support reliable imputa-

tion and any attempt to estimate values would be highly speculative. Using NACC data

to impute missing values in ADNI would introduce data leakage, whereby information

from the training dataset is inadvertently used during testing. This would compromise

the independence of the external validation process and undermine the primary objective

of testing model generalisability across different cohorts. The inclusion of imputed val-

ues could also inflate model performance artificially, leading to over-optimistic estimates

that would not hold in truly unseen datasets. The decision to exclude these three fea-

tures was made to ensure that ADNI remains a completely independent external dataset,

free from training data influence. This might reduce model performance slightly due to

the loss of informative features, but it provides a more rigorous and unbiased assessment

of model generalisability.

Table 6.7: Informative features selected by Boruta algorithm for each data subset.

Data Subset Selected features

NC vs AD

MEMORY, ORIENT, JUDGMENT, COMMUN, PERSCARE,
COMPORT, CDRLANG, MEMPROB, NACCGDS, AGIT,
ANX, APA, IRR, MOT, BILLS,
TAXES,SHOPPING, GAMES, STOVE, MEALPREP,
EVENTS,PAYATTN, TRAVEL, INDEPEND

NC vs MCI
MEMORY, ORIENT, JUDGMENT, COMMUN, HOMEHOBB,
CDRLANG, MEMPROB, NACCGDS, BILLS, TAXES

MCI vs AD

MEMORY, ORIENT, JUDGMENT, COMMUN, HOMEHOBB,
PERSCARE, CDRLANG, NACCGDS, BILLS, TAXES,
SHOPPING, GAMES, MEALPREP, EVENTS, PAYATTN,
TRAVEL, INDEPEND

NC vs MCI vs
AD

MEMORY, ORIENT, JUDGMENT, COMMUN, HOMEHOBB,
CDRLANG, MEMPROB, NACCGDS, BILLS, TAXES,
SHOPPING, GAMES, STOVE, MEALPREP, EVENTS,
PAYATTN, TRAVEL, INDEPEND
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Figure 6.9: Features for CN vs AD subset: a) after data pre-processing, b) after
feature selection, c) final selected features after remove feature which are not available

in ADNI dataset.

Figure 6.10: Features for CN vs MCI subset: a) after data pre-processing, b) after
feature selection, c) final selected features after remove feature which are not available

in ADNI dataset.
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Figure 6.11: Features for MCI vs AD subset: a) after data pre-processing, b) after
feature selection, c) final selected features after remove feature which are not available

in ADNI dataset.

Figure 6.12: Features for CN vs MCI vs AD subset: a) after data pre-processing,
b) after feature selection, c) final selected features after remove feature which are not

available in ADNI dataset.
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Results for EXP1

Table 6.8 presents the results of EXP1 which utilises original features (i.e., all features

without feature reduction). It can be noticed from Table 6.8.a that the highest accuracy

of 97.8% was achieved by the RF algorithm for the classification of NC against AD

cases when evaluated over unseen data samples. Furthermore, the RF model indicated

robust performance for other metrics such as precision, recall, and F1 (97.2%, 98.1% and

97.6%, respectively), indicating its ability to provide stable and balanced classification

with fewer false classifications among both classes. These outcomes suggest the RF

model as an effective tool for the classification of NC and AD cases, with a high degree

of accuracy and reliability.

Table 6.8.b presents the results of the performance of classifiers in classifying NC and

MCI cases. Among the different classifiers, RF achieved the highest accuracy of 88.6%.

On the other hand, the KNN classifier indicated poor performance, with an imbalanced

precision and recall of 81.2% and 48% respectively. This demonstrates that KNN is not

an ideal model for classifying NC and MCI cases.

Table 6.8.c shows the results for classification between MCI and AD cases, indicating

RF as outperforming classifier. This is in agreement with the results of Tables 6.8.a and

6.8.b, which also shows that the RF is the best performing classifier. On the other hand,

the NB classifier shows comparatively poor performance with an accuracy of 82.4%.

Furthermore, the NB is biased in terms of precision and recall of 92.5% and 76.4%,

respectively.

Table 6.8.d shows the final results of EXP1, where the classifiers are trained and

tested over a multi-classification problem to classify three classes including NC, MCI,

and AD. We used one-vs-one strategy [205] where the multi-class classification task

is broken up into a series of binary classification problems and was chosen over the

alternative strategies as it provides improved performance. It can be noticed that the

RF algorithm again outperformed (with 85.2% accuracy) followed by the SVM (85.1%)

and KNN with least performance (with accuracy of 75.5%). This is likely due to KNN

not being able to capture the complexity of the data of three classes. Additionally, the

performance of the RF model was consistent across all metrics, making it a reliable and

robust choice for any classification task.

Overall, it can be observed that the classifiers achieved better results when classifying

NC vs AD (Table 6.8.a) compared to NC vs MCI (Table 6.8.b) and MCI vs AD (Table
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6.8.c). This is not surprising, given that NC cases are closer in terms of characteristics

to MCI, and MCI and AD are also similar. However, the classification between NC

and AD is easier to carry out due to the significant differences between the two. For

example, the cognitive decline in AD is much more pronounced than in NC, making it

easier for the classifiers to differentiate between the two.

ML Model Accuracy% Precision% Recall% F1 score% Mean% SD P-value

a) Results of EXP1 : NC vs AD

RF 97.8 97.2 98.1 97.6 97.8 0.002

KNN 94.8 97.8 90.8 94.1 94.2 0.003 P <0.001

NB 96.2 93.8 98.3 96 96.1 0.002 P <0.001

SVM 97.6 97.6 97.2 97.4 97.6 0.003 P = 0.292

b) Results of EXP1 : NC vs MCI

RF 88.6 81.9 88.6 85.1 85.9 0.003

KNN 76.8 81.2 48 60.3 59.5 0.006 P <0.001

NB 82.4 76.8 74.7 75.8 76.1 0.005 P <0.001

SVM 88.1 82.1 86.7 84.3 85.3 0.003 P = 0.003

c) Results of EXP1 : MCI vs AD

RF 87.3 90.2 88.1 89.1 90.5 0.002

KNN 83.1 89.6 81 85 86.7 0.002 P <0.001

NB 82.4 92.5 76.4 83.7 85.6 0.004 P <0.001

SVM 87.6 90.4 88.5 89.4 90.3 0.003 P = 0.49

d) Results of EXP1 : NC vs MCI vs AD

RF 85.2 85.6 85.2 85.4 86.3 0.002

KNN 75.5 74.1 75.5 73.4 73.4 0.005 P <0.001

NB 77.9 78.7 77.9 78 79.1 0.001 P <0.001

SVM 85.1 85.3 85.1 85.2 86 0.004 P = 0.20

Table 6.8: Results of EXP1. Performance of ML Models in Classifying: a) NC vs AD,
b) NC vs MCI, c) MCI vs AD and d) NC vs MCI vs AD. For each task, we employed
five-fold cross-validation on the training data. Four folds were used for training, and
the remaining fold was used for testing, resulting in five replicas. Statistics were derived
using the F1 score. We conducted a performance comparison between RF and the other
models to determine the presence of statistically significant differences. P-values were
calculated using a two-sided t-test, and the means and standard deviations are listed in
the table. Subsequently, we internally evaluated the model by training it on the entire
training dataset and testing it on a hold-out test dataset, with the results reported in

the table.

Results for EXP2

As described in the Experiment section , EXP2 evaluates the performance of four ML

models in classifying three groups of subjects: NC, MCI, and AD while using the re-

duced set of features. The results of the classification are presented in Table 6.9.

Table 6.9.a presents the classification results for NC vs AD, where all models achieved
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high performance with accuracy above 96%. The RF model performed the best with an

accuracy of 97.5%, followed by SVM with an accuracy of 97. 3%. In terms of precision

and recall, all models performed almost similar with scores above 94%. Overall, the

results suggest that the ML models are capable of accurately distinguishing between NC

and AD subjects utilising the reduced features. Table 6.9.b shows the classification

results for NC vs MCI, where the RF and SVM models achieved same accuracy rates

of 88.1%, while the KNN and NB models should a slightly reduced accuracy rate. RF

model achieved highest recall score but should a marginally reduced precision comparing

to other classifiers.

Table 6.9.c presents the classification results for MCI vs AD, where all models achieved

accuracy rates above 82%. The NB model achieved the highest precision score, while the

RF model achieved the highest recall score. Table 6.9.d shows the classification results

for multi-class classification of NC vs MCI vs AD, where all models achieved accuracy

rates above 78%. The SVM model performed the best, achieving performance rates

above 84%. The NB model achieved the lowest accuracy rate among the four models.

The SVM model also achieved high precision and recall scores across all classes.

In summary, the ML models indicate reliable performance in classifying NC, MCI,

and AD subjects. The RF and SVM models consistently achieved high accuracy rates

and precision and recall scores across all classification tasks, suggesting that they are

effective models for the task of AD classification.
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ML Model Accuracy% Precision% Recall% F1 score% Mean% SD P-value

a) Results of EXP2 : NC vs AD

RF 97.5 97 97.6 97.3 97.5 0.002

KNN 96.4 97.1 95.2 96.1 96.6 0.002 P <0.001

NB 96.1 94.2 97.5 95.8 96.4 0.001 P <0.001

SVM 97.3 97.1 97.1 97.1 97.5 0.002 P = 0.846

b) Results of EXP2 : NC vs MCI

RF 88.1 81.3 87.7 84.4 89 0.003

KNN 87.5 81.6 85.4 83.5 88.4 0.006 P = 0.158

NB 82.9 83.6 66.5 74.1 83 0.004 P <0.001

SVM 88.1 82.1 86.7 84.3 89 0.002 P = 0.821

c) Results of EXP2 : MCI vs AD

RF 86 88.7 87.4 88.1 87 0.003

KNN 84.4 89.6 83.3 86.3 85.4 0.005 P = 0.001

NB 82.4 93.4 75.7 83.6 84.3 0.006 P <0.001

SVM 86.6 90.4 86.6 88.5 87.6 0.002 P = 0.028

d) Results of EXP2 : NC vs MCI vs AD

RF 82.6 82.9 82.6 82.7 85.3 0.002

KNN 82.5 83 82.5 82.7 82.7 0.004 P <0.001

NB 78.2 78.6 78.2 78.1 79.2 0.002 P <0.001

SVM 84.7 85.2 84.7 84.9 85.7 0.004 P = 0.185

Table 6.9: Results of EXP2. Performance of ML Models using reduced feature sets
in Classifying: a) NC vs AD, b) NC vs MCI, c) MCI vs AD and d) NC vs MCI vs
AD. For each task, we employed five-fold cross-validation on the training data. Four
folds were used for training, and the remaining fold was used for testing, resulting in
five replicas. Statistics were derived using the F1 score. We conducted a performance
comparison between RF and the other models to determine the presence of statistically
significant differences. P-values were calculated using a two-sided t-test, and the means
and standard deviations are listed in the table. Subsequently, we internally evaluated
the model by training it on the entire training dataset and testing it on a hold-out test

dataset, with the results reported in the table.

Results for EXP3

In Exp 3, we employed ML classifiers to predict an individual’s cognitive state four years

after their initial visit (i.e. fourth visit). To assess the accuracy of our classifiers, we

conducted a series of experiments, the outcomes of which are detailed in Table 6.10. In

the binary classification task of distinguishing between NC vs AD, all models achieved

notably high accuracy with RF excelled with the highest accuracy of 96.4 while NB

exhibited a slightly reduced accuracy of 95.1%.

In the binary classification task of NC vs MCI, all models achieved accuracy rate ex-

ceeding 71%, with RF achieving the best accuracy and F1 score, measuring 78.1% and

75.7%, respectively. Furthermore, all ML models demonstrated imbalanced performance

in terms of precision and recall. For instance, NB reached precision and recall scores
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of 90.4% and 48.5%, respectively. Conversely, RF showed the least biased performance,

with precision and recall scores of 85.9% and 67.6% respectively.

In the binary classification of MCI and AD, RF achieved the highest accuracy of 76.7%

along with the highest, recall and F1 score, measuring 82% and 78%, respectively. How-

ever, NB achieved the highest precision of 90.1% but indicated a comparatively lower

recall score of 64%.

In the multi-class classification task encompassing NC, MCI and AD, RF achieved

the highest F1 score of 72.6% and maintained stable performance in terms of precision

and recall of 72.5% and 73%, respectively. Conversely, NB indicated least F1 score of

67%.

The results presented in Table 6.10 underscore the classifiers’ ability to more accu-

rately predict NC and AD classes compared to the MCI class. This outcome aligns with

expectations, given that distinguishing between NC and AD classes is typically more

straightforward, whereas MCI falls in an intermediate category, presenting a greater

challenge.
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ML Model Accuracy% Precision% Recall% F1 score% Mean% SD P-value

a) Results of EXP3: NC vs AD

RF 96.4 97.5 95.1 96.3 95.2 0.009

KNN 95.8 97.8 93.4 95.5 90.6 0.017 P = 0.001

NB 95.1 94.8 95.1 94.9 94.1 0.011 P = 0.184

SVM 96.1 97.5 94.4 95.9 92.9 0.014 P = 0.029

b) Results of EXP3: NC vs MCI

RF 78.1 85.9 67.6 75.7 53.8 0.043

KNN 72.9 83.1 58 68.3 42.3 0.022 P = 0.001

NB 71.4 90.4 48.5 63.1 53.9 0.029 P = 0.892

SVM 75.9 85.1 63.2 72.5 54.9 0.036 P = 0.729

c) Results of EXP3: MCI vs AD

RF 76.7 74.5 82 78 89.5 0.009

KNN 74.2 74.2 75 74.6 87.2 0.008 P = 0.007

NB 78.2 90.1 64 74.8 79 0.021 P <0.001

SVM 76.2 74.7 80 77.2 90.3 0.008 P = 0.249

d) Results of EXP3: NC vs MCI vs AD

RF 73 72.5 73 72.6 76.5 0.005

KNN 69.8 69.2 69.8 69.4 72.2 0.006 P <0.001

NB 67.8 68.1 67.8 67 73.1 0.013 P = 0.001

SVM 71.6 71.2 71.6 71.4 73.3 0.012 P = 0.002

Table 6.10: Results of EXP3. Performance of ML Models using reduced feature sets
in Predicting: a) NC vs AD, b) NC vs MCI, c) MCI vs AD and d) NC vs MCI vs
AD. For each task, we employed five-fold cross-validation on the training data. Four
folds were used for training, and the remaining fold was used for testing, resulting in
five replicas. Statistics were derived using the F1 score. We conducted a performance
comparison between RF and the other models to determine the presence of statistically
significant differences. P-values were calculated using a two-sided t-test, and the means
and standard deviations are listed in the table. Subsequently, we internally evaluated
the model by training it on the entire training dataset and testing it on a hold-out test

dataset, with the results reported in the table.

Results for EXP4: External Validation

To assess the generalisability of the classifiers, we conducted an external validation us-

ing the ADNI Dataset, testing the two top-performing classifiers, RF and SVM across

a range of tasks. These tasks encompassed the classification of cognitive states at the

baseline visit and the prediction of cognitive states four years later, including CN vs

AD, CN vs MCI, MCI vs AD, and CN vs MCI vs AD.

The outcomes of Experiment 4, detailed in Table 6.11, offer insights into the perfor-

mance of the models. Notably, the classifiers trained for the NC vs AD classification on

the NACC dataset exhibited impressive performance when applied to the ADNI dataset.

SVM achieved a remarkable 99% accuracy, indicating its superiority, while RF achieved

an accuracy of 98.3% (Table 6.11.a). However, RF displayed a degree of bias towards
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precision. In a similar vein, when the models trained for the CN vs AD prediction task

on the NACC dataset were tested on ADNI data, both SVM and RF showed higher F1

scores, yet both models demonstrated a degree of bias in terms of precision and recall

(Table 6.11.b).

SVM proved effective and demonstrated balanced performance in both the classifica-

tion and prediction of the CN vs MCI subset, as evidenced in Table 6.11.c and 6.11.d,

respectively. Notably, SVM exhibited a strong performance in classifying MCI vs AD in

the ADNI data, achieving an F1 score of 81% (Table 6.11.e). However, it experienced a

drop in performance when tasked with prediction, resulting in an F1 score of 56% (Table

6.11.f).

Finally, SVM demonstrated balanced and high F1 scores, surpassing 90%, for the

classification of CN vs MCI vs AD (Table 6.11.g) and maintained a commendable per-

formance in the prediction task, achieving an F1 score of 72.8 (Table 6.11.h). These

results underscore the versatility and robustness of SVM across various classification

and prediction tasks.
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ML Model Accuracy% Precision% Recall% F1 score%

a) Results of EXP4: NC vs AD Classification

RF 98.3 100 80 88

SVM 99 994 984 98.9

b) Results of EXP4: NC vs AD Prediction

RF 97.8 92.3 80 85.7

SVM 98.3 100 80 88

c) Results of EXP4: NC vs MCI Classification

RF 98.6 99.6 98.4 99

SVM 99.6 99.6 99.8 99.7

d) Results of EXP4: NC vs MCI Prediction

RF 90.2 86.8 91.3 89

SVM 92.4 91.3 91.3 91.3

e) Results of EXP4: MCI vs AD Classification

RF 87.1 71.6 86.5 78.4

SVM 88.9 75.4 87.5 81

f) Results of EXP4: MCI vs AD Prediction

RF 66.1 73 51.5 60.4

SVM 64.9 75.7 44.4 56

g) Results of EXP3: NC vs MCI vs AD Classification

RF 89 90 89 89.2

SVM 90.5 91.4 90.5 90.7

h) Results of EXP4: NC vs MCI vs AD Prediction

RF 72.9 73.9 72.9 72.6

SVM 73.6 75.2 73.6 72.8

Table 6.11: Results of EXP4: performance of RF and SVM in classification and
prediction tasks using external ADNI dataset.

Results for EXP5: ML Explanations and Human understandable Rules

Extraction

In our pursuit of understanding the intricate patterns with the data and comprehending

the behaviour of ML models in classifying AD, CAR algorithm is used in EXP4. Figure

6.13.a illustrates ten representative rules extracted by CAR that are highly associated

with AD. The intensity of the red colour of the circles indicates the strength of the rule,

evaluated using the lift measure.

Upon analysis of the output rules, it becomes evident that AD is associated with a

wide range of factors, including mild impairments in memory (MEMORY =1), orienta-

tion (ORIENT =1), judgment and problem-solving (JUDGMENT=1) and impairments

in community affairs (COMMUN =1). To elucidate the values of the variables (such as

MEMORY, JUDGMENT) are encoded as follows: 0 for no impairment, 0.5 for question-

able impairment, 1 for mild impairment, 2 for moderate impairment, and 3 for severe
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impairment. The rules shed light on the combinations of these variables with the sever-

ity levels of TRAVEL and TAXES, all of which bear a significant connection to AD.

SIRUS algorithm was utilised to extract human readable rules and to compare with

the rules extracted from CAR. Figure 6.13.b shows the rules extracted from the NC

vs AD subset. the first rule indicates that if the value of the variable ‘JUDGMENT’

is ‘0’ the classification is likely ‘NC’ Conversely, if the ‘JUDGMENT’ value is not ‘0’

the likelihood of ‘AD’ classification increases significantly. Essentially, the ‘0’ value for

the ‘JUDGMENT’ feature serves as a robust indicator of an individual’s AD status.

Similarly, another rule indicates that if the value of the ‘COMMUN’ variable is ‘0’ the

individual is most likely classified as ‘NC’ while other values suggest ‘AD’ The rules

derived from SIRUS also unveil the co-occurrence of higher values in the TRAVEL,

ORIENT, and MEMORY variables, which are associated with an elevated risk of AD.

To validate the rules generated by both models and ascertain the informativeness of

these variables in the context of ML AD classification, our research venture extended

to encompass the application of two model-agnostic explanation methods: SHAP and

Local Interpretable Model-Agnostic Explanations (LIME). As visually depicted in Fig-

ures 6.13.c and 6.13.d, the variables that SHAP identifies as most informative include

MEMORY, COMMUN, JUDGMENT, ORIENT, and BILLS. Concurrently, the insights

offered by LIME emphasise the pivotal role of variables such as COMMUN, MEMORY,

JUDGMENT, and ORIENT. Table 6.12 presents the informative features selected by

each model, along with the common features chosen by all models. Furthermore, Table

6.13 demonstrates the performance of SVM when trained and tested using the common

features extracted from Table 6.12. The results of this classifier closely align with the

findings of EXP1 and EXP2, underscoring the significance of these features in influenc-

ing the model’s performance.
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Figure 6.13: Explanations and rules extraction for NC vs AD subset: a) Visualisation
of representative associations and corresponding written rules between multiple factors
and AD in NC vs AD, b) List of rules output by SIRUS model, c) explanation provided
by SHAP model, d) explanation provided by LIME model for a single instance of the

test set.
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Feature selected
by CAR

Features selected
by SIRUS

Features selected
by SHAP

Features selected
by LIME

Common features
selected by all
models

MEMORY JUDGMENT MEMORY COMMUN MEMORY

ORIENT COMMUN COMMUN MEMORY COMMUN

JUDGMENT MEMORY JUDGMENT JUDGMENT JUDGMENT

MOT ORIENT ORIENT ORIENT ORIENT

COMMUN TRAVEL BILLS PAYATTN

TRAVEL TRAVEL EVENTS

TAXES

Table 6.12: Features selected from explanations by models for NC vs AD data subset.

Data Accuracy% Precision% Recall% F1 score%

NC vs AD 97.2 97.7 96.3 97

NC vs MCI 88.8 79.7 87.2 83.3

MCI vs AD 86 90.4 86.3 88.3

NC vs MCI vs AD 83.5 84.2 83.5 83.8

Table 6.13: Performance of SVM trained and tested using common features selected
by explanation models (from Table 6.12))

In a similar vein, the patterns discerned from the MCI vs AD data subset are systemati-

cally extracted using the CAR algorithm, as depicted in Figure 6.14.a. This visualisation

encapsulates ten rules of significance in the context of AD. These rules were selected from

a comprehensive number of variables based on their discernible influence on AD. Five

pivotal variables—ORIENT, MEMORY, COMMUN, BILLS, and TAXES—emerge as

the most robust influencers in the realm of AD. The amalgamation of these variables

with elevated values strongly correlates with AD, a consistent pattern observed across

both the NC vs AD data subset, as presented in Figure 6.13.

Furthermore, the SIRUS algorithm was utilised to extract rules from the MCI vs AD

data subset. As elucidated in Figure 6.14.b, the extracted rules unveil that when the

feature ‘JUDGMENT’ assumes a value of either 0 or 0.5, the likelihood of classification

as MCI predominates. Conversely, when ‘JUDGMENT’ adopts any other value, the

individual’s classification tends toward AD. Similarly, the second rule articulates that

when the variable ‘MEMORY’ manifests values of 0 or 0.5, the probability of MCI classi-

fication is accentuated. Intriguingly, a high value associated with ‘MEMORY,’ signifying

moderate or severe memory impairment, distinctly inclines the individual towards an

AD diagnosis. These rules cogently imply that combinations of variables with high val-

ues generally align with an AD classification, resonating with the outcomes of the CAR

algorithm.
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Figures 6.14.c and 6.14.d offer insights into the explanations provided by SHAP and

LIME, respectively. Both models consistently underscore the pivotal roles of COM-

MUN, ORIENT, and JUDGMENT as informative variables significantly influencing the

AD classification, which is in line with both CAR and SIRUS.

Figure 6.14: Explanations and rules extraction for MCI vs AD subset: a) Visuali-
sation of representative associations and corresponding written rules between multiple
factors and AD in MCI vs AD, b) List of rules output by SIRUS model, c) explanation
provided by SHAP model, d) explanation provided by LIME model for a single instance

of the test set.
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Discussion

The experimental results for Exp1-Exp4 demonstrates the capabilities of ML models in

the classification of AD patients from those with NC or MCI. Out of the four models

utilised, RF, SVM, NB and KNN, RF and SVM models consistently achieved the highest

accuracy, precision and recall scores across all tasks. These models effectively discrim-

inated between NC and AD subjects, as well as between NC and MCI, MCI and AD

subjects. While NB and KNN models also demonstrated considerable accuracy, they

generally scored lower than RF and SVM.

This indicates the substantial potential of RF and SVM models for accurate AD

diagnosis. It is noteworthy that RF has previously shown high accuracy in the anal-

ysis of multi-modal data to predict the conversion of MCI to AD [206]. Additionally,

in healthcare domain, RF showed better classification of risk assessment of coronary

heart disease than other classifiers [207]. These observations can be attributed to the

capacity of RF and SVM models to efficiently process large datasets [208], making them

well-suited for large-scale medical diagnoses. Furthermore, these models excel in data

generalisation, rendering them more adept at handling the intricacies of medical diagno-

sis. Consequently, RF and SVM models are better positioned to provide AD diagnosis

when compared to NB and KNN classifiers.

ML has increasingly been employed in research to predict the progressions of AD

stages. For example, work presented in study [209] developed a hybrid ML framework

for the analysis of longitudinal data to predict the prognosis of dementia in patients

with MCI. While their model achieved high accuracy of 87.5% using RF, it displayed in-

stability across various performance measures. Notably, the model exhibited a stronger

bias towards sensitivity (92.9%) at the expense of specificity, which was only 58.3%. An-

other study [210] identified and utilised 15 clinical variables predicting MCI converters

reporting 71%, 67.7% and 71.7% for accuracy¸ sensitivity and specificity, respectively.

In contrast, our ML classifiers demonstrate not only high accuracy, precision and re-

call scores when applied to classification tasks but also achieved robust outcomes when

trained and tested as a predictive tool to estimate the cognitive state of a person four

years in the future. Specifically, the classifiers excels at identifying subtle changes in

cognitive development over time, thus making it a valuable asset in predicting potential

changes in cognitive health. Moreover, our approach is found to be reliable and robust,

with a high degree of consistency in its predictions over multiple trials (i.e NC vs AD;
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MCI vs AD; and NC vs MCI vs AD). This means that it can be used to reliably forecast

a person’s cognitive state in the future.

The results section provides convincing evidence of the efficacy of SVM in both classi-

fication and prediction tasks. SVM performed well, not only when tested on the NACC

testing hold subset but also when evaluated on an external ADNI dataset for various

tasks (Table 6.11). This was achieved through the feature selection method, which

significantly reduced the number of features from 64 to only 21 features. Despite the

substantial reduction in feature space, the results demonstrate that the selected features

are highly effective in differentiating AD cases.

It is important to note that the objective of this research is not only to obtain better

AD classification but also gaining insight into the influential factors that are impor-

tant for the classifiers’ decision making. To this end, this study conducted a series of

experiments to identify the most important features and to understand the underlying

relationships that exist between them.

In pursuit of these objectives, we employed two rule extraction methods, CARs and

SIRUS, to extract human-readable rules associated with AD. CARs, for instance, utilised

seven of the 21 features. While SIRUS used five features to establish its list of most

dominant rules. Intriguingly, both algorithms identified common features as shown in

Table 6.12 this overlap strongly suggests that the rules generated by these algorithms

exhibit a significant degree of similarity, enhancing the confidence in extracted rules ac-

curacy and reliability. The utilisation of two distinct rule extraction methods, with the

majority of the rules aligning, underscores the precision and trustworthiness of extracted

rules.

Furthermore, the features identified as important by CAR and SUIRS underwent

additional validation through SHAP and LIME models, which were utilised to elucidate

the decisions made by the top-performing classifier. Notably, both SHAP and LIME

consistently identified crucial features that aligned with the rules extracted by CAR and

SUIRS (Table 6.12). This alignment in feature selection across diverse models signifi-

cantly strengthens the overall robustness and reliability of our findings.

It can be noticed that the CAR is more precise than SIRUS in terms of generating

the rules. For instance, the first rule extracted by CAR from the NC vs AD dataset

(Figure 6.13) specifies that if an individual has the variables MEMERY, JUDGMENT

and ORIENT with the value of 1, then it is a case of AD. In contrast, SIRUS, tends to

provide generalised predictions. For example, the first rule generated by SIRUS suggest
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that if the variable JUDGMENT assume the value of 0, then it’s more likely the individ-

ual to belong to the class NC. However, if the value of JUDGMENT is not 0 (i.e. 0.5,1,2

or 3) then individual is likely to belong to the class AD. This shows that SIRUS can

make broader observations and predictions than CAR, which tends to be more specific

in its rules.

The findings highlight the collective significance of the features MEMORY, JUDG-

MENT, ORIENT, and COMMUN are collectively significant in assessing the risk of

developing AD as indicated by all models. These combined features play a crucial role

in predicting the likelihood of an individual being diagnosed with AD. Literature sup-

ports the Clinical Dementia Rating (CDR) as a valuable tool for detecting MCI and AD.

[211] [212]. Research conducted by [213] underscores the significance of considering func-

tional information, namely JUDGMENT, COMMUN, and HOMEHOBB, as assessed by

the CDR, when evaluating individuals with MCI. The intact group included individuals

with a rating of 0 in all three categories or a rating of 0.5 in one of the three categories.

The impaired group comprised individuals with a rating of 0.5 in two or more of the

three IADL categories or a rating of 1 in any one of the categories. The results of the

experiments have been instrumental in providing key insights into the efficacy of CDR

in the prediction of AD.

6.4 Chapter Summary

Diagnosing Alzheimer’s disease at an early stage will greatly help so many people in the

future. Machine learning models aiming to classify individuals’ cognitive state achieved

promising performance when trained and tested using only 22 features selected by Boruta

algorithm. The models were also found to be effective in predicting the cognitive state

after four years. the findings of this research project have established that Random

Forest is a powerful tool for predicting the risk of developing AD. Two rule extraction

approaches are utilised to find the most influential features on AD. The experiments have

shown that MEMERY, JUDGMENT, ORIENT are among the most significant factors

in determining the risk of developing AD, and that these factors can be effectively used

to predict the chances of a person being diagnosed with the condition. Furthermore, the

results of the experiments have provided valuable information about the importance of

Clinical Dementia Rating in prediction AD as these variables fall within the domains



131

that this clinical tool use for grading the relative severity of AD. This research has the

potential to revolutionise our understanding of AD and open up new possibilities for

researchers looking to utilise explainable ML methods to unlock hidden knowledge in

other diseases.



Chapter 7

Conclusion and Future Work

132
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7.1 Conclusion

The thesis aimed at using ML and AI approaches to identify and diagnose AD at its

early stages using genetic data. The diagnosis of AD is a challenging task because it is

difficult to detect it before the onset of clear clinical symptoms. The work contributes to

the development of risk prediction and classification algorithms that can utilise genetic

data.

The research was motivated by the ongoing difficulty in diagnosing AD early and the

absence of reliable tools that can utilise complex, high-dimensional data to assist in this

task. The focus it contributes to the narrower and clearly defined goal of improving di-

agnosis and prediction through data-driven, AI-based methodologies. The study results

show that AI models can accurately classify AD when trained on a subset of GWAS data

features. The study conducted feature selection with the Boruta algorithm and found a

subset of SNPs including rs6116375 in PRNP and rs2075650 in TOMM40, which were

the most useful for prediction. The results obtained show that AI can discover signifi-

cant genetic markers that might not be evident through standard statistical approaches.

Domain adaptation techniques along with TL have been used to enhance the generali-

sation capabilities of models across various datasets. The results suggest that there is a

promising direction for knowledge transfer across domains, for instance, from a popula-

tion or disease area that has large datasets to another that may have limited data.

A comparison of different architectures showed that wide neural network models pro-

duced the best results. The use of a simple wide architecture reached classification

accuracy rates of 99% when distinguishing AD from normal controls using GWAS data.

It means that it is possible to get good results in genetic classification tasks using

lightweight models with simple structures.

The study also explored the classification of AD from a large, multi-source dataset from

the NACC. ML models were able to predict AD and forecast future cognitive states

over a four-year period using only 22 genetic features. The results obtained from the

study demonstrate the capability of these models to be used in cognitive prediction in

the future.

To enhance transparency of ML models that considered as ‘black boxes’, the thesis em-

ploys explainable AI techniques to extract decision rules from the models. The analysis

revealed that MEMORY, JUDGMENT, and ORIENT cognitive domains are crucial for

AD classification, which is in line with the Clinical Dementia Rating scale.
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However, while the results are encouraging, some important issues still need to be ad-

dressed in order to make these solutions useful in practice. A significant barrier to the

use of genetic information in clinical settings is the lack of genetic data. GWAS data is

not collected as a routine assessment or imaging, which makes it difficult to use these

models in practice. Therefore, genetic testing would need to become more integrated

into clinical workflows, and this should be supported by user-friendly tools for data in-

terpretation.

Federated learning, a privacy-preserving technique may help make the clinical adoption

of these models more possible. These methods enable models to be trained across multi-

ple institutions without the need to share raw data, which helps to ensure confidentiality

while increasing the availability of data. Other methods like differential privacy and se-

cure multiparty computation also have a role to play in the safe and ethical deployment

of AI in healthcare.

It is important that healthcare professionals are involved in the development and val-

idation of AI models. Their feedback can assist in the model development, enhance

user-friendliness, and ensure that the model is relevant to the clinical setting. Real-

world validation studies, preferably within prospective clinical trials, are required to

assess the performance, usability, and acceptance of models in clinical environments.

Through ongoing collaboration with clinicians, these AI tools can evolve into practical

systems that can assist medical professionals and enhance the early detection of AD.

This thesis offers a valuable contribution to the use of AI in healthcare by developing

highly efficient models for predicting AD risk. It shows the capability of ML to improve

the ability to distinguish and forecast cognitive decline and provides a foundation for

future work on clinical implementation.

7.2 Implications of Study on Practice

The study of ML in analysing GWAS data and building classification models for AD has

significant implications for both research and practical applications. GWAS is a widely

used approach to identify genetic variations associated with complex diseases like AD.

ML techniques can complement GWAS analysis by extracting valuable insights from

large-scale genomic data and enhancing the prediction accuracy of AD classification

models.
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One of the primary benefits of applying ML to GWAS data analysis is the ability to

identify relevant features or genetic markers associated with AD. Traditional statistical

methods in GWAS often rely on identifying single genetic variants that have a signifi-

cant association with the disease. However, the genetic architecture of complex diseases

like AD is highly complex, involving multiple genetic variants and interactions between

them. ML algorithms, such as RF, SVM, and neural networks, can effectively handle the

high-dimensional nature of GWAS data and identify relevant features or combinations

of features that contribute to disease risk.

By selecting relevant features, ML models can improve the accuracy of AD classifica-

tion. Traditional methods often rely on a limited set of genetic markers, which may

not capture the full complexity of the disease. ML algorithms, on the other hand, can

leverage a broad range of features and identify nonlinear relationships between genetic

variations and disease status. This enables the construction of more accurate and robust

AD classification models. These models can be used for risk prediction, early diagnosis,

and personalised treatment strategies.

In practical applications, the use of ML in analysing GWAS data and building AD clas-

sification models holds promise for personalized medicine and precision healthcare. By

considering an individual’s genetic variations, as well as other clinical and environmental

factors, ML models can provide personalised risk assessments for AD. This can enable

early interventions, lifestyle modifications, and targeted therapies to delay or prevent

disease progression.

Human-readable rules extracted in the study help identify the specific features or vari-

ables that contribute significantly to the AD classification. By examining the rules,

clinicians and researchers can gain insights into the relative importance and impact of

different features in the prediction. This information can guide further investigations

and prioritise features for future studies or potential interventions.

7.3 Limitations of the Study

While ML techniques have shown promise in selecting relevant features and building

classification models for AD, there are several limitations to consider. These limitations

include:

Generalisability across populations: ML models trained on a specific population may not
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generalise well to other populations or ethnic groups. Genetic factors can vary among

populations, leading to differences in disease manifestations and genetic markers. It

is important to validate and evaluate the generalisability of ML models across diverse

populations to ensure their applicability in different settings.

Incomplete representation of genetic variation: Focusing only on statistically significant

SNPs may result in an incomplete representation of the genetic variation associated with

AD. GWAS studies typically employ hypothesis testing to identify SNPs that show a

significant association with the disease. However, this approach may overlook SNPs

with smaller effect sizes or those involved in complex interactions. By using only sta-

tistically significant SNPs, important genetic variations that contribute to AD risk may

be missed, leading to an incomplete understanding of the disease.

Transparency and explainability: Many ML models, such as DL algorithms, are often

considered black boxes, making it challenging to understand and explain their decisions.

Ethical considerations call for transparency and interpretability, enabling clinicians, pa-

tients, and stakeholders to understand the rationale behind the model’s predictions.

Efforts to develop techniques for explaining ML model decisions and promoting trans-

parency are crucial to address these limitations.

7.4 Future work

The research presented in this paper shows how ML and AI methods work for identi-

fying AD using genetic and multi-source data yet various important research directions

need to be investigated. A fundamental direction for expansion involves creating unified

predictive models that incorporate genetic information along with clinical data. In the

current study, these data sources were examined independently. A combined analysis

of these data sources would increase model robustness and diagnostic accuracy. Also

the addition of MRI imaging or other image modality to the model would increase its

capacity to identify brain alterations linked to AD especially during preclinical phases.

A vital next research direction should focus on applying multi-view learning or data

fusion approaches for processing and uniting these different input types.

Future research should prioritise the development of ML models which demonstrate

both broad applicability and inclusivity for different population groups. The current

predictive models show limited applicability due to their geographic and demographic
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constraints that create performance biases. Domain adaptation techniques should be

applied to enhance model robustness by allowing them to learn across populations with

different distributions. The development of tools requires training and evaluation on

diverse demographic and ethnic datasets to ensure these tools can be used broadly with-

out exacerbating existing health disparities.

Real-world adoption depends heavily on maintaining model transparency and inter-

pretability. The research presented in this thesis used rule extraction and explainable

AI techniques, but additional investigations should analyse counterfactual explanations

and attention mechanisms in deep models as well as SIRUS models with inherent inter-

pretability. Such methods would enable more straightforward model prediction under-

standing that helps clinicians comprehend the classification decisions. Interpretability

models should derive their rules and insights through clinician validation which may also

include small-scale clinical studies to enhance trust and clinical usability.

The development process requires domain expert collaboration to improve model design

and choose meaningful clinical features and match tools to diagnostic procedures. Multi-

disciplinary teams combining data scientists with neurologists and geneticists enable the

creation of interfaces and systems which meet both technical requirements and clinical

needs. Prospective clinical validation studies should be planned for the assessment of

both prediction accuracy and the actual effect of AI tools on clinical diagnostic choices.

The application of federated learning combined with privacy-preserving AI techniques

represents an exciting future direction. The training method enables models to use dis-

tributed data across multiple institutions without needing to exchange raw data thus

resolving privacy issues while providing access to bigger datasets. The implementation

of these approaches would improve the development of more robust and generalisable

models that fulfil ethical and legal standards.

The methods developed throughout this research can be adjusted to detect other chronic

or neurodegenerative diseases. Large AD datasets could provide a starting point for

transfer learning to speed up model development and extend the utility of these tools

toward rare forms of dementia. Causal inference techniques have the potential to reveal

disease progression mechanisms which could reveal therapeutic intervention points and

new treatment targets. A long-term goal should aim to develop clinical tools from high-

performing experimental models for early diagnosis and personalised treatment planning

and long-term cognitive health monitoring.
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preprocessing: methods and prospects,” Big Data Analytics, vol. 1, no. 1, p. 9, 2016.



Bibliography 159

[197] J. Luengo, S. Garćıa, and F. Herrera, “On the choice of the best imputation methods

for missing values considering three groups of classification methods,” Knowledge and

information systems, vol. 32, no. 1, pp. 77–108, 2012.

[198] R. K. Prematunga, “Correlational analysis,” Australian Critical Care, vol. 25, no. 3,

pp. 195–199, 2012.

[199] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection techniques: A

survey,” IEEE Access, vol. 7, pp. 107964–108000, 2019.

[200] T. K. Khan, Chapter 2 - Clinical Diagnosis of Alzheimer’s Disease, pp. 27–48. Academic

Press, 2016.
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