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A B S T R A C T

The pandemic experience made online grocery shopping the new normal. The perishable and Fast-Moving 
Consumer Goods (FMCG) supply chain should be adjusted to extend their distribution capabilities and adapt 
to the new business environment. This study introduces the Three-Echelon Open Location-Routing Problem with 
Time Windows (3E-OLRPTW) with simultaneous home delivery and store pickup services for optimizing last-mile 
delivery operations. A Mixed-Integer Non-Linear Programming (MINLP) formulation and an improved meta
heuristic, the Hybrid Genetic Algorithm (HGA), are developed using a customized local search method. The 
objective is to minimize total operating costs while accounting for the time window and capacity constraints. 
Numerical experiments are conducted to evaluate the performance of the developed solution method, comparing 
it with the improved hybrid variants of the Genetic Algorithm (GA), Artificial Bee Colony (ABC), Simulated 
Annealing (SA), and Imperialist Competitive Algorithm (ICA) algorithms. Statistical tests confirm that the HGA 
algorithm outperforms the benchmarks in terms of solution quality and convergence.

1. Introduction

The revenue of Fast-Moving Consumer Goods (FMCG) retail e-com
merce reached over 15 billion U.S. dollars in 2020 and surpassed 20 
billion in 2023 (Zhou et al., 2019). More than half of the grocery stores 
in the U.S. offered both home delivery and store pickup services in 2023. 
The growth rate accelerated in 2020 due to the COVID-19 pandemic 
with the number of grocery delivery and pickup rising from 1.2 billion 
U.S.D. in August 2019 to 7.2 billion USD in June 2020 in the United 
States.1 Reportedly, 85 percent of buyers who received their orders on 
time would purchase online again compared to only 33 percent who 
experienced delays (Esper et al., 2003). The last-mile delivery is regar
ded as one of the most expensive and least efficient business-to-customer 
(B2C) operations, accounting for up to 75 percent of the total supply 
chain costs (Aized and Srai, 2014). Demand for online shopping has 
been experiencing steady growth, with high costs and inconvenient 
delivery times remaining the major barriers (Giuffrida et al., 2017; 
Kalinic et al., 2018; Mokhtari-Moghadam et al., 2023, 2025).

Time is essential in the food supply chain as the products deteriorate 

over time (Chen et al., 2019). Taking fresh meat as an example, the 
product quality decreases rather quickly, and it continues to decay until 
consumed. In this situation, the supply chain revenue depends on the 
condition of the product. Supply chain optimization plays a crucial role 
in addressing strict timing and inventory limitations (Bala et al., 2017), 
while cost-effectively satisfying customers (Chen et al., 2009). Major 
online retailers like Amazon Flex, Uber Eats, and Senpex use optimiza
tion problems for planning their logistics operations.

Approaching routing decisions on a sequential basis and isolated 
from the location and allocation considerations may result in sub- 
optimal solutions (Pourhejazy et al., 2019). Location-Routing Prob
lems (LRP) have been extended to optimize food distribution (Chao 
et al., 2019; Govindan et al., 2014; Wu et al., 2017), emergency and 
disaster management (Bozorgi-Amiri and Khorsi, 2016; Veysmoradi 
et al., 2017), waste management (Ghaderi and Burdett, 2019; Ghezavati 
and Beigi, 2016), and e-commerce (Zhou et al., 2019, 2016) aimed to 
address this issue. The Multi-Echelon Open Location Routing Problem 
(ME-OLRP) is best suited when logistics are outsourced to a third-party 
logistics (3PL) service provider (Pichka et al., 2018).
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The existing location routing studies did not account for mixed home 
delivery and store pickup points/local depots. This is perceived as a 
practical need to extend OLRP for the use case in the online retail of 
consumer goods and perishables. In the most relevant studies, (Soto- 
Mendoza et al., 2023) investigated OLRPs for a two-echelon supply 
system where collection routes for collecting raw materials from local 
suppliers are allowed. They did not include a time window, three- 
echelon, and simultaneous home delivery and store pickup options. 
(Pasha and Mousazadeh, 2024) extended the LRP to allow for the choice 
of transportation modes, inventory variables, and manufacturing tech
nologies. They did not include routing decision variables, open supply 
routes, and simultaneous home delivery and store pickup points options. 
(Rahmanifar et al., 2024), and (Zhou et al., 2024) included both location 
and routing variables in a single-echelon supply system, did not allow 
for open supply routes, and simultaneous home delivery and store 
pickup options. A two-fold contribution is put forward to address the 
gap. 

• A new mathematical formulation is proposed for the Three-Echelon 
Open Location-Routing Problem with Time Windows (3E- 
OLRPTW) with simultaneous home delivery and store pickup points/ 
local depots. To the best of the authors’ knowledge, OLRP with these 
specifications has not been studied.

• An advanced solution algorithm is developed for more effective 
optimization of 3E-OLRPTW with mixed last-mile delivery. The new 
metaheuristic is equipped with a new local search method, custom
ized evolutionary operators, and a new coding module inspired by 
scheduling concepts.

The model addresses a real-world situation, where customers place 
their order online, providing information about the type of product, 
desired quantity, preferred delivery time window, and the desired de
livery service option. The orders should be allocated to the best available 
third-party facilities for processing. The final products should be 
assigned to the fleet of vehicles and sent to the customers, considering 
the stated delivery preferences. The addressed problem is illustrated in 
Fig. 1. The objective is to minimize the aggregate operational costs, 
including fixed contracting costs with supply chain partners (i.e., 

farmers, meat production centers, retailers, the stores, and third-party 
logistics), processing and transportation, lost-sale, and time window 
violation costs.

The remainder of this study begins with a review of the relevant 
literature in Section 2. Section 3 is devoted to problem description and 
the formulation of the mathematical model. The solution method for 
solving the optimization problem is presented in Section 4. The nu
merical results for different operational scales are presented in Section 5
to evaluate the performance of the solution algorithms. Finally, the 
concluding remarks and suggestions for future research works are pro
vided in Section 6.

2. Literature review

Several studies investigated the optimization of fresh food products 
using general supply chain network optimization frameworks. 
(Mohebalizadehgashti et al., 2020) studied a green meat supply chain 
network in Canada, aiming to minimize total costs and CO2 emissions 
from transportation while maximizing facility capacity utilization. 
(Pasha and Mousazadeh, 2024) extended the model by introducing two 
new objectives—minimizing delivery time and enhancing resiliency—
while incorporating real-world factors such as multi-transportation 
modes, retailer inventory costs, and multi-manufacturing technologies.

LRPs have been used to optimize supply chains more systematically 
while addressing location and routing decisions simultaneously to cap
ture interdependencies (Drexl and Schneider, 2015; Nagy and Salhi, 
2007; Prodhon and Prins, 2014). Research on LRP is in the growing stage 
of development (Mara et al., 2021). Capacitated LRP (Bagheri Hosseini 
et al., 2019; Contardo et al., 2012; Harks et al., 2013; Prins et al., 2007), 
green LRP (Validi et al., 2020; Wang et al., 2020; Yu et al., 2020), ca
pacitated green LRP (Toro et al., 2017), transportation LRPs (Martínez- 
Salazar et al., 2014), and LRP considering origin-based cold storage for 
fresh products (Zhou et al., 2024) are some examples of the de
velopments. Time windows, open routing, and multi-echelon configu
ration are the required LRP specifications for optimizing the food supply 
chain when logistics operations are outsourced. The most relevant 
studies are reviewed below.

Fig. 1. Illustration of ME-OLRP with Time-Window and Mixed Last-Mile Delivery.
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2.1. Location routing problems with time windows for supply chain 
optimization

Customers are increasingly more cognizant of responsiveness and 
service quality in their shopping decisions (Govindan et al., 2014). The 
LRPs with time windows (LRPTW) address this practical need in supply 
chain optimization. The main objective of this integration is to improve 
customer service levels and/or address the time constraints mandated by 
the type of perishable product. The conversion of time windows into 
budget constraints or cost penalties highlights the economic impacts of 
this operational consideration (Wang et al., 2018b).

(Jacobsen and Madsen, 1978) introduced the LRPTW and solved the 
problem with a hard time window to optimize the newspaper distribu
tion in a single-echelon network. (Zarandi et al., 2011) assumed that the 
times spent between nodes are uncertain and proposed a simulation- 
based optimization algorithm to solve multi-depot capacitated LRPs. 
(Fazel Zarandi et al., 2013) extended this study by considering fuzzy 
time windows for customer demand and developed a chance- 
constrained programming model for solving it. (Ponboon et al., 
2016a) proposed a branch-and-price algorithm to solve the LRPTW. 
(Ponboon et al., 2016b) investigated the impact of model parameters, 
such as depot location, depot size, and vehicle size, on LRPTW; they 
showed that the large depot should be served by large-size vehicles to 
minimize the overall cost.

(Qazvini et al., 2016) addressed LRPTW with split delivery to 
improve customer satisfaction and reduce service costs by a reduction in 
fuel consumption. (Ghezavati and Beigi, 2016) considered penalty cost 
in the objective function for late arrival time to each node, along with 
minimizing the maximum time of completion of the collecting return 
products. (Schiffer and Walther, 2017) explored routing of electric ve
hicles incorporating the decision of charging stations selection; devel
oping an electric LRPTW with partial recharging, they considered total 
traveled distance, the total number of vehicles used, and the total 
number of charging stations as the optimization objectives. (Koç et al., 
2016) studied LRPTW with a heterogeneous fleet, aiming to minimize 
overall supply chain costs.

Considering time window constraints in LRPs has also been studied 
in the context of perishable goods industries. (Chao et al., 2019) 

developed a two-stage location–inventory–routing model for optimizing 
a food distribution network with time windows. They proposed a hybrid 
heuristic algorithm aiming to minimize the total distribution cost and 
penalty cost of time window constraint violation. (Wang et al., 2018a) 
proposed an LRPTW model for fresh food to minimize total logistics 
costs, including penalty costs of early or late delivery and carbon 
emission costs. In the most recent study, (Rahmanifar et al., 2024) 
proposed an LRPSPD with time windows to minimize tardiness and 
overall delivery costs. Their model addresses pickup and delivery with 
multiple requests and diverse customer demands, each requiring storage 
within a specific temperature range and transportation by distinct 
vehicle types.

2.2. Multi-echelon location-routing problems for supply chain 
optimization

Supply chains can be best modeled using multi-echelon problems 
(Drexl and Schneider, 2015). (Nikbakhsh and Zegordi, 2010) addressed 
a two-echelon LRP with soft time windows. They introduced separate 
time intervals for the delivery of demands to consumers and considered 
penalty costs for the deliveries that fall into the second time interval. 
(Darvish et al., 2019) studied flexibility in due date and facility selection 
in a two-echelon LRP; the study revealed that these considerations in
crease the complexity of the problem, but result in more than 30 percent 
performance improvement. More recently, (Wang et al., 2018b) 
formulated a two-echelon LRPTW based on a customer clustering model 
for minimizing overall costs and maximizing customer satisfaction in the 
context of the beverage industry.

(Govindan et al., 2014) proposed a hybrid metaheuristic to minimize 
both total cost and environmental impact for perishable food while 
considering time window constraints for both production and delivery 
operations in two-echelon LRPs. (Wu et al., 2017) studied catering ser
vices for high-speed railways and developed a three-echelon LRPTW with 
a time-related budget constraints model with reformulated time dead
lines and a hybrid cross-entropy algorithm to optimize the problem. 
(Bala et al., 2017) developed a two-echelon LRPTW model in a newspaper 
supply context, which aimed to synchronize operations of printing shops 
and distribution networks, motivated by the lack of inventory. (Wang 

Table 1 
Review of the most relevant research articles.

Study Location Routing Number of supply 
echelons

Open 
route

Time 
window

Mix delivery & pickup 
point

e-commerce 
application

Perishable 
goods

(Nikbakhsh and Zegordi, 2010) √ √ 2 ​ √ ​ ​ ​
(Zarandi et al., 2011) √ √ 1 ​ √ ​ ​ ​
(Fazel Zarandi et al., 2013) √ √ 1 ​ √ ​ ​ ​
(Wang et al., 2018b) √ √ 2 ​ √ ​ ​ ​
(Ponboon et al., 2016b) √ √ 1 ​ √ ​ ​ ​
(Koç et al., 2016) √ √ 1 ​ √ ​ ​ ​
(Chao et al., 2019) √ √ 1 ​ √ ​ ​ √
(Wang et al., 2018a) √ √ 1 ​ √ ​ ​ √
(Govindan et al., 2014) √ √ 2 ​ √ ​ ​ √
(Wu et al., 2017) √ √ 3 ​ √ ​ ​ √
(Asri et al., 2017) √ √ 1 √ √ ​ ​ ​
(Bala et al., 2017) √ √ 2 ​ √ ​ ​ √
(Yu and Lin, 2015a) √ √ 1 √ √ ​ ​ √
(Tayebi Araghi et al., 2021) √ √ 1 √ ​ ​ ​ ​
(Pichka et al., 2018) √ √ 2 √ √ ​ ​ ​
(Zhou et al., 2016) √ √ 1 ​ ​ √ √ ​
(Mohebalizadehgashti et al., 

2020)
√ ​ 3 ​ ​ ​ ​ √

(Pasha and Mousazadeh, 2024) √ ​ 3 ​ √ ​ ​ √
(Soto-Mendoza et al., 2023) √ √ 2 √ ​ ​ ​ √
(Tan et al., 2025) √ √ 2 ​ ​ ​ ​ ​
(Yıldız et al., 2023) √ √ 2 ​ ​ ​ ​ ​
(Kusuma et al., 2024) √ √ 2 ​ ​ √ ​ ​
(Zhou et al., 2024) √ √ 1 ​ √ ​ ​ √
(Rahmanifar et al., 2024) √ √ 1 ​ √ ​ ​ √
This research √ √ 3 √ √ √ √ √
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et al., 2021) explored a two-echelon LRPTW with transportation resource 
sharing, minimizing the number of vehicles and total operational cost 
simultaneously.

From the most relevant studies, (Yıldız et al., 2023) formulated a 
mathematical model for the Two-Echelon Location-Routing Problem 
with Simultaneous Pickup and Delivery (2E-LRPSPD) and employed a 
Branch-and-Cut algorithm to minimize total delivery costs for medium- 
scale instances. (Kusuma et al., 2024) explored the 2E-LRPSPD with 
parcel lockers, minimizing total travel costs. Most recently, (Tan et al., 
2025) considered the load carried by trucks as a factor that directly 
impacts fuel consumption, leading to higher carbon emissions, and 
attempted to reduce emissions alongside cost and truck usage.

2.3. Open location-routing problems for supply chain optimization

OLRP is suitable for optimizing outsourced activities where the ve
hicles do not need to return to their origin after completing the tasks, the 
so-called open tours. This variant received relatively limited attention. 
OLRP with multi-mode transportation under uncertainty (Veysmoradi 
et al., 2017), and (Tayebi Araghi et al., 2021) OLRP with stochastic 
customers’ locations are some of the examples. A few articles extended 
OLRP for multi-echelon optimization. From existing studies, (Pichka 
et al., 2018) studied 2E-OLRPs, developed two mathematical models for 
2E-OLRPs, and employed SA for total logistics cost minimization. (Soto- 
Mendoza et al., 2023) investigated 2E-OLRPs, incorporating collection 
routes dedicated to gathering raw materials from local suppliers.

The differences between the developed model in this study and that 
of the most relevant articles are highlighted in Table 1. Unlike the 
existing literature on OLRP and LRPTW, our model considers simulta
neous home delivery and store pickup points/local depots. Besides, to 
adapt to the practical needs of e-commerce for fresh products (e.g., red 
meat supply chains), potential suppliers (farms), processing centers 
(abattoirs), and large-scale retailers are considered as the facilities in a 
three-echelon supply chain configuration.

The upcoming section presents a mathematical model for ME-OLRP 
with time windows and simultaneous home delivery and store pickup 
services.

3. Mathematical formulation

Supply chain optimization includes variables from three decision 
layers (Zarandi et al., 2011). Strategic decision variables have a long- 
term effect and are capital-intensive. Network configuration and facil
ity location planning are prime examples of strategic decisions. Tactical 
decisions are in place for a relatively shorter period compared to stra
tegic decisions and are less expensive to change/implement. Production 
and distribution planning decisions belong to the tactical category. 
Operational decisions are often made regularly and have a short effec
tive period. Although of a different nature, these decisions are inter
connected and have a mutual influence. Integrated optimization 
problems address the underlying interactions between operational, 
tactical, and strategic decisions (see (Pourhejazy and Kwon, 2016)). This 
study investigates a new mathematical model that simultaneously ad
dresses location and routing problems under the operating conditions 
described below.

3.1. Problem description

The multi-echelon distribution network under investigation in the 
present study comprises livestock suppliers (Farms), production centers 
(Abattoirs), retail centers, customers and pickup points. The first and 
second layers are connected by specialized trucks, and because the final 
product is perishable, large-capacity refrigerated trucks are used to 
connect the second and third layer facilities. In the retail facilities, or
ders are consolidated and delivered to the consumer’s homes or the 
designated pickup points, like convenience stores, by small-sized 

refrigerated trucks. The delivery of Stock Keeping Units (SKU) or final 
products to the demand points is done by a third-party company, and 
hence, the vehicles do not need to return to the starting points. Finally, 
there is a time window associated with every customer order. The 
problem is hereafter represented by 3E-OLRPTW with mixed last-mile 
delivery (i.e., home delivery or store pick-up services). Table 2 pre
sents the specifications of the studied supply chain optimization 
problem.

3.2. Model setting and formulation

Let’s assume a supply chain network consisting of F farms (f ∈ F), A 
abattoirs (a ∈ A), R large-scale retailers (r ∈ R), C customers (c ∈ C), and 
S pickup points (s ∈ S). Farms are connected to abattoirs using either 
big-size trucks (V1) while abattoirs are connected to large-scale retailers 
utilizing refrigerated trucks (V2). The last-mile delivery operations are 
completed using small-sized refrigerated trucks (V3). The model pa
rameters are known in advance except for the demand size (d ∈ D), 
which is accumulated through an interface application and may vary in 
different planning horizons. Without loss of generality, the problem is 
subject to the following assumptions: 

• The model is designed for decisions considering one planning 
horizon.

• Locations of farms, abattoirs, and retailers are known in advance.
• Routing optimization concerns only the last-mile delivery operations 

and does not account for upstream transportation.
• Abattoirs cannot directly supply final consumers.
• Travel times between different levels are known and deterministic.
• Keeping inventory in facilities is not allowed in the model.
• Each customer can be served by only one of the home delivery or 

store pick-up options, and their choice of home delivery or store pick- 
up is known.

The proposed model is formulated as a Mixed-Integer Non-Linear 
Programming (MINLP) model. The following indices, sets, parameters, 
and decision variables are used in the mathematical formulation of the 
problem.

Symbol Definition

Indices f ∈ F index of farms, where f = 1,2,⋯,nf

a ∈ A index of abattoirs, where a = 1,2,⋯,na

r ∈ R index of retailers, where r = 1,2, ⋯,nr

c ∈ C index of customers, where c = 1,2, ⋯,nc

s ∈ S index of customer pickup points, s = 1,2,⋯,ns

l ∈ L index of the customer not assigned to pick up points, l = 1,
2,⋯,nl

m ∈ M index of customers who selected store pick-up,m = 1,2,⋯,

nmnl + nm = nc

x the dummy node used to terminate all routes in echelon 3
k ∈ V index of vehicle

Parameters CAPFi the capacity of facility i, where i ∈ {F,A,R,S}
Dc customer order size, where c ∈ C

(continued on next page)

Table 2 
Problem specifications.

Aspects Settings

Hierarchical Structure F farms connected to A abattoirs connected to R retailers 
which supply C customers or pickup points.

Type of Inputs Prior knowledge of customers’ demands over the planning 
horizon

Solution Method Hybrid Genetic Algorithm
Objective Function Minimize aggregated cost including time window violation 

penalty
Number and type of 

facilities
Multiple heterogeneous farms, abattoirs, and retailers

Type of Problem 3E-OLRPTW with simultaneous home delivery and store 
pick-up services
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(continued )

Symbol Definition

Fci fixed cost of working with facility i, where i ∈ {F,A,R,S}
Ftk fixed cost of working with truck k, where k ∈ {V1,V2,V3}
Vci processing cost of one unit in facility i, where i ∈ {F,A,R,S}
Vtk variable cost of transshipment one unit by truck k, where 

k ∈ {V1,V2,V3}
CAPTk capacity of truck k, where k ∈ {V1,V2,V3}
PTic processing time of order of customer c in facility i, where 

i ∈ {F,A,R, S}, c ∈ C
TTijk transportation time from node i to node j by truck k
TCk unit transportation cost of truck k, where k ∈ {V1,V2,V3}
Wkc waiting unit cost for delivery to customer c, when truck k 

arrive early
[Etc,Ltc] boundary of customer time window
[etc, ltc] customer desire time window
Ept earliness penalty per time unit
Lpt lateness penalty per time unit
re earliness penalty increases the rate
rl lateness penalty increases the rate
PUf purchasing cost of livestock from farm f
Spc Sale price to customer c
COVcs indicator = 1, if the location of customer c is in the 

coverage of pickup location s; = 0, otherwise.
Variables σic Binary variable; = 1, if customer c order is processed in 

facility i, i ∈ {F,A,R}; = 0, otherwise.
δi Binary variable; = 1, if facility i is selected, i ∈ {F,A,R,S}; 

= 0, otherwise.
αkc Binary variable; = 1, if order of customer c is transported 

by truck k, k ∈ {V1,V2,V3}; = 0, otherwise.
λijk Binary variable; = 1, if truck k travels from i to j ,(i, j) ∈ {F,

A,R},k ∈ {V1,V2}; = 0, otherwise.
ηcs Binary variable; = 1, if order of customer c is to be served 

by pickup point s, c ∈ C, s ∈ S; = 0, otherwise.
γijk Binary variable; = 1, if truck k travels from i to j in the 

third echelon , (i, j) ∈ {R, S, L},k ∈ {V3}; = 0, otherwise.
βk Binary variable; = 1, if truck k ∈ {V3} is used in the third 

echelon; 
= 0, otherwise.

τic Processing start time of order of customer c at facility i, i ∈
{F,A,R}

tic Processing finish time of order of customer c at facility i, i ∈
{F,A,R}

uk Truck departure time from i,i ∈ {F,A}, k ∈ {V1,V2}
νk Truck arrival time at j,j ∈ {F,A}, k ∈ {V1,V2}
wki Visiting time of node i by truck k, i ∈ {R, S, L},k ∈ {V3}

Considering these notations, the model has been formulated as follows. 

min(Obj = Z1 +Z2 +Z3 +Z4) (1) 

Z1 =
∑

i∈{F,A,R,S}

Fci × δi (2) 

Z2 =
∑

c∈C

∑

i∈F
PUi × Dc × δi +

∑

c∈C

∑

i∈{F,A,R,S}

Dc × Vci × σic (3) 

Z3 =
∑

k∈V1

∑

(i,j)∈(F,A)

(Ftk + Vtk × TTijk) × λijk +
∑

k∈V2

∑

(i,j)∈(A,R)

(Ftk + Vtk × TTijk)

×λijk +
∑

i∈{R,S,L}

∑

j∈{R,S,L}

∑

k∈V3
(Ftk + Vtk × TTijk)×γijk (4) 

Z4 =
∑

k∈V3

∑

i∈C
Γ(wki) (5) 

Subject to: 
∑

i∈F
σic = 1,∀c ∈ C (6) 

∑

i∈A
σic = 1,∀c ∈ C (7) 

∑

i∈R
σic = 1,∀c ∈ C (8) 

∑

c∈C
Dc × σic ≤ CAPFi × δi,∀i ∈ {F,A,R} (9) 

∑

c∈C
Dc × αkc ≤ CAPTk,∀k ∈ {V1,V2,V3} (10) 

λijk ≥ σic + σjc +αkc − 2,∀k ∈ V1,∀c ∈ C, (i, j) ∈ (F,A) (11) 

λijk ≥ σic + σjc +αkc − 2,∀k ∈ V2,∀c ∈ C, (i, j) ∈ (A,R) (12) 

∑

k∈V1
αkc = 1,∀c ∈ C (13) 

∑

k∈V2

αkc = 1,∀c ∈ C (14) 

∑

k∈V3

αkc = 1,∀c ∈ C (15) 

∑

i∈F

∑

j∈A
λijk ≤ 1, ∀k ∈ V1 (16) 

∑

i∈A

∑

j∈R
λijk ≤ 1, ∀k ∈ V2 (17) 

τic ≥ OTc∀f ∈ F,∀c ∈ C (18) 

tic ≥ τic +PTic − M(1 − σic)∀i ∈ {F,A,R}, ∀c ∈ C (19) 

uk ≥ tic − M(1 − αkc), i ∈ F, ∀c ∈ C, ∀k ∈ V1ori ∈ A, ∀c ∈ C,∀k ∈ V2 (20) 

νk ≥ uk +
∑

i∈F

∑

j∈A
TTijkλijk,∀k ∈ V1 (21) 

νk ≥ uk +
∑

i∈A

∑

j∈R
TTijkλijk,∀k ∈ V2 (22) 

τic ≥ νk − M(1 − αkc), ∀i ∈ A, ∀c ∈ C, ∀k ∈ V1or∀i ∈ R, ∀c ∈ C, ∀k ∈ V2
(23) 

∑

j∈{S,L,x}

γljk ≥ αkl,∀k ∈ V3, ∀l ∈ L (24) 

∑

j∈{S,L,x}

γsjk ≥ αkm − M(1 − ηms), ∀k ∈ V3, ∀m ∈ M, ∀s ∈ S (25) 

∑

i∈{R,S,L}

γijk =
∑

i∈{S,L}

γjik, ∀k ∈ V3, ∀j ∈ {S, L} (26) 

∑

k∈V3

∑

j∈{S,L}

γijk ≤ M×δi, ∀i ∈ R (27) 

∑

i∈R

∑

j∈{S,L}

γijk = βk,∀k ∈ V3 (28) 

∑

i∈{S,L}

γixk = βk,∀k ∈ V3 (29) 

∑

c∈C
Dc × ηcs ≤ CAPFs×δs,∀s ∈ S (30) 

wkj ≥ wki +TTijk − M
(

1 − γijk

)
, ∀k ∈ V3, ∀i, j ∈ {R, S, L} (31) 

wki ≥ tic − M(1 − αkc), ∀k ∈ V3, ∀i ∈ R,∀c ∈ C (32) 
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∑

j∈{S,L}

γijk ≥ αkc + σic − 1,∀i ∈ R, ∀k ∈ V3, ∀c ∈ C (33) 

ηcs ≤ COVcs,∀s ∈ S,∀c ∈ C (34) 

Objective function (1) minimizes the overall supply chain costs with. 

- Equation (2) representing the fixed cost of contracting with third- 
party network providers;

- Equation (3) calculating the purchasing, preparation, and processing 
costs;

- Equation (4) showing the transportation cost; and
- Equation (5) demonstrating the time window violation penalty, 

which is defined as Γ(wki) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dc.(Etc − wki).Wkc,wki < Etc
Dc.Ept.(1 + re)etc − wki ,Etc ≤ wki < etc

0, etc ≤ wki < ltc
Dc.Lpt.(1 + rl)wki − ltc , ltc ≤ wki < Ltc

Dc.Spc,wki > Ltc

Constraints (6)-(8) ensure that every order is processed once at every 
stage and by one facility. Constraint (9) describes that an order can be 
processed at the facility only when it is open and the total order pro
cessed is below its capacity. Constraint (10) ensures that the order can be 
transported by truck only and, the truck capacity should be observed. 
Constraints (11)-(12) guarantee that an order can be transported from A 
to B if and only if a truck travels from A to B. Constraints (13)-(15) 
ensure every order is traveled by exactly one truck in every stage. 
Constraints (16)-(17) guarantee every truck is used once at maximum. 
Constraint (18) shows that the farm starts processing after the order is 
received. Constraint (19) calculates the order’s finish time at the facility 
where it is processed.

Constraint (20) represents the truck departure time. Constraints 
(21)-(22) are formulated to calculate the truck travel time. Constraint 
(23) defines the order’s arrival time at each facility. Constraint (24)
ensures that in the third echelon, if an order is selected for home delivery 
and is assigned to truck k, its location must be visited directly by truck k. 
Constraint (25) guarantees that every order serviced by a pickup point s 
is loaded to the truck that travels to s. Constraint (26) established truck 
flows in the third echelon. Constraint (27) shows that if a retailer is not 
open, a truck cannot start its journey from this location. Constraint (28)
ensures that if a truck is used, it must begin from a retailer, whereas 
constraint (29) guarantees it finishes at a dummy node.

Constraint (30) ensures the capacity of the pickup point is not 
violated. Constraint (31) calculates the visiting time of nodes in the third 
echelon. Constraint (32) calculates the starting time of the truck in the 
third echelon. Constraint (33) urges the truck to start from a retailer if it 
carries orders processed at that retailer. Finally, constraint (34) ensures 
the coverage of the pick-up location is respected. The binary variables 
receive 0/1 values, while the rest of the variables only accept integer 
values.

4. Solution method

Vehicle routing problems are categorized as NP-hard; the optimiza
tion of their extended variant, LRPs, in this study, bears a high 

computational complexity. This justifies the use of metaheuristics to 
solve the problem for medium- and large-size instances (Mara et al., 
2021; Wang et al., 2018b).

This study proposes to treat the location-routing problem as a ma
chine scheduling problem with due dates to solve ME-OLRPTW. In this 
approach, farms, abattoirs, and retailers in the first phase are considered 
parallel machines in a flow shop environment, where jobs (i.e., orders) 
should go through different processing stages in the same direction. In 
this definition, traveling times in each echelon correspond to machine 
setup times. Besides, routing is treated as parallel machine scheduling. 
The retailers associated with certain customers’ orders (jobs) through 
several vehicles are treated as a sequence of job subsets assigned to a 
machine for processing. In doing so, the traveling time between loca
tions can be viewed as sequence-dependent setup times in production 
scheduling, and the service time of each customer (e.g., unloading the 
items) corresponds to processing times.

As a stochastic search optimization algorithm inspired by Charles 
Darwin’s theory of evolution, Genetic Algorithms (GAs) are among the 
most used solution methods for solving LRPs (Mara et al., 2021). The 
computational procedure of GAs begins with encoding the problem into 
a set of strings (i.e., chromosomes) and continues by applying certain 
evolutionary operations on the strings, simulating the evolution process 
(Moghadam et al., 2014). The solution initialization procedure is 
composed of two phases; in the first phase, a subset of farms, abattoirs, 
and retailers is selected randomly, and orders are allocated to the active 
facilities. Notably, for the customers who chose to pick up their items, 
the orders are allocated (through CP) to the active facilities. In the 
second phase, routes are planned to accommodate the orders. Addi
tionally, this study improves GA by including a new local search 
customized for solving the 3E-OLRPTW with mixed deliveries. In the 
proposed approach, the best-ever found solutions are used as a means of 
improving the local search procedure. The computational procedure is 
detailed below.

4.1. Encoding and decoding of solutions

The proposed encoding scheme is a two-segment chromosome with a 
length of 4× (nHD + CP). The first segment represents the sequence of 
orders in each supply chain cycle (farms, abattoirs, retailers, and de
livery points), and the second determines the assigned facilities (loca
tion-allocation phase) or vehicles (routing phase). Fig. 2 visualizes the 
structure of the encoded solutions for a small-scale instance with two 
potential farms (F1, F2), three potential abattoirs (A1, A2, A3), two 
potential retailers (R1, R2), and eleven customers (C1 C11) two of which 
opted for a pickup service. The following phases are undertaken to 
encode a solution.

Phase 1) Location-allocation phase: 

• Define open facilities (in this study, farms, abattoirs, and retailers) 
using three binary strings with the length of nf , na, and nr, respec
tively. This ensures that at least one open facility is considered at 
each stage.

• Sort the orders nHD+CP using random and Length Deviation 
Tolerance (LDT) methods with an equal probability; apply it sepa
rately for every stage.

Fig. 2. Chromosome structure.

A. Mokhtari-Moghadam et al.                                                                                                                                                                                                                Cleaner Logistics and Supply Chain 17 (2025) 100266 

6 



• Assign the active facilities by random order.

Phase 2) Routing phase. 

• Allocate orders to the routes randomly and assign vehicles for every 
route.

The decoding of the solution is composed of the following steps.
Step 1) Calculate the preparation and processing times of each order, 

considering the operational parameters of the assigned facility and the 
order size.

Step 2) Given the orders’ position in the sequence, calculate the 
completion time at each facility using Equation (19).

Step 3) Calculate the vehicles’ departure time, which is assumed to 
be immediately after the ready time of the last order in the batch.

Step 4) Given the vehicle’s speed at each echelon, calculate the 
arrival time of every order.

Step 5) Estimate the number of required vehicles in each echelon.
Step 6) Use Equation (31) to calculate the vehicles’ arrival times at 

the delivery points.
Step 7) Calculate the vehicle’s waiting times and the deviation from 

the desired arrival time.
Step 8) Measure the preparation, processing, transportation, wait

ing, and time window-violation costs and aggregate them.

4.2. Population initialization and fitness function evaluation

Initial solutions are generated randomly to ensure a diverse popu
lation. Each solution is then evaluated considering the overall cost, using 
Eq. (1). Boltzmann distribution is used to evaluate the fitness values and 
assign a probability value to every solution Pi, using Equation (35). Since 
the objective is to minimize overall costs, solutions with a greater fitness 
value receive a higher priority to be selected for reproduction and sur
vival into the next generation. 

Pi =

exp
(

β × Ci
Cworst

)

∑
j∈npop

exp
(

β ×
Cj

Cworst

), ∀i ∈ npop (35) 

In this equation, Ci represents the aggregate supply chain cost of 
solution i; Cworst demonstrates the worst cost value; the population 
number of the algorithm is denoted by npop, and β is the Boltzmann’s 
constant (the so-called selection pressure). Notably, when β = 0, all 
individuals have an equal probability of being selected; otherwise, i.e., 
when β = ∞ , the probability of selecting an individual with the lowest 
cost is equal to 1. The β value is, therefore, crucial for the convergence of 
the solution population to an optimum or near-optimum norm.

4.3. Computational mechanisms

4.3.1. Selection mechanism
Two selection methods are required for reproduction and elitism. 

• The Roulette Wheel Selection (RWS) method is used to select in
dividuals for both the crossover and mutation procedures.

• The truncation-based selection mechanism is considered to identify 
the best solutions from the collective of the old popold and reproduced 
solutions, popnew. In this method, individuals are sorted in ascending 
order of the overall cost, and npop from the top of the list makes it to 
the next generation. Similar individuals should be removed before 
applying the truncation-based selection mechanism. The end of 
every generation marks the revision of the solution population and 
reducing the number of individuals to the desired size, popnew.

Fig. 3. Uniform crossover for obtaining new solutions.

Table 3 
Summary of the case example parameters.

Factors Levels

Number of orders A range between 100 and 2000
Number of facilities 3, 5, and 15
Number of customer service points Number of orders/25
Demand size U [10,20]
Capacity of customer service points U [100,200]
Capacity of the first echelon vehicle 10,000
Capacity of the second echelon vehicle 7000
Capacity of the third echelon vehicle 1000
First-echelon vehicle speed 30
Second-echelon vehicle speed 50
Third-echelon vehicle speed 25
Fixed cost of first echelon vehicle $100
Fixed cost of second echelon vehicle $150
Fixed cost of third-echelon vehicle $70
Variable cost of first echelon vehicle 1 $/min
Variable cost of second echelon vehicle 1.1 $/min
Variable cost of third-echelon vehicle 0.5 $/min
Farm third-party contract cost

U [1000, 3000] × (log (
|C|
100 

+

1))0.3

Abattoir third-party contract cost
U [2000, 5000] × (log (

|C|
100 

+

1))0.3

Retailer third-party contract cost
U [1200, 4000] × (log (

|C|
100 

+

1))0.3

Store third-party contract cost
U [100, 200] × (log (

|C|
100 

+

1))0.3

Farm processing cost (loading) U [0.15, 0.3] $/kg
Abattoir processing cost (unloading + processing 
+ loading)

U [3.5, 7] $/kg

Retailer processing cost (unloading + loading) U [0.5, 1.5] $/kg
Spoilage cost U [18,25]
Livestock cost U [2.43, 3.02] $/kg
The sale price of meat 18 $/kg
Livestock weight for fulfilling demands D × 1.3
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4.3.2. Crossover mechanism
In the evolutionary phase of the algorithm, at every generation, a 

uniform crossover mechanism is used to generate new solutions 
(offspring) from the selected current solutions (parents). For this pur
pose, (1) two parents are first selected using RWS, and a mask vector 
(uniform binary vector) with a length equal to the number of facilities 
(nf + na + nr) is created. (2) The order sequence and facility assignment 
vectors are sorted, and the respective indices are recorded. (3) Genes in 
the facility assignment vector are copied from parents to the offspring 
according to Fig. 3. (4) The recorded indices are considered for 
obtaining the new order sequence and facility assignment vectors.

4.3.3. Mutation mechanism
The mutation mechanism helps improve population diversity and 

reduces the chances of premature convergence. This study employs 
three mutation operators, i.e., swap, conversion, and insertion, to 
modify the sequence of the orders. For this purpose, an individual is first 
selected from the population using RWS, followed by applying one of the 
mutation operators considering an equal probability.

4.3.4. Local search mechanism
A new local search method is developed to improve the exploitation 

power of the global search algorithm. In this method, the orders are 
iteratively reassigned across the active facilities to find better alterna
tives. The pseudocode of the developed local search mechanism is pro
vided below, Algorithm 1.

Algorithm 1. The iterative local search module.

4.3.5. Termination mechanism
A termination criterion is necessary to halt the solution algorithm’s 

computational procedure. To ensure a fair comparison with benchmark 
methods, we use maximum CPU time as the stopping criterion, consid
ering instance sizes that range from 500 to 2500 s. Rather than an 
iteration-based criterion, we adopt CPU time, as it better accommodates 
the nature of heuristic and meta-heuristic algorithms in finding near- 
optimal or optimal solutions within an acceptable runtime. Addition
ally, population-based algorithms often require more time per iteration 
compared to algorithms with strong exploitation power, like SA. 
Therefore, using CPU time as the stopping criterion ensures a consistent 
and equitable evaluation across different algorithms.

5. Numerical results

This section evaluates the performance of the developed algorithm, 
HGA, comparing it with widely used benchmark algorithms for solving 
LRPs. For this purpose, the adapted variants of GA (Hiassat et al., 2017), 
SA (Yu and Lin, 2015b), and ABC (Guo and Zhang, 2017) are considered 
the baselines. Besides, the hybrid algorithms, GSA (Yu et al., 2022), and 
ICA + VNS (Tayebi Araghi et al., 2021) are included to ensure a fair 
comparison. The section continues with a sensitivity analysis and some 
practical implications of the findings. All algorithms are implemented in 
MATLAB R2020a and executed on a personal computer with a 2.60 GHz 
AMD Ryzen 3 CPU and 12 GB of RAM.

5.1. Description of the test instances and the evaluation metrics

Test instances are generated such that the real-world situations are 
best presented. The parameters and their respective value and ranges are 
shown in Table 3. Some of the operational parameters are believed to 
impact the solution algorithm’s performance. The demand size, number 
of facilities on each level, the number of customers, and CP requests are 
considered in the numerical analysis to capture the possible impact on 
the algorithms’ performance.

In addition to the supply chain cost, which is to be calculated using 
Equation (1), the percentage of satisfied customers (PSC; Equation (36)
is considered to compare the best solutions found by each of the 
benchmark algorithms. This metric measures the number of demands 
received at the delivery points within the specified time interval [eti; lti]. 

PSC =

∑n
i=1di × sci
∑n

i=1di
(36) 

In this equation, di defines the demand of customer i, and sci repre
sents a binary variable equal to 1 if a customer is served within the 
desired time interval, and 0, otherwise. Relative performance deviation 
compares the benchmark algorithms against these two metrics.

5.2. Parameter settings

Separate experiments are conducted to calibrate the parameters of 
each algorithm. For HGA, the population size, selection pressure, 
crossover, and mutation probabilities are tuned. For GA, the parameters 
are the same as HGA. The parameters of ABC include the colony size, 
onlooker size, and maximum trial limit. For SA, the initial temperature 
(T0), temperature damping rate (alpha), and maximum number of inner 
iterations (L) are considered. The Taguchi method is used to determine 
the optimal level of known factors while the effects of uncontrollable 
factors are minimized. For a full description of how to perform the 
Taguchi method for tuning the algorithm’s parameters, we refer inter
ested readers to (Nabipoor Afruzi et al., 2013).

As a first step, trial-and-error experiments are conducted to deter
mine the initial values for each parameter. Table 4 shows the parameter 
levels of HGA. Considering the number of known parameters, the 
respective test levels, and the Taguchi method, an orthogonal array L9 is 
then designed, which consists of different configurations of parameter 
levels. To assess which combination of parameter values results in the 
best algorithm performance, four randomly generated test problems are 
considered: 3E–OLRPTWH/S P01, 3E–OLRPTWH/S P09, 

Table 4 
Factor levels for the design of the orthogonal array for HGA calibration.

Parameter Level

1 2 3

nPop 50 80 100
Pc 0.3 0.5 0.7
Pm 0.1 0.3 0.5
SP 2 4 6
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3E–OLRPTWH/S P18, 3E–OLRPTWH/S P27. To ensure the reliability of 
the outcomes, each problem is solved five times, providing a total of 20 
results for each trial.

Next, the performance metrics explained in the previous section are 
computed and normalized by the Relative Deviation Index (RDI; Equa
tion (37)) for every instance. The RDI values are then calculated for 
every item of the orthogonal array. 

RDIi =

⃒
⃒Pci − Pcbest

i

⃒
⃒

⃒
⃒Pcmax

i − Pcmin
i

⃒
⃒
× 100 (37) 

In this equation, Pci refers to the average performance value of the ith 

experiment, considering 20 runs. Pcbest
i represents the best performance 

value throughout the experiments, while Pcmax
i and Pcmin

i represent the 
maximum and minimum values, respectively. It should be noted that 
RDIi is calculated as the average of RDIs considering four test problems; 
a measure that is considered as the response value in the Taguchi design 
approach and the basis of selecting the parameter values for HGA.

The same procedure is implemented for the parameter setting of GA, 
ABC, and SA. Besides, the parameters for GSA and ICA + VNS were 
tuned following (Yu et al., 2022) and (Tayebi Araghi et al., 2021), 
respectively. The Taguchi experiment results for HGA, GA, ABC, and SA 
are presented in Fig. 4 (a–d). Table 5 summarizes the optimal parameter 
values.

5.3. Algorithm performance analysis

The performance of HGA is now benchmarked against five other 
algorithms and considering 33 distinct test instances. The instances are 
denoted by a 5-field code. For example, an instance with 5 farms, 5 
abattoirs, 5 retailers, 40 store points, and 1000 customers is denoted by 
“5× 5× 5× 40× 1000”. Each algorithm is run three times for each test 
problem. Fig. 5 shows the algorithms’ performance in terms of conver
gence rate. One can observe that HGA’s convergence is steady across 
problem sizes, and a significantly faster convergence shows its superi
ority in terms of computational efficiency. In terms of solution quality, 
algorithms exhibited comparable performance in solving small-scale 

Fig. 4. Mean effects plots for each parameter level in the Taguchi method: (a) HGA, (b) GA, (c) ABC, and (d) SA.

Table 5 
Parameter setting of HGA, GA, ABC, and SA.

Parameter HGA GA ABC SA

nPop 100 100 ​ ​
Pc 0.9 0.3 ​ ​
Pm 0.2 0.5 ​ ​
SP 4 2 ​ ​
Colony Size 

n_Onlooker 
Max_Trial (Limit)

​ ​ 80 
80 
6

​

T0 
Alpha 
L

​ ​ ​ 100 
0.95 
50
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instances (P_01–P_09), with only minor gaps between the best-found and 
average solutions. As the problem size increases, the gap between the 
best and average solutions across the six competing algorithms becomes 
more pronounced.

Table 6 summarizes results considering total supply chain cost. In 
this table, the best-found solution (total supply chain cost), the average 
cost over three runs, and the standard deviation are reported. The best 
results from the benchmark tests are highlighted in bold. It can be 
observed that the majority of the best results are obtained by HGA. 
Figs. 6 and 7 visualize the best and average costs by the benchmark 
algorithms, respectively.

Overall, numerical experiments showed that HGA outperforms other 
algorithms in 26 out of 33 test instances. This superiority is largely 
attributed to the proposed iterative local search mechanism, which 
improves the balance between different cost elements in the objective 
function. Notably, the Adapted SA, which is a single-solution-based local 
search-based algorithm, achieved superior performance in three test 
instances, ranking on par with the multi-population-based hybrid ICA +

VNS approach.
It is worthwhile to note that HGA has not only yielded the best-found 

solutions but also demonstrated a more stable performance throughout 
the experiments. Considering the average solution over three runs, the 
proposed algorithm demonstrated superiority in 29 out of 33 test con
figurations, highlighting its consistency in producing high-quality so
lutions across various attempts. The average solution found by SA is 
superior in three test cases, while ICA + VNS ranks highest in one 
instance. Although SA’s performance deviates in some test problems, its 
single-solution-based search mechanism demonstrated relative effec
tiveness compared to population-based algorithms.

5.4. Statistical analysis

The Wilcoxon signed-rank test is performed considering the best 
solution obtained by benchmark algorithms to evaluate whether sig
nificant differences exist between their performance. The results of the 
statistical analysis are summarized in Table 7. It is confirmed that the 

Fig. 5. Fitness value convergence for HGA, GA, ABC, SA, GSA, and ICA + VNS.
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Table 6 
Results considering the overall supply chain cost (best in bold).

Instance 
No.

HGA GA 
(Hiassat et al., 2017)

SA (Yu and Lin, 2015
)

ABC 
(Guo and Zhang, 2017)

GSA 
(Yu et al., 2022)

ICA + VNS 
(Tayebi Araghi et al., 
2021)

Best Ave SD Best Ave SD Best Ave SD Best Ave SD Best Ave SD Best Ave SD

P_01 16 
258

16 
486

227 16 
842

17 
161

452 16 
445

18 
722

3 220 17 
931

18 
592

581 16 
734

16 
964

236 16 
595

17 
374

779

P_02 19 
745

19 
995

368 20 
054

20 
827

1 
094

38 
748

41 
167

3 420 22 
639

22 
996

460 19 
858

21 
452

1 702 22 
868

23 
446

502

P_03 25 
221

27 
093

3 
159

30 
638

31 
213

813 32 
415

33 
862

2 047 28 
325

29 
207

766 30 
153

31 
030

763 27 
396

30 
408

3 097

P_04 33 
795

34 
350

568 38 
274

39 
159

1 
251

39 
219

40 
059

1 188 36 
416

36 
961

648 36 
951

37 
158

182 33 
789

37 
637

3 358

P_05 37 
666

38 
792

1 
791

43 
221

43 
749

747 37 
667

44 
081

9 070 42 
207

42 
515

282 38 
135

40 
463

3 072 37 
097

40 
478

3 054

P_06 38 
177

39 
737

1 
914

39 
430

40 
479

1 
482

36 
239

42 
276

8 538 39 
753

41 
453

2 
103

39 
895

41 
565

1 571 39 
600

42 
735

3 030

P_07 50 
462

53 
794

5 
495

59 
260

59 
825

800 41 
138

47 
434

8 904 53 
833

55 
283

1 
313

54 
732

58 
929

4 750 51 
104

58 
085

6 271

P_08 61 
717

64 
725

3 
187

76 
129

77 
287

1 
637

65 
353

65 
926

810 64 
336

66 
647

2 
502

64 
215

66 
790

2 682 57 
917

62 
478

5 560

P_09 67 
414

74 
817

7 
047

69 
265

78 
852

13 
558

76 
250

77 
237

1 395 77 
885

80 
419

2 
200

74 
532

80 
406

6 703 76 
141

79 
737

3 115

P_10 77 
299

78 
869

2 
401

92 
340

92 
382

60 80 
512

81 
748

1 747 93 
114

96 
274

2 
913

83 
324

86 
586

3 519 84 
644

93 
242

7 459

P_11 83 
826

94 
456

16 
868

118 
478

122 
696

5 
966

89 
109

93 
024

5 536 89 
570

95 
399

5 
161

84 
833

103 
442

17,695 90 
551

100 
797
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265

291 
824

298 
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36 
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30 
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24 
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661 
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3 
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704
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49 
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3 
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172
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468
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12 
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15 
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73 
773
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17 
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Sum ​ ​ 330 
057

​ ​ 322 
492

​ ​ 1 172 
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​ ​ 281 
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​ ​ 462 
934

​ ​ 1 021 
262
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difference in minimum total costs is meaningful. The superiority is 
believed to be driven by the customized local search, which enhanced 
the algorithm’s exploitation capability.

5.5. Sensitivity analysis and practical implications

The primary objective of the optimization method was to minimize 
the total supply chain costs, including the penalty costs regulated by the 
soft time window. As a final step in numerical analysis, customer 
satisfaction rates are evaluated considering the soft time window to 

draw practical conclusions. Analyzing the percentage of satisfied cus
tomers across different instances showed that the satisfaction percent
age reduced with an increase in demand size (see Table 8). Comparing 
the results from different algorithms in Fig. 8 confirms that increasing 
the number of pickup points/local depots for the same demand sizes 
improves customer satisfaction.

This finding is in line with the existing literature where delivery time 
is regarded as one of the main difficulties in home-delivery operations 
(Giuffrida et al., 2017; Kalinic et al., 2018, Mokhtari-Moghadam et al., 
2023, 2025).

Increasing the number of delivery points is a costly solution to 
improve customer satisfaction. As an alternative solution, companies 
extend delivery time slots to accommodate resource constraints as the 
customer base grows; this leads to reductions in overall logistics costs. 
Delivery time-window extensions should be approached carefully when 
the product is perishable and its quality deteriorates over time, as is the 
case in this study. A sensitivity study is performed to examine how 

Fig. 6. Illustration of best-found solution amongst competing algorithms.

Fig. 7. Illustration of the average solution amongst competing algorithms.

Table 7 
Comparison of algorithms’ performance using Wilcoxon signed-rank test.

GA SA ABC GSA ICA + VNS

HGA p-value 5.39E-07 1.06E-05 5.39E-07 2.10E-06 1.61E-06
W 0.0 34 0 15 12
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changes in customer time window length impact the total supply chain 
cost.

To explore this, a large-scale scenario with 2,000 customer orders is 
considered. Results are provided in Table 9. Extending the time window 
in Scenario 1 has resulted in a total cost reduction of $51,883, which 
represents a 7.38 improvement in the objective function. In contrast, 

tightening the time window in Scenario 5 increased the total cost by 
$101,862 (+14.48), while customer satisfaction dropped to 49.80, 
reflecting a 12 percent decrease compared to the baseline. Fig. 9 illus
trates how the objective function values and customer satisfaction levels 
vary with time window adjustments.

Overall, expanding the time window enables the timely delivery of 

Table 8 
Results considering the percentage of satisfied customers.

No. Problem size HGA GA SA ABC GSA ICA + VNS

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave

P_01 3–3–3–4-100 94,3 88,7 97,9 95,2 98,8 96,7 97,7 92,7 99,2 94,2 95,7 81,6
P_02 3–3–3–6-150 100,0 99,5 100,0 95,9 90,3 89,5 100,0 99,5 100,0 100,0 100,0 99,7
P_03 3–3–3–8-200 99,0 96,3 99,0 98,2 100,0 99,0 98,8 98,8 100,0 98,9 98,5 94,0
P_04 3–3–3–10-250 98,6 96,2 99,7 99,0 100,0 99,3 99,5 97,0 100,0 98,3 98,7 97,2
P_05 3–3–3–11-280 99,7 98,9 99,6 99,2 100,0 99,8 100,0 99,0 100,0 100,0 100,0 98,8
P_06 3–3–3–12-300 99,0 97,3 99,4 99,4 100,0 98,8 99,7 95,6 100,0 99,5 99,6 98,0
P_07 3–3–3–14-350 99,4 98,5 99,6 99,2 100,0 100,0 98,1 97,1 99,8 99,4 99,4 96,8
P_08 3–3–3–16-400 99,4 97,4 99,6 99,5 100,0 99,8 97,0 96,4 100,0 96,6 97,9 95,6
P_09 3–3–3–18-450 100,0 99,6 100,0 100,0 97,5 91,9 100,0 97,2 99,8 97,3 99,3 96,0
P_10 3–3–3–20-500 100,0 100,0 100,0 100,0 100,0 92,3 95,8 94,0 100,0 99,4 98,1 95,2
P_11 5–5–5–22-550 98,0 96,8 98,7 98,5 100,0 100,0 95,8 95,4 99,2 98,5 98,1 95,6
P_12 5–5–5–24-600 99,4 98,8 99,6 99,1 99,6 97,7 97,0 95,8 100,0 98,4 97,9 93,0
P_13 5–5–5–26-650 100,0 98,5 99,7 99,1 55,3 30,5 94,5 93,2 100,0 98,7 94,6 91,0
P_14 5–5–5–28-700 99,0 97,8 99,8 99,1 91,3 45,7 94,7 93,8 99,6 98,3 95,4 91,4
P_15 5–5–5–30-750 99,3 98,4 99,7 99,2 90,2 48,6 91,5 91,2 100,0 99,0 94,2 90,0
P_16 5–5–5–32-800 99,3 97,0 99,3 98,3 95,6 47,8 90,3 89,5 99,3 97,5 93,4 90,7
P_17 5–5–5–34-850 99,0 97,2 99,6 99,4 99,7 97,6 88,4 88,0 99,8 98,2 95,1 90,6
P_18 5–5–5–36-900 93,7 88,2 86,0 84,5 77,4 69,1 82,4 79,8 99,7 94,2 83,8 80,6
P_19 5–5–5–38-950 95,7 91,4 94,5 89,6 77,9 70,0 83,9 83,5 98,9 94,4 85,8 82,5
P_20 5–5–5–40-1000 90,7 87,6 87,3 86,0 73,0 36,5 82,1 80,7 93,9 90,3 84,7 81,2
P_21 10–10–10–42-1050 92,4 88,8 92,3 91,6 85,2 78,9 84,6 83,9 95,3 93,6 86,7 85,1
P_22 10–10–10–44-1100 97,2 91,6 89,6 87,4 88,2 83,2 85,4 84,8 96,2 92,8 88,7 82,8
P_23 10–10–10–46-1150 86,4 85,0 83,5 82,8 82,6 81,2 84,7 83,1 86,4 84,1 82,2 80,1
P_24 10–10–10–48-1200 83,8 83,3 87,9 86,5 80,3 75,8 83,9 83,4 90,6 86,8 85,8 81,6
P_25 10–10–10–50-1250 83,1 80,9 82,5 82,0 74,5 69,4 81,1 80,0 82,3 82,1 81,0 77,4
P_26 10–10–10–52-1300 79,8 79,0 84,7 81,6 51,2 27,5 79,6 78,7 85,1 83,9 83,5 80,2
P_27 10–10–10–54-1350 74,8 73,4 80,3 78,9 67,4 59,3 75,4 73,4 80,3 78,3 78,2 74,1
P_28 10–10–10–56-1400 75,0 71,6 78,9 75,2 61,6 61,1 75,6 74,2 78,3 75,7 76,3 71,7
P_29 10–10–10–58-1450 77,9 75,3 77,8 74,9 69,2 65,2 73,4 71,7 77,9 77,6 77,4 73,5
P_30 10–10–10–60-1500 76,3 71,6 77,1 76,9 66,3 58,5 71,6 68,6 76,2 75,1 76,0 71,1
P_31 15–15–15–68-1700 62,1 55,9 63,3 58,7 68,2 62,9 54,7 53,8 65,0 63,6 74,6 70,1
P_32 15–15–15–74-1850 69,1 63,1 61,0 54,5 70,0 66,8 61,8 56,3 64,0 61,6 67,7 62,4
P_33 15–15–15–80-2000 61,7 57,9 63,4 59,2 57,8 56,9 48,6 47,3 66,1 62,3 64,2 59,1

Fig. 8. Customer satisfaction levels across competing algorithms.

A. Mokhtari-Moghadam et al.                                                                                                                                                                                                                Cleaner Logistics and Supply Chain 17 (2025) 100266 

13 



more orders, improving customer satisfaction. However, with tighter 
time windows, companies may need to acquire more resources and fa
cilities to meet customer demands, leading to increased costs. A more 
flexible delivery period enhances facility utilization, and reduces pen
alty costs, ultimately lowering the total supply chain cost.

6. Conclusions and future research

This study contributed a new approach to optimizing food supply 
chains with mixed last-mile delivery. Considering the interactions be
tween location and time window factors with the routing decisions, ME- 
OLRPTW with simultaneous home delivery and store pickup points/ 
local depots was proposed to explore e-commerce from the logistics 
planning perspective. The objective was to minimize supply chain costs 
while accounting for customer satisfaction by offering on-time and 
diverse delivery services.

Different test configurations were considered in numerical analysis 
to evaluate the performance of the proposed algorithm relative to the 
state-of-the-art. Statistical test confirmed that the developed solution 
method solves this class of optimization problems more effectively than 
the state-of-the-art. Sensitivity analysis was also conducted to provide 
practical insights into planning aspects of the last-mile delivery 
operations.

This research is limited in that it assumes a static environment with 
deterministic operational parameters. Future studies should account for 
such sources of uncertainty to improve the reliability of the optimization 
outcomes. Simulation-based optimization methods can be tested to 
address different sources of uncertainties, reduce unrealistic assump
tions, and incorporate micro-level production management variables 
into the optimization model. Additionally, our ME-OLRP formulation 
can be enhnced using robust optimization approaches and a set-covering 
model to address ambiguity. The next suggestion comes from the need 
for the integration of revenue management and menu pricing variables 
in e-commerce. Prime examples of practical considerations are allowing 
for splitting orders and conditionally accepting an order while 

considering service-related performance measures, like the freshness of 
the products and priority deliveries.

Additional opportunities for future research come from a solution 
method standpoint. New metaheuristics may improve the solutions 
provided in this study for the multi-objective optimization of ME-OLRP, 
considering conflicting profit- and service-oriented goals. From mathe
matical modeling perspective, the formulation can be extended to ac
count for additional and/or case-specific constraints, and new objective 
functions, as well as considering multiple planning horizons. Finally, 
transport-related decision variables for the first and second echelons can 
be added to the model to account for the possible inbound logistics 
delays.
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