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Abstract

The success of organ transplantation can be compromised by ischaemia—reperfusion injury
(IRI), an unavoidable consequence of transplant surgery. IRI is associated with mitochon-
drial dysfunction, oxidative stress, inflammation, and apoptosis/ferroptosis. There is
therefore a rationale for supplementation with coenzyme Q10 (CoQ10) to mediate the ad-
verse effects of IRI, given the role of CoQ10 in promoting normal mitochondrial function, as
an antioxidant, and as an anti-inflammatory and anti-apoptotic/ferroptotic agent. In this ar-
ticle we have reviewed the potential role of supplementary CoQ10 in organ transplantation
in preclinical animal studies based on the above actions; the role of supplementary CoQ10
in promoting stem cell action in transplantation and its role in alleviating the adverse effects
of immunosuppressants used in organ transplantation are also discussed.

Keywords: organ transplantation; coenzyme Q10; mitochondrial dysfunction; oxidative
stress; inflammation; apoptosis; ferroptosis; stem cells; immunosuppressants

1. Introduction

The viability of organs for transplant is limited by the time in cold storage, which
results in the development of so-called ischaemia-reperfusion injury (IRI). IRI results
from the initial interruption of organ blood flow and subsequent restoration of organ
blood flow and is a major factor in determining the outcome of organ transplantation.
IRI is closely associated with early graft failure, enhancing allograft immunogenicity and
promoting acute and chronic rejection. IRI results in mitochondrial dysfunction, with
associated oxidative stress, inflammation, and apoptosis/ferroptosis. Mitochondria have a
key role in cell metabolism, including the production of ATP, the generation of oxidising
free radical species (ROS), the mediation of the immune response, and the regulation
of cell death. During ischemia, hypoxia leads to cessation of mitochondrial oxidative
phosphorylation (which plays a crucial role in energy production), increased generation
of ROS, and initiation of apoptosis/ferroptosis. Reperfusion exacerbates mitochondrial
damage, triggering the release of damage-associated molecular patterns (DAMPs) and
inflammatory responses. IRI, therefore, comprises a cascade of cellular events, including
energy loss, generation of reactive oxygen free radical species, release of cytokines, acti-
vation of immune cells, and cell death [1,2]. In this article we have, therefore, reviewed
the potential role of coenzyme Q10 (CoQ10) in mediating IRI and promoting the viabil-
ity of organs for transplantation, given the key role of CoQ10 in normal mitochondrial
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function, as an antioxidant protecting against ROS-induced cellular damage, and as an
anti-inflammatory and anti-apoptotic/ferroptotic agent. The role of supplementary CoQ10
in promoting stem cell action in transplantation, and its role in alleviating the adverse
effects of immunosuppressants used in organ transplantation, are also reviewed.

2. IRI and Mitochondrial Dysfunction

As noted in the previous section of this article, IRI results from a self-reinforcing
cycle of mitochondrial dysfunction, oxidative stress, inflammation, and cell death. During
ischaemia, the transfer of electrons along the mitochondrial electron transport chain (ETC)
is disrupted by hypoxia, since during cellular respiration oxygen (because of its high
electronegativity) is the terminal electron acceptor in the ETC. This in turn interferes with
the transfer of protons across the inner mitochondrial membrane, reducing the proton
motive force (i.e., the energy stored as an electrochemical gradient) required for oxidative
phosphorylation and adenosine triphosphate (ATP) synthesis. When the blood flow is
re-established during reperfusion, re-oxygenation aggravates the damage caused during
the ischaemia. The accumulation of fumarate during ischaemic preservation triggers the
reverse activity of mitochondrial complex II and the reduction of fumarate to succinate,
with succinate accumulating and acting as an electron sink [3]. During reperfusion of the
graft, accumulated succinate is rapidly oxidised, triggering reverse electron transport (RET)
in complex I, resulting in excess generation of mitochondrial ROS [3]. This in turn results
in increased mitochondrial calcium levels and activation of the mitochondrial permeability
transition pore (MPTP), resulting in mitochondrial dysfunction, seriously decreasing graft
function and survival. In addition, mitochondrial ROS and internal elements from damaged
mitochondria (DAMPS), including oxidised mitochondrial DNA (mtDNA), can activate
inflammasomes, thereby triggering an innate immune response and accelerating rejection
(Figure 1).

A number of studies have provided evidence confirming the importance of mito-
chondrial dysfunction in IRI. Thus, Pollara et al. [4] demonstrated a correlation between
donor plasma mitochondrial DNA levels and early allograft dysfunction in liver transplant
recipients, suggesting a role for circulating mtDAMPs in allograft outcomes. Scozzi et al. [5]
found high levels of mtDNA in the plasma of patients undergoing lung transplantation
were associated with the development of severe graft dysfunction. Lin et al. [6] demon-
strated the presence of extracellular mitochondria in the circulation of deceased organ
donors and that their presence correlated with early allograft dysfunction; this is a conse-
quence of the mitochondria activating endothelial cells (the initial barrier between a solid
organ allograft and its host) to produce inflammatory cytokines. In a series of 61 patients
undergoing liver transplantation, Nagakawa et al. [7] reported higher plasma levels of
mtDNA DAMPS correlated with a longer duration of post-transplant recovery.

Martins et al. [8] measured changes in mitochondrial function and bioenergetics that
occur during ischemia/reperfusion in liver biopsies from a series of 28 patients undergoing
liver transplantation. There was a significant reduction in mitochondrial membrane poten-
tial, an increase in lag phase, and decreases in mitochondrial respiration and ATP content.
Higher postoperative aminotransferase peaks correlated with a worsening of mitochondrial
function, and mitochondrial respiration correlated with arterial lactate. Zepeda-Orozco
et al. [9] correlated genetic markers of mitochondrial dysfunction with poor graft function
in renal biopsies from patients undergoing kidney transplantation. In liver biopsy samples
taken after organ cold storage, evaluation of ETC function correlated with clinical outcome
following liver transplantation [10]. Following heart transplantation, analysis of endomy-
ocardial biopsies showed impaired myocardial mitochondrial respiration, coupled with
myocardial oxidative stress, inflammation, and oedema [11]. Romero et al. [12] reported
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that cardiac allograft rejection was associated with decreased mitochondrial-related gene
expression, following analysis of endomyocardial biopsies from heart transplant patients.
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Figure 1. The causes of IRI (A) and the involvement of ischaemia (B) and reperfusion (C) in mito-
chondrial dysfunction in IRI. IRI: Ischaemia—reperfusion injury. ETC: Electron transport chain. RET:
Reverse electron transport. ROS: Reactive oxidative species. mPTP: Mitochondrial permeability
transition pore. DAMPS: Damage-associated molecular patterns. ATP: Adenosine triphosphate.

IMM: Inner mitochondrial membrane.
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In addition to the above studies using human tissues, evidence of mitochondrial dys-
function in IRI has also been obtained from studies in animal models. For example, Sammut
et al. [13] investigated the effect of storage time on hepatic mitochondrial oxygen consump-
tion and activities of ETC complexes I, 11, III, IV, and V in mitochondria isolated from rat
liver isografts stored for 25 min and 24 h pre- and post-transplantation. The data obtained
showed that a loss of membrane integrity, coupled with an inhibition of Complexes I and
V and an involvement of Complex II-III in 24-h stored hepatic transplants, accounted for
mitochondrial respiratory dysfunction in hepatic transplantation injury. Using isolated rat
hearts, Akande et al. [14] demonstrated reduced mitochondrial oxidative phosphorylation
and calcium retention following ischaemia, with further exacerbation of mitochondrial
dysfunction following reperfusion. In rats, Duboc et al. [15] used NADH laser fluorime-
try and mitochondrial oxygraphy to demonstrate impaired myocardial oxidative energy
metabolism during cardiac allograft rejection.

As noted in the introduction, CoQ10 has a key role in the normal functioning of mito-
chondria. CoQ10 has a key role as an electron carrier (from complex I and II to complex III)
in the mitochondrial electron transport chain during oxidative phosphorylation. CoQ10 is
also a key component in the reactions mediated by other mitochondrial enzymes; for ex-
ample, it is also involved in the metabolism of pyrimidines, fatty acids, and mitochondrial
uncoupling proteins, as well as in the regulation of the mitochondrial permeability transi-
tion pore. CoQ10 serves as an important lipid-soluble antioxidant, protecting mitochondrial
membranes from free radical-induced oxidative stress [16].

3. IRI and Oxidative Stress

Oxidative stress is defined by the imbalance between the production of highly re-
active and potentially damaging free radical species (particularly ROS) and the capacity
of antioxidants to protect cells against such damage. Within cells free radicals may orig-
inate from several sources, but as noted in previous sections of this article, during IRI
the principal source of free radicals is from damaged mitochondria. Hypoxia reduces the
activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione
peroxidase; uncoupling of the mitochondrial respiratory chain, together with weakening of
the antioxidant system, results in excessive ROS production and oxidative damage to cell
components. In addition, enzymes responsible for free radical generation, such as NADPH
oxidase and xanthine oxidase, may be activated during IRI, serving as an additional ROS
source. The administration of antioxidants in organ donors, organ preservation solutions,
and organ recipients has been proposed; however, the results from clinical trials have been
equivocal [17].

CoQ10 (particularly in its reduced ubiquinol form) serves as an important lipid-soluble
antioxidant protecting cellular membranes, both mitochondrial and extra-mitochondrial
(Golgi apparatus, lysosomes, endoplasmic reticulum, and peroxisomes), from free radical-
induced oxidative stress (OS). In addition to acting as an antioxidant directly, CoQ10 is also
involved in the regeneration of the antioxidants vitamin C and vitamin E, respectively [16].

4. IRI and Inflammation

There is a common misconception that inflammation, which involves the release
of pro-inflammatory cytokines, is a wholly negative process within the body. However,
inflammation is the body’s normal response to infection or injury and is essential for tissue
healing, although this process should resolve following the initial immune response. When
control of this process is lost, then further tissue damage results; mitochondrial dysfunction
and oxidative stress have been identified as factors contributing to the loss of control of
the latter process. The dysfunction of mitochondria and the release of danger-associated
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molecular patterns (DAMPs), ROS, and calcium initiate an immune response involving
both innate and adaptive immune systems. The release of mitochondrial DNA (mtDNA)
from damaged mitochondria is a particularly potent activator of inflammation [18].

CoQ10 performs several cellular functions of potential relevance to the immune system.
Firstly, the immune response has intensive energy requirements, and an adequate supply
of CoQ10 is therefore required to enable the various cell types of the immune system
to function optimally. Secondly, since phagocytic cells destroy invading pathogens via
the production of free radicals, the antioxidant action of CoQ10 may protect phagocytic
cells from self-destruction caused by their generation of free radicals. Thirdly, CoQ10 can
directly modulate the action of genes involved in inflammation and may have a role in
controlling the release of pro-inflammatory cytokines [19].

5. IRI and Apoptosis/Ferroptosis

Apoptosis is a tightly regulated process of programmed cell death that can occur as
a result of mitochondrial dysfunction following IRI during organ transplantation; pro-
apoptotic factors such as cytochrome c are released from damaged mitochondria into
the cytoplasm to induce apoptosis mediated by caspase-type proteolytic enzymes [2]. A
considerable number of preclinical studies have been reported in which administration of
CoQ10 has inhibited apoptosis, for example, after spinal cord injury in rats [20] and in a
mouse cell model of diabetes [21].

Another consequence of mitochondrial dysfunction during IRI that can contribute
to organ transplant failure is ferroptosis [22]. Ferroptosis is an iron-dependent form of
cell death characterised by iron accumulation and extensive lipid peroxidation; it differs
morphologically, genetically, and biochemically from other cell death types, including apop-
tosis. A high level of serum ferritin (as a marker of iron overload) in the donor was found
as an independent risk factor for hepatic damage post liver transplantation [23]. Several
preclinical studies have demonstrated the action of CoQ10 or its structural analogues in in-
hibiting ferroptosis; these include models of epilepsy [24], subarachnoid haemorrhage [25],
myocardial infarction [26], Parkinson’s disease [27], and acute liver injury [28].

6. IRI and Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs), typically derived from bone marrow, have the poten-
tial to protect organs from IRI during transplantation via several mechanisms, including
antioxidant activity, anti-inflammatory action, anti-apoptotic action, and mitochondrial
transfer. A number of studies have demonstrated the potential beneficial effects of MSCs
with regard to transplantation of human organs. For example, in lungs from deceased
donors undergoing cold storage, intratracheal administration of MSCs significantly de-
creased the levels of a number of inflammatory markers [29]. Similarly, administration
of MSCs to kidneys undergoing normothermic machine reperfusion resulted in reduced
inflammation and improved renal function [30].

Several studies have reported the beneficial effects of CoQ10 administration in MSCs.
Mauro et al. [31] reported activation of mitochondria in human MSCs following adminis-
tration of encapsulated CoQ10 using a MITO-Porter mitochondrial delivery system. Using
human MSCs, Hernandez-Perez et al. [32] showed a combination of CoQ10 and resveratrol
improved the proliferation and differentiation of MSCs and protected against oxidative
stress-induced damage. Sun et al. [33] used an emulsified CoQ10 formulation to improve
mitochondrial function and cell viability in rat MSCs.

MSC function declines in older individuals, and that MSC dysfunction influences the
effects of autologous MSC transplantation in older individuals [34]; in rats, CoQ10 inhibited
the ageing of MSCs resulting from intracellular ROS generation induced by D-galactose [35].
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Zhang et al. [36] reported that the CoQ10 analogue idebenone promoted MSC proliferation
and delayed replicative senescence in rat MSCs. Similarly, Zhong et al. [37] used the CoQ10
analogue MitoQ to reduce oxidative stress-induced senescence in canine MSCs.

7. IRI and Mitochondrial Transplantation

A relatively recent strategy to address mitochondrial dysfunction in IRI is mitochon-
drial transplantation therapy (MTT). MTT uses replacement of defective mitochondria
with viable, respiration-competent mitochondria, ideally isolated from non-ischemic tissue
obtained from the patient’s own body. The origin of the mitochondria in this context is of
primary concern, since, for example, mitochondria in the heart, skeletal muscle, and liver
can differ in proteome and function. After injection of mitochondria into the target site,
mitochondrial internalisation is largely dependent on cellular macropinocytosis. Studies of
MTT in cell culture and animal models have provided promising results, but to date only
one MTT-related study has been carried out in human subjects, a phase I clinical trial in
paediatric cardiac patients with cardiac IRI [38]. A major limitation of the latter study is
that it was a single-centre, non-randomised, retrospective study with historical controls;
further randomised controlled trials are therefore required to demonstrate the efficacy and
safety of MTT in patients with IRL

8. IRI and Coenzyme Q10

With regard to clinical studies, in a series of patients following heart transplant,
Gvodzdjakova et al. [39] reported reduced levels of CoQ10 in both plasma and endomy-
ocardial biopsy samples, correlating with reduced mitochondrial respiratory chain func-
tion and the histologically graded extent of transplant rejection. Similarly, Kurcharska
et al. [40] found reduced CoQ10 levels in endomyocardial biopsies in patients following
heart transplantation. Depleted levels of CoQ10 in heart muscle or plasma were asso-
ciated with an increased risk of rejection in heart transplant patients [41,42]. Dlugosz
et al. [43] reported supplementation with CoQ10 (90 mg/day for 4 weeks) in a series of
11 long-term renal allograft recipients significantly improved the levels of lipid peroxida-
tion/atherogenicity markers.

In addition to mitochondrial dysfunction, another factor that may limit the successful
organ transplantation is telomere shortening, when assessment of telomere length in the
early post-transplant period allows prediction of long-term function of the transplanted
organ [44]. Telomere shortening may be an issue, particularly in the transplantation of older
organs [45], although telomere shortening has been suggested to occur as a consequence
of IRI/oxidative stress during transplantation surgery [46]. In this regard, it is of note
that administration of CoQ10, in combination with selenium, has been reported to reduce
telomere shortening in older subjects [47].

Regarding preclinical studies, in a rat model of liver transplantation, pretreatment
of the donor rat with CoQ10 (10 mg/kg intravenous) 1 h before surgery was reported
to protect against hepatic ischemia induced for 30 min at normothermic body temper-
ature [48]. Using a murine heterotopic cardiac transplantation model, Yuan et al. [49]
designed a mitochondrion-targeted nanocarrier loaded with CoQ10 for treatment of
cold IRI after cardiac graft. This involved synthesis of hybrid nanoparticles composed
of CaCQOj3/CaP/biotinylated-carboxymethylchitosan, followed by incorporation of the
mitochondria-targeting tetrapeptide S531 onto the surface of the hybrid nanoparticles. The
5531 peptide targets the inner mitochondrial membrane by directly interacting with cardi-
olipin. Donor hearts were perfused with preservation solution containing the above hybrid
nanoparticles and stored in vitro at 4 °C for 12 h. The donor hearts were heterotopically
transplanted and analysed for graft function, oxidative damage, apoptosis, and inflamma-
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tory markers 1 day post-transplantation. The hybrid nanoparticles were shown to localise
within mitochondria during cold storage, improving subsequent heart graft function by
attenuating mitochondrial oxidative injury and inflammation. In donor dogs, intravenous
administration of CoQ10 prior to heart removal maintained tissue ATP levels during organ
storage and suppressed the oxidative stress marker malondialdehyde following organ
reperfusion [50].

Mitchell et al. [51] reported the addition of the mitochondria-targeted CoQ10 analogue
mitoquinone (MitoQ, 100 uM) to the University of Wisconsin organ preservation solution
significantly reduced ROS production and mitochondrial dysfunction and improved organ
viability in isolated rat kidneys. The same research group also found the addition of MitoQ
(100 uM) to University of Wisconsin organ preservation solutions reduced oxidative stress,
preserved mitochondrial function, and reduced renal tubular damage during cold preserva-
tion of porcine kidneys [52]. Similarly, using a murine heterotopic cardiac transplant model,
Dare et al. [53] showed incorporation of MitoQ (50 uM) in Soltran organ preservation
solution reduced oxidative damage and dampened the early pro-inflammatory response in
the recipient. MitoQ is a conjugate of ubiquinone and the triphenylphosphonium cation, de-
veloped to specifically target mitochondria [54]; however, although MitoQ has antioxidant
action in common with CoQ10, it differs in other aspects of cell function. The incorporation
of the CoQ10 analogue idebenone, which has a much shorter and less lipophilic isoprenyl
tail than CoQ10, into University of Wisconsin or histidine-tryptophan—ketoglutarate organ
preservation solutions has also been suggested, based on protection against oxidative stress
observed in a rat liver microsomal model [55] and reduced heat shock protein expression in
isolated perfused pig liver [56]. However, in an animal study using liver submitochondrial
particles, idebenone treatment was reported to inhibit the activity of ETC complex I [57].
Therefore, in addition to its therapeutic capacity, idebenone may also have the potential to
induce ETC dysfunction.

There is considerable evidence, from clinical and particularly preclinical studies, for
the efficacy of supplemental CoQ10 in mediating IRI in situations other than organ trans-
plantation. For example, in patients undergoing elective coronary artery bypass surgery,
pretreatment with CoQ10 reduced oxidative stress following cardiopulmonary bypass and
aortic cross-clamp removal; the incidence of ventricular arrhythmias during the recovery
period was also reduced compared to non-supplemented controls [58]. In patients with
myocardial infarction undergoing primary percutaneous coronary intervention, supple-
mentation with CoQ10 reduced plasma levels of oxidative stress biomarkers resulting
from IRI [59]. The outcomes of preclinical studies supplementing CoQ10 in a variety of
animal models of IRI are summarised in Table 1. In most of these studies, animals were
typically pre-dosed (oral or intravenous unless otherwise indicated) with CoQ10 prior to
the operative procedure; studies used the ubiquinone form of CoQ10, unless indicated
otherwise in Table 1.

Table 1. Summary of preclinical studies supplementing CoQ10 in animal models of IRL

Outcomes Following CoQ10

Supplementation Model System Study
Myocardial stunning time reduced = Cardiac ischaemia and reperfusion in pigs Atar et al. [60]
R.e duced ox1dat1ye stress, and Cardiac ischaemia and reperfusion in rats Niibori et al. [61]
improved cardiac function
Reduced oxidative stress and Cardiac ischaemia and reperfusion in pigs Maulik et al. [62]

improved cardiac function
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Table 1. Cont.

Outcomes Following CoQ10
Supplementation

Model System

Study

Reduction in irreversibly damaged
myocardium

Cardiac ischaemia and reperfusion in
rabbits

Verma et al. [63]

Reduced oxidative stress and
improved bladder function

Effect of ischaemia-reperfusion on bladder
in rabbits

Juan et al. [64]

Reduced oxidative stress and
apoptosis

Testicular ischaemia-reperfusion in rats

Erol et al. [65]

Reduced oxidative stress; improved
histologic evaluation scores

Ischaemia-reperfusion in rat ovary;
intraperitoneal injection of CoQ10

Ozler et al. [66]

Reduced oxidative stress, reduced
inflammation, and improved renal
morphology

Effect of ischaemia—reperfusion on kidneys
in rats; ubiquinol form of CoQ10
supplemented

Peerapanyasut et al. [67]

Reduced oxidative stress, greater
preservation of motor neurons, and
improved neurological function

Spinal cord ischaemia-reperfusion in rats

Hwang et al. [68]

Improved flap survival rate

Effect of ischaemia—reperfusion on
epigastric flap in rats

Ozalp et al. [69]

Reduced cerebral infarct volume and
improved neurological behaviour

Cerebral ischaemia-reperfusion in rats

Belousova et al. [70]

Reduced oxidative stress, reduced
apoptosis, and improved cardiac
function

Cardiac ischaemia-reperfusion in rats;
intraperitoneal injection of CoQ10

Liang et al. [71]

Reduced interstitial oedema,
degeneration of muscle fibres, and
infiltration of mast cells via inhibition
of the NF-kB pathway

Ischaemia-reperfusion of skeletal muscle in
rats; intraperitoneal injection of CoQ10

Boroujeni et al. [72]

Reduced infarct volume and
improved neurological function

Cerebral ischaemia-reperfusion in
hyperglycaemic rats

Luetal. [73]

Reduced apoptosis and improved
retinal ganglion cell survival

Ischaemia-reperfusion of mouse retina;
ubiquinol form of CoQ10 supplemented

Juetal. [74]

Reduced oxidative stress,
inflammation, and apoptosis;
improved renal function

Renal ischaemia-reperfusion in rats

Akbulut et al. [75]

Reduced oxidative stress,
inflammation, apoptosis, and
mtDNA damage; improved renal
function

Renal ischaemia-reperfusion in mice

Liu et al. [76]

Reduced oxidative stress,
inflammation, and apoptosis

Testicular ischaemia—reperfusion in rats

Ayengin et al. [77]

Reduced brain oedema and
improved cognitive function

Cerebral ischaemia-reperfusion in rats

Fatemi et al. [78]

Reduced oxidative stress and
inflammation; reduced cerebral
tissue damage

Cerebral ischaemia-reperfusion in rats

Fakharaldeen et al. [79]

Reduced oxidative stress and
ferroptosis

Hepatic ischaemia—reperfusion in mice

Guan et al. [80]
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9. CoQ10 and Immunosuppression

Tacrolimus is a widely used immunosuppressive agent for the prevention of allograft
rejection after renal transplantation. However, major adverse effects of long-term adminis-
tration of tacrolimus are progressive renal failure and new-onset diabetes mellitus. Using
a rat model of tacrolimus-induced nephropathy, Yu et al. [81] found administration of
CoQ10 (20 mg/kg/day for 4 weeks by oral gavage) reduced oxidative stress and improved
both mitochondrial function and renal function. Similarly, in a rat model of tacrolimus-
induced diabetes, Luo et al. [82] reported administration of CoQ10 (20 mg/kg/day for
4 weeks by oral gavage) reduced oxidative stress, improved mitochondrial ultrastructural
parameters and respiratory function, and improved pancreatic beta cell function. Yang and
colleagues used a water-soluble formulation of CoQ10 (based on a CoQ10/ eicosapentaenoic
acid/glycyrrhizin nanoemulsion formulation) to reduce oxidative stress, improve mito-
chondrial ultrastructure, and improve tissue function in rat models of tacrolimus-induced
nephropathy [83] and tacrolimus-induced diabetes mellitus [84], respectively. Oral ad-
ministration of CoQ10 (20 mg/kg/day for 2 weeks) has also been shown by the same
research group to reduce oxidative injury and restore mitochondrial ultrastructure in pan-
creatic islets in diabetes mellitus induced in rats by the related immunosuppressive agent
sirolimus [85]. In the above studies by Yang and colleagues, oxidative stress was quantified
via measurement of 8-hydroxydeoxyguanosine and 4-hydroxyhexenal levels as biomarkers
of oxidative damage to DNA and lipids, respectively.

Cyclosporine and cyclophosphamide are immunosuppressants used in organ trans-
plantation, with renal or cardiac injury as an adverse effect. Supplementation with
CoQ10 (5 mg/kg/day for 28 days) partially prevented cyclosporine-induced cardiotox-
icity in rats [86]. Sato et al. [87] reported administration of CoQ10 (in ubiquinol re-
duced form, 600 mg/kg/day for 4 weeks) reduced oxidative stress (quantified via 8-
hydroxydeoxyguanosine level) and renal function (assessed via urinary albumin and
serum creatinine levels) in a rat model of cyclosporine nephrotoxicity. In rats, adminis-
tration of CoQ10 (in ubiquinol form, 600 mg/kg/day for 4 weeks) reduced cyclosporine
nephrotoxicity, assessed via serum creatinine and urinary albumin levels [88]. Admin-
istration of CoQ10 reduced oxidative stress (assessed via blood malondialdehyde level)
and tissue damage (assessed histologically) in a rat model of cyclophosphamide-induced
renal injury [89]. It is of note that oral administration of CoQ10 (10 mg/kg for 10 days)
reduced cyclophosphamide-induced cognitive and motor dysfunction in rats by reducing
oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and upregulating
the Wnt/3-catenin pathway [90]. CoQ10 administration has been shown to ameliorate
cognitive impairment in animal models induced by other types of immunosuppressant
agents, of relevance to cancer therapy [91].

10. Discussion and Conclusions

Ischaemic reperfusion injury is an unavoidable consequence of organ transplanta-
tion. In the present article, we have reviewed evidence for the involvement of mitochon-
drial dysfunction, oxidative stress, inflammation, and apoptosis/ferroptosis in IRI during
transplantation, with consequences for transplanted organ failure. These data provide
a rationale for the potential role of coenzyme Q10 in mediating IRI and promoting the
viability of organs for transplantation, given the key role of CoQ10 in normal mitochondrial
function, as an antioxidant protecting against ROS-induced cellular damage, and as an
anti-inflammatory and anti-apoptotic/ferroptotic agent. One of the principal ways in
which CoQ10 mediates oxidative stress, inflammation, and apoptosis/ferroptosis is via its
interaction with intracellular signalling pathways, most notably the Nrf2/NQO1/HO1,
NF-kB, and P13K/AKT/mTOR pathways. Nuclear factor erythroid 2-related factor 2 (Nrf2)
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is a transcription factor that acts as a master regulator of genes controlling the production
of antioxidant enzymes, such as NAD(P)H quinone dehydrogenase 1 (NQO1) and heme
oxygenase (HO). Supplementary CoQ10 increases the levels of Nrf2, subsequently increas-
ing antioxidant expression [92]. The nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) pathway regulates the immune response and inflammation, with NF-«B
comprising a family of transcription factors regulating the expression of pro-inflammatory
cytokines. An example of the suppression of the NF-kB pathway by CoQ10 is the reduction
in inflammation induced by beta-amyloid in nerve cells [93]. The P13K/AKT/mTOR path-
way is involved in the promotion of cell survival by inhibiting apoptosis, with P13K, AKT,
and mTOR referring to different types of kinase enzymes involved in the pathway [94].

Depletion of tissue CoQ10 levels has been associated with a variety of disorders, and
the question arises as to how CoQ10 depletion may impact organ transplantation. To
assess CoQ10 status, a plasma determination may be undertaken. However, the CoQ10
status of plasma has been reported to be influenced by both dietary supply and hepatic
biosynthesis [95] and therefore may not reflect tissue levels. Assessment of blood mononu-
clear cells (MNCs) has been suggested as an alternative surrogate to evaluate endogenous
CoQ10 status [95]. MNCs can be easily isolated from EDTA /Li-Heparin blood, and the
CoQ10 status of these cells has been reported to correlate with that of skeletal muscle [95].
Studies in human subjects have demonstrated that depleted levels of CoQ10 in plasma or
heart biopsy tissue are associated with an increased risk of rejection in heart transplant
patients; however, to date no randomised controlled clinical trials supplementing CoQ10 in
patients undergoing organ transplantation have been reported, and this remains an area
for future research. In this regard, the safety of CoQ10 administration is well established;
more than 200 randomised controlled clinical trials are currently listed on Medline in
which supplementary CoQ10 has been administered in a variety of disorders in various
dosages (up to 3000 mg/day) and for various time periods (up to 5 years); in none of
these studies were any serious adverse effects attributable to CoQ10 reported. Preclini-
cal studies have demonstrated that pretreatment of donor animals with CoQ10 helps to
protect against IRI during subsequent organ storage. With regard to a related issue, a
number of studies in animal models have reported a beneficial effect of supplemental
CoQ10 in reducing toxic effects of immunosuppressant drugs such as tacrolimus, cy-
closporine, and cyclophosphamide. Similarly, there is evidence for their action of CoQ10 in
promoting the metabolism of stem cells, which in turn may be utilised to benefit the
transplantation process.

Although the present review has focused on IRI and organ transplantation, factors
other than IRI may be involved in transplantation outcome. Such factors include graft-
versus-host disease (GVHD), which occurs when donor immune cells attack tissues of the
recipient, and may involve mitochondrial dysfunction, oxidative stress, and inflammation
in the latter [96]. It is of note that supplementation with CoQ10 has been reported to reduce
the severity of GVHD in a mouse model of this disorder [97], so this is yet another area
relating to transplantation and CoQ10 supplementation requiring further research.

In summary, as listed in Table 1, there is good evidence from preclinical models for the
efficacy of supplemental CoQ10 in protecting against IRI generally and, to a lesser extent,
against IRI specifically in organ transplantation. While there is therefore a rational basis for
considering CoQ10 supplementation to protect against IRI during human organ transplan-
tation, an appropriate randomised controlled trial is now required before supplementary
CoQ10 could be recommended for surgical practise.
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