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A B S T R A C T

The emerging Maritime Autonomous Surface Ships (MASS) significantly challenges team collaboration in the 
maritime sector. Although significant progress has been made, current research lacks a holistic analytical 
approach to MASS operational teams, with most studies focusing on isolated aspects. To address this gap, a two- 
step framework is developed to model and analyse MASS team tasks from a system-wide perspective. Firstly, a 
team cognitive work analysis and an improved hierarchical task analysis are conducted, clarifying the division of 
responsibilities and information transmission paths. Secondly, a task network is constructed using complex 
network theory, and key topological characteristics are extracted. Thirdly, eight types of node importance 
ranking methods are employed, including three based on individual indicators and five based on hybrid algo
rithms, along with robustness analysis based on deliberate attacks to quantitatively identify critical nodes from 
different perspectives and analyse their roles in team tasks. Finally, Boolean algebra is applied to integrate the 
results of the node rankings, and a susceptible infected model is utilised to validate the validity of ranking results, 
allowing for prioritisation of critical nodes. The results demonstrate that targeted attacks based on betweenness 
centrality cause the network to collapse rapidly, with reachability dropping sharply once 16.7 % nodes fail. The 
entire system becomes nearly non-functional when 54.2 % nodes fail. The decline in reachability slows after 25 % 
nodes fail, indicating diminishing marginal impact. This study contributes to the development of a holistic 
framework for analysing team tasks of MASS, with future work exploring dynamic modelling and weighted 
interdependencies across broader maritime scenarios.

1. Introduction

With the advancements in the global shipping industry and intelli
gent techniques, developing and deploying Maritime Autonomous Sur
face Ships (MASS) are emerging as a significant trend in modern 
maritime transportation (Aydin et al., 2025). The emergence of MASS 
aims to enhance shipping efficiency, reduce operational costs, and 
decrease accidents caused by human errors.

Despite advancements that have facilitated efficiency, they also 
introduce new challenges and issues, such as the development and 
modification of relevant legal frameworks (Jovanović et al., 2024; 

Stępień, 2023), training standards (Palbar Misas et al., 2024), humani
tarian considerations (Wahlström et al., 2015), software design (Gomola 
and Bouwer Utne, 2024), path planning (Shu et al., 2024, 2023), and 
collision avoidance algorithms (Gan et al., 2025b; Gil et al., 2022) for 
autonomous ships. Among these emerging issues, although properties of 
traditional human factors are subject to change, they still remain the 
primary concern affecting maritime safety (Gan et al., 2025a, 2023; Li 
et al., 2025). A key reason is attributed to the management and design 
challenges of remote ship operation (Tao et al., 2024). Specifically, the 
shift to remote operation significantly impacts various aspects of ship 
operation, including workflows (Storkersen, 2021), resource 
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management (Goerlandt, 2020), and emergency operation procedures 
(Zhang et al., 2020). Moreover, as the Degree of Autonomy (DoA) 
changes, the distribution of ship systems undergoes a gradual transition 
from a centralised configuration on ships to a shared configuration be
tween ships and the shore (Man et al., 2018). This transition alters the 
roles and team sizes involved in operations (Sezer et al., 2024), inevi
tably leading to task reallocation and new routes for information 
transmission.

From a traditional ship operations perspective, primary tasks of 
humans include navigation, steering, communication, propulsion, 
power, cargo handling, passenger service, maintenance and repair work, 
etc. (Cao et al., 2025a; Wang et al., 2025). These tasks still remain 
essential in the operation of MASS (Aydin et al., 2025). However, in 
some cases, some heavy and repetitive tasks can be independently 
completed or supported by autonomous systems, yet still heavily rely on 
human decision-making and intervention. As the findings from Rødseth 
and Burmeister (2015), it indicated that failures in interactions with 
other ships, detection and classification of small to medium size objects, 
propulsion system, and extreme adverse weather are unacceptable risks 
for autonomous ships, requiring human intervention, particularly in 
decision-making and monitoring. Therefore, human teams are still rec
ognised as the primary contributors to ensuring the ship safety, which is 
no exception in MASS (Tao et al., 2024).

Further to this, within a team on board or on shore, collaboration 
always serves as a necessary approach to operating ships promptly and 
smoothly, especially in emergency situations (Fan et al., 2024). How
ever, efficient team collaboration is not always achievable. Potential 
issues like ambiguous responsibility divisions, failed task designs, and 
ineffective information transmission can all impact the efficiency of 
team task execution (Seeber et al., 2020). Particularly, the problems 
may be amplified in a MASS team due to the long-distance communi
cation, hybrid and dynamic environment and requirements for timeli
ness. Specifically, ambiguous responsibility divisions directly affect the 
efficiency and smoothness of team collaboration. In scenarios containing 
autonomous ships with different degrees of autonomy, clear re
sponsibility divisions between onboard team and shore-based team are 
necessary to operate a ship without conflicts (Lynch et al., 2024). Such 
authoritative definitions and clear standards for responsibilities and 
tasks of each are still lacking. Secondly, inadequate task design further 
impairs execution. Tao et al. (2024) reviewed 62 existing MASS-related 
literatures from the perspectives of risk influential factors and risk 
analysis methods. It emphasized that the prevention of developmental 
defects during the design phase is key to minimizing the need for later 
human interference. There are some shortcomings in this study: Ramos 
et al. (2020) used System-Theoretic Process Analysis (STPA) and 
Bayesian Networks to achieve supervisory risk control through online 
risk models, but their contributions were not sufficiently clarified in the 
review study. Unlike the design and planning of routine task, stand
ardised task procedures for MASS are crucial for both on board team and 
shore-based team to respond in an orderly manner to unexpected events 
and enhance team response efficiency. Delivering such an efficient and 
complete procedure is difficult for task designers (Ramos et al., 2020). 
Thirdly, ineffective information transmission can lead to information 
asymmetry and misunderstandings among team members, affecting 
decisions and actions. This involves not only the information in
teractions within and between systems but also each system’s situation 
awareness, such as whether team members are aware of the task 
execution status, main objectives of their tasks, and potential limitations 
of operational system. Especially in MASS teams, the collaborative 
decision-making process also involves real-time spatiotemporal infor
mation sharing, decision coordination, and task allocation, ensuring that 
all members possess adequate cognitive performance (DeFranco et al., 
2011). Currently, achieving such an efficient collaborative 
decision-making within MASS teams also remains challenging.

In addition to the above persistent practical difficulties, the current 
research likewise lacks comprehensive methods for analysing MASS 

operational teams as an integrated whole. Research on task analysis for 
MASS primarily focuses on individual sub-tasks of remote operators 
(Ramos et al., 2020), reliability assessments of the targeted DoA (Sezer 
et al., 2024), competency requirements (Li et al., 2019), and 
human-machine cooperation (Fan et al., 2025). Although these studies 
emphasise the impact of individual sector on the safety of MASS to some 
extent and contribute valuable insights on team collaboration, task de
signs, and information transmission, the systemic uncertainties inherent 
in collaborative decision-making are overlooked. This fragmented 
perspective limits the ability to support task allocation and coordination 
in real operational settings. Therefore, there is a clear need for a holistic 
and structured analytical framework that captures the uncertainties 
within the complete team or system.

In fact, analytical models for the task design within systems or teams 
have been developed but still remain limited applications in the 
emerging MASS. For instance, Cognitive Work Analysis (CWA) is a 
formative analysis method (Vicente, 1999), designed to understand the 
interactions involved in human activities in complex socio-technical 
systems, with a particular focus on those requiring complex thought 
processes and decision-making abilities (Oosthuizen and Pretorius, 
2013). The fundamental premise of CWA is the decomposition of tasks 
into various cognitive components, aiming to gain a deeper compre
hension of the knowledge, skills, and decision-making processes 
required for performing tasks. This process provides an overview of how 
the system works rather than specifying the exact work content of the 
system. So far, this approach has been widely used in various fields 
(Suleiman, 2022).

A systematic review reveals that while the autonomy of MASS en
dows them with immense potential in the maritime domain, it also poses 
challenges for team collaboration. Meanwhile, current research exhibits 
a need to incorporate an innovative and comprehensive analytical 
framework to thoroughly explore the team collaborative decision- 
making within a complete MASS operational system. To address these 
gaps, this study proposes a two-step team collaboration decision analysis 
framework applicable to MASS. The specific contributions are as 
follows:

(1) Qualitative analysis is newly conducted based on existing con
cepts and task scenarios of MASS. Specifically, the Team Work Domain 
Analysis (TWDA), which divides team responsibilities from a macro 
perspective, includes a five-layer abstract structure and demonstrates 
shared responsibilities and physical constraints within the team. The 
Team-Hierarchical Task Analysis (Team-HTA) further subdivides and 
deconstructs the macro tasks defined in the task scenarios to provide as 
many decision-making behaviours as possible. The Team Control Task 
Analysis (TConTA) is employed to analyse these independent decision- 
making behaviours, providing a decision wheel model that includes 
the decision ladder, decision path, and task process, which demonstrates 
the flow in the decision-making. Therefore, this incorporated part pro
vides a theoretical basis for responsibility division and qualitative task 
analysis applicable to MASS, which deeply explores human-system team 
collaboration.

(2) Subsequently, complex network theory is deployed to quantita
tively analyse team tasks. Based on the decision wheel model, complex 
network modelling explicitly visualises its intricate structure. Further to 
this, systematic multi-dimensional analyses are utilised for the first time 
to assess the critical nodes in the MASS system. Of these, three individual 
indicators and five state-of-the-art hybrid algorithms are applied to rank 
all tasks. These measures are selected for their proven effectiveness in 
capturing different aspects of a network, such as connectivity strength, 
information flow efficiency, and the mediating role of nodes. This 
approach provides a comprehensive evaluation of the impact on entire 
system, rather than focusing solely on a single part of the team. Based 
upon the ranking results, a system robustness analysis is pioneered to 
determine those critical activities in task design of MASS teams during 
scenarios that require extensive information transmission and 
interaction.

J. Tao et al.                                                                                                                                                                                                                                      Regional Studies in Marine Science 90 (2025) 104477 

2 



The remainder of this study is organised as follows. Section 2 pro
vides an overview of the methods and theories used in this study. Section 
3 details the process of constructing a complex network for team tasks 
using these methods. Section 4 presents the results of complex network 
analysis. Section 5 discusses the results. Section 6 concludes this study.

2. Methodology

Fig. 1 illustrates the team collaborative decision-making analysis 
framework consisting of two main parts, qualitative model construction 
and quantitative network analysis. The content and the employed 
methods and models are detailed in the ensuing sections.

2.1. Team-HTA

The HTA generally comprises three parts: Task decomposition, task 
description, and task flow verification (Shepherd, 1998). The overall 
task is broken down into multiple subtasks, which is a top-down process 
that forms a hierarchical structure. Compared to the HTA, Team-HTA 
focuses on the activities carried out by team members, requiring a 
clear division of different task executors, the actions taken, and the 
media used. Referring to the heuristic steps of HTA as outlined by 
Stanton (2006), a structured interview with experts will be conducted. 
Experts are instructed to use the "what if" approach as a discussion 
standard and employ fault assumption analysis methods to validate the 
preliminarily established team task process.

2.2. Team cognitive work analysis

TCWA can iteratively analyse and progressively understand the 
various constraints constituting the work system through five stages 
(Kant, 2017). These constraints comprise the work domain, individual 
tasks and goals, individual strategies, social and organizational con
straints, as well as personal qualifications and abilities. These five stages 
can be used individually or in combination. In this study, the first two 
stages are adopted, namely TWDA and TConTA, given that they are 
particularly well-suited for the analysis of functional and task-level 
constraints in team-based operations. Comparatively, those unem
ployed later stages, which involve more detailed social and organiza
tional analysis, are deemed less relevant to the focus of this study, which 
emphasises task interactions and decision-making within MASS teams. 
Thus, TWDA and TConTA provide the necessary depth to model the 
operational behaviour and decision processes without overcomplicating 
the scope of analysis.

2.2.1. Team work domain analysis
To model these task divisions and interactions, TWDA utilises an 

Abstract Hierarchy Model (AHM) which divides the system into five 
abstract levels: Functional purpose, abstract function, generalized 
function, physical function, and physical form (Chen et al., 2019). 
Firstly, to collect the available data to populate the AHM, a hybrid 
approach is employed, combining insights from existing literatures, trial 
materials, and semi-structured interviews with relevant experts to pro
vide objective data from multiple sources. Secondly, the connections 
between nodes at different levels follow the principles of mean-end links 
and the why-what-how triad (McLean et al., 2021). The mean-end links 
principle is used to construct the framework of team work domain 
model. The why-what-how triad approach is used to link and verify the 
relationships between nodes across five abstract levels. Finally, the AHM 
is divided based on the responsibilities of team members and showcases 
the shared goals, values, and constraints during task execution. In this 
model, the overlapping areas of different colours represent the shared 
aspects among team members. It is worth noting that the work domain 
model is not an exact description of the tasks within the team, but rather 
a collection of potential behaviours within the task scenario.

2.2.2. Team control task analysis
The decision ladder illustrates the information processing sequence 

of a single independent event in team tasks, capturing the cognitive 
states and behaviours during the event. Fig. 2(a) shows the basic tem
plate of the decision ladder. In this template, square nodes represent 
information processing, while circular nodes represent knowledge 
states. The alternating triggering of information processing and knowl
edge states forms a directed linear sequence of information processing 
steps in the independent event. The basic template of the decision ladder 
depicts a standardized procedure of information processing in an inde
pendent event. However, this is not an absolute depiction of the actual 
information processing sequence. In reality, there may involve various 
decision shortcuts. In this study, a scenario is projected where a 
helmsman on a traditional ship takes action upon receiving a steering 
command to illustrate the decision shortcuts, shown on Fig. 2(b). The 
decision shortcut is indicated by a red dashed line. The steering com
mand is a signal for helmsman and the node “Activation” is triggered. 
Due to the characteristics of helmsman’s responsibilities, the steering 
command must be executed unconditionally. Therefore, a decision 
shortcut is established from the node “alert”, bypassing the node 
“Definition of task”, where the task is defined as the execution of 
steering command. This leads to the formulation of procedures and, 
ultimately, the decision is executed. The information processing 
sequence for this independent event is “Activation”, “Definition of task”, 
“Formulate procedures”, and “Execute”.

It is worth noting that individual control tasks and responsibilities 
within team tasks are influenced by the nature of team collaboration 
(Ashoori and Burns, 2013). A single decision ladder of independent 

Fig. 1. The proposed framework for team collaborative decision-making analysis.
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event cannot fully reflect the information flow of team collaborative 
decision-making. The decision wheel model extends the decision ladder 
by combining the decision ladders of team members and linking in
teractions between independent events to effectively address this 
problem. The layout of decision ladders in the decision wheel model 
follows two main principles: the geographical distribution of team 
members and the distribution of their respective sub-teams.

2.3. Network modelling based on complex network theory

This study uses complex network theory to visualize the team tasks. 
The constructed network shares the same structural characteristics as 
the team tasks model. The topological characteristics of the complex 
network reflect the complexity and vulnerability inherent in team tasks.

2.3.1. Construction of network model for team tasks
The decision wheel model illustrates the process of team collabora

tion and individual decision-making. However, the decision wheel 
model, characterised by its overly large and complex steps, does not 
facilitate the intuitive and systematic analysis of critical flows and sig
nificant independent events within team tasks. Therefore, in this study, 
the decision wheel model is mapped into a complex network model for 
further systematic analyses. The process of executing team tasks is 
regarded as a network composed of independent events, represented as 
TiG = (N, E) (Cao et al., 2025b). Among them, the task units in the de
cision wheel model are treated as nodes, and N represents the set of all 
independent event nodes. Each node is a subset composed of the exec
utor, physical media, and action. The set of nodes in the network is 
shown as Eq. (1): 

N = {n1, n2,⋯, nu⋯, nm} (1) 

where m is the total number of task units. 

nu = (Rw,Act) (2) 

where w is the index of members in the team, Rw represents the wth task 

executor. Act represents the action taken. nu is the uth node, also rep
resents the task that task executor Rw preform Act. The directed con
nections between task units in the decision wheel model are treated as 
edges, and E represents the set of all directed edges, as shown in Eq. (3): 

E = {e1, e2,⋯, eu⋯, el} (3) 

where l is the total number of edges. eu represents the edge from node ni 
to node nj. The constructed network model for team tasks is represented 
as Eq. (4): 

T =

n1
n2
⋮
nm

⎡

⎢
⎢
⎣

(c11) (c12) ⋯ (c1m)

(c21) (c22) ⋯ (c2m)

⋮ ⋮ ⋮
(cm1) (cm2) ⋯ (cmm)

⎤

⎥
⎥
⎦

n1n2⋯nm

(4) 

where cij = 1 and i ∕= j represents there is an edge between node ni and 
node nj. cij = 0 and i ∕= j represents there is no edge between node ni and 
node nj.

2.3.2. Network topology characteristics
In the constructed team task network, topological characteristics are 

the most intuitive indicators for illustrating task properties (Cao et al., 
2024). Several topological characteristics are introduced.

The degree of a node, which is the sum of its in-degree and out- 
degree, and the clustering coefficient, which reflects the closeness of 
connections between nodes and the influence of nodes, are key in
dicators describing the connectivity and collaboration characteristics of 
the sub-tasks within the team tasks (Wang et al., 2023). Degree cen
trality provides a direct measure of a node’s local importance based on 
its connectivity, while closeness centrality measures the proximity be
tween nodes through quantifying the average path length from a node to 
all other nodes in the network (Shi et al., 2024). Betweenness centrality 
highlights the role of nodes in facilitating information flow.

2.3.3. Node importance ranking methods based on hybrid algorithms
In complex network theory, the degree of a node indicates the 

Fig. 2. Basic template for decision ladder and modified decision ladder for decision shortcuts.
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quantity of information it transmits, while the clustering coefficient 
reflects the local connectivity characteristics of that node (Feng et al., 
2025). Relying solely on either may lead to biases, as a node with high 
degree and clustering coefficient does not necessarily imply high cen
trality or importance within the entire network. In order to obtain a 
more accurate understanding of node importance within the network, 
five types of node importance ranking methods based on hybrid algo
rithms are introduced, as shown in Table 1. Through the result analysis 
of three based on individual indicators and five based on hybrid algo
rithms, these methods essentially examine the source of key nodes 
influencing team tasks (Niu et al., 2021).

2.3.4. Network robustness analysis method
The robustness of a network measures its capacity to maintain 

functionality and structure under disturbances. The robustness of team 
task network reflects the team’s ability to remain stable, safe, and 
effective in response to emergency situations. This study examines 
network robustness under deliberate attacks and compares it with 
random attacks. Deliberate attacks subjectively target critical or 
vulnerable nodes in the network based on network topology character
istics and the results of node importance rankings.

Additionally, reachability is chosen as a metric to evaluate network 
robustness. In complex network theory, reachability measures the con
nectivity and information dissemination capability between nodes (Feng 
et al., 2025). If one node can be accessed from another node through a 
sequence of edges, then the two nodes are considered to be reachable. In 
the context of team tasks, the concept of a start node and an end node is 
predefined. The paths from any node within the task network to the end 
node are regarded as the complete execution of the task. Robustness 
analysis based on reachability evaluates how these attributes change 
after an attack. The reachability matrix is as demonstrated in Eq. (5): 

RP =

⎡

⎣
rp11 ⋯ rp1m

⋮ ⋮
rpm1 ⋯ rpmm

⎤

⎦ (5) 

where rpij represents the reachability from node ni to node nj. If node ni 

can reach node nj, thenrpij = 1; otherwise, rpij = 0. The overall reach
ability of network can be calculated as in Eq. (6): 

R =
1

m(m − 1)
∑

i∕=j
rpij (6) 

After an attack, the reachability of network changes. Through 
comparing the reachability before and after the attack, the robustness of 
the network can be calculated as in Eq. (7): 

RL =
Ra

Rb
(7) 

where Ra is the reachability of network after the attack. Rb is the 
reachability of network before an attack.

2.3.5. Node importance validation model
This study applied the epidemic spreading model to validate the 

effectiveness of critical nodes, aiding in understanding how disruptions 
or important information can influence network performance and task 
execution. Common epidemic spreading models include the Susceptible- 
Infected (SI) model and the Susceptible-Infected-Recovered (SIR) model. 
In team task networks, the SI model is applicable for scenarios where the 
spread of information, errors, or failures is continuous as the tasks 
progress. Therefore, it can be used to validate the validity of critical 
nodes selected by different ranking methods in this study. There exists 
two states of nodes: Susceptible (S) and Infected (I) (Zhou et al., 2006). 
The relationship between the number of nodes in each state as shown in 
Eq. (8): 

Sn(t)+ In(t) = m (8) 

Table 1 
The detailed information about hybrid algorithms.

No. Ranking 
methods

Description Basic principle Reason for 
selection

1 Technique for 
Order of 
Preference by 
Similarity to 
Ideal Solution 
(TOPSIS) 
centrality

Node importance 
ranking based on 
TOPSIS 
centrality 
integrates degree 
centrality, 
closeness 
centrality, and 
betweenness 
centrality to 
provide a more 
comprehensive 
analysis, yielding 
results that 
provide insights 
into the network 
topology and the 
roles of nodes.

The 
normalization 
of degree 
centrality, 
closeness 
centrality, and 
betweenness 
centrality 
ensures all input 
centralities are 
on the same 
scale. Through 
calculating the 
Euclidean 
distances to the 
positive ideal 
solution and 
negative ideal 
solution, the 
relative 
closeness to the 
ideal solution is 
obtained to rank 
the nodes.

The ability to 
capture the 
dimensions of 
comprehensive 
evaluation on 
network 
structure.

2 Hyperlink- 
Induced Topic 
Search (HITS) 
algorithm

The HITS 
algorithm was 
proposed by 
Kleinberg (1999)
for webpage 
ranking, aimed at 
providing more 
accurate 
searches. Node 
importance 
ranking based on 
HITS algorithm 
identifies the 
dual role as both 
sources and 
receivers of 
information 
within the 
network.

The HITS 
algorithm 
revolves around 
two 
fundamental 
concepts: Hubs 
and authorities. 
The iterative 
update and 
normalization 
steps of the hub 
and authority 
values are 
repeated until 
the hub and 
authority values 
converge on 
stable values.

Their abilities to 
capture the 
dimensions of 
information 
propagation and 
authority 
analysis.

3 PageRank 
algorithm

The PageRank 
algorithm, 
proposed by 
Google’s 
founders, was 
originally 
designed for 
ranking web 
pages. The core 
idea is that the 
importance of a 
webpage is 
determined not 
only by the 
number of pages 
linking to it but 
also by the 
quality and 
importance of 
those linking 
pages.

The PageRank 
algorithm 
assigns an initial 
value to each 
node in the 
network, which 
is updated 
iteratively. The 
PageRank value 
of each node is 
distributed 
evenly among 
the nodes it 
links to.

4 Gravity model The gravity 
model originates 
from Newton’s 
law of universal 
gravitation to 
explain the 
gravitational 
interaction 
between objects, 

The gravity 
model equates 
the degree of 
nodes to quality 
and the distance 
between nodes 
to path length to 
identify the 
crucial nodes, 

Their abilities to 
capture the 
dimensions of 
information 
attraction and 
transmission 
efficiency.

(continued on next page)
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where Sn(t) and In(t) are number of susceptible and infected nodes at 
time t. Each infected node will spread the infection to their directly 
connected nodes in an infection rate. The transmission formula is as 
demonstrated in Eq. (9): 

dIn(t)
dt

= ϕI(t)(
Sn(t)

m
) (9) 

where ϕ is the infection rate. The number of infected nodes over time is 
as demonstrated in Eq. (10): 

In(t) =
m

1 + (m− 1
In(0))e− ϕt (10) 

where In(0) is the initial number of infected nodes.

3. Team task network model construction

Gathering comprehensive information about the MASS team is a 
preliminary step in the team collaborative decision-making analysis for 
MASS. The first sub-section introduces the teamwork concept of MASS 
and the associated specific task scenarios. In the last three sub-sections, 
the team collaborative decision-making analysis is undertaken using the 
methods proposed in Section 2.

3.1. Background of the MASS team concept

Before exploring how the MASS team is constituted and what tasks 
humans need to perform, it is essential to clarify how humans are 
involved in the operation of MASS. Existing literatures on the teamwork 
concept and real-ship trials of MASS provides relevant information.

Specifically, Liu et al. (2022) highlighted that the task assignment 
mode, aligned with traditional navigation practices, remains more 
feasible than remote control due to the current limits of autonomous 
technology. In this mode, shore-based operators directly give the course 
and speed orders to the ship-based controllers. Sezer et al. (2024) and 
Fan et al. (2024) validated this through reliability analysis and risk 
assessment, while Johansen et al. (2023); Johansen and Utne (2022), 
(2024) introduced a STPA control structure dividing the system into 
different parts, i.e., human supervisor in Remote Operation Centre 
(ROC), Supervisory Risk Controller (SRC), Autonomous Navigation 
System (ANS), Autonomous Machinery Management System (AMMS), 
as well as navigation sensors, machinery and propulsion system. How
ever, most studies (BahooToroody et al., 2022; Rødseth and Wenners
berg, 2023) focus on Degree of Autonomy 3 (DoA 3) MASS, where team 
interactions are simpler and geographically concentrated, leaving De
gree of Autonomy 2 (DoA 2) MASS team structures less examined. This 

inconsistency results in varying definitions of MASS teams across 
studies, requiring a clear context to be established before any mean
ingful analysis.

3.1.1. The selection of conceptual structure
To further determine the operational models for MASS, two con

ceptual structures introduced by Shiokari et al. (2024) need to be dis
cussed as follows. Overall, both concept structures involve a master in 
ROC and a crew on board. The primary distinction between two struc
tures is that in the first conceptual structure, the master can remotely 
manoeuvre the ship through the Autonomous Ship System (ASS) in the 
ROC, whereas in the second conceptual structure, the ASS is on board. In 
the first structure, the centralized control in the ROC reduces the need 
for onboard automation, making it more suitable for analysing the 
interaction between the human teams. The first conceptual structure 
adopted by Shiokari et al. (2024) for hazard identification based on 
detailed Structure and Task (ST) diagrams of manoeuvring tasks in four 
operational phases. In this structure, these ST diagrams demonstrate the 
static information about the functioning of the MASS teams for given 
scenarios, outlining the sub-tasks of each component, the information 
required to execute those sub-tasks, and the information interactions 
between components. The static structure composed of static informa
tion describes the physical and functional aspects of systems, driven by 
tasks or objectives.

The first conceptual structure developed by Shiokari et al. (2024) is 
selected as the basis, and Fig. 3 illustrates the conceptual structure of 
MASS used in this study. Among them, a master is assigned to the ROC 
and a crew to the ship, which forms the human team of MASS. Moreover, 
the ROC is equipped with the Autonomous Operation System (AOS), 
Operational Design Domain-Monitoring System (ODD-MS), Weather 
Information Display System (WIDS), and Cargo Condition Monitoring 
System (CCMS), together with the equipment onboard, such as Auton
omous Operation Information Display System (AOIDS), Ship Manoeu
vring System (SMS), and some data acquisition systems for sensors and 
actuators. For simplicity, the data acquisition systems for sensors, ac
tuators, and the ship manoeuvring system are collectively referred to as 
the SMS since there is no human involvement in the processes between 
these components.

Therefore, based on the identified structure, the function of each 
sector is as follows: The ASS proposes manoeuvring plans, which are 
executed upon human approval and transmitted to the SMS. The SMS is 
directly controlled by Information Gathering and Transmission System 
(IGTS). In this operational mode, the ship is solely controlled by the 
master and ASS. The master relies heavily on the information provided 
by the ASS and is responsible for the approval of manoeuvring plans. 
When necessary, the master has to manually modify the manoeuvring 
plans or activate the system to make adjustments. The crew is respon
sible for monitoring the dynamics of ship and its surrounding environ
ment, reporting any suspicious situations to the master, and responding 
to alarms. The crew cannot directly operate the ship. The ASS is 
responsible not only for formulating and transmitting the manoeuvring 
plans to the ship but also for presenting all necessary information to the 
master. IGTS acts as the executor of manoeuvring plans. In addition to 
receiving and executing the manoeuvring plans, it also relays necessary 
information to the ROC and the crew.

3.1.2. The selection of task scenarios
The selection of task scenarios for this study follows several key 

principles: highlighting the complexity of intra-team information ex
changes, presenting situations likely to lead to human errors, and 
ensuring scenarios are easily conceptualized and understood by experts. 
For instance, a scenario referred to the study of Man et al. (2018) is 
selected to simulate human intervention in emergency situations. This 
scenario is designed to reflect real-world maritime operational condi
tions, where ships frequently encounter crossing situations that require 
human decision-making for collision avoidance. Specifically, the 

Table 1 (continued )

No. Ranking 
methods 

Description Basic principle Reason for 
selection

reflecting the 
local and global 
features within 
the network.

particularly 
those with high 
connectivity 
and close 
proximity (Li 
et al., 2021a).

5 Mutual 
Information 
(MI)

The MI is a 
fundamental 
concept in 
information 
theory that 
quantifies the 
shared 
information 
between two 
random 
variables.

MI exhibits the 
properties of 
non-negativity 
and symmetry. 
The property of 
non-negativity 
indicates if 
there is an edge 
between any 
two nodes, then 
there exists MI 
between them.
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defined simulation scenario and relevant parameters are as follows:
“Target ship ‘Amandla’ from the port side of own ship will cross 

ahead, leading to a crossing situation. The initial manoeuvring plan of 
own ship is supposed to hold its course and speed until the Distance 
Closest Point of Approach (DCPA) is 1.5 nautical miles, with Time to 
Closest Point of Approach (TCPA) is 30 min” (Man et al., 2018).

Given the above conditions, three subsystems in the team are 
responsible for determining the hazards: The master in ROC, the crew 
onboard, and the ASS in ROC. The trigger event for this scenario, with 
referencing to study of Ramos et al. (2019), is defined as the determi
nation of potential hazard by one of these subsystems. During the hazard 
determination phase, three primary initial scenarios may occur:

Scenario 1: The ASS successfully detects the potential hazard and 
presents a new solution to the crew and master for the human team to 
confirm.

Scenario 2: The ASS fails to detect the potential hazard, but the on
board crew identifies it and reports it to the master.

Scenario 3: The ASS fails to detect the potential hazard, but the 
master identifies it and inputs the information into the ASS.

3.2. Step 1: construction of team work domain model

Clarifying the team’s shared goals and individual responsibilities is a 
key step to forming the foundation for establishing the entire task 
network and is also a prerequisite for TCWA. To achieve this goal, the 
AHM is developed.

The development and validation of the AHM for MASS team initially 
involved six experts from the academic and industry fields, specializing 
in human factors in maritime operations and technologies for ship 
intelligent collision avoidance, listed as Expert No. 1–6, and detailed in 
Table A1 in the Appendix A. The model is constructed through a top- 
down method. Initially, the background of this study is introduced to 
the experts. Information from Section 3.1 is used to pre-populate some 
nodes to help the experts better understand and complete the AHM. 
During the semi-structured interviews, the following but not limited 
questions are raised to gather detailed information about the team’s 
tasks: 

− What is the overall purpose of team tasks?
− What are the priority purposes?
− Who is involved in the task and what are their respective 

responsibilities?
− What systems are involved in the task?
− How will the tasks be executed and completed in real situations?

Based on the output of AHM, which outlines work demands inde
pendent of specific contexts (Elix and Naikar, 2020), these questions aim 
to understand the details of the tasks and obtain information about the 
five abstract levels of work domain model.

Finally, for the validation and analysis of the nodes and connections 
in the AHM, a brainstorming session is conducted through the why- 

what-how triad. The experts review the composition of each level and 
the connections between each node according to the principles of mean- 

Fig. 3. The approved conceptual structure of MASS.

Table 2 
Structure of the team work domain model.

Five levels of 
AHM

Nodes Crew 
(on 
ship)

Master 
(on 
shore)

ASS 
(on 
shore)

IGTS 
(on 
ship)

Functional 
purpose 
level

Emergency 
intervention

✓ ✓ ✓ ✓

Safe navigation 
operations

✓ ✓ ✓ ✓

Efficient navigation 
operations

​ ✓ ✓ ✓

Abstract 
function 
level

Timeliness ✓ ✓ ✓ ✓
Effectiveness ✓ ✓ ✓ ✓

Generalized 
function 
level

Environmental 
perception

✓ ​ ​ ✓

Supervision of the 
ship and its 
surroundings

✓ ✓ ✓ ✓

Information 
interaction

✓ ✓ ✓ ✓

Risk assessment ✓ ✓ ✓ ​
Development of 
manoeuvring plans

​ ✓ ✓ ​

Command and 
control

​ ✓ ✓ ​

Physical 
function 
level

Obtaining ship 
condition 
information

✓ ✓ ✓ ✓

Obtaining 
environment 
information

✓ ✓ ✓ ✓

Obtaining traffic 
information

✓ ✓ ✓ ✓

Communication ✓ ✓ ✓ ​
Navigational control ​ ✓ ✓ ​
Data acquisition and 
transmission

​ ​ ✓ ✓

Data analysis ​ ​ ✓ ​
Physical Form 

level
Autonomous 
operation system

​ ✓ ✓ ​

Operational Design 
Domain-Monitoring 
System

​ ✓ ✓ ​

Weather information 
display system

​ ✓ ✓ ​

Cargo condition 
monitoring system

​ ✓ ✓ ​

Autonomous 
operation 
information display 
system

✓ ​ ​ ✓

Ship manoeuvring 
system

​ ​ ✓ ✓

Communication 
device

✓ ✓ ✓ ✓
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end links and the why-what-how triad.
As shown in Table 2, ensuring the safe navigation of the ship is a 

common goal of the team, and this shared goal is crucial to the effective 
and timely completion of team tasks (McComb, 2017). Specifically, the 
priority of functional purposes remains unchanged regardless of the task 
execution status. Individual roles and responsibilities within the team 
may vary depending on the specific task. Fig. 4 presents the work 
domain model developed for this scenario. The overlapping parts in 
different colours represent the shared functions among team members. 
At the abstract functional level, timeliness and effectiveness are criteria 
for all team members and systems to execute tasks. Timeliness empha
sises the urgency of emergency response and safety assurance actions, 
while effectiveness focuses on completing tasks within limited time and 
resources (Zhang et al., 2025). The distribution of responsibilities within 
the team is more clearly illustrated by the division of components in the 
three levels below the work domain model.

3.3. Step 2: decomposition and restructuring of team tasks

Since the decomposition and restructuring of MASS team tasks 
benefit from the operational experience of traditional ship teams, two 
additional experts with experience in the field of marine navigation and 
ship management, Expert No.7–8 in Table A1 in the Appendix A, are 
incorporated into the group. The expert group is invited to further 
decompose the tasks according to the roles of the master, crew, ASS, and 
IGTS. The specific task units for team members in each scenario are 
identified using Team-HTA. In each scenario, both the proactive actions 
taken by ASS and the absence of such actions, necessitating master to 
alter the manoeuvring plan manually are considered. Therefore, the 
start and end events of task process are established. The task process 
begins with the identification of target ship and ends when own ship and 
target ship are no longer in a dangerous situation.

Moreover, using TConTA, a detailed decomposition of the decision- 
making process for each task unit is provided, illustrating the decision 
activities and decision shortcuts in the tasks. The task units and infor
mation processing steps are shown in Table 3. Since ASS and IGTS are 
software and hardware systems of MASS, their information processing is 
limited to the activation and execution phases. This is because, although 
these systems are capable of information collection, processing, and 

decision-making, their internal operations are fully automated and rely 
entirely on system performance.

As a final point, it is worth noting that the descriptions of the task 
units are phrased as actively as possible during brainstorming sessions. 
For example, "The master receives the manoeuvring plan from ODD-MS" 
is revised to "ASS provides the manoeuvring plan to the master through 
ODD-MS." This change is made for two reasons: the master is a passive 
recipient in this task unit without a decision-making process, and using a 
passive voice could lead to misunderstandings about the actual execu
tion of the task.

3.4. Step 3: results visualisation

The decision wheel model is established based on the position of task 
units, decision activities, and information processing steps on the deci
sion ladder (as shown in Table 3), which demonstrates the interaction 
structure. Each step of the interaction activity is displayed in the deci
sion wheel model through directed links. However, the decision wheel 
model is inherently complex due to the large number of links involved. 
To ensure clarity, only a portion of the directed links are presented in the 
decision wheel model, as shown in Fig. 5. More details about the 
directed links between task units are listed in Table A2 in the Appendix 
A.

For clarity, the arrows are colour-coded to match the preceding task 
units. The position of task units in decision ladder signifies the type of 
information output from the executors to the next. The numbering of 
directed links between task units does not indicate their sequence in the 
task process.

The task units are considered as nodes and the links between nodes 
are regarded as edges (Niu et al., 2021). Based on this, a simplified 
network model for team tasks in the specific scenario is established using 
Eqs. (1) and (3), as shown in Fig. 6.

4. Quantitative analysis based on complex network analysis

The following subsections delve into the results of topology charac
teristics, three individual centrality indicators, five hybrid algorithms, 
and robustness analysis, demonstrating how nodes’ characteristics 
contribute to the team task performance.

Fig. 4. Work domain model of MASS team.
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4.1. Results analysis based on topology characteristics

The network model for team tasks in this study comprises 24 nodes 
and 115 edges, as shown in Fig. 6. From an intuitive perspective, the 
complexity of a network is primarily determined by the number of nodes 
and edges it contains. The more nodes in a network, the larger the 
network becomes. The more edges a network has, the more frequent 
information transfer.

4.1.1. Results analysis based on in-degree, out-degree and degree
The information on in-degree, out-degree and degree of the nodes in 

the network are shown in Fig. 7(a).
- Node M3 has the highest in-degree, followed by M2, M7, M4, and 

M8.
Nodes with high in-degree undertake the integration of information 

and resources during task execution, thereby supporting the smooth 
progression of tasks. Practically, these nodes occur more frequently in 
the task process, implying that they occupy important positions in 
connection and coordination. This is reflected in two main aspects. The 
high number of paths passing through these nodes indicates a high de
pendency of task execution on them. The reasons for directing towards 
these nodes are more direct and explicit. It is worth noting that all nodes 
with high in-degree fall within the scope of responsibilities assigned to 
the master.

- Node A1 has the highest out-degree, followed by A3, A7, I5, and 
M7.

The out-degree of nodes represents the quantity of information, re
sources, support, or influence that the node provides to other nodes. 
Nodes with high out-degree play a critical guiding and coordinating role 
in the task process, significantly affecting task progression. It is worth 
noting that most nodes with high out-degree fall within the scope of 
responsibilities assigned to the ASS.

- Node M7 has the highest degree, followed by M3, A7, A3, A1, M5, 
and C2.

Nodes with high degree serve as critical hubs, which occupy central 
positions within the network. Most fall within the scope of re
sponsibilities assigned to the ASS and master, particularly concerning 
the information exchange within and between the team and the target 
ships.

4.1.2. Results analysis based on clustering coefficient
Fig. 7(b) illustrates the clustering coefficients of nodes in the 

network:
- Nodes A5, M6, M5, and M4 have the highest clustering coefficient.
Nodes with high clustering coefficient form tightly knit groups or 

communities. From the distribution of clustering coefficient, it is evident 
that nodes with high clustering coefficient are involved in the manual 
generation and review of manoeuvring plans. The clustering coefficient 

Table 3 
Task units and information processing steps.

No. Units Description Information processing steps involved

Executor Physical media Task

1 I1 IGTS SMS IGTS detects target ship. Activation and execute.
2 A1 ASS AOS ASS determines that it constitute a 

dangerous situation.
Activation and execute.

3 A2 ASS AOS ASS determines that it doesn’t constitute a 
dangerous situation.

Activation and execute.

4 A3 ASS Communication 
device

ASS interacts with target ship for 
information.

Activation and execute.

5 A4 ASS AOS ASS generates manoeuvring plans. Activation and execute.
6 A5 ASS ODD-MS ASS displays the manoeuvring plans to the 

master.
Activation and execute.

7 M1 Master ODD-MS Master approves the execution of 
manoeuvring plans.

Activation, observe information, determine state, interpret consequences, 
formulate procedure, and execute.

8 A6 ASS Communication 
device

ASS transmits the manoeuvring plans to 
IGTS.

Activation and execute.

9 I2 IGTS SMS IGTS executes the manoeuvring plans. Activation and execute.
10 C1 Crew AOIDS Crew determines that it constitute a 

dangerous situation.
Activation, observe information, determine state, interpret consequences, 
evaluate options, definition of task, formulate procedure, and execute.

11 C2 Crew Communication 
device

Crew communicates with the master. Activation, definition of task, formulate procedure, and execute.

12 M2 Master ODD-MS Master determines that it constitute a 
dangerous situation.

Activation, observe information, determine state, interpret consequences, 
evaluate options, definition of task, formulate procedure, and execute.

13 M3 Master Communication 
device

Master interacts with target ship for 
information.

Activation, definition of task, formulate procedure, and execute.

14 M4 Master ODD-MS Master manually activates the ASS to 
generate new manoeuvring plans.

Activation, observe information, determine state, interpret consequences, 
definition of task, formulate procedure, and execute.

15 I3 IGTS AOIDS IGTS displays the manoeuvring plans to the 
crew.

Activation and execute.

16 M5 Master ODD-MS Master vetoes the execution of 
manoeuvring plans generated by ASS.

Activation, observe information, determine state, interpret consequences, 
evaluate options, definition of task, formulate procedure, and execute.

17 M6 Master AOS Master manually develops manoeuvring 
plans.

Activation, observe information, determine state, interpret consequences, 
evaluate options, definition of task, formulate procedure, and execute.

18 M7 Master Communication 
device

Master communicates with the crew. Activation, definition of task, formulate procedure, and execute.

19 C3 Crew AOIDS Crew determines that it doesn’t constitute a 
dangerous situation.

Activation, observe information, determine state, interpret consequences, 
evaluate options, definition of task, formulate procedure, and execute.

20 M8 Master ODD-MS Master determines that it doesn’t constitute 
a dangerous situation.

Activation, observe information, determine state, interpret consequences, 
evaluate options, definition of task, formulate procedure, and execute.

21 A7 ASS ODD-MS ASS transmits the alerts to the master. Activation and execute.
22 A8 ASS Communication 

device
ASS transmits the alerts to the IGTS. Activation and execute.

23 I4 IGTS AOIDS IGTS transmits the alerts to the crew. Activation and execute.
24 I5 IGTS Communication 

device
IGTS transmits the alerts to the ASS. Activation and execute.

J. Tao et al.                                                                                                                                                                                                                                      Regional Studies in Marine Science 90 (2025) 104477 

9 



of node I1 is 0, which indicates that the task of detecting target ships 
dominates the information transmission and task execution, with min
imal influence from adjacent nodes.

- The average clustering coefficient is calculated as CT = 0.252.
The average clustering coefficient of the network for team tasks 

shows that the network has a low degree of clustering. Most nodes do not 

have direct connections with one another, implying the mutual influ
ence of sub-tasks is not significant, and there is no apparent factional 
nature. The critical nodes in the network perform a critical linking 
function in facilitating the progress of team tasks.

4.2. Results analysis based on three types of individual centrality 
indicators

The distribution of degree centrality, closeness centrality, and 
betweenness centrality is shown in Fig. 8:

- Node M7 has the highest degree centrality, followed by M3, M2, A3, 
and A7.

- Nodes M2 and M3 have the highest closeness centrality, followed by 
M4, C3, and M5.

The distribution trends in Fig. 8 show that degree and closeness 
centrality share a similar distribution. This may be attributed to both 
degree and closeness centrality being more sensitive to the local topo
logical characteristics. The highest closeness centrality in nodes M2 and 
M3 highlights the essential capability that must be possessed by the 
master to promptly disseminate information and make timely decisions. 
A relatively high closeness centrality in nodes M4, C3, M5, M7, and C1 
emphasizes the pivotal role of the master and crew in guaranteeing 
prompt response to human intervention scenarios. For example, node 
M5 introduces new directions for the task flow, directly affecting ship 
safety and its efficiency in navigating the route. Concurrently, the di
versity and complexity of information place higher demands on the 
capabilities of master, as their decisions must take into account for 
numerous real-time factors and potential risks. Node M5 with high 
closeness centrality reflects its central role in emergency response and 
risk management. However, it is worth noting that the network model 
for team tasks in this case is specific to the given scenario.

- Node C2 has the highest betweenness centrality, followed by M7, 

Fig. 5. Example version of decision wheel model for team tasks.

Fig. 6. The network model for team tasks in the specific scenario.
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A4, M6, and A6.
The analysis based on betweenness centrality shows significant dif

ferences from those based on degree and closeness centrality, with only 
node M7 consistently appearing as a critical node across all three cen
trality measures. Meanwhile, nodes at the edge of network, such as node 
M8, may be endowed with lower betweenness and closeness centrality. 
However, this doesn’t imply that these nodes lack intermediary roles in 
information interaction, resource transmission, or influence 
dissemination.

4.3. Results analysis based on hybrid methods

The results of node importance rankings based on hybrid methods 
are summarized and listed in Table 4.

4.3.1. TOPSIS centrality
- Node M7 has the highest TOPSIS centrality, followed by C2, M6, 

M2, and A3.
Nodes M7, C2, M6, M2, and A3 are identified as the top five critical 

Fig. 7. The distribution of network topology characteristics.

Fig. 8. The distribution of three types of individual indicators.

Table 4 
The results of node importance rankings based on hybrid methods.

Rank TOPSIS centrality HITS algorithm Gravity model PageRank algorithm Mutual Information

Nodes Value Nodes Hub value Nodes Authority value Nodes Value Nodes Value Nodes Value

1 M7 0.811 A7 0.108 M3 0.101 A7 135.167 C2 0.091 M1 0.291
2 C2 0.780 M7 0.093 M2 0.094 I5 127.132 M3 0.065 M3 0.265
3 M6 0.659 A1 0.081 M4 0.091 A1 123.167 A4 0.065 C2 0.233
4 M2 0.650 C2 0.081 M7 0.086 A3 116.639 I4 0.061 I4 0.218
5 A3 0.623 M3 0.074 M8 0.086 M7 113.778 M7 0.058 C3 0.208
6 M3 0.612 I5 0.073 M6 0.070 C2 99.486 M4 0.054 I2 0.177
7 C1 0.591 A3 0.066 M5 0.068 M1 96.722 I3 0.051 M2 0.186
8 M5 0.579 M5 0.065 A8 0.061 M5 96.694 M6 0.050 A8 0.185
9 I5 0.572 M2 0.062 A3 0.051 M6 95.972 M2 0.050 A1 0.182
10 A4 0.559 A5 0.057 C1 0.042 A5 95.111 M5 0.048 I5 0.164
11 M1 0.508 M1 0.047 C3 0.042 M3 94.889 M8 0.046 A2 0.151
12 M4 0.501 M6 0.047 M1 0.033 I2 93.361 A8 0.045 A6 0.143
13 A6 0.497 I2 0.046 A7 0.032 M2 90.889 C1 0.045 A4 0.142
14 I4 0.492 A2 0.039 A4 0.031 A2 68.257 C3 0.045 A3 0.139
15 A7 0.491 I3 0.017 A2 0.027 I3 67.208 A6 0.040 M5 0.133
16 A1 0.474 I4 0.015 A1 0.017 I4 66.208 I5 0.030 M7 0.132
17 A8 0.469 A6 0.010 A5 0.016 C1 62.903 M1 0.029 I3 0.125
18 M8 0.467 A4 0.005 C2 0.015 I1 59.294 A5 0.028 M4 0.120
19 C3 0.448 M4 0.005 I4 0.015 A4 58.090 A3 0.027 C1 0.119
20 I3 0.418 C1 0.002 A6 0.014 A6 54.438 I2 0.019 M6 0.115
21 I2 0.389 I1 0.002 I3 0.004 C3 41.720 A2 0.017 M8 0.114
22 A5 0.381 C3 0.002 I2 0.001 A8 31.588 A7 0.015 A7 0.105
23 A2 0.374 A8 0.002 I5 0.000 M4 29.444 A1 0.014 I1 0.079
24 I1 0.000 M8 0.000 I1 0.101 M8 0.000 I1 0.008 A5 0.069
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nodes in team tasks, once again underscoring the significant role of the 
master, particularly in communication and situational assessment.

4.3.2. HITS algorithm
The dual nature of hubs and authorities highlights the multifaceted 

roles of nodes in terms of information sources and reception.
- Node A7 has the highest hub value, followed by M7, A1, C2, and 

M3.
Multiple critical nodes are connected to node M7, including various 

information interaction and decision-related nodes. Its high hub value 
indicates that it is a critical information source, capable of effectively 
conveying information to decision-makers and initiating emergency 
responses promptly. Node M7, connected to the majority of nodes that 
fall within the scope of responsibilities assigned to the master, reflects 
the central role of communication among the master and crew.

- Node M3 has the highest authority value, followed by M2, M4, M7, 
and M8.

In the network, node M3 receives links from multiple hubs, making it 
a critical information receiving node, capable of obtaining key infor
mation and making corresponding decisions. The primary task of node 
M2 is to determine if it constitutes a dangerous situation, receiving links 
from various perception nodes. Its high authority value indicates that 
node M2 is a critical decision-related node, responsible for gathering 
information and conducting risk assessments for subsequent actions. It is 
worth noting that node M7 ranks highly in both hub and authority 
values, highlighting its importance in both sourcing and receiving 
information.

4.3.3. Gravity model
- Node A7 has the highest gravity centrality, followed by I5, A1, A3, 

and M7.
Among the nodes with high gravity centrality, three fall within the 

scope of responsibilities assigned to the ASS, involving situational 
assessment, transmission of alerts, and interaction with target ships. The 
high attractiveness of situational assessment raises critical issues 
regarding decision criteria, such as determining thresholds for modi
fying manoeuvring plans to ensure navigation safety and the urgency 
level at which the ASS must seek direct intervention from humans. This 
issue pertains to quantifying acceptable risk standards during the ASS 
design, including the definition of thresholds for triggering alarms in 
collision scenarios such as TCPA, DCPA, ship domain (Szłapczyński 
et al., 2024), collision avoidance dynamic critical area (Gil, 2021). This 
consideration extends beyond the spatial and temporal dimensions of 
detectable objects to include uncertainty prediction, which is beyond 
the scope of this study.

4.3.4. PageRank algorithm
- Node C2 has the highest PageRank value, followed by M3, A4, I4, 

and M7.
The PageRank algorithm, based on link relationships and trans

mission probabilities between nodes, highlights C2, M3, A4, I4, and M7 
as critical nodes. It is reasonable to conclude that nodes C2 and I4 are 
particularly significant for information transmission due to their higher 
PageRank values. These two nodes connect to multiple important 
downstream nodes, serving as key channels for information flow. Nodes 
with high PageRank values underscore the importance of cross- 
geographical information transmission, which increases the 
complexity of information interaction, introducing more potential fail
ures and making the network more vulnerable to attacks. From the 
perspective of team task analysis, these failures may occur in tasks pri
marily focused on interactions with target ships and communications 
among team members. Effective communication directly impacts task 
coordination and execution, while interactions with target ships deter
mine adjustments to manoeuvring plans and risk response strategies. 
Enhancing the efficiency of information exchange will significantly 
improve the stability of the team task network in this scenario, although 

it is challenging. This necessitates timeliness for communication de
vices, aligning with the abstract functions in the team work domain 
model. On one hand, sharing consistent communication protocols and 
terminology within the team establishes standardized processes for ac
curate information transmission and understanding. On the other hand, 
adding more nodes and paths capable of transmitting the same infor
mation increases the redundancy of nodes and paths. This provides 
multiple communication channels, ensuring information transmission 
even if one node or edge fails.

4.3.5. Mutual information
- Node M4 has the highest information quantity, followed by A8, C3, 

C1, and M2.
Node importance ranking based on MI is an emerging and effective 

method for assessing dependencies and information sharing among 
nodes. Nodes M4, A8, C3, C1, and M2 are identified as having the 
highest levels of information sharing. Among them, nodes C1, C3, and 
M2 are primarily involved in determining dangerous situations. De
cisions made by the master and crew regarding dangerous situations 
represent critical turning points. This is related to the resource con
sumption inherent in decision-making. During task execution, evalua
tions and response strategies of the master, crew, and ASS at different 
stages not only determine adjustments to the manoeuvring plans but 
also affect the safety and efficiency of the mission. Node M4, as a sub
sequent trigger task, continues to rely significantly on the effectiveness 
and timeliness of information, as shown in the abstract function level of 
the team work domain model. If thresholds are triggered, the master 
needs to decide whether to adopt the manoeuvring plans provided by 
the ASS or proceed with further manual intervention. This process in
volves the assessment of current data and the consideration of potential 
future variables, such as weather conditions, other ships’ movements, 
and turning trajectory of own ship (Gil et al., 2024).

4.4. Robustness analysis

The robustness of networks reflects the impact of node failures on 
overall network performance during team tasks. This study uses delib
erate attacks based on degree centrality, closeness centrality, between
ness centrality, TOPSIS centrality, HITS algorithm, gravity model, 
PageRank, and MI to disrupt the network for team tasks, and adopts 
random attacks to verify the validity of node importance rankings. Fig. 9
illustrates changes in the reachability of the complex network under 
different deliberate attacks and random attack strategies.

Compared to deliberate attacks, random attacks are less efficient in 
destroying network robustness. From the results of deliberate attacks, 
regardless of the algorithm used, the network tends to collapse rapidly as 
the number of failed nodes increases, with a notable decline in the 

Fig. 9. The results of network robustness analysis under deliberate attacks and 
random attacks.
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network’s reachability. In general, critical nodes within the network 
significantly affect the overall performance of the network for team 
tasks, indicating poor redundancy of the network structure. Low average 
clustering coefficient also proves it. In such situation, the network be
comes fragmented, and communication paths are disrupted, severely 
impairing task coordination and execution. The lack of alternative paths 
or substitutable nodes reveals a structural vulnerability and insufficient 
fault tolerance, suggesting a low level of topological redundancy (Kim 
et al., 2015). This phenomenon aligns with the findings in previous 
research on complex networks, which indicate that networks with 
scale-free or centralized structures are particularly vulnerable to tar
geted attacks on high-centrality nodes (Berche et al., 2009). In the 
context of MASS team tasks, this also implies that the system’s ability to 
sustain operations under stress is highly dependent on a few key roles or 
decision-making points, making the system more fragile (Massari et al., 
2023).

Furthermore, deliberate attacks based on betweenness centrality 
lead to a faster collapse of the network, with a notable decline in 
reachability when the number of failed nodes reaches 16.7 %. This 
suggests that the network’s capacity to maintain connectivity between 
critical tasks is significantly compromised early on, as nodes with high 
betweenness centrality play crucial intermediary roles. When the num
ber of failed nodes reaches 54.2 %, the network model collapses almost 
completely, suggesting the removal of additional crucial intermediary 
nodes results in a breakdown of the entire system, disrupting the overall 
functionality of the network. Deliberate attacks based on the gravity 
model and degree centrality show a notable decline in reachability when 
the number of failed nodes reaches 25 %. For most of deliberate attacks, 
the trend of declining reachability becomes gradually slower when the 
number of failed nodes reaches 6, implying the remaining nodes have 
less impact on the network’s overall reachability. The network model 
collapses almost completely when the number of failed nodes reaches 15 
or 16. Therefore, the top six critical nodes are selected as the cross- 
validation results based on multiple node importance rankings.

This study employs a Boolean algebra approach to cross-validate the 
top six critical nodes selected from multiple node importance rankings. 
Each node is evaluated using a Boolean condition, where the ranking 
positions across different algorithms serve as binary variables: if a node 
ranks first, it receives the highest value of 5, second receives 4, and so 
on. The Boolean aggregation of these values determines the most critical 
nodes by considering their presence across rankings as a logical “true” 
for highly ranked nodes and “false” otherwise. The six nodes that satisfy 
this Boolean aggregation with the highest scores are node M7, M3, C2, 
M2, A7, and M4, most of which fall within the master’s scope of 
responsibility.

4.5. Critical node validation

To verify the effectiveness of the method and the importance of 
selected nodes, the SI model is applied to evaluate the nodes in team task 
network again. In the SI model, each node is treated as an infection 
source to evaluate the efficiency of transmission across the network. The 
results indicate that the five nodes with the highest Boolean aggregation 
scores, namely M7, M3, C2, M2, and A7, infect 50 % of the network 
nodes within just 3 time steps, as shown in Table 5. In contrast, most 
other nodes require 5 or more time steps to reach the same level of 
spread, which indicates significantly faster initial propagation efficiency 
for the critical nodes. However, when simulating infection spread across 
the entire network, all nodes show a similar rate of full-network trans
mission, suggesting that while critical nodes accelerate initial influence 
distribution, the network as a whole exhibits homogeneity in total 
transmission capacity. This finding underscores the prominent role of 
critical nodes in maintaining network responsiveness and the effec
tiveness of task coordination at early stages of information spread (Lee 
et al., 2019). Ta
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5. Discussion and implications

5.1. Discussion on the team tasks

The team collaborative decision-making analysis in this study reveals 
critical insights, particularly concerning task efficiency and team 
coordination.

5.1.1. The impact of information and resources receivers on task efficiency
The results of node importance rankings based on MI, authority 

values, degree centrality, and closeness centrality show the importance 
of node M2, M3, and M4. In the task scenarios of this study, the con
centration of information flow toward the ship master highlights the 
centralised role of the ship master in task coordination and situational 
awareness. Communication with target ships and crew, as well as op
erations within the ROC involving ODD-MS, are primary avenues for 
acquiring key information and resources. Therefore, this imposes re
quirements on Human-Machine Interaction (HMI) in ROC. The quanti
fication of information requirements for the ship master may provide 
specific criteria for the situational awareness required in HMI. Notably, 
tasks where the ship master approves the execution of manoeuvring 
plans generated by the ASS and interacts with target ship represent the 
most information-intensive processes identified in this study. These 
tasks, in contrast to other tasks, also highlight the need for human 
oversight in critical decision-making processes. The involvement of the 
ship master is essential for addressing uncertainties.

Additionally, explicit empirical rules are more common in maritime 
teams. The ship master, as the primary decision-maker, frequently 
makes decisions on the information provided by sub-teams and their 
own observations. However, in an autonomous ship simulation experi
ment, Chan et al. (2023) pointed out that most candidates were unable 
to identify failures due to excessive trust in autonomous systems. 
Therefore, the ship master may face over reliance on autonomous sys
tems in the process of acquiring information and resources. This high
lights the significance of information exchange between the ship master 
and crew, even when the ASS is capable of providing sufficient refer
ences for decision-making.

5.1.2. The impact of information and resource sources on task efficiency
The results of node importance rankings based on hub value, gravity 

centrality, and PageRank value show the importance of node A1, A7, 
and A3. The ASS performs the central role in transferring information 
and resources to other nodes in team tasks. The high out-degree of Node 
A1 also underscores its importance at the beginning of the task process. 
The ASS transmits critical information and resources to multiple nodes 
through the determination of dangerous situations, which directly af
fects the direction of the team task, as well as the judgment and inter
vention of human team. These information transmission paths serve a 
coordinating function in cross-node communication and decision- 
making, influencing the execution of multiple subsequent tasks. Nodes 
related to the transmission of alerts are also identified in the analysis of 
hub value distribution. These nodes are considered critical to enhancing 
overall task efficiency in the design and redesign of team tasks.

In addition to this, human tasks involved nodes M7, C2, and M3, are 
also identified as key sources of information in the results of node 
importance rankings based on degree value, betweenness centrality, and 
TOPSIS centrality. This may be due to the fact that even if the system of 
MASS is advanced enough, some tasks may still rely on human knowl
edge. This knowledge may be difficult for computers to handle (Sadraey, 
2018).

5.1.3. The impact of ROC on team coordination
The tasks in ROC facilitate the rapid dissemination of decision- 

related information and the coordination of activities within team. 
Due to their extensive connections with multiple other nodes, the ROC 
rapidly gathers information and resources from various sources and 

effectively distributes them to the activities that need them. In this 
scenario, the ROC undertakes the integration and distribution of infor
mation and resources during task execution. The high connectivity of 
nodes in ROC endows them with considerable influence in the decision 
chain. This emphasizes the role of HMI in team tasks, which suggests 
that designing intuitive HMI systems for the master’s tasks is essential to 
enable efficient information processing (Tao et al., 2025). The interface 
should present critical information in a visually organized, intuitive 
layout, minimizing cognitive load and enabling rapid decision-making. 
Among them, the nodes associated with the manoeuvring plans consti
tute a relatively dense local network. This can be attributed to the need 
for fast, efficient, and parallel information dissemination at this time to 
support modifications to the plans, which is identified as a key function 
that should be easily accessible, with alerts and critical data clearly 
highlighted to draw attention instantly. The ASS and master need to 
interact more frequently and closely with the relevant team members to 
ensure the effectiveness, feasibility, and executability of plans.

Correspondingly, effective team collaboration hinges on the leader’s 
ability to coordinate the division of labour and cooperation among 
multiple sub-teams, ensuring a unified effort toward task completion. 
The local network, where the leader’s task units are most concentrated, 
often features the most intensive events and interactions. This high level 
of activity is critical for creating an environment where both the ma
chines and humans can operate within their respective domains while 
achieving objectives that would be unattainable independently.

From the robustness analysis, the network’s reachability declines 
rapidly with the removal of a few critical nodes, particularly those 
identified through betweenness centrality. It is evident that the network 
is highly dependent on a small subset of nodes for maintaining overall 
connectivity and task coordination. The network for team tasks displays 
a relatively low level of redundancy, which suggests a lack of resilience. 
Each member is assigned a specific role within their respective re
sponsibilities, emphasizing their indispensability in team collaboration 
which is crucial for the development of training frameworks that align 
with the evolving demands of MASS operations.

5.2. Discussion on the modelling process

The conceptual structure used in this study is derived from the def
initions and scenarios of MASS described in published literature. Based 
on this limited information, the team work domain model is established 
using the WDA to describe the responsibilities of team members. 
Although the team work domain model clearly delineates the shared and 
exclusive responsibilities of team members, it is typically static and 
macroscopic, focusing solely on the static information of the team 
structure. Additionally, the work domain model is based on certain 
simplified assumptions or constraints, which may not adequately cap
ture the complexity and interdependencies of the team tasks.

In fact, tasks are not only individual responsibilities but are inter
related components driving operational processes and decision-making. 
In the team task network, tasks are defined for specific goals and oper
ational scenarios. Task priorities, resource allocation, and decision 
strategies may change in real-time based on these specific goals and 
scenarios. While this flexibility is crucial for enhancing the resilience 
and efficiency of operations, especially in timely responding to unfore
seen events and new threats, overly broad task objectives are not 
conducive to detailed analysis. Therefore, this study defines several 
scenarios and establishes the complete decision wheel model to 
demonstrate team activities in a defined scenario. However, as task 
complexity increases, the decision wheel model becomes increasingly 
cumbersome and difficult to read. From this, complex network theory is 
introduced.

Similar to the work domain models, network models are often based 
on assumed static, homogeneous nodes, and linear edges to represent 
relationships and structures within the system. From the perspective of 
model establishment, the simplification of information exchange and the 
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definition of scenarios in this study cannot fully reflect the diversity of 
real-world systems. The environment of MASS in reality is dynamically 
changing, with demands, environmental conditions, and interactions 
among team members evolving over time. Real-time information such as 
traffic, environmental, and ship condition information also needs to be 
continuously obtained by team members. The importance of real-time 
information acquisition in team tasks remains uncertain. This aspect is 
not adequately reflected, despite its illustration of key information in
teractions among members. Additionally, while the objective of this 
study is not to perfectly reproduce the real world, the consideration of 
multiple main scenarios will facilitate a more adequate demonstration of 
the risks inherent to team tasks.

From an analytical perspective, the established network for team 
tasks is a directed, unweighted network. The complexity of tasks and the 
degree of interdependence among tasks are not considered in this study. 
As task complexity increases, situational awareness at the human and 
team levels tends to decline (Li et al., 2021b). This often necessitates 
greater human input to achieve the desired outcome, which results in a 
sudden increase in mental workload and a state of overload (Wu et al., 
2017). As task interdependence increases, coordination needs among 
different tasks also tend to increase. It is foreseeable that human per
formance will decline in highly complex tasks, affecting the smooth 
execution of tasks.

6. Conclusion and future work

This study focuses on team collaborative decision-making problems 
of MASS. A two-step team collaborative decision-making analysis 
framework applicable to MASS is proposed, offering a feasible research 
approach for the task analysis of MASS teams. The analysis reveals the 
significance of critical nodes in team tasks from various aspects. Spe
cifically, the ship master plays a central role in acquiring key informa
tion and resources, especially in tasks requiring human oversight, as 
over-reliance on autonomous systems can pose risks. The autonomous 
ship system is crucial for information transfer, particularly in detecting 
hazards and issuing alerts, though some tasks still depend on human 
expertise. The remote operation centre efficiently coordinates team ac
tivities, leveraging its high connectivity to manage decision-making and 
task adjustments. However, the network’s vulnerability to the failure of 
key nodes highlights the need for improved redundancy and resilience to 
maintain task efficiency and operational stability, as well as the prom
inent role of these nodes in information spread at the early stages of task 
execution which is indicated in the analysis of susceptible infected 

model.
Despite the achievements of this study, there are still some limita

tions and issues that need further research. The introduction of dynamic 
complex network theory can simulate the evolution of team tasks over 
time, exploring the impact of task demands and environmental changes 
on team collaborative decision making. Moreover, applying this 
framework to a broader range of maritime tasks will further reveal the 
patterns of team collaborative decision-making under different task 
types and operational modes, providing a holistic perspective for the 
design and optimization of maritime autonomous surface ships systems. 
Last but not least, future research can emphasize the complexity of in
dividual task nodes and the interdependencies among these nodes, 
aiming to construct network models with both node and edge weights. 
Sensitivity analysis can be employed to detail how individual tasks 
impact overall performance.
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Appendix A

Table A1 
The information of experts participating in semi-structured interviews

NO. Type of 
affiliations

Professional 
position

Professional 
experience (years)

Areas of Expertise Contribution to the semi-structured interview

1 University Professor/Chief 
officer

40 Maritime law and policy development, human factors in 
maritime operations

The construction and validation of AHM model 
and the decomposition and restructuring of team 
tasks

2 University Professor 26 Maritime law and policy development, accident 
analysis, emergency evacuation, human factors in 
maritime operations

The construction and validation of AHM model 
and the decomposition and restructuring of team 
tasks

3 Research 
institute

Senior Engineer 21 Technologies for ship intelligent collision avoidance The construction and validation of AHM model 
and the decomposition and restructuring of team 
tasks

4 University Postdoc 
researcher

8 Human factors in maritime operations The construction and validation of AHM model 
and the decomposition and restructuring of team 
tasks

(continued on next page)
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Table A1 (continued )

NO. Type of 
affiliations 

Professional 
position 

Professional 
experience (years) 

Areas of Expertise Contribution to the semi-structured interview

5 Research 
institute

Senior Engineer 17 Accident analysis, human factors in maritime 
operations, technologies for ship intelligent collision 
avoidance

The construction and validation of AHM model 
and the decomposition and restructuring of team 
tasks

6 Public sector Senior Engineer 15 Technologies for ship intelligent collision avoidance The construction and validation of AHM model 
and the decomposition and restructuring of team 
tasks

7 Shipping 
company

Second officer 7 Maritime navigation, ship management Decomposition and restructuring of team tasks

8 Shipping 
company

Captain 19 Maritime navigation, ship management Decomposition and restructuring of team tasks

Table A2 
The information of directed links between task units in the team work domain model

Links Starting task units End task units Links Starting task units End task units Links Starting task units End task units

L1 I1 I4 L40 A5 M1 L79 M4 A4
L2 I1 I5 L41 A5 M5 L80 I3 C1
L3 I4 C1 L42 A5 M3 L81 I3 C2
L4 I4 C2 L43 A5 M7 L82 I3 C3
L5 I4 I3 L44 A5 M2 L83 I3 I4
L6 I4 C3 L45 M1 A3 L84 M5 A4
L7 I5 A1 L46 M1 A6 L85 M5 M3
L8 I5 A2 L47 M1 M3 L86 M5 M4
L9 I5 A3 L48 M1 M7 L87 M5 M6
L10 I5 M2 L49 M1 A8 L88 M5 M7
L11 I5 M3 L50 A6 I2 L89 M5 A8
L12 I5 M7 L51 A6 I3 L90 M6 A3
L13 I5 A7 L52 A6 A8 L91 M6 A6
L14 I5 M8 L53 I2 A1 L92 M6 M3
L15 A1 A3 L54 I2 A2 L93 M6 M7
L16 A1 A4 L55 I2 C1 L94 M6 A8
L17 A1 M4 L56 I2 M2 L95 M7 C1
L18 A1 A8 L57 I2 C3 L96 M7 C3
L19 A1 A7 L58 I2 M8 L97 M7 M1
L20 A1 C3 L59 C1 C2 L98 M7 M2
L21 A1 M8 L60 C1 I5 L99 M7 M3
L22 A1 C1 L61 C2 M1 L100 M7 M4
L23 A1 M2 L62 C2 M2 L101 M7 M5
L24 A1 I4 L63 C2 M3 L102 M7 M6
L25 A2 C1 L64 C2 M4 L103 M7 M8
L26 A2 M2 L65 C2 M5 L104 C3 C2
L27 A2 C3 L66 C2 M6 L105 A7 A3
L28 A2 M8 L67 C2 M8 L106 A7 A5
L29 A3 A4 L68 M2 M3 L107 A7 M2
L30 A3 A7 L69 M2 M4 L108 A7 M3
L31 A3 A8 L70 M2 M5 L109 A7 M4
L32 A3 A2 L71 M2 M6 L110 A7 M5
L33 A3 C2 L72 M2 M7 L111 A7 M6
L34 A3 M3 L73 M3 M2 L112 A7 M7
L35 A3 M4 L74 M3 M4 L113 A7 M8
L36 A3 M7 L75 M3 M5 L114 A7 A8
L37 A4 I3 L76 M3 M6 L115 A8 I4
L38 A4 A5 L77 M3 M7 ​ ​ ​
L39 A4 A6 L78 M3 M8 ​ ​ ​
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