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Climate change exacerbates the occurrence of frequent Extreme Weather Events (EWEs), directly disrupting
railway operations in numerous countries, notably the United Kingdom. Projections for the UK climate indicate
an increase in rainfall intensity, warmer and wetter winters, hotter and drier summers, and more frequent and
intense EWEs. Such climatic shifts cause increased weather-related railway delays, which in turn result in sig-
nificant economic loss. This study develops a new risk model using a data-driven Bayesian Network (BN) to
analyse the impact of climate-induced EWEs on UK train delays. The model quantifies the influence of various
factors on delays, providing deeper insights into their individual and combined effects. The new model and the
findings contribute to the disclosure of 1) the interconnections among the different variables influencing train
delays, including the origin and destination of the train and traction type, and 2) the prediction of the quanti-
tative extent to which the variables can jointly lead to train delays of different severity levels, incident reason, the
month of occurrence, the responsible operator, and the train schedule type. Critical findings highlight the sub-
stantial negative impact of severe flooding on the operational reliability of the UK railway system. An important
insight was the significant clustering of delays ranging from 80 to 90 min, particularly on Fridays, suggesting the
need for targeted operational interventions in specific regions. Additionally, the analysis identified December as
the most hazardous month for train delays due to EWEs, with January and July also showing elevated risk levels.
This paper offers valuable insights for transport planners, enabling them to prioritise climate-related scenarios
causing the most severe train delays and to formulate the associated adaptation measures and strategies
rationally.

1. Introduction

Climate change is manifesting through rising global temperatures
and increasing greenhouse gas emissions, with significant projected
impacts on the UK, including warmer, wetter winters, hotter, drier
summers, and more frequent Extreme Weather Events (EWEs). These
shifts, as corroborated by studies like those by Binti Sa’adin et al. [1] and
Wang et al. [2], are expected to persist, with changes in their temporal
and spatial distribution due to prevailing meteorological phenomena.
The railway systems and transportation infrastructure are significantly
impacted by these climatic variations, facing threats from EWEs that
disrupt the integrity and operation of these systems. Factors such as
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temperature fluctuations, changing wind patterns, and variations in
precipitation, among others, contribute to this vulnerability, under-
scoring the urgent need for strategies to bolster the resilience of trans-
portation systems against climate-induced shifts. For instance,
Malaysia’s East Coast railway line suffered considerable damage in
December 2014 due to severe flooding, disrupting operations for six
months. The devastation extended beyond the tracks, affecting signal-
ling equipment and causing the total collapse of a railway bridge in
Kemubu, Kelantan [3].

The implications of climate change extend deeply into the UK’s
railway network, where infrastructural damage from flooding, a
consequence of increased precipitation, poses a substantial threat. This
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situation, as detailed by Ludvigsen and Kleboe [4] and Wang et al. [2],
could impact up to 71 % of the railway’s infrastructural value, with
vulnerabilities such as infrastructure embankment failure, and
compromised bridge foundations leading to potential collapses and de-
railments. Moreover, the Met Office anticipates warmer coastal seas and
more frequent heatwaves, exacerbating issues like track buckling and
signalling failures, which compromise the safety and efficiency of rail-
way operations. These challenges are compounded by the risks posed by
storms and high winds, which can obstruct tracks and destabilise vehi-
cles, further stressing the critical need for adaptive measures.

Addressing these challenges necessitates a novel approach to ana-
lysing and predicting the impact of EWEs on railway operations. The
limited literature on the specific impacts of climate threats on railways
underscores the value of a new framework that leverages big data and AI
for risk analysis and prediction, as suggested by studies from Binti
Sa’adin et al. [3]. This approach is crucial for enhancing rail system
resilience and adapting to the evolving climate landscape. By employing
big data on UK train delays caused by extreme weather, this study aims
to develop an Al-driven model that can accurately assess and predict
risks, thereby contributing significantly to railway climate adaptation
planning. The systematic approach to improving railway resilience in-
volves collecting and analysing data on railway failures to identify the
primary Risk Influential Factors (RIFs), which are variables that signif-
icantly affect the likelihood and impact of potential adverse events
contributing to delays and shaping the overall risk profile of the railway
system. This analysis lays the groundwork for predictive models that
forecast risks associated with environmental conditions, emphasising
the importance of addressing the lack of literature on failures due to
EWEs, particularly using Bayesian Networks (BNs). BNs are used for
their ability to capture complex interconnections between RIFs, offering
a sophisticated tool for risk analysis in railway systems.

Further advancing this study of using BN in risk analysis, scholars
like Wang et al. [5] have integrated fuzzy logic with BNs to refine risk
assessment methodologies, addressing the challenges of incorporating
subjective data into quantitative models. This innovation points to the
critical need for a comprehensive evaluation of methods used in climate
risk assessments for railways, especially when dealing with subjective
data within BNs. The subsequent research by Wang et al. [6], which
utilised a Bayesian deep learning and multilayer perceptron approach,
highlights the ongoing effort to bridge the knowledge gap concerning
weather influences on railway incidents, underscoring the potential of
such methodologies to enhance the understanding of climate impacts on
railway infrastructure. However, due to the subjective nature of the data
involved, the findings are subject to challenges. Therefore, new research
is needed to utilise objective failure data for climate impact analysis in
transportation. This paper seeks to fill the gap and makes additional
noteworthy contributions, outlined as follows:

(1) A novel data-driven BN model has been developed for analysing
train delays, enabling a comprehensive risk analysis for train
delays in the UK. The model utilises train delay data to establish
benchmarks for regional railway analyses.

(2) A dataset capturing train delays from 2022 to 2023 is compiled
from Network Rail, laying the foundation for an innovative delay
database. This database systematically classifies incident causes
resulting in delays, categorising them based on different RIFs.

(3) The integration of all Network Rail-regulated RIFs into a novel
data-driven BN-based risk analysis model enhances the precision
of predicting and diagnosing train delay risks.

(4) A notable contribution lies in the capability to scrutinise delays
surpassing 60 min, exclusively linked to EWEs conditions across
the entire UK train.

The structure of this paper is organised as follows: Section 2 provides
an in-depth review of the literature, covering climate change projections
in the UK, railway failures attributed to climate impacts, and the current
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advancements in the use of BN for risk analysis in railways. Section 3
details the methodology employed, including data collection processes
and the identification of RIF. Section 4 discusses the findings and results,
encompassing the BN model’s structure, development, evaluation,
sensitivity analysis, and implications. Section 5 concludes the paper
with and outlines directions for future research.

2. Literature review
2.1. Climate change projections for the UK

The investigation into the impacts of climate change on trans-
portation infrastructure and operations has witnessed global attention.
However, a noticeable gap exists in the literature addressing the specific
implications for the UK railway network, warranting further explora-
tion. In contrast to broader trends observed in other regions, delayed
data analysis in the UK unveils a distinctive vulnerability, where heat-
waves exert minimal impact compared to the prevalent risks of floods
and heavy precipitation. In the complex fabric of the UK’s climate,
significant year-to-year rainfall variations underscore the importance of
recognising enduring natural fluctuations. According to the latest report
from the Met Office, the country has seen a consistent rise in precipi-
tation over recent decades, with the period 2011-2020 being notably 9
% wetter than the baseline of 1961-1990 [7].

Drawing upon high-resolution regional model datasets and obser-
vational data reveals a pronounced surge in extreme rainfall totals
across the UK, which is ascribed to anthropogenic climate change [8].
The occurrence of significant flooding events during the winters of
2013/14, 2015/16, and 2019/20, coupled with incidents in the autumn
of 2000 and the summer of 2007, highlights the escalating frequency of
such events. An examination of UK rainfall extremes from 1961 to 2000
unveils regional variations, notably with substantial increases in 5- and
10-day annual maxima in the western and northern regions, contrasted
by marginal decreases in the southern UK. It is essential to acknowledge
the spatial variations in rainfall alterations, where Scotland witnesses a
notable escalation while the southern and eastern areas of England
undergo more subtle changes. This intricate understanding of how
climate change impacts the UK railway network assumes paramount
significance in facilitating informed decision-making and devising pro-
active adaptation strategies amidst the evolving intricacies of climatic
patterns [9].

Within the changing climate landscape, the Met Office reports a
notable warming trend in the United Kingdom, indicating an approxi-
mate temperature increase of 1 °C since the 1950s. This transformative
shift extends not only over terrestrial areas but also encompasses the
coastal seas surrounding the UK, contributing to a comprehensive un-
derstanding of the broader environmental impact. Within this context,
the manifestation of longer and more frequent warm and hot spells
becomes apparent. The Met Office underlines the gravity of these cli-
matic alterations, providing a comprehensive understanding of the
changing thermal dynamics in the UK [7]. A striking illustration of the
tangible repercussions of such temperature variations unfolded during
the summer of 2018. In the summer of 2018, an extended spell of intense
heat and dry conditions created disruptions in various transportation
sectors, notably affecting the rail network. In response to the elevated
temperatures, the rail industry grappled with challenges such as the risk
of rail buckling and signalling complications. To mitigate these risks,
speed restrictions were imposed on numerous rail lines, a measure
essential to ensuring the safety and integrity of the rail infrastructure
[10]. These incidents underscore the vulnerability of critical trans-
portation infrastructure to the effects of climate change, emphasising the
necessity for adaptive strategies and a profound comprehension of cli-
matic details to fortify the resilience of the UK railway network.
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2.2. Weather-related delays in rail transport

In the UK, the tangible evidence of climate change is unfolding,
showcasing an anticipated escalation in severity and prevalence due to
the rising trajectory of greenhouse gas emissions and global tempera-
tures. The United Nations Intergovernmental Panel on Climate Change
(IPCC) asserts that these anticipated climatic shifts are expected to
impact all modes of transportation to varying degrees [11]. Such
changes are manifested through diverse effects, including shifts in pre-
cipitation patterns and heat stress, which pose risks to water supplies,
localised flooding, particularly in coastal regions, and human health.
The UK’s current climate trajectory, indicating a trend towards warmer
and wetter winters, coupled with hotter and drier summers, presents
specific challenges for the transportation sector by increasing the like-
lihood of extreme weather events, such as flash floods, impacting
transport infrastructure [12].

Adverse weather conditions, including extreme cold that leads to
snow and ice accumulation on tracks, challenge the UK’s rail infra-
structure, potentially causing significant delays. Furthermore, the
development of ice on electrified third rails and overhead power cables
can hinder trains from accessing essential power, leading to immobili-
sation. Elevated temperatures also disrupt railway operations by pre-
stressing UK rails against high temperatures, with a stress-free temper-
ature set at 27 degrees Celsius, indicating that rail temperatures may
soar by up to 20 degrees when air temperature reaches 30 °C. Excep-
tional weather conditions, including temperatures below —5 °C or above
30 °C, storm winds causing physical damage, snow exceeding a depth of
15 cm, or rainfall surpassing 150 mm in 24 h, further challenge the
resilience of the system. The existing railway network, incorporating
modern concrete sleepers, is strategically designed to counteract steel
rail expansion and contraction under diverse weather conditions,
effectively containing forces from temperature-induced rail movements
to prevent track buckling [7].

Performance metrics employed by Network Rail, such as the Public
Performance Measure (PPM) and the Moving Annual Average (MAA),
reflect the operational impact of these weather challenges. Recent data
reveals a decrease in national PPM, underscoring the adverse effects of
climate change on railway punctuality and reliability. Additionally, the
National Rail Passenger Survey (NRPS) provides insights into passenger
satisfaction, further emphasising the impact of weather conditions on
rail service performance [13]. The performance of train operators may
be directly or indirectly impacted by these adverse weather conditions,
leading to disruptions in the railway infrastructure. A study on The
Netherlands’ railway network revealed that snow, extreme within-day
temperature variations, and exceedingly high temperatures could lead
to network segment closures and potential delays. Furthermore, the
escalation in heavy precipitation and more frequent high winds raises
significant concerns for network operators [14]. Coastal flooding and
storm surges, associated with rising sea levels, present imminent threats
to transport infrastructure in low-lying maritime areas, while increased
precipitation levels have the potential to worsen congestion and elevate
the frequency of traffic incidents [6]. Recent incidents underscore the
urgent need to address the impacts of climate change on transportation
infrastructure. For instance, the heavy snowfall reported in DAB022
(incidents involving snow) necessitated reductions in train speeds for
safety, causing considerable train delays. Similarly, DAB019 (incidents
involving trees) documents how storms can cause trees to fall onto
tracks, disrupting train services. These incidents demonstrate how
extreme weather directly affects the safety and efficiency of transport
[71.

Recent studies spotlight the escalating impact of climate change on
transport infrastructure, particularly railways. Abdel-Mooty et al. [15]
investigate the increased vulnerability of railway bridges in southeast
England to scour, a risk intensified by changing hydrological conditions
driven by EWEs. Complementing this, Sun et al. [16] develop an opti-
misation method for post-disaster recovery in electrified railways,
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enabling dynamic prioritisation of repairs to minimise operational los-
ses. Expanding on this theme, further research should assess
climate-related risks in port operations by integrating hazard modelling
with economic analysis to strengthen resilience planning for these crit-
ical transport hubs. These insights underline the necessity of integrating
climate risk assessments into strategic management across railways and
related infrastructure [15,16]. A study encompassing Norway, Sweden,
Switzerland, and Poland has revealed that adverse weather conditions
significantly contribute to delays in rail freight operations, disrupting
the continuity of European rail infrastructure. This in-depth analysis
emphasises the urgent need for adaptive strategies to lessen the effects of
weather events on railway systems [14]. It highlights the crucial role of
identifying Key Risk Indicators (KRIs) that delineate the impact of risks
on rail network operations. These KRIs are essential for understanding
how specific risks affect different areas of railway operations and their
potential consequences. Table 1 further delineates these implications,
illustrating the potential effects of weather events on railway systems
through KRIs, thereby underscoring the need for targeted interventions

to mitigate risk and enhance system resilience.

Table 1
EWEs impact on rail network.
EWEs KRI Impact on the rail network  References
Flooding & Track inundation. 1) Loss of control and [4]
Heavy Signal system traction; 2) Pressures on
precipitation malfunction tyres and components of
Drainage system vehicles; 3) Reduced
failure speed; 4) Uneven or break
Delayed journey braking; 5) Roadbed
times erosion; 6) Train delays
from flooded tracks.
Storm &Wind Fallen debris 1) Potential for fallen trees [17]
Power outage obstructing railway lines;
Infrastructure 2) Damage to overhead
damage power lines causing power
outages; 3) Structural
damage such as bridges
and tunnels; 4) Railroads
blocking; 5) Train delays.
Snow & Ice Reduced traction 1) Reduced traction on [18]
Ice accumulation tracks leading to slower
Blocked track lines train speeds; 2) Increased
Reduce network risk of points and switches
traffic freezing; 3) Wheel axles
Damaged freight break causing the weight
Network blockages of snow; 4) Frozen
and power supply temperature-sensitive
disruptions goods; 5) Reduced
visibility; 6) Train delay.
Heatwave Infrastructure 1) Derailment; 2) Reduced [3,17]
damage rail speeds; 3) Increased
Track buckling strain on electrical systems
Operational and cooling systems; 4)
disruptions Disruption to passengers
Electrical system due to overheating on
overload trains; 5) Problems for
temperature-sensitive
goods; 6) Train delay.
Fog Service 1) Reduced visibility [18]
interruption leading to slower train
Reduced visibility speeds; 2) Difficulty in
Signal visibility reading signals; 3) Risk of
damage and collision; 4)
Train delays from reduced
visibility.
Lightening Power surge 1) Risk of electrical [8]

System disruption
Fire hazard
Infrastructure
damage

equipment damage due to
lightning strikes; 2)
Disruption of signalling
and communication
systems; 3) Train delay.




L. Kamalian et al.
2.3. The application of BN in railway risk analysis

BNs, fusing the principles of graph theory and probability theory,
serve as a robust framework for modelling the probabilistic in-
terdependencies among variables. These networks are depicted as
acyclic-directed graphs, where nodes represent random variables, and
arcs signify direct probabilistic relationships. The foremost goal in the
field of BN structure learning is to delineate these dependencies,
culminating in the formation of a Directed Acyclic Graph (DAG) [19,20].
Conceptually, BNs stand out as sophisticated tools, both graphically and
analytically, adept at encapsulating complex systems. They enable the
graphical depiction of diverse components, which interact through
conditioned probabilities, thus demonstrating remarkable versatility in
addressing the complexities inherent in multifaceted systems [21]. BNs
are particularly esteemed for their ability to manage the interplay be-
tween actions, knowledge, and uncertainty within a system, showcasing
their proficiency in learning the structure and parameters of system
data, thereby accentuating their analytical capabilities [22,23].
Remarkably, BN analysis has been distinguished for its efficacy in ac-
counting for interactions among EWEs, offering a more holistic
comprehension relative to other statistical methodologies.

An in-depth review of existing literature reveals that while BNs have
found applications within the railway sector, the research volume is
considerably less extensive compared to other transport domains. This
scarcity becomes even more pronounced when examining the applica-
tion of BNs in addressing failures prompted by climate change-driven
EWEs, highlighting a significant research gap in the field. For
instance, Chen et al. [24] underscores the influence of EWEs on
high-speed railway delays, pinpointing device failure as a crucial
determinant. Similarly, Cotterill et al. [8] employ BNs in developing
predictive models for safety incidents within railway operations, aiming
to elucidate significant impact factors. The versatility of BNs is further
evidenced in various scholarly undertakings. Li’s work on assessing the
structural safety of railway bridges using BNs showcases the method’s
bidirectional reasoning and sensitivity analysis prowess [10]. Moreover,
a distinct approach to modelling the probability of failure in railway
turnout systems under varying weather conditions reflects BNs’ unique
application breadth [2]. Contrastingly, in another study, they integrate
Interpretive Structural Modelling with BNs for a comprehensive analysis
of the railway dangerous goods transportation system, reflecting a
multi-methodological approach to understanding complex system dy-
namics [25].

The application of BNs extends to operational risk analysis in railway
freight management through integration with Fuzzy Fault Tree Analysis
[26] and to the design optimisation for mitigating electromagnetic
interference in rail tracks [27]. Furthermore, the use of BNs in evalu-
ating safety management systems within railways in Great Britain and
Italy underscores their applicability in dissecting critical factors and
relationships impacting front-line performance. The development of
algorithms for accident prediction at railway crossings illustrates the
methodological advancements in BN applications, enhancing predictive
accuracy through diverse knowledge integration [28]. In a recent study
[24], a Data-Driven Bayesian Network (DDBN) was developed to analyse
freight railway accidents across varied scenes. This novel approach,
achieving an inference accuracy of 87.92 %, utilises an
unsupervised-supervised method for defining node states and a causal
ordering algorithm, significantly improving the predictive accuracy and
the applicability of safety measures in specific accident contexts. How-
ever, its effectiveness is limited to scenarios where detailed
scene-specific data is available.

Yet, despite these advancements, the exploration of BNs in address-
ing railway failures, especially those induced by climate change, re-
mains underexplored. This gap, particularly in the context of the UK
railway system’s vulnerability to changing climate and EWEs, un-
derscores the urgent need for further research. This paper seeks to bridge
this gap by presenting a comprehensive analysis of factors leading to
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train delays, leveraging a novel dataset developed from Network Rail’s
incident database for the period 2022 to 2023.

3. Methodology

Within the realm of probabilistic modelling, BN emerges as a
distinctive entity, a dynamic DAG. Its intricate composition involves
nodes, each interconnected by links that delineate variables and the
intricate web of influences they exert on one another. In this BN meth-
odology, a systematic approach unfolds through four distinct steps, each
delineated by specific subsets. The first step is dedicated to compre-
hensive data preparation, involving a thorough process of data collec-
tion and preparation procedures. Following the careful cleaning of
incomplete entries and a discerning screening of the Network Rail
dataset, the journey proceeds to the second step, a pivotal phase centred
on model development. Herein, the BN model takes shape, leveraging
the refined dataset with precision and purpose.

In the domain of model validation, a dual-pronged strategy is
implemented. The first aspect unfolds in a sensitivity analysis, deploying
three crucial indices, mutual information, joint probability, and True
Risk Influence (TRI) to thoroughly examine the model’s sensitivity to
varying conditions [29]. Simultaneously, the second aspect comprises
model evaluation, anchored by four pillars: a stringent model correct-
ness verification process, practical application through predictive op-
erations with real case data, scrutiny of the model’s internal consistency,
and pivotal real case verification. This multi-dimensional model vali-
dation process not only ensures a detailed understanding of the model’s
intricacies but also fortifies the credibility of the study’s outcomes. In
weaving this comprehensive methodology, the paper establishes a
robust foundation for deriving meaningful insights from the BN model
developed. Fig. 1 illustrates the detailed methodology, outlining each
step comprehensively.

3.1. Data collection and processing

The study utilised a singular dataset from Network Rail’s open data
feeds, "Delay Attribution Data." This dataset integrates detailed reports
of incidents that cause train delays, including TRUST TRAIN IDs. These
IDs are critical for linking delay incidents to actual train performance
monitored by the TRUST system, which tracks train performance against
scheduled timetables. The TRUST system enhances dataset reliability by
enabling the verification of reported delay incidents against docu-
mented train performances, ensuring the accuracy of delay attributions.
The attribution database from Network Rail categorises incidents
affecting train delays into specific groups, with a particular focus on
those induced by EWEs. This categorisation facilitates a targeted anal-
ysis of the impacts these factors have on train operations. Initially, the
dataset contained comprehensive entries for each incident during the
specified period. Through a systematic process of screening, cleaning,
and categorisation based on criteria such as relevance to EWEs,
completeness of data for all RIFs, and severity of delays (exceeding 60
min), the dataset was refined. This process reduced the initial 6100
entries to 1530, which were further analysed. For this study, the dataset
spanning the financial year 2022-2023 was selected to ensure the
analysis reflected the most current operational conditions and incorpo-
rated the impact of all seasons on train delays. This period provides a
holistic view of the yearly operational dynamics, which is essential for a
comprehensive analysis.

Network rail attribution database: This dataset provides exhaustive
incident reports that are crucial for identifying specific causes of train
delays. These detailed records are instrumental from the initial analysis
stages, offering insights into the diverse impacts of severe weather on
train operations.

TRUST data: While the analysis leverages data from the Network Rail
attribution database, the dataset includes TRUST TRAIN IDs, which
reference the TRUST system that tracks actual train performances
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Fig. 1. Detailed methodological framework.

against scheduled timetables. This inclusion helps to quantify the
operational impacts by correlating reported incidents with actual ser-
vice disruptions, thus providing a comprehensive view of the opera-
tional consequences of delays.

Data source: The analysis utilises a specific dataset from Network
Rail’s open data feeds titled “Delay attribution data”, which contains all
attributed delays to passenger train services. This dataset is enhanced by
the inclusion of TRUST TRAIN IDs, enabling a deeper analysis of the
probabilistic relationships between weather events and resultant train
delays. The TRUST TRAIN IDs are inherently included within Network
Rail’s delay attribution data. This approach simplifies the analytical
process and maintains the integrity and reliability of the data by using a
single, comprehensive source.

3.1.1. Data cleaning and data screening

While examining 6100 data entries, it became apparent that specific
information related to the traction type of trains and their destinations
was absent. They safeguarded the coherence of the dataset by system-
atically excluding incomplete entries and thoroughly inspecting each
remaining record, effectively eliminating inaccuracies or irrelevant
data. Another crucial aspect of this process involved considering data
related to delays of 60 min or more by following the worst-case principle
in safety science, while entries with durations less than this threshold
were removed from the final database. This comprehensive approach
ensures the reliability and relevance of the dataset for further analysis,
adhering to robust data cleaning and screening practices.

Following a comprehensive examination focused solely on delays
attributed to severe weather conditions, this meticulous process resulted
in a final dataset comprising 1530 entries. This refined dataset serves as
a more accurate and targeted foundation for subsequent analysis and
interpretation. Importantly, by focusing exclusively on significant de-
lays caused by EWEs, the study isolates a critical variable, allowing for a
more sophisticated understanding of its impacts on train operations.
This strategic approach to data refinement effectively facilitates the
identification of trends and patterns that are vital for developing resil-
ient train scheduling and operational strategies under adverse weather
conditions. Furthermore, eliminating less impactful data points ensures
a streamlined analysis, increasing the overall efficiency of the research
process and ensuring that conclusions drawn are statistically significant
and practically applicable in real-world scenarios.

3.1.2. Network rail data
Recorded through the Train Running Under System (TRUST), delays

to scheduled train services on the Great Britain (GB) rail network are
carefully documented. The system compares actual train movement
events with the planned schedule, providing a comprehensive insight
into delays. This process not only records delays but also offers expla-
nations for their causes. The collected data contributes to an incentive
scheme aimed at reducing delays. Examining each rail incident on the
network in-depth reveals a wealth of information. This comprehensive
dataset includes details such as date, time, location, origin, destination,
the reason for the delay, responsible company, traction type, schedule
plans, and the total delay incurred measured in minutes. Network Rail
employs various factors to explain incidents, categorising them based on
weather conditions such as snow, ice, earth slip, wind, flooding, fog,
heat, lightning, severe weather, and wind. These categories align with
the guidelines outlined in the Delay Attribution Principles and Rules [7].
The dataset spans from April 2022 to March 2023, encompassing in-
cidents throughout each month. The RIFs encapsulate the key attributes,
including Daytime, Weekdays, Months, Years, Planned Origin, Planned
Destination, Attribution Status, Incident Reason, Responsible Operator,
Application Timetable, Train Schedule, Traction Type, and Event Type.
As established in the literature review [30], daytime is stratified into two
subsets: day (06:00-18:00) and night (other), while Weekdays incor-
porate all days of the week. Months consist of the standard twelve, and
Years span 2022 and 2023. Planned Origin and Planned Destination
pinpoint the commencement and destination locations of the journey,
distributed across 14 distinct regions throughout the UK.

Attribution Status denotes the incident’s official acceptance process
status, with ‘Agreed, > ‘Disputed, ’ and ‘Waiting for Acceptance’ delin-
eating ongoing investigations. Incident Reasons are categorised into
many different groups, but the data here are refined to exclusively
include those rooted in severe weather for this study. Responsible Op-
erators, constituting 14 distinct roles corresponding to various regions in
the UK. Application Timetable distinguishes between the official per-
formance records (N) and short-term replacements, typically repre-
senting the reinstatement of part of a cancelled service. The train
schedule includes Long Term Plans (LTP) and Short-Term Plans (STP).
The dataset includes a Traction Type variable, which categorises railway
propulsion into nine groups: Diesel locomotive (D), Diesel Multiple Unit
(DMA), Diesel Multiple Unit with Electric Transmission (DME), Diesel
Multiple Unit with Mechanical Transmission (DMS), Diesel Multiple
Unit (DMU), Electric locomotive (E), High-Speed Train (HST), and Light
rail (L). The cross-referencing process leans heavily on records manually
verified from the Network Rail website, a public repository housing the
UK’s railway code systems. To facilitate compensation payments among
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industry stakeholders in case of delays, the data collected ensures a
reliable attribution of total delay values to each incident.

3.2. RIFs identification

RIFs were selected based on a comprehensive approach that involved
both an extensive review of the literature and an empirical analysis of
delay data. Initially, a systematic review of relevant peer-reviewed ar-
ticles from the Web of Science was conducted, focusing on publications
from 2010 to 2023 with keywords such as ‘Bayesian network’ and
‘railway failures. This literature review aimed to identify prevalent
factors that influence railway operations during EWEs. Concurrently,
data from the Network Rail attribution database were analysed to
categorise delay incidents under various weather-related factors, ulti-
mately resulting in the identification of 11 RIFs. Eight of these RIFs were
consistent with the literature, while three were derived directly from the
attribution data, with severe weather being a particularly significant
factor.

The selection of RIFs was guided by three main criteria to ensure
their relevance and reliability relevance to train delays under extreme
weather, the availability of consistent and comprehensive data
throughout the study period, and statistical validation to verify their
significance. Each factor underwent statistical testing to establish its
influence on train delays, thereby ensuring empirical support for its
inclusion. By combining insights from literature with real-world data,
this study aims to provide a robust and validated set of RIFs that
significantly impact railway safety and performance during extreme
weather conditions. This comprehensive approach contributes to
enhancing the robustness of the Bayesian Network model used in this
analysis. Fig. 2 presents the distribution of the identified RIFs based on a
review of the existing literature.

In Table 2, a comprehensive compilation of RIFs from literature and
database sources is presented, resulting in a synthesis of 13 factors.
Among these, a notable convergence is observed in five factors: flood
and precipitation, snow, ice, lightning, and heat waves, all categorised
under the incident reason node. The additional RIFs, including months,
daytime, and weekdays, are also recognised as factors recurring in both
the literature review and the database. The database categorises severe
weather into five distinct types, each uniquely impacting different
structural components of the railway system. Specifically, flooding
predominantly affects track components, leading to washouts and the
destabilisation of the ballast, which compromises track stability.
Extreme heat frequently causes rail buckling due to thermal expansion, a
particular risk in continuously welded rails where expansion has limited
free space. Heavy snow and ice pose significant risks by inducing me-
chanical failures in switches and creating signal errors due to the
accumulation of ice, which interferes with normal operations. High
winds are notorious for causing failures in overhead line equipment and
can dislodge branches or debris onto the tracks, posing serious risks to
train movement and safety. This detailed approach allows for a more

Flood and Precipitation
Snow

Ice

Fog
Lightening
Heatwave
wind

Mud
Months
Daytime
Weekdays
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comprehensive understanding of severe weather implications. The in-
tersections and disparities within these RIFs emerge as a pivotal
contribution within the scope of this paper. It leads to the development
of an in-depth BN-based model for comprehending train delay risks.
Importantly, the integration of real data provides an intricate repre-
sentation without constraints. This innovative methodology not only
advances the development of a robust train delay risk model but also
underscores the richness of real-world data in contributing detailed in-
sights to the discussion.

In constructing a comprehensive model to analyse risk factors within
the railway network, the proposed BN approach hinges on a reasonable
selection of RIFs based on the prevalence in the Network Rail database
and their demonstrable impact, as reflected in the literature. While the
literature review is instrumental in informing potential risks, the ulti-
mate inclusion of these factors in the new model is determined by a
combination of their recorded incidence, the magnitude of their influ-
ence on railway operations, and the practicality of their mitigation. For
instance, despite the presence of multiple literature references sup-
porting wind as a RIFs, its exclusion from this investigation is deliber-
ated upon its relative infrequency within the database, the potential for
lesser impact on service disruptions, or the efficacy of existing infra-
structure resilience to wind-related events. This discerning approach
ensures that the model maintains a focused scope, directing resources
and analytical efforts towards RIFs with the most substantial evidence of
impact on the railway network in the UK, ensuring a balance between
theoretical risk factors and empirical data-driven insights.

The model’s integrity is reinforced by a balanced consideration of
RIFs drawn from detailed literature reviews and real-world databases,
such as Network Rail’s. This dual approach ensures that while the new
model is informed by rich global research, it remains grounded in
tangible data that reflects the day-to-day realities of railway operations.
Several studies utilising Network Rail data highlight the importance of
various RIFs in railway delay analysis. For example, Reynolds and
Maher [39] and Jaroszweski et al. [40] identify critical RIFs, particularly
incident reasons such as weather-induced disruptions, which play a
significant role in delay propagation. Building on this shared focus, our
work uniquely incorporates a broader set of RIFs that have not been
comprehensively explored in previous UK-based studies, contributing a
novel perspective to railway risk assessment.

This process guarantees that the risk analysis is not only reflective of
Network Rail’s specific context but also holds value for the railway
sector at large. Through this methodology, each RIF is thoroughly vetted
to determine its true relevance to the operational resilience and safety of
railways, assuring that the new model remains relevant and adaptable
for various infrastructural needs and challenges [41]. Ultimately,
Table 3 presents the definitions and statuses of all RIFs explored in this
study. All the definitions and statuses are derived from the UK Network
Rail reports.

All these RIFs significantly influence train delays, which function as
the target node. To capture a comprehensive spectrum of scenarios, the

Fig. 2. Distribution of identified RIFs in the literature.
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Table 2

Comparative analysis of EWEs: literature review vs. network rail database.
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Risk factors

References
[31]

[32]

[25]

[33]

[34]

[35]

[36]

[24]

[37]

[38]
Network Rail
Total

Methods

BN

BN

BN

Bayesian hierarchical
BN

Dynamic Hybrid Model

Statistical regression models

BN
BN
Fragility Modelling

Source: Network Rail Open Data Reports

F1 F2 F3
v v v
v v

v

v

v v v
5 3 2

F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
v v v
v
v v v
v
v v
v
v v v
v v v
v v
v
v v v v v v/ v
1 4 4 2 2 1 1 3 4 2

Note: F1: flood and precipitation, F2: snow, F3: ice, F4: fog, F5: lightening, F6: heatwave, F7: severe weather, F8: wind, F9: leaf contamination, F10: mud, F11:
months, F12: daytime, F13: weekdays.

Table 3
Definition and status of RIFs.
RIFs Definition States
Daytime Day (06:00 to 18:00), Day, Night
night (other)
Weekdays Days of a week Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday
Months The month that the 1,2,3,4,5,6,7,8,9,10,11,12
delay occurred in
Years The year that the 2022, 2023

Planned origin

Planned
destination

Attribution
status

Incident
reason

Responsible
operator

Application
timetable
Train schedule

Traction type

Event type

delay occurred in
The location where
trains start the
journey

The location where
trains end the journey

Acceptance process
for each delay
Cause of delay

Who within the
industry is responsible
for the delay

Official performance
records
classification of a
train service
schedules

The model of train
propulsion

Whether the train has
been delayed or
cancelled

Anglia, Central, East Coast, East
Midlands, Kent, North & East, North
West, Other, Scotland, Sussex, Wales,
Wessex, West Coast South, Western
Anglia, Central, East Coast, East
Midlands, Kent, North & East, North
West, Other, Scotland, Sussex, Wales,
Wessex, West Coast South, Western
Attribution Agreed, Attribution
Disputed, Waiting Acceptance

Ice’s Impact on Conductor Rail/OHLE
(1), Leaf Contamination (2), Lightning
Strike’s Impact on Unprotected Assets
(3), Lightning Strike’s Impact to
Protected Systems (4), Severe Flood (5),
Severe Heatwave (6), Severe Snow or Ice
Causing Points Failure (7), Severe Snow
or Ice Impact on Infrastructure (8),
Severe Weather (9), Severe Weather
Impact on Infrastructure (10), Severe
Weather Mandating Blanket Speed
Restrictions (11), Severe Weather’s
Impact on Bridges, Tunnels, and
Buildings (12)

Anglia, Central, East Coast, East
Midlands, Kent, North & East, North
West, Other, Scotland, Sussex, Wales,
Wessex, West Coast South, Western

No (N), Yes (Y)

Very (V) STP Base, very (V) STP
Overlay, LTP

Diesel locomotive (D), Diesel Multiple
Unit (DMA), Diesel Multiple Unit with
Electric Transmission (DME), Diesel
Multiple Unit with Mechanical
Transmission (DMS), Diesel Multiple
Unit (DMU), Electric locomotive (E),
High-Speed Train (HST), and Light rail
L.

C (full cancellation), M (delay), Other
(failure to stop, scheduled cancellation,
part cancellation)

delays are categorised into five groups: A, B, C, D, and E, depending on
their lengths in terms of minutes (Table 4). The discretisation of train
delay times in this study is methodically aligned with both regulatory
frameworks and the granular analysis requirements of BN modelling.
The decision to use a 60-min threshold for categorisation is grounded in
UK railway regulations, which mandate refunds for delays exceeding
this duration. This operational benchmark is not only a regulatory
requirement but also represents a significant threshold beyond which
passenger inconvenience markedly increases, making it a critical point
for analysis.

Further refining the temporal resolution to 10-min intervals is sub-
stantiated by the need to align the delay categorisation with the high
resolution of meteorological data. Such fine granularity captures the
rapid variability typical of climatic factors, enabling the model to reflect
more accurately the immediate impacts of short-duration weather
phenomena. This resolution aligns well with the operational time frames
within which real-time decisions are made in railway operations,
ensuring that the data is actionable and relevant. Preliminary analysis
reinforced this choice, indicating that larger intervals obscured critical
variations in delay causation and impacts, thus diminishing the model’s
predictive accuracy and operational applicability. These finer intervals
enable the model to better capture subtle variations in delay patterns,
which is crucial for implementing effective resource allocation and
mitigation strategies during adverse weather conditions. Table 4 below
indicates the periods in different groups.

3.3. Navigating BN configurations and TAN modelling

In building the BN model for this study, identifying RIFs was a key
step that came after carefully cleaning the data. These RIFs become the
main nodes in the network, representing the variables that can affect
train delays. Each node is connected to probabilities that show how
these variables might influence one another. This paper uses an effective
approach to showing how these factors work together to cause train
delays in the UK rail network. The Naive Bayes Network (NBN) starts
with a basic assumption: all the features looked at are independent of
each other once the class is known. However, this assumption doesn’t
always hold up because it ignores more complex relationships [19]. Tree
Augmented Naive Bayes (TAN) which can address the strong assumption

Table 4

Delay classification.
Delay categorisation Minutes
A 60<t <70
B 70<t < 80
C 80< t <90
D 90< t < 100
E t>100
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embedded in NBN, was chosen in this work. The TAN model builds on
the NBN by adding connections between features to form a tree structure
[19]. This is important because it lets us see not just if features relate to
delays, but also how they relate to each other. The TAN model thus
provides a more sophisticated and detailed representation of
inter-variable relationships, especially within the context of classifica-
tion tasks [11].

3.4. Sensitivity analysis

Sensitivity analysis provides insights into the uncertainty and vari-
ability within the BN, aiding in decision-making and risk assessment.
This method is used to evaluate the impact of changes in the input
variables on the model’s output or predictions. This methodology re-
veals the RIFs that significantly impact the target variable ‘train delay’.
The analysis employs three crucial methods: mutual information, joint
probability, and True Risk Influence (TRI). Beginning with mutual in-
formation, this assessment helps better understand how one variable
acquires information from others. It measures how two variables depend
on each other, indicating their connection and influence, where a higher
value signifies a more substantial correlation, indicating a heightened
impact on the target node. Moreover, joint probability represents the
simultaneous occurrence of multiple events or states in the train delay
network [35].

This method can quantify the likelihood of observing a particular
combination of values across multiple random variables in the system.
Within the BN framework, where nodes indicate diverse variables and
edges present probabilistic relationships, the joint probability distribu-
tion acquires the comprehensive likelihood of all potential variable
configurations. Notably, this relates specifically to the target variable,
train delays. Effectively determining the sensitivity of multiple variables
is achieved by utilising the TRI method. The subsequent sensitivity
analysis reveals the ranking of influences that various variables impose
on train delays, determined by their respective TRI values. The magni-
tude of TRI functions as an indicator, with higher values signifying a
more pronounced impact of the associated RIFs on the target node.

3.4.1. Mutual information

Mutual Information serves as a quantifiable metric that reveals the
extent of interdependence or shared information between two random
variables and quantifies the information acquired about one variable
from the knowledge of others. The uncertainty of a variable can be
reduced by acquiring knowledge of another variable and can be
measured by mutual information. In mathematical terms, the mutual
information I (X; a;) for TBN is displayed below [37,38].

o ) logy 2K %)
I(X: @) ;p(x,al) logbp(X)p(ai) @

Where I(X; a;) represents the mutual information between the train de-
lays, denoted by the variable X and the i state of the RIFs, represented
as a;. p(X;q;) is the joint probability distribution function that repre-
sents the likelihood of simultaneously observing the train delay X and
the state a; of the RIFs.

3.4.2. Joint probability

The joint probability distribution is a foundational concept that
captures the likelihood of all possible combinations of values for vari-
ables within a network [42]. Deriving the joint probability involves
defining variables, establishing their relationships in a DAG, assigning
conditional probabilities, and then combining these probabilities using
the chain rule. This process, commonly known as the ‘chain rule’ allows
for a systematic exploration of the detailed effects of RIFs on ‘train delay’
for the most critical variables identified through mutual information
calculations. Joint probability distributions are critical in this analysis
because they allow us to understand the likelihood of various
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combinations of risk factors leading to train delays. This study uses joint
probability to quantify the interplay between multiple variables, such as
weather conditions, day of the week, and track conditions, and how
these factors collectively impact the probability of train delays. This
comprehensive view helps to pinpoint which combinations of factors are
most likely to cause significant delays, thereby providing actionable
insights for railway operators. Moreover, by incrementally increasing
each variable’s probability state to 100 %, it is possible to observe the
relative influence of each factor on train delays. This approach enables
us to model the potential impact of each variable in isolation and in
combination with others, which is particularly useful for planning pre-
ventive measures and for strategic decision-making.

3.4.3. True risk influence (TRI)

True Risk Influence (TRI) and State-Related Influence Factor (SRIF)
are key metrics for evaluating variables within BNs, particularly in risk
assessment scenarios. TRI quantifies the influence of specific factors on
outcomes, providing insight into which variables critically affect the
network’s behaviour. TRI is calculated by identifying scenarios where
the risk of delay is notably high (High-Risk Inference (HRI)) and notably
low (Low-Risk Inference (LRI)), allowing us to determine the sensitivity
and potential impact of each RIF. This method ensures an intuitive un-
derstanding of central tendencies in risk levels, suitable for decision-
makers across various disciplines [43,44].

This quantification is crucial for prioritising mitigation efforts
effectively within the railway network [6]. For example, in train delay
analysis, TRI helps prioritise factors for effective risk mitigation. In this
case, delays between 60 and 70 are designated as ‘A’. Focusing on a
specific factor, such as the incident reason, the highest amount is (30.3)
and the lowest (11.8) probabilities for ‘A’ are found. The actual mutual
information for incident reason in scenario ‘A’ is 3.53. To determine TRI
covertly, both the highest and lowest probabilities are subtracted from
3.53, the results are added, and then the total is divided by 2. The
equation of TRI is provided below.

HRI + LRI

TRI = — 2)

3.5. Model evaluation

Model evaluation is a pivotal phase in assessing the BN model,
particularly in understanding how extreme weather influences train
delays [36]. This process examines the dependencies and relationships
within the BN’s structure to ensure that they accurately mirror the
complexities of weather impacts on railway operations. The employed
evaluation method thoroughly verifies that the model’s output aligns
well with real-world data on train delays during EWEs, maintaining
logical consistency with established dynamics of weather and trans-
portation systems. Moreover, the model’s predictive capabilities are
tested against scenarios of varying weather conditions to assess its
effectiveness in real-time applications [32]. This extensive evaluation
not only confirms that the BN effectively captures the interplay between
EWESs and train delays but also demonstrates its robustness and utility
for decision-making in rail network management. By simulating
different weather scenarios, a deeper understanding of potential dis-
ruptions is gained, enabling more precise mitigation strategies. Thus,
through comprehensive model evaluation, the BN is established not just
as a theoretical construct but as a practical tool in minimising
weather-related disruptions in train services.

3.5.1. Model correctness verification

In the quest for correctness verification within BN modelling, Li et al.
[10] emphasise the vital commitment to two fundamental theorems
during the reasoning process of sensitivity analysis. The initial theorem
explains that any marginal adjustments, whether an increase or decrease
in the prior probabilities of each test node, should consistently lead to
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corresponding adjustments in the posterior probability of the target
node. This requirement ensures the integrity of the reasoning process,
firmly establishing the sensitivity analysis within a resilient framework.
The second theorem asserts that the authentic influence arising from the
collective variations in the probabilities of the evidence must not be
diminished when compared to the influence originating from a subset of
the evidence. These theorems collectively establish a comprehensive
foundation for executing sensitivity analysis, pivotal in the pursuit of
model correctness verification in BN.

3.5.2. Predictive capability evaluation

The predictive capability stands as a pivotal aspect in the compre-
hensive evaluation of a model, specifically directed at measuring the
proficiency of a BN in generating precise predictions for novel, unob-
served data. This evaluation involves scrutinising the model’s general-
isability and its performance when applied to instances beyond the
training dataset. To evaluate the predictive capabilities of the model,
155 delay records, randomly selected to represent 10 % of the dataset,
are set aside for dedicated testing. This distinct subset serves as the
testing dataset to scrutinise the model’s efficacy in predicting outcomes.

3.5.3. Scenario analysis

In the domain of BN modelling, scenario analysis plays a crucial role
in understanding how a system behaves under diverse hypothetical
conditions. This analytical approach involves creating various scenarios,
each illustrating a different realistic state of the system. For each sce-
nario, specific values are assigned to the relevant variables within the
BN structure. By then propagating these values through the network, the
probabilities and dependencies intrinsic to the system are calculated.
The outcome is a clear and probabilistic understanding of the likelihood
of different events or the performance of the system under varying
conditions [36]. This process aids decision-makers in comprehending
the potential impact of uncertainties and in assessing the robustness of
the model. Sensitivity analysis further contributes by highlighting the
variables that exert the most influence on outcomes. Ultimately, sce-
nario analysis serves as a valuable tool for decision support, enabling
stakeholders to make informed choices based on a comprehensive
exploration of the system’s dynamics and responses to different sce-
narios. Its application is particularly pertinent in dealing with complex
systems where uncertainties abound, providing a practical means to
enhance risk assessment and decision-making processes.

4. Results and discussions

This section presents the findings derived from the BN model
developed to analyse the risk of EWEs that cause train delays across the
UK. Building upon the precisely cleaned dataset detailed in Section 3,
the analysis focuses on the impacts of RIFs on train delays, revealing
intricate dependencies and dynamic interactions within the UK railway
system. Following comprehensive data collection and model calibration,
the analysis elucidates the impact of various RIFs, such as severe
weather conditions, on the probability of train delays. The results
highlight the complex relationships and dependencies among the RIFs
within the context of the UK railway system. By integrating these factors
into a sophisticated probabilistic framework, the study quantifies not
only the direct influences of individual weather events on train delays
but also the compounded effects of multiple interacting RIFs. These in-
sights are crucial for comprehending the dynamics of railway system
disruptions and formulating effective strategies to mitigate the impacts
of climate change on railway operations.

4.1. TAN modelling
Handling missing or incomplete data entries is essential for prepar-

ing the dataset for analysis. Each record is carefully reviewed to ensure it
includes all necessary attributes for comprehensive evaluation. This
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ensures that every required data point for the model is complete and
accurate. When key attributes crucial for analysis and prediction are
found to be missing, these records are flagged. Due to the importance of
complete data for the integrity of the analysis, records with missing
critical attributes are removed from the dataset. This selective removal is
crucial to prevent inaccuracies in the analysis and to maintain the
dataset’s quality. Through this careful management of missing data, the
dataset remains reliable, supporting robust analyses and enabling pre-
cise assessments of the impacts of weather events on train delays. By
maintaining high standards of data quality, the effectiveness of predic-
tive models is ensured, and valid, actionable insights are derived from
the study. This step is essential as it ensures the model is built on a
complete and reliable data foundation, thus significantly enhancing its
predictive accuracy and reliability. This step is essential as it ensures the
model is built on a complete and reliable data foundation, thus signifi-
cantly enhancing its predictive accuracy and reliability. The compre-
hensive examination extends beyond simply identifying incomplete
records. It involves a systematic verification of data integrity and rele-
vance, ensuring that each retained entry contributes positively to the
model’s objectives. This not only improves the model’s accuracy but also
enhances its efficiency by streamlining the dataset, reducing unnec-
essary complexity, and focusing on high-quality data inputs. Table 5
displays a sample of the data utilised in this modelling, illustrating how
the dataset appears after the rigorous cleansing process.

The dataset presented in the table consists of 14 columns, each
providing specific details regarding various delay incidents. This struc-
tured arrangement facilitates a comprehensive analysis of each delay,
correlating with the detailed explanations provided previously in
Table 3. Each column is tailored to capture distinct aspects of the delays,
including the date, region of origin, planned action, and operational
responses. This format allows for a systematic examination of patterns
and causes behind the reported delays, supporting a robust analytical
approach in delay management studies.

Using TAN to train the data from Section 3.1.2, a preliminary BN
model for train delay analysis in the UK is developed and shown in
Fig. 3, which is at the heart of the discussion. This visual helps explain
the text by showing the actual links between the factors that contribute
to train delays, as captured by the model. More importantly, the model
discloses new links between the RIFs, which have yet to be found in
existing literature. For example, it was found that a train’s ‘Planned
Origin’ is linked to the ‘Day of the Week,” suggesting some places are
more likely to have delays on certain days.

Further substantiation is provided through Fig. 3, which outlines the
probabilities of all delay types as forecasted by the TAN model: 19.20 %,
18.70 %, 33.70 %, 17.00 %, and 11.40 %, respectively. These figures are
then cross-referenced against the statistical outcomes obtained from the
original dataset, which are as follows: 19.19 %, 19.06 %, 33.27 %, 17.03
%, and 11.39 %, respectively. The remarkable consistency between the
predicted values and the actual data not only affirms the high fidelity of
the model but also offers preliminary evidence supporting the model’s
initial accuracy. This close alignment across various metrics underscores
the robustness of the predictive framework established by the TAN
model, making it a reliable tool for forecasting delays.

4.2. Sensitivity analysis

4.2.1. Mutual information

Table 6 presents key metrics, including mutual information, entropy
reduction percentage, and variance of beliefs. The analysis underscores
the significant influence of ‘months’ on ‘train delays’, leading to a sub-
stantial mutual information value of 1.61161. Following closely are
‘year’ and ‘origin location’ with values of 0.58202 and 0.25634,
respectively. These results highlight the varying impacts of different
variables on the observed train delays.

Examining the mutual information value and its rate of change
highlights a significant disparity, ranging from the initial factor, which is
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Table 5

Dataset overview metrics.

delays

Event
type

Attribution

status

Incident
reason

Responsible
manager

Traction
type

Application Train

Daytime  Planned

Weekdays

Planned origin

Years

Months

No

schedule

timetable

destination

Attribution
Agreed

10

East Midlands

D

(V)STP Base

Fri Night North & East

Anglia

2022

Dec

Attribution
Agreed

12

North & East

(V)STP Base

Fri Night North & East

2022 North & East

Jul

Attribution
Agreed

Scotland

D

(V)STP Base

Wed Day Scotland

2023 West Coast

Mar

South

Attribution
Agreed

Western

(V)STP

Wales

Fri Night

Anglia

2022

Oct

1528

Overlay

Attribution
Agreed

1

West Coast South

(V)STP

2022 West Coast Wed Day Anglia

Apr

1529

Overlay
LTP

South
Anglia

Attribution
Agreed

Anglia

DME

Day Anglia

Mon

2022

Jun

1530

10
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‘month’, to the concluding factor, ‘application timetable’. As illustrated
in Table 6, months exhibit significantly higher differences compared to
years. Subsequently, a moderate difference is observed between years
and factors such as origin location and traction type. In contrast, the
responsible operator, destination location, and event type display minor
changes relative to each other. Notably, incident reasons occupy the 8th
position among factors influencing train delays in the UK, considering
these factors and the existing database.

4.2.2. Joint probability

The study uses joint probability distributions to assess how combi-
nations of variables like weather, day of the week, and track conditions
contribute to train delays. This analysis identifies critical risk factors and
their impacts, enabling targeted strategies for railway operations. The
probability of each state is indicated in Table 7.

Table 7 reveals for delays ranging from 60 to 70 min, the highest
probability occurs in July, with December having the lowest probability.
Similarly, for delays between 90 and 100 min, February holds the
highest probability, while December has the lowest probability. For
instance, it can identify whether certain weather conditions combined
with a specific day of the week result in higher chances of delay, which
can inform scheduling and resource allocation to mitigate these risks. In
general, joint probability distributions provide a solid statistical foun-
dation for predictive modelling and decision-making processes. They
offer a nuanced understanding of complex systems where multiple fac-
tors interact, which is essential for optimising operations and improving
service reliability in the railway industry. The term ‘nuanced impacts’
refers to the model’s capability to accurately depict the varied conse-
quences of different weather events on railway operations. This involves
identifying how specific conditions like heavy snow, high winds, and
extreme temperatures each uniquely influence railway operation.

4.2.3. True risk influence

Calculating TRI values involves applying the same analytical meth-
odology to various RIFs and train delay scenarios. This process ensures a
systematic assessment of how different RIFs contribute to train delays.
The results, which detail the TRI values for each RIF concerning various
types of delays, are shown in Table 8 below.

The TRI table serves as an assessment tool for evaluating the sensi-
tivity of multiple variables within the BN Each node, about various
delays, manifests distinct probabilities. While the TRI table provides an
average overview, it does not specifically identify which node, within
each delay category, exerts the most significant influence. The TRI table
reflects the sophisticated nature of risk assessment, with ‘Month’
emerging as the leading factor, likely due to the harsher severe weather
events experienced in the UK during December and January, which
significantly impact operational safety and punctuality. The ‘Incident
Reason’ also emerges as a pivotal factor, directly correlating to the de-
lays and disruptions within the rail network. These insights underline
the substantial influence of EWEs on railway operations, underscoring
the importance of factoring seasonal variations and specific incident
causes into risk mitigation strategies. This connection between weather-
related incidents and operational delays accentuates the need for robust
planning and response mechanisms within the rail industry to handle
such climatic impacts more effectively. The planned origin follows,
highlighting the importance of the journey’s starting point. There’s
noticeable variability with the responsible operator and traction type,
indicating these factors’ impact changes significantly across different
situations. The year and planned destination carry a moderate but
consistent influence, implying that both temporal and locational aspects
play stable roles in risk assessment.

SRIF, in contrast, assesses the relative importance of nodes when the
target node is in a specific state. This helps clarify the impact of each
factor within a particular scenario, offering a focused view on influence.
These tools are indispensable for decision-makers, allowing them to
identify and prioritise risk factors. These findings indicate that factors
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Fig. 3. The constructed TAN structure.

Table 6
Analysis of mutual information between the target node and RIFs.

Node Mutual Reduction Variance of
information percentage beliefs
Delays 2.23001 100 0.6037
Months 1.61161 72.3 0.3583
Years 0.58202 26.1 0.0253
Planned origin 0.25634 11.5 0.0258
Traction type 0.21709 9.73 0.0232
Responsible 0.17176 7.7 0.0162
operator
Planned 0.13022 5.84 0.0123
destination
Event type 0.10427 4.68 0.0052
Incident reason 0.07913 3.55 0.0062
Weekdays 0.04922 2.21 0.0035
Attribution status 0.01729 0.775 0.0022
Train schedule 0.01607 0.721 0.0008
Daytime 0.00589 0.264 0.0004
Application 0.00083 0.0374 0.0001
timetable

such as ‘incident reason’ have a varied influence on train delays,
underlining the need for a detailed approach to managing and reducing
these delays. The TRI and SRIF tables facilitate this by delineating
average influences and specific impact rankings, aiding in the devel-
opment of targeted interventions. Table 9 is invaluable for identifying
which factors are most crucial under particular circumstances.

The insights derived from the TRI and SRIF tables are highly valuable
across different areas of the railway industry. Operational managers can
leverage this data to allocate resources more effectively during high-risk
periods, refine maintenance schedules to directly address specific causes
of incidents, and develop tailored response strategies that enhance
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operational resilience. This strategic application of data ensures good
deployment of resources to prevent and manage delays effectively.
Strategic planners gain from understanding the variability in factor in-
fluence, especially the temporal shifts highlighted in ‘Month’, which
aids in developing adaptive operational strategies that respond to both
seasonal and situational dynamics. Moreover, policymakers and safety
regulators benefit from a detailed analysis of contributing factors, which
is crucial for creating policies that target the most impactful elements
causing delays, thus improving the overall safety and efficiency of
railway operations. Overall, the TRI and SRIF tables provide a system-
atic approach to examining how various factors influence delays and
support strategic planning and operational adjustments to effectively
manage and mitigate these delays. This data-driven approach is vital for
enhancing the reliability and safety of rail transport, offering substantial
benefits to operators and passengers alike and playing a pivotal role in
advancing rail industry standards and practices.

4.3. Model evaluation

4.3.1. Model correctness verification

To ascertain the correctness of the BN model, the top nine RIFs
associated with train delays, particularly focusing on those influenced
by climate variables, were selected. These factors were subjected to in-
cremental adjustments of ‘1 %’ in their prior probabilities to observe the
resultant variations in the probability of ‘train delays’. This methodical
adjustment, constrained by the model’s minimum probability change
threshold of 1.11 %, was designed to ensure that each modification
produced observable yet subtle impacts, thus allowing for the evaluation
of the sensitivity and responsiveness of the model to small-scale changes
in input variables. Table 10 illustrates the baseline probabilities for
different scenarios of train delays and tracks how these probabilities
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Table 7
The joint probability (100 %).
A B C D E

Month
January 0.41 0.41 42.3 56.5 0.40
February 0.76 0.76 0.77 73.3 24.4
March 0.80 0.79 0.81 0.79 96.8
April 83.4 4.16 4.24 4.15 4.06
May 75.1 6.25 6.36 6.22 6.09
June 90.7 2.32 2.37 2.31 2.26
July 97.9 0.52 0.53 0.52 0.51
August 13.0 83.1 1.32 1.29 1.27
September 1.32 94.7 1.34 1.31 1.28
October 2.28 90.9 2.32 2.26 2.22
November 0.60 50.2 48.1 0.59 0.58
December 0.34 0.34 98.7 0.34 0.33
Attribution status
Attribution agreed 17.6 18.9 34.6 17.5 11.4
Attribution disputed 28.7 19.9 21.3 14.0 16.1
Waiting acceptance 48.1 13.3 22.2 8.28 8.05
Planned origin
Anglia 10.9 5.80 69.9 1.71 11.7
Central 35.5 14.4 25.0 10.9 14.1
East coast 26.7 29.9 26.6 4.14 12.7
East midlands 23.9 28.1 24.3 9.62 14.2
Kent 22.8 15.6 38.9 8.56 14.2
North & East 26.8 10.6 46.2 4.60 11.8
North West 22.2 11.8 50.5 2.69 12.8
Scotland 11.4 14.4 18.3 45.7 10.3
Sussex 30.4 19.2 15.5 13.1 21.8
Wales 12.4 36.1 11.3 29.5 10.8
Wessex 21.3 40.5 26.8 4.53 6.87
West Coast South 13.8 13.1 52.5 3.32 17.4
Western 25.0 20.7 45.7 1.50 7.10
Other 22.4 15.4 37.4 8.99 15.8
Planned destination
Anglia 14.5 12.2 55.7 7.71 9.90
Central 30.4 13.2 33.0 10.2 13.1
East coast 24.3 29.4 28.7 6.58 111
East midlands 22.3 18.5 34.3 12.6 12.3
Kent 23.2 18.4 31.9 11.7 14.8
North & East 27.0 14.7 40.0 8.04 10.2
North West 22.0 15.1 42.1 6.73 14.1
Scotland 11.9 13.8 23.0 41.0 10.3
Sussex 20.1 19.8 25.9 16.1 18.1
Wales 13.2 30.3 16.3 28.1 12.2
Wessex 19.9 30.2 25.5 13.1 11.1
West Coast South 15.8 15.5 39.6 12.7 16.6
Western 20.8 19.6 48.1 4.93 6.53
Other 20.2 25.9 25.8 15.2 129
Traction type
D 9.89 12.0 54.3 6.83 16.9
DMA 20.4 19.9 25.4 18.0 16.3
DME 8.34 13.7 19.5 54.1 4.38
DMS 18.9 28.7 18.5 21.4 12.4
DMU 33.8 10.8 43.7 4.85 6.95
E 27.9 21.4 22.9 12.2 15.6
EMU 23.3 27.4 35.3 3.56 10.5
HST 21.0 22.2 22.8 17.2 16.8
L 19.4 22.7 25.5 16.0 16.3
Incident reason
1 18.6 27.6 26.5 12.2 15.1
2 19.1 16.6 29.0 13.7 21.6
3 22.8 19.8 27.4 14.5 15.5
4 25.1 24.3 24.2 11.8 14.6
5 11.9 18.6 38.2 22.2 9.07
6 25.4 19.0 26.4 13.9 15.3
7 14.0 22.7 22.7 22.5 18.1
8 18.8 16.6 45.5 9.09 10.0
9 21.4 16.1 50.2 6.34 6.02
10 25.5 25.6 17.5 19.4 12.0
11 19.2 10.7 23.1 34.8 12.1
12 28.8 13.0 39.7 8.91 9.67
Year
2022 29.5 28.4 40.9 0.68 0.60
2023 0.78 1.10 20.7 46.5 30.9

Responsible operator
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Table 7 (continued)

A B C D E
Anglia 12.7 8.19 61.0 6.53 11.6
Central 11.3 19.3 33.3 14.3 21.8
East coast 33.5 30.1 20.5 5.66 10.3
East midlands 22.9 24.7 27.5 11.5 13.4
Kent 22.5 19.3 34.9 10.3 12.9
North & East 26.1 13.0 41.4 6.76 12.8
North West 19.7 11.4 53.7 4.40 10.8
Scotland 11.4 15.3 25.1 37.0 11.1
Sussex 26.8 19.4 22.0 15.1 16.6
Wales 11.4 33.4 13.0 31.7 10.6
Wessex 15.9 47.2 20.2 8.66 7.97
West Coast South 19.9 17.6 32.2 13.8 16.5
Western 30.8 16.9 421 3.52 6.65
Other 19.5 17.4 35.9 12.3 14.9
Event type
C 16.3 15.6 36.3 25.6 6.26
M 27.6 20.9 24.8 6.00 20.7
Other 8.23 27.9 48.5 6.53 8.87
Train schedule type
(V) STP Base 19.0 16.2 40.1 10.8 13.8
(V) STP Overlay 17.3 17.9 34.9 12.5 17.4
LTP 19.8 19.4 31.9 19.7 9.21
Applicable timetable flag
Yes 19.1 18.5 34.3 17.0 11.1
No 20.2 20.4 28.5 16.6 14.3
Daytime
Day 185 19.8 31.9 18.9 11.0
night 20.7 16.5 37.0 13.6 12.2
Weekdays
Monday 24.1 22.6 32.6 10.8 9.98
Tuesday 21.7 13.0 46.7 8.49 10.1
Wednesday 28.1 12.9 29.7 15.7 13.7
Thursday 12.1 18.7 37.2 17.9 14.0
Friday 17.9 19.8 26.3 24.7 11.3
Saturday 19.4 14.6 38.2 221 5.69
Sunday 13.6 35.4 26.0 7.72 17.4

Table 8
TRI of SRIF for different delays.

A B C D E Average
Month 48.78 47.18 49.08 36.48 48.23 4595
Planned origin 12.3 17.35 293 14 7.5 16.09
Responsible operator 11.1 19.50 24 16.74 7.57 15.78
Year 14.36 13.65 10.1 2291 15.15 15.23
Traction type 12.73 8.35 17.9 25.27  6.26 14.10
Planned destination 9.25 9.05 19.7 11.58 5.78 11.07
incident reason 8.45 8.45 16.35 1294 7.79 10.79
Event type 9.68 6.15 11.58 9.8 7.22 8.88
Weekdays 8 11.25 1035 8.49 5.85 8.78
Attribution status 15.25 3.3 6.65 4.61 4.02 6.76
Train schedule 1.25 1.6 4.1 4.45 4.09 3.09
Daytime 1.1 1.65 2.55 2.65 0.6 1.71
Applicable timetable 0.55 0.95 1.2 0.2 1.6 0.9

flag

evolve with systematic adjustments to the RIFs’ probabilities. Each
subsequent column beyond the first reveals the cumulative effect of
these adjustments, highlighting the model’s capability to respond
dynamically to changes in each influencing factor. This aspect of the
model is crucial, demonstrating its potential utility in predicting the
effects of incremental climatic changes on ‘train delays’.

The initial probabilities of various types of train delays, as presented
in the second column of Table 10, are based on data extracted from the
dataset. The subsequent columns trace how these probabilities evolve in
response to incremental changes in the prior probabilities of key RIFs.
Each adjustment is independently calculated to reflect the model’s
sensitivity to individual RIF adjustments, illustrating the dynamic na-
ture of train delays in changing climate conditions. The results showing
no abrupt and unexpected probability changes, are in line with the
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Table 9
The importance rankings of SRIF for delays.
A B C D E

Months 1 1 1 1 1
Years 3 4 9 3 2
Planned origin 5 3 2 7 4
Traction type 4 8 5 2 7
Responsible operator 6 2 3 4 5
Planned destination 9 6 4 8 9
Event type 7 9 7 9 6
incident reason 8 7 6 6 3
Weekdays 10 5 8 10 8
Attribution status 2 10 10 5 11
Train schedule 11 12 11 11 10
Daytime 12 11 12 12 13
Applicable timetable flag 13 13 13 13 12

impact of each variable on the delay effects. This independent assess-
ment of cumulative probabilities underlines the robustness of the BN
model in capturing and predicting the subtle impacts of climatic varia-
tions on railway operations. Overall, the detailed evaluation of the BN
model through this verification process not only confirms its correctness
but also emphasises its critical role in understanding and managing the
complexities of train delays under varying climatic conditions.

4.3.2. Predictive capability evaluation

The predictive capability of the model is evaluated using a compre-
hensive confusion matrix, as detailed in Table 11. In evaluating the
predictive capability of the model, the dataset was split into training and
testing subsets using a 90:10 ratio. This ratio is crucial for balancing the
need for sufficient training data to capture the complexities of railway
operations and enough testing data to robustly validate the model’s
predictions. Specifically, 90 % of the data was used for training,
exposing the model to a diverse range of data patterns, while the
remaining 10 % was reserved for testing to assess performance and
generalisability [19]. Optimal data splitting ratios can vary, but the
90:10 split used in this evaluation is well-supported in practice and
aligns with the principle that larger training sets are beneficial for
complex models. This approach ensures the model’s robustness and
effectiveness in practical applications, confirming its suitability for
deployment in operational settings [45,46].

Predictive accuracy is exhibited by the model, as evidenced by an
overall accuracy rate of 93.99 %, calculated from the matrix derived
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The accuracy rates detailed above are indicative of the model’s
strength in handling real-world data and its efficiency in generalising
from the training data to unseen scenarios encountered in the test data.
This approach not only validates the predictive power of the model but
also ensures that it can be reliably used for practical purposes such as
planning and operational adjustments in railway systems facing various
delay durations.

4.3.3. Scenario analysis

Scenario analysis provides a robust framework for assessing the
impacts of extreme weather on train delays, concentrating on the com-
plex interrelationships among various risk factors. The analysis defines
two primary scenarios to evaluate the railway network’s resilience and
preparedness in adverse conditions.

(1) Severe flood.

The chosen scenario developed for this study methodically
examines two discrete variables: a severe flood and the month of
December. These components were independently selected to
clarify their unique contributions to the overall risk profile. This
methodological choice is supported by the predictive analytics of
the model, which highlights these variables, severe flood and
December, as exhibiting the most significant risk within their
respective categories. In this setup, the ‘severe flood’ and
‘December’ are attributed to a probability of 100 % at the state
that maximises joint probability with delay durations. Analysis of
this scenario reveals a distinct pattern: despite a general reduc-
tion in delays, there is a significant escalation in the incidence of
delays ranging from 80 to 90 min, increasing from 33.7 % to 98.9
%. Delays of such length are categorised as severe and frequently
precipitate train cancellations. This observation suggests that
train delays, particularly significant in scenarios involving severe
floods and often coinciding with December, are of such signifi-
cance, often leading to cancellations.

Severe floods and the month of December are integral elements
of the scenario, with a heightened risk of extended delays that can
lead to significant operational disruptions and potential infra-
structure damage. This complexity intensifies the challenges the

Table 11
Confusion matrix of predicted results.

from the test data. As shown in Table 11, the model’s accuracy for state Actual Amial Accuracy
. . .. . . tot: t
A, representing train delays between 60-70 min, is exceptionally high at A B C D E o rate
N . . .
96.67 %. This accuracy for states B (70-80 min) and C (80-90 min), predicted A 20 1 0 0 0 30 96.67 %
maintains strong rates of 91.43 % and 91.11 %, respectively. Addi- B 1 32 2 0 0 35 91.43 %
tionally, in the latter states, D (90-100 min) and E (over 100 min), the C 0 1 41 3 0 45 91.11 %
accuracy rates are notably high as well, at 96.30 % and 94.44 %, D 0 0 0 26 1 27 96.30 %
tively. All the accuracy rates are higher than the recommended £ ! 0 0 0 17 18 94.44 %
respectively. / Y are nig Total 31 34 43 20 18 155 93.99 %
value in the literature for model validation [46].
Table 10
The output of minor changes in SRIFs.
Weekdays - +1% +1% +1% +1% +1% +1% +1% +1% +1%
Incident reason - - +1 % +1 % +1 % +1 % +1 % +1 % +1% +1 %
Event type - - - +1 % +1% +1 % +1 % +1 % +1 % +1 %
Planned destination - - - - +1% +1 % +1 % +1% +1 % +1 %
Responsible operator - - - - - +1% +1% +1% +1% +1%
Traction type - - - - - - +1 % +1 % +1% +1 %
Planned origin - - - - - - - +1 % +1% +1 %
Years - - - - - - - - +1 % +1 %
Months - - - - - - - - - +1 %
A 19.2 19.4 19.5 19.7 20.7 20.7 20.9 21.2 21.7 22.7
B 18.7 19 19.1 19.3 19.5 19.9 20.1 20.5 21 22.6
C 33.7 33.9 34.2 34.6 35 35.6 35.9 36.5 36.9 37.8
D 17 17.2 17.5 17.7 18 20 20.6 23 23.8 24.6
E 11.4 11.5 11.7 11.8 12 12.2 12.3 12.5 13 14
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(2

—

railway network faces during EWEs. Such conditions underscore
the critical need for targeted strategies to mitigate the impacts of
these events, particularly to safeguard operational efficiency and
infrastructure integrity. It is noteworthy that during occurrences
of severe floods, particularly in December, the probability of
delays between 80 and 90 min rises sharply to 98.9 %, as shown
in Fig. 4.

The most likely scenario for specific train delays.

The second scenario analysis evaluates the cumulative effects
of various RIFs, focusing on scenarios that pose the highest risk of
train delays. The model highlights Scotland as a significant risk
area, both as a point of origin and a destination. Consequently,
Scotland is selected as the ‘planned origin’ and ‘planned desti-
nation’ with probabilities fixed at 100 % to investigate the effects
of these high-risk scenarios. To add depth to the analysis,
geographical factors are combined with operational management
considerations. Scotland is chosen as the operator responsible,
with the selection probability also set at 100 %. This choice il-
lustrates the interaction between geographical and operational
elements, as well as EWEs, with flooding playing a crucial role in
this complex mix. Further analysis reveals a significant correla-
tion between elevated risk settings in Scotland, designated as the
origin, destination, and responsible operator and the incidence of
floods. As shown in Fig. 5, this correlation indicates that when the
probability of train routes involving Scotland increases under
flood conditions, the likelihood of encountering ‘D’ category
delays within the 90-100-minute range surges dramatically from
17 % to 85.7 %. This substantial increase significantly amplifies
the risk of extended delays.

Such an increase underscores an exceptionally high risk of
prolonged delays, often culminating in service cancellations,

3
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particularly under the severe weather conditions prevalent in
Scotland. Additionally, the results of this scenario suggest a direct
correlation between geographical and meteorological factors,
emphasising the interaction between these elements in intensi-
fying delay probabilities. This comprehensive understanding re-
inforces the need for strategic planning and risk management
tailored to address the unique challenges posed by flooding in
high-risk regions such as Scotland.

December train delays: a weather impact scenario analysis.

In the third scenario analysis (Fig. 6), the probability of train
delays in December, known for the highest risk, was increased by
20 %, from 20.6 % to 24.7 %, based on evidence that December is
prone to extreme weather events (EWEs) affecting UK train op-
erations. This change showed that while delays in categories A, B,
D, and E decreased, delays in Category C (80-90 min) increased
from 33.7 % to 44.5 %. This indicates that December disruptions,
often due to EWEs, typically last 80-90 min. This analysis not
only highlights the specific impact of December’s harsh weather
conditions on train delays but also reinforces the necessity for
tailored operational strategies during this high-risk period.

Table 12 shows the probability of five distinct train delays over a
yearly cycle, enumerated from January (1) to December (12). For
instance, Category A peaks in February at 93.4 % but drops to 0.036 % in
March, possibly due to effective management of February’s challenges.
Category B delays jump from 0.14 % in July to 83.1 % in August, likely
due to summer operational demands. Category C delays peak at 98.7 %
in December, suggesting cumulative factors like bad weather and holi-
day travel. Category D shows high probabilities in March (96.1 %) and
July (97.8 %), with a drop in April (23.4 %), indicating periodic ad-
justments. These fluctuations could indicate periodic operational
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Fig. 4. Scenario one: severe flood.

14



L. Kamalian et al.

Reliability Engineering and System Safety 262 (2025) 111189

Months
Apr 022
Aug 1.0
Dec 381p
Feb 051
Jan 206
Jul 13.4 pm
Jun 121 pm
Mar  30.7 p——
Attribution status May 248
Attribution Agreed 99.3 |— Nov  30.5 — Event type
Attribution Disputed 033 Oct 120 c 25.5
Waiting Acceptance  0.37 Sep 205
M 7.98p
Other 351
— / Traction type
Planned origin 2022 g D 737h
Anglia 0 2023 A - DMA  1.02
Central 0 202233+ 059 DME  69.5
East Coast 0 Delays DMS 123 m
East Midlands 0 A 066 d___f—fH DMU 230
Kent 0 B 341 E 1.49
North & East 0 ‘____————#—— C 6.00p EMU 357
North West 0 D 857 memmmn HST 1.02
Other 0 E 422 L 1.08
Scotland 100 —
\?\Easls:x g Application t Train schedule
Wessex 0 N 276 (V)STP Base 426
WestCoastSouth 0 Y 972 QLTPOEER]  1Ia)
Western 0 Incident reason - LTP 85.0 [—
1 0
/ 2 0
3 0
Weekdays 4 0 —
Fri 54.3 p—— Responsible operator g 108 : Planned destination
Mon 6.10Q Anglia 0 7 0 ?)ngltlal g
Sat  393m Central 0 3 0 Eenlré + 0
Sun 047 East Coast 0 7 g 0 i 5
Thu 175 mm [~ EastMidlands 0 10 0 o 5
HAE. went < 10 North & East 0
Wed 764m North & East 0 12 0 North West 0
North West 0 3 S 5
Other 0
Scotland 100 |— \ Scotiand 100 mm——
Sussex 0
Wales 0 Daytime LEES :
Wessex 0 Day 637
West Coast South 0 Night 263 West Coast South 0
g Western 0
Western 0

Fig. 5. Scenario two: planned origin and planned destination.

adjustments or maintenance schedules that either exacerbate or alle-
viate delays. Category E peaks in September (94.6 %) and October (90.7
%), highlighting late-year challenges. For instance, this suggests that
these months are particularly prone to conditions that severely impact
rail operations, potentially including adverse weather and operational
overloads.

4.3.4. Consequence analysis using utility node

This section elaborates on the impact of scenario-based adjustments
within the BN model, focusing on how these adjustments affect risk
assessment outcomes. The primary objective of this work is to quantify
and analyse the potential risks associated with EWEs and regional fac-
tors affecting railway operations. By integrating decision and utility
nodes into the BN, the model predicts the likelihood of delays and
evaluates the severity of their consequences, providing a comprehensive
risk profile. The model currently outputs a risk value of 0.56528 (see
Fig. 7), which reflects an integrated assessment of various operational
parameters without any scenario adjustments. This value indicates a
moderate to significant risk level, serving as a crucial metric for oper-
ational management and strategic planning in railway operations.

(1) Scenario 1: Assessing the impact of increased flooding probability
In the first scenario, the model adjusted the probability asso-
ciated with flooding (labelled as incident reason 5) to 100 %,
effectively simulating a scenario where flooding is certain. This is

a critical test because flooding significantly disrupts railway
services by damaging infrastructure and slowing down opera-
tions. Within the BN, the utility node plays a crucial role by
assigning specific utility values to different categories of train
delays, ranging from Category A (least severe) to Category E
(most severe). These utility values are scaled from 0.2 to 1, with
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0.2 indicating no impact (Category A) and 1 representing the
highest impact (Category E), which involves extensive delays and
disruptions. Following this recalibration, the decision node in-
tegrates these utility values to compute an overall risk value. For
this flooding scenario, the risk value was calculated to be 0.595.
Fig. 8 quantitatively reflects an elevated risk level, indicating a
significant potential for operational disruption due to severe
weather conditions. Essentially, the decision node’s output of
0.565 underscores the heightened operational risk under extreme
flooding conditions, demonstrating the model’s capability to
predict and quantify the impacts of specific adverse events on
railway operations.
(2) Scenario 2: geographical risk analysis with a focus on Scotland
The second scenario involved altering the origin and destina-
tion nodes to focus solely on Scotland. This adjustment was
crucial for understanding the regional specificity of risk, as
Scotland’s topography and climate pose unique challenges to
railway operations. Upon setting both the origin and destination
to Scotland, the BN recalculated the associated risk metrics,
reflecting the heightened regional risks. The decision node
adjusted the risk value to 0.71 (see Fig. 9), illustrating how local
conditions influence overall risk levels.

The integration of scenario analysis within the BN framework
significantly enhances the ability to perform detailed and responsive risk
assessments. This approach not only aligns with advanced risk man-
agement practices but also provides a comprehensive method for
assessing and mitigating risks in railway operations. The detailed anal-
ysis of each scenario helps in understanding the specific contributions of
various risk factors, thereby enabling targeted interventions based on
empirical data and sophisticated modelling techniques.
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Table 12
Seasonal variations in train delay risks across 5 duration categories.
Months Average
Delays 1 2 3 4 5 6 7 8 9 10 11 12
A 36.1 93.4 0.036 68.0 0.44 0.092 0.068 13 1.35 2.33 0.60 0.34 17.98
B 34.7 0.58 0.056 2.82 0.69 0.14 26.4 83.1 1.35 2.33 0.60 0.34 12.76
C 26.2 0.41 1.96 2.00 3.41 0.10 1.16 1.32 1.37 2.37 41.6 98.7 15.05
D 2.64 4.80 96.1 23.4 94.5 97.8 68.5 1.29 1.34 2.32 48.4 0.34 36.79
E 0.43 0.78 1.87 3.80 0.92 1.85 3.85 1.27 94.6 90.7 8.78 0.33 17.43

4.3.5. Seasonal and regional variability in train delays

Annual averages show Category D (90-100 min) has the highest
delay probability (36.79 %), indicating severe weather impacts. Cate-
gory B (70-80 min) has the lowest (12.76 %), suggesting less severe
disruptions. Understanding high-risk months helps rail operators
implement preventive measures, improving service reliability. Rail op-
erators can implement preventive measures and allocate resources more
efficiently during these high-risk periods, thereby enhancing service
reliability and improving passenger communication. Such strategic in-
sights enable operators to anticipate potential disruptions more effec-
tively, ensuring a more robust and responsive rail system.

Table 13 outlines the maximum and minimum temperatures recor-
ded across the UK, segmented by month and sourced from meteoro-
logical reports by the Met Office. A deeper analysis reveals patterns in
temperature extremes and their geographical distribution across En-
gland, Scotland, and Wales, providing insight into regional climatic
conditions. Scotland consistently registers the lowest temperatures
throughout the year, with Inverness-shire and Aberdeenshire frequently
appearing as the coldest regions. This is particularly evident in the
winter months, with December showcasing Aberdeenshire plunging to a
chilling —17.3 °C. Such extreme cold is notable in the context of the UK’s
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climatic variations and is predominantly concentrated in the northern-
most regions of Scotland. Consequently, these measurements substan-
tiate the high accuracy of our model. In contrast, England records the
highest temperatures, with a notable peak in Lincolnshire reaching 40.3
°C in July. Southern and Eastern England tend to experience these
warmer extremes, a pattern that aligns with these regions’ more conti-
nental climate, which allows for hotter conditions during the summer.

This geographical disparity in weather extremes between Scotland
and England, particularly Scotland’s significantly lower temperatures,
can be directly linked to operational challenges, such as those affecting
railway services. Extreme cold can lead to mechanical failures, signal
problems, and track issues, which are likely contributors to the higher
frequency and severity of train delays observed in Scotland. The recur-
rent low temperatures in Scotland, as highlighted in the table, justify
why this region experiences the most substantial weather-related dis-
ruptions to train services. Therefore, it is evident that Scotland’s harsher
climate, specifically its colder extremes, significantly contributes to the
higher incidence of train delays compared to other regions. This insight
underscores the necessity for robust weather resilience strategies within
Scottish rail infrastructure to mitigate the impact of severe weather
conditions on train reliability and safety.
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Fig. 8. Bayesian network risk assessment with elevated flooding probability scenario.
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Table 13 Table 14
Monthly temperature extremes across UK regions: highest and lowest recorded Monthly trends in train delays by origin, destination, and severity.
by Met office. Months Origin Destination Delays
Months Region/ Max temperature Region/ Min temperature January Western (17.5) Scotland (14.0) A (44.8)
Jan Aberdeenshire, Scotland/ 15.8 °C Inverness-shire, Scotland/ —10.4 February Scotland (16.6) Scotland (13.2) A (97.0)
°C March Scotland (50.8) Scotland (37.8) D (64.1)
Feb Hereford & Worcester, England/ Inverness-shire, Scotland/ —8.5 April Scotland (15.9) Scotland (14.7) A (83.4)
17.2°C °C May Scotland (34.9) Scotland (32) D (49.7)
March Suffolk, England/ 17.8 °C Sutherland, Scotland/ —16.0 °C June Scotland (57.3) Scotland (43.3) D (79.2)
Apr London, England/ 23.4 °C Inverness-shire, Scotland/ —8.0 July Scotland (28.0) Scotland (21.3) B (69.9)
°C August Scotland (19.0) Scotland (15.5) B (83.1)
May London, England/ 27.5 °C Sutherland, Scotland/ —1.7 °C September Scotland (23.0) Scotland (19.0) E (94.6)
June London, England/ 32.7 °C Sutherland, Scotland/ —1.5 °C October Scotland (27.6) Scotland (19.2) E (90.7)
July Lincolnshire, England/ 40.3 °C Perthshire, Scotland/ 2.3 °C November Scotland (41.9) Scotland (32.0) D (48.4)
Aug Surrey, England/ 34.9 °C Inverness-shire, Scotland/ 0.3 °C December North west (17.6) Western (15.5) C(98.7)
Sep Suffolk, England/ 27.7 °C Cumbria, England/ —1.7 °C
Oct London, England/ 22.9 °C Aberdeenshire, Scotland/ —3.8
°C (Category D), indicating critical disruptions, which slightly decrease in
Nov Gwynedd, Wales/ 21.2 °C Inverness-shire, Scotland/ —6.0 April, yet remain signiﬁcant.
The pattern of increasing severity continues into the summer, with
Dec Clwyd, Wales/ 15.9 °C Aberdeenshire, Scotland/ —17.3 P . g y V
oc June particularly notable for prolonged delays (Category D), which are

influenced by a seasonal increase in travel demand and high tempera-
ture. Conversely, July and August show a shift to slightly shorter delays

Table 14 offers an insightful analysis of train delays throughout the
UK, documenting delay severity and identifying the most affected routes
each month. In January, trains originating from Western regions report
significant delays, with durations between 60 and 70 min (Category A).
Similarly, any trains arriving in Scotland this month face comparable
delays, underlining challenges that are not restricted to specific routes
but potentially widespread across different segments. February sees an
escalation in delay durations with a striking 97.0 % probability of delays
remaining within the 60-70-minute range (Category A), suggesting
ongoing and perhaps intensifying operational challenges. As spring ap-
proaches in March, the severity peaks with delays of 90-100 min

(Category B), though the likelihood remains high, suggesting persistent
challenges during peak tourist season and temperature. The most severe
disruptions occur in the autumn, particularly in September and October,
where delays extend beyond 100 min (Category E), likely exacerbated
by adverse weather such as heavy precipitation.

4.4. Findings and implications

This research undertakes a comprehensive analysis of all risk factors
contributing to train delays, precisely evaluating each factor’s impact.
Among these, delays resulting from EWEs are identified as particularly
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high-risk. Consequently, these weather-related delays are prioritised for
focused study and detailed examination, ensuring a thorough under-
standing of their significant impact on railway operations. The
comprehensive analysis of the BN model identified 13 key factors
influencing train delays, with a significant emphasis on temporal ele-
ments. December emerged as the month with the highest probability of
delays (20.6 %), followed closely by January and July, indicating a
correlation between adverse weather conditions and heightened trans-
portation demand. The data predominantly consists of entries from
2022, accounting for 64.4 % of the total, highlighting the relevance of
this specific year within the study period (April 2022 to March 2023).

Geographically, trains originating from Scotland face the highest risk
of delays, affecting both their starting and ending points. This spatial
insight is crucial for developing targeted strategies to mitigate delays in
specific regions. Among the causes of delays, extreme weather events,
particularly floods (identified as incident reason number 5), are the
predominant factors, underscoring the vulnerability of the rail network
to such conditions. The study emphasises delays exceeding 60 min,
which has significant implications for passenger compensation and
operational challenges. The necessity for robust, weather-responsive
strategies within rail systems is validated by the model’s alignment
with actual weather data, confirming the importance of integrating
these strategies.

The study also revealed that environmental factors make diesel lo-
comotives and multiple units more susceptible to delays. A significant
clustering of delays between 80-90 min provides further insights for
operational interventions. Notably, Fridays are identified as peak risk
periods for delays, suggesting the need for refined scheduling strategies.
Finally, the correlation between Scotland’s geography and meteoro-
logical conditions, particularly flooding, is evident. This geographic and
meteorological link significantly influences the frequency and severity
of train delays, particularly in Scotland. Based on the previous findings,
several valuable implications can be identified. The integration of the
data-driven BN method into transportation risk assessment represents a
significant advancement in managing train delays. This study,
leveraging a comprehensive Network Rail dataset, highlights the
importance of addressing delays over 60 min due to their legislative and
economic impacts.

An interactive approach is essential, particularly during high-risk
months. The model’s alignment with actual weather data underscores
the need for robust, weather-responsive strategies in rail systems. Tar-
geted interventions, such as resource allocation, staff training, and
infrastructure fortification, are crucial for improving service reliability
and passenger satisfaction. Introducing novel RIFs enhances operational
risk assessment, emphasising the impact of weather-related incidents
like flooding. Recommendations include evaluating fleet compositions
and refining schedules, particularly on high-risk days like Fridays. In-
vestments in weather-resistant materials and early warning technologies
are vital for bolstering infrastructure resilience.

This research underscores the adaptability of this BN model for its
application in road transportation systems. The strength of this meth-
odology lies in its data-driven approach and thorough evaluation of risk
factors, rendering it equally applicable to road networks. By gathering
and assimilating data on road closures and disruptions caused by EWEs,
such as heavy precipitation, floods, and snow, similar to the method
employed for railway data, the BN model can proficiently forecast and
manage risks associated with road transportation. The model’s flexi-
bility and comprehensive analytical framework establish it as an indis-
pensable tool for boosting resilience across various modes of
transportation. The BN model’s predictive capacity offers a strategic
advantage, enabling anticipation and prevention of disruptions, thereby
driving economic gains and policy development. Identifying key delay
factors allows for strategic interventions to enhance punctuality and
safety, improving overall operational efficiency and passenger experi-
ences. This data-driven approach promises significant economic benefits
and policy advancements for the rail industry.
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5. Conclusions

This study successfully applied a data-driven BN methodology to
construct a robust model that can quantify and analyse the complex risks
associated with train delays across the UK. Utilising an extensive dataset
from Network Rail for the year 2022-2023, the research performed a
detailed data-cleaning process to identify and refine 13 RIFs for in-depth
analysis. The BN-based risk model facilitated sensitivity analyses, model
evaluations, and diverse scenario simulations, revealing key factors
influencing train delays. The results highlighted the intricate in-
teractions between different nodes and the impact of various states on
the target node, thereby enhancing strategies to mitigate train delays in
the UK rail network. Integrating BN methods into transportation risk
assessment significantly advances the understanding and management
of train delays. Using extensive data from Network Rail, the study
highlights the importance of addressing delays over 60 min due to their
legislative and economic impacts. Adopting a predictive and proactive
approach is crucial, especially during high-risk months identified by the
study, with the model’s alignment with actual weather data emphasising
the need for robust, weather-responsive strategies. It reveals that severe
flooding significantly impacts operational reliability, with December
being the highest-risk month for delays due to EWEs, followed by
January and July. The model also identifies a notable clustering of
80-90-minute delays, particularly on Fridays, suggesting a need for
targeted regional interventions. By integrating various RIFs, the BN
model enhances the precision of delay prediction and diagnosis.
Furthermore, it provides insights into the interactions between variables
such as train origin, destination, traction type, operator, incident reason,
month, and schedule type. Targeted interventions, such as pre-emptive
resource allocation, seasonal staff training, and infrastructure fortifica-
tion, are essential for mitigating delays in high-risk periods and regions.
The study’s focus on a 60-minute delay threshold influences the regu-
latory framework for passenger rights, advocating for preventive mea-
sures over post-delay compensations, thus enhancing service reliability
and passenger satisfaction. Operational risk assessment benefits from
introducing new RIFs, particularly those related to weather incidents
like flooding, and recommendations include evaluating fleet composi-
tions and identifying Fridays as peak delay periods to refine scheduling
and capacity management. Investments in weather-resistant materials,
better drainage systems, and early warning technologies are recom-
mended to strengthen rail infrastructure against weather incidents. This
holistic approach to risk management enhances operational efficiency
and passenger experiences, with the BN model’s predictive capacity
providing a strategic advantage for anticipating and preventing dis-
ruptions, ultimately driving economic gains and policy development.

Future research is recommended to integrate real-time data and
qualitative inputs from experts to enhance the model’s predictive ac-
curacy and adaptability. This approach will facilitate a more dynamic
response to evolving weather patterns, improving railway efficiency and
passenger satisfaction under varied operational conditions. By refining
the BN model and incorporating broader data sources, future in-
vestigations can offer a richer understanding of the factors driving train
delays, supporting the development of robust, resilient railway systems
equipped to handle the challenges posed by climate change. Beyond the
applied UK case analysis, the generic BN risk model can be tailored to
analyse weather-related train delays across a wider range of states
worldwide, particularly those facing increased levels of climate impact.

CRediT authorship contribution statement

Leila Kamalian: Conceptualization, Writing — review & editing,
Writing — original draft, Visualization, Validation, Software, Resources,
Methodology, Investigation, Formal analysis, Data curation. Huanhuan
Li: Writing - review & editing, Writing — original draft, Visualization,
Supervision, Software, Resources, Project administration, Methodology,
Formal analysis, Conceptualization. Mark Ching-Pong Poo: Writing —



L. Kamalian et al.

review & editing, Supervision, Formal analysis. Ana Bras: Writing —
review & editing, Validation, Supervision. Adolf K.Y. Ng: Writing —
review & editing, Validation, Supervision. Zaili Yang: Writing — review
& editing, Visualization, Supervision, Project administration, Method-
ology, Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:

Zaili Yang reports financial support was provided by Horizon Euro-

pean Research Council. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the European Research Council project
(TRUST CoG 2019 864724).

Data availability

Data will be made available on request.

References

[1]

[2]

[3]

[4]

[5]

(6]

[7

—

[8

—

9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

Binti Sa’adin SL, Kaewunruen S, Jaroszweski D. Operational readiness for climate
change of Malaysia high-speed rail. Proc Inst Civil Eng - Trans 2016;169:308-20.
https://doi.org/10.1680/jtran.16.00031.

Wang G, Xu T, Tang T, Yuan T, Wang H. A Bayesian network model for prediction
of weather-related failures in railway turnout systems. Expert Syst Appl 2017;69:
247-56. https://doi.org/10.1016/j.eswa.2016.10.011.

Binti Sa’adin SL, Kaewunruen S, Jaroszweski D. Heavy rainfall and flood
vulnerability of Singapore-Malaysia high speed rail system. Austr J Civil Eng 2016;
14:123-31. https://doi.org/10.1080/14488353.2017.1336895.

Ludvigsen J, Klaeboe R. Extreme weather impacts on freight railways in Europe.
Nat Hazards 2014;70:767-87. https://doi.org/10.1007/s11069-013-0851-3.
Wang T, Qu Z, Yang Z, Nichol T, Dimitriu D, Clarke G, et al. How can the UK road
system be adapted to the impacts posed by climate change? By creating a climate
adaptation framework. Transp Res Part D: Transp Environ 2019;77:403-24.
https://doi.org/10.1016/j.trd.2019.02.007.

Wang T, Qu Z, Yang Z, Nichol T, Clarke G, Ge Y-E. Climate change research on
transportation systems: climate risks, adaptation and planning. Transp Res Part D:
Transp Environ 2020;88:102553. https://doi.org/10.1016/j.trd.2020.102553.
Climate change adaptation. Network rail n.d. https://www.networkrail.co.uk/
sustainability/climate-change/climate-change-adaptation/(accessed January 18,
2024).

Cotterill D, Stott P, Christidis N, Kendon E. Increase in the frequency of extreme
daily precipitation in the United Kingdom in autumn. Weather Clim Extrem 2021;
33:100340. https://doi.org/10.1016/j.wace.2021.100340.

Wujie J, Le J, Lixin* Y, Cheng Z. Analyzing and predicting railway operational
accidents based on fishbone diagram and Bayesian networks. Tehnicki Vjesnik
2022;29:542-52. https://doi.org/10.17559/TV-20211102092922.

Li Z, Chen X, Bing H, Zhao Y, Ye Z. A comprehensive reliability assessment method
for existing railway bridges based on bayesian theory. Adv Civil Eng 2022;2022:
€3032658. https://doi.org/10.1155/2022/3032658.

Sharma J, Ravindranath NH. Applying IPCC 2014 framework for hazard-specific
vulnerability assessment under climate change. Environ Res Commun 2019;1:
051004. https://doi.org/10.1088/2515-7620/ab24ed.

Flood risk and coastal change. GOVUK 2022. https://www.gov.uk/guidance/
flood-risk-and-coastal-change (accessed January 18, 2024).

Publications | office of rail and road n.d. http://www.orr.gov.uk/search-publicatio
ns (accessed January 18, 2024).

Huang W, Zhang Y, Kou X, Yin D, Mi R, Li L. Railway dangerous goods
transportation system risk analysis: an interpretive structural modeling and
bayesian network combining approach. Reliab Eng Syst Saf 2020;204:107220.
https://doi.org/10.1016/j.ress.2020.107220.

Abdel-Mooty MN, Sasidharan M, Herrera M, Parlikad AK, Schooling J, El-
Dakhakhni W, et al. Strategic assessment of bridge susceptibility to scour. Reliab
Eng Syst Saf 2024;251:110334. https://doi.org/10.1016/].ress.2024.110334.

Sun X, Lin S, Feng D, Zhang Q. Post-disaster repair optimization method for
traction power supply system of electrified railways based on train operation loss.
Reliab Eng Syst Saf 2024;250:110301. https://doi.org/10.1016/j.
ress.2024.110301.

Palin EJ, Stipanovic Oslakovic I, Gavin K, Quinn A. Implications of climate change
for railway infrastructure. WIREs Clim Change 2021;12:e728. https://doi.org/
10.1002/wcc.728.

20

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Reliability Engineering and System Safety 262 (2025) 111189

Brazil W, White A, Nogal M, Caulfield B, O’Connor A, Morton C. Weather and rail
delays: analysis of metropolitan rail in Dublin. J Transp Geogr 2017;59:69-76.
https://doi.org/10.1016/j.jtrange0.2017.01.008.

Li H, Ren X, Yang Z. Data-driven Bayesian network for risk analysis of global
maritime accidents. Reliab Eng Syst Saf 2023;230:108938. https://doi.org/
10.1016/j.ress.2022.108938.

Shi L, Liu Y, Zhang Y, Liang J. Data-driven bayesian network analysis of railway
accident risk. IEEE Access 2024;12:38631-45. https://doi.org/10.1109/
ACCESS.2024.3376590.

Lesniak A, Janowiec F. Risk assessment of additional works in railway construction
investments using the Bayes network. Sustainability 2019;11:5388. https://doi.
org/10.3390/su11195388.

Xia Y, Van Ommeren JN, Rietveld P, Verhagen W. Railway infrastructure
disturbances and train operator performance: the role of weather. Transp Res Part
D: Transp Environ 2013;18:97-102. https://doi.org/10.1016/j.trd.2012.09.008.
Niu R, You S. Research on run-time risk evaluation method based on operating
scenario data for autonomous train. Acc Anal Prevent 2022;178:106855. https://
doi.org/10.1016/j.aap.2022.106855.

Chen X, Ma X, Jia L, Zhang Z, Chen F, Wang R. Causative analysis of freight railway
accident in specific scenes using a data-driven Bayesian network. Reliab Eng Syst
Saf 2024;243:109781. https://doi.org/10.1016/].ress.2023.109781.

He Q, Sun H, Dobhal M, Li C, Mohammadi R. Railway tie deterioration interval
estimation with bayesian deep learning and data-driven maintenance strategy.
Constr Build Mater 2022;342:128040. https://doi.org/10.1016/j.
conbuildmat.2022.128040.

Wang J, Gao S, Yu L, Zhang D, Xie C, Chen K, et al. Data-driven lightning-related
failure risk prediction of overhead contact lines based on Bayesian network with
spatiotemporal fragility model. Reliab Eng Syst Saf 2023;231:109016. https://doi.
org/10.1016/j.ress.2022.109016.

Ye F, Liu Q, Jin J, Zhang T, Sun W, Ge Y. A category classification based safety risk
assessment method for railway wagon loading status. Tehnicki Vjesnik 2023;30:
1809-20.

Shabbir MNSK, Wang C, Liang X, Adajar E. A novel toolbox for induced voltage
prediction on rail tracks due to AC electromagnetic interference between railway
and nearby power lines. IEEE Trans Ind Appl 2023;59:2772-84. https://doi.org/
10.1109/TIA.2023.3234935.

Mohsendokht M, Li H, Kontovas C, Chang CH, Qu Z, Yang Z. Enhancing maritime
transportation security: a data-driven Bayesian network analysis of terrorist attack
risks. Risk Anal 2025;45:283-306. https://doi.org/10.1111/risa.15750.

Wang T, Qu Z, Yang Z, Nichol T, Dimitriu D, Clarke G, et al. Impact analysis of
climate change on rail systems for adaptation planning: a UK case. Transp Res Part
D: Transp Environ 2020;83:102324. https://doi.org/10.1016/j.trd.2020.102324.
Dindar S, Kaewunruen S, An M, Sussman JM. Bayesian network-based probability
analysis of train derailments caused by various extreme weather patterns on
railway turnouts. Saf Sci 2018;110:20-30. https://doi.org/10.1016/j.
ssci.2017.12.028.

Wang J, Gao S, Yu L, Zhang D, Ding C, Chen K, et al. Predicting wind-caused floater
intrusion risk for overhead contact lines based on Bayesian neural network with
spatiotemporal correlation analysis. Reliab Eng Syst Saf 2022;225:108603. https://
doi.org/10.1016/j.ress.2022.108603.

Dindar S, Kaewunruen S, An M. A hierarchical Bayesian-based model for hazard
analysis of climate effect on failures of railway turnout components. Reliab Eng
Syst Saf 2022;218:108130. https://doi.org/10.1016/].ress.2021.108130.

Wang J, Peng Y, Lu J, Jiang Y. Analysis of risk factors affecting delay of high-speed
railway in China based on bayesian network modeling. J Transp Saf Secur 2022;14:
1022-43. https://doi.org/10.1080/19439962.2021.1890290.

Appoh F, Yunusa-Kaltungo A. Dynamic hybrid model for comprehensive risk
assessment: a case study of train derailment due to coupler failure. IEEE Access
2022;10:24587-600. https://doi.org/10.1109/ACCESS.2022.3155494.

Tiong KY, Ma Z, Palmqvist C-W. A review of data-driven approaches to predict
train delays. Transp Res Part C: Emerg Technol 2023;148:104027. https://doi.org/
10.1016/j.trc.2023.104027.

Fu Q, Easton JM. Prediction of weather-related incidents on the rail network:
prototype data model for wind-related delays in Great Britain. ASCE-ASME J Risk
Uncertainty Eng Syst Part A: Civil Eng 2018;4:04018027. https://doi.org/
10.1061/AJRUA6.0000975.

Jia Z, Donaldson DL, Ferranti E. Weather-related fragility modelling of critical
infrastructure: a power and railway case study. Proc Inst Civil Eng - Civil Eng 2024:
1-9. https://doi.org/10.1680/jcien.23.00115.

Reynolds E, Maher SJ. A data-driven, variable-speed model for the train timetable
rescheduling problem. Comput Oper Res 2022;142:105719. https://doi.org/
10.1016/j.cor.2022.105719.

Jaroszweski D, Hooper E, Baker C, Chapman L, Quinn A. The impacts of the 28
June 2012 storms on UK road and rail transport. Meteorol Appl 2015;22:470-6.
https://doi.org/10.1002/met.1477.

Chen X, Ma X, Jia L, Zhang Z, Chen F, Wang R. Causative analysis of freight railway
accident in specific scenes using a data-driven Bayesian network. Reliab Eng Syst
Saf 2024;243:109781.

Fan S, Yang Z. Accident data-driven human fatigue analysis in maritime transport
using machine learning. Reliab Eng Syst Saf 2024;241:109675. https://doi.org/
10.1016/j.ress.2023.109675.

Li H, Celik C, Bashir M, Zou L, Yang Z. Incorporation of a global perspective into
data-driven analysis of maritime collision accident risk. Reliab Eng Syst Saf 2024;
249:110187. https://doi.org/10.1016/j.ress.2024.110187.


https://doi.org/10.1680/jtran.16.00031
https://doi.org/10.1016/j.eswa.2016.10.011
https://doi.org/10.1080/14488353.2017.1336895
https://doi.org/10.1007/s11069-013-0851-3
https://doi.org/10.1016/j.trd.2019.02.007
https://doi.org/10.1016/j.trd.2020.102553
https://www.networkrail.co.uk/sustainability/climate-change/climate-change-adaptation/
https://www.networkrail.co.uk/sustainability/climate-change/climate-change-adaptation/
https://doi.org/10.1016/j.wace.2021.100340
https://doi.org/10.17559/TV-20211102092922
https://doi.org/10.1155/2022/3032658
https://doi.org/10.1088/2515-7620/ab24ed
https://www.gov.uk/guidance/flood-risk-and-coastal-change
https://www.gov.uk/guidance/flood-risk-and-coastal-change
http://www.orr.gov.uk/search-publications
http://www.orr.gov.uk/search-publications
https://doi.org/10.1016/j.ress.2020.107220
https://doi.org/10.1016/j.ress.2024.110334
https://doi.org/10.1016/j.ress.2024.110301
https://doi.org/10.1016/j.ress.2024.110301
https://doi.org/10.1002/wcc.728
https://doi.org/10.1002/wcc.728
https://doi.org/10.1016/j.jtrangeo.2017.01.008
https://doi.org/10.1016/j.ress.2022.108938
https://doi.org/10.1016/j.ress.2022.108938
https://doi.org/10.1109/ACCESS.2024.3376590
https://doi.org/10.1109/ACCESS.2024.3376590
https://doi.org/10.3390/su11195388
https://doi.org/10.3390/su11195388
https://doi.org/10.1016/j.trd.2012.09.008
https://doi.org/10.1016/j.aap.2022.106855
https://doi.org/10.1016/j.aap.2022.106855
https://doi.org/10.1016/j.ress.2023.109781
https://doi.org/10.1016/j.conbuildmat.2022.128040
https://doi.org/10.1016/j.conbuildmat.2022.128040
https://doi.org/10.1016/j.ress.2022.109016
https://doi.org/10.1016/j.ress.2022.109016
http://refhub.elsevier.com/S0951-8320(25)00390-4/sbref0024
http://refhub.elsevier.com/S0951-8320(25)00390-4/sbref0024
http://refhub.elsevier.com/S0951-8320(25)00390-4/sbref0024
https://doi.org/10.1109/TIA.2023.3234935
https://doi.org/10.1109/TIA.2023.3234935
https://doi.org/10.1111/risa.15750
https://doi.org/10.1016/j.trd.2020.102324
https://doi.org/10.1016/j.ssci.2017.12.028
https://doi.org/10.1016/j.ssci.2017.12.028
https://doi.org/10.1016/j.ress.2022.108603
https://doi.org/10.1016/j.ress.2022.108603
https://doi.org/10.1016/j.ress.2021.108130
https://doi.org/10.1080/19439962.2021.1890290
https://doi.org/10.1109/ACCESS.2022.3155494
https://doi.org/10.1016/j.trc.2023.104027
https://doi.org/10.1016/j.trc.2023.104027
https://doi.org/10.1061/AJRUA6.0000975
https://doi.org/10.1061/AJRUA6.0000975
https://doi.org/10.1680/jcien.23.00115
https://doi.org/10.1016/j.cor.2022.105719
https://doi.org/10.1016/j.cor.2022.105719
https://doi.org/10.1002/met.1477
http://refhub.elsevier.com/S0951-8320(25)00390-4/sbref0046
http://refhub.elsevier.com/S0951-8320(25)00390-4/sbref0046
http://refhub.elsevier.com/S0951-8320(25)00390-4/sbref0046
https://doi.org/10.1016/j.ress.2023.109675
https://doi.org/10.1016/j.ress.2023.109675
https://doi.org/10.1016/j.ress.2024.110187

L. Kamalian et al. Reliability Engineering and System Safety 262 (2025) 111189

[44] Zhou K, Xing W, Wang J, Li H, Yang Z. A data-driven risk model for maritime [46] Mohsendokht M, Li H, Kontovas C, Chang CH, Qu Z, Yang Z. Decoding
casualty analysis: a global perspective. Reliab Eng Syst Saf 2024;244:109925. dependencies among the risk factors influencing maritime cybersecurity: Lessons
https://doi.org/10.1016/j.ress.2023.109925. learned from historical incidents in the past two decades. Ocean Eng 2024;312:
[45] Joseph VR. Optimal ratio for data splitting. Stat Anal Data Min: ASA Data Sci J 119078. https://doi.org/10.1016/j.oceaneng.2024.119078.

2022;15:531-8. https://doi.org/10.1002/sam.11583.

21


https://doi.org/10.1016/j.ress.2023.109925
https://doi.org/10.1002/sam.11583
https://doi.org/10.1016/j.oceaneng.2024.119078

	Analysis of the impact of climate-driven extreme weather events (EWEs) on the UK train delays: A data-driven BN approach
	1 Introduction
	2 Literature review
	2.1 Climate change projections for the UK
	2.2 Weather-related delays in rail transport
	2.3 The application of BN in railway risk analysis

	3 Methodology
	3.1 Data collection and processing
	3.1.1 Data cleaning and data screening
	3.1.2 Network rail data

	3.2 RIFs identification
	3.3 Navigating BN configurations and TAN modelling
	3.4 Sensitivity analysis
	3.4.1 Mutual information
	3.4.2 Joint probability
	3.4.3 True risk influence (TRI)

	3.5 Model evaluation
	3.5.1 Model correctness verification
	3.5.2 Predictive capability evaluation
	3.5.3 Scenario analysis


	4 Results and discussions
	4.1 TAN modelling
	4.2 Sensitivity analysis
	4.2.1 Mutual information
	4.2.2 Joint probability
	4.2.3 True risk influence

	4.3 Model evaluation
	4.3.1 Model correctness verification
	4.3.2 Predictive capability evaluation
	4.3.3 Scenario analysis
	4.3.4 Consequence analysis using utility node
	4.3.5 Seasonal and regional variability in train delays

	4.4 Findings and implications

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


