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A B S T R A C T

Current port risk analyses primarily examine disruptions at an overall port level and their impacts
on the broader supply chain. However, they generally overlook how disruptions originating from
a specific local-level component within a multimodal port (e.g., liner shipping, feeder shipping,
rail transport, trucking, or yard operations) can propagate internally and affect other operational
sectors within the port. To address this gap, this study develops a novel microscopic-level System
Dynamics (SD) model to quantify these internal ripple effects explicitly for the first time. Unlike
existing macro-level SD studies in Supply Chain Risk Management (SCRM) that often oversimplify
internal causal relationships, the proposed microscopic SD model accurately captures direct
operational dependencies and interactions within a multimodal container terminal. Multiple
disruption scenarios derived from real-world accident records and field investigations are simu-
lated to assess their effects on port performance comprehensively. The results demonstrate that
disruptions such as quay crane failures and yard traffic congestion significantly impair opera-
tional efficiency. Notably, yard congestion triggers considerable delays in seaside operations and
leads to substantial container accumulation, illustrating the internal ripple effects clearly.
Detailed scenario analysis enhances the understanding of these complex ripple effects, supporting
robust and holistic strategies for improving port resilience.

1. Introduction

In recent years, the enhanced accessibility of Container Supply Chains (CSCs) has increasingly opened up international business and
trade opportunities in the logistics industry. Seaports, serving as pivotal nodes for container transhipment, emerge as crucial gateways
connecting different transportation modes, including rail, road, and sea (Zhou et al., 2022, Liu et al., 2022b). Therefore, the resilience
of port operations becomes paramount in maintaining the functionality of entire CSCs in the face of disruptions (Bai et al., 2023).
However, ports are regarded as elements characterised by high levels of uncertainty among all parties involved in the CSCs, owing to
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their susceptibility to diverse risks, such as climate change (Lucio et al., 2024), disease outbreaks, and economic upheavals (Jiang
et al., 2021). These events cause significant disruptions to the normal operations of multimodal ports. For instance, in November 2021,
severe rainfall in Canada triggered floods and landslides, disrupting terminal functions and causing vessel delays (Wang et al., 2023c).
Globally, the outbreak of the COVID-19 pandemic in December 2019 greatly disturbed port operations, spreading chaos in warehouses,
container reallocation, disruptions in hinterland traffic, and damage to infrastructure, ultimately halting supply chain operability (Gu
and Liu, 2023). Additionally, an analytical model has forecasted significant financial impacts due to port disruptions (Jung et al.,
2009). For example, a ten-day shutdown at the Ports of Los Angeles-Long Beach might lead to a daily loss between $770 million and
$1.3 billion. Moreover, port shutdowns can lead to a cascade of logistical challenges, such as bottlenecking of vessels, accumulation of
containers, delays in yard operations, and interruptions in hinterland transportation (Hossain et al., 2019).

Due to their unique geographical location and economic significance within the multimodal CSCs, the performance of ports under
various disruptions represents a critical bottleneck affecting the overall efficiency of CSCs (Liu et al., 2023b). As pivotal hubs that link
multiple modes of transport for transhipment operations, ports are also susceptible to transferring risk from one transportation mode to
another, also known as the “ripple effect” (Verschuur et al., 2022). For instance, port equipment failures could trigger the accumulation
of vehicles or vessels, leading to internal congestion that reduces the operational efficiency of other transportation modes and results in
overall underperformance (Lu et al., 2024). Previous research has indicated that indirect losses resulting from network effects may
surpass direct losses, as evident by multiple studies detailed in Table 1. Therefore, modelling the ripple effect across multimodal
container ports substantially benefits multiple stakeholders. Terminal operators can optimise the allocation of emergency resources,
prioritise strategic initiatives, and enhance overall responsiveness. For instance, when facing seaside congestion, the model can help
inform rational decisions on optimal resource allocation to different transport modes to realise the most cost-effective solution. In-
dividual transportation service providers can develop more resilient schedules, reducing delays and costs. Additionally, policymakers
can evaluate port infrastructure design and transportation networks from a broader perspective, supporting regional economic
development.

After a detailed literature review on the resilience of container shipping, three primary challenges that require attention emerge.
Firstly, unlike extensively researched topics such as marine accidents (Feng et al., 2024, Chen et al., 2025, Xian et al., 2025, Shu et al.,
2024) and transportation networks (Wang et al., 2023a, Xin et al., 2024), the critical role of ports as multimodal transshipment hubs
has not received sufficient attention in the majority of maritime risk and resilience analyses (Almutairi et al., 2019, Verschuur et al.,
2022, Nguyen et al., 2022). Secondly, existing literature on port resilience often adopts a macro-level perspective that fails to clarify
the relationships among variables related to internal port disruptions (Liu et al., 2023a, Wang andWang, 2023), resulting in vague and
logically inconsistent connections. Therefore, port disruptions should be analysed based on micro-level variables defined through
explicit cause-and-effect relationships. Although micro-level studies pose more significant challenges in terms of quantitative data
requirements and tolerance for data uncertainty, they are essential for the clarity and reliability of research findings. Thirdly, dis-
ruptions in multimodal ports not only impact the efficiency of the affected area but also cause substantial indirect impacts on global
container shipping (Xiao and Bai, 2022), regional distribution (Cao et al., 2025), port efficiency (Liu et al., 2023a), and supply chain
costs (Jiang et al., 2021) through ripple effects, which significantly affect supply chain resilience. Despite its significance, to the best of
the authors’ knowledge, these challenges remain under-researched. Bridging these gaps necessitates the development of a novel model
to depict the causal relationships of disruptions utilising quantitative data within a multimodal framework, focusing on a port-centric
perspective.

This study aims to pioneer a new methodology for modelling and analysing how port disruptions impact container terminal op-
erations, specifically focusing on handling general containers using various loading and unloading equipment across multiple trans-
portation modes. Given the dynamic and sensitive nature of port operations in response to disruptions, System Dynamics (SD) is
selected to simulate the complex dynamics of port operations, accounting for potential risk propagation and multiple causal re-
lationships. This selection is rooted in SD’s adeptness at representing complex causal relationships through feedback loops among
different components, capturing the system’s dynamic behaviours, and enabling the modelling of potential risks and uncertainties
across various scenarios. Therefore, an SD model is developed to simulate the operations and inter-sectional interactions within a
multimodal container port. Utilising quantitative data from real-world operations and accident records, scenarios that can best reflect
the impact of port disruptions are designed to demonstrate the feasibility of the model, enhancing the practical significance of our
research. This analysis not only illustrates the extent of the ripple effects caused by malfunctions, accidents, and congestion but also
provides insights into emergency measures, such as identifying critical risks and the first response period. Moreover, leveraging
historical data validates the model’s ability to predict the consequences of real-life disruption scenarios. Additionally, the model assists

Table 1
Indirect and direct costs of port disruptions.

Risk Type Affected Port Direct Damage Network Damage

Hurricane Katrina 2005 (Trepte and Rice
Jr, 2014)

Natural
Disaster

Ports near New
Orleans

1,833 fatalities; $108
billion

45% cargo tonnage; $882 million loss on
agriculture; food price surged

Typhoon Maemi 2004 (Lam et al., 2017) Natural
Disaster

Northeast Asia ports 107 injured; $4.8 billion 91 days port close; $96 million

Tropical Cyclone Debbie 2017 (Lenzen
et al., 2019)

Natural
Disaster

Northeast
Australian ports

14 fatalities; $2.67
billion

8,487 jobs; AUD 2,203 million

Labour strikes 2016–2017 (Gonzalez-
Aregall and Bergqvist, 2019)

Man-made Port of Gothenburg 10%-20% loss of
container volume

$496 million

J. Zhang et al.
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in identifying operational patterns by examining frequently occurring phenomena, further grounding our study in real-world appli-
cability. Furthermore, a comprehensive analysis of the dynamic evolution of risks aids various practical applications for different
stakeholders. For example, it facilitates the development of real-time monitoring systems, risk identification systems, and decision-
making frameworks for terminal operators to promptly detect and respond to disruptions. For example, if a damaged quay crane is
repaired within 72 h, it generally does not significantly impact the efficiency of port operations. When congestion occurs within the
port, prioritising the efficiency of internal truck operations becomes crucial. External truck drivers’ expected working time typically
extends to about 1 to 1.5 h without any intervention. It also supports individual transportation service providers with optimised
berthing schedules, train schedules, truck routing and schedules to avoid known risk areas and maintain timely operations. Addi-
tionally, it aids policymakers in making informed decisions regarding resource allocation, prioritising investments in infrastructure,
technology upgrades and personnel training programs. Implementing these measures promises to enhance sustainability and sets the
stage for profound, long-term transformations in supply chain management. These initiatives can fundamentally reshape industry
standards and practices by fostering greater awareness and adoption of digitalisation and green strategies.

The key contributions of this study are outlined as follows:

(1) Supported by historical records and real data, this research effectively examines the ripple effects of port disruptions across
various transportation modes, including liner shipping, feeder shipping, railway, and trucking.

(2) This research introduces a novel SD model engineered explicitly for port disruptive operations, represented through a causal
loop and stock and flow diagrams, aiming to simulate disruptions across diverse but connected transportation modes,
accurately.

(3) A micro-level modelling framework on port disruption with detailed variables and feedback relationships is built to accurately
reflect internal port dynamics under disruptions.

The research is structured as follows. Section 2 reviews the relevant literature, covering topics such as port disruptions, the
development of SD in port operation, and ripple effects. In Section 3, leveraging the actual operational logic of a container terminal, a
causal loop diagram and stock and flow diagrams are established, identifying key variables and Key Performance Indicators (KPIs)
based on both secondary data and expert opinions. Section 4 describes the data collection and model validation method, and performs
scenario analysis by employing accidental data. Section 5 compares the consequences of these risks and highlights significant insights
and implications. Finally, Section 6 summarises potential improvements and outlines a future research agenda.

2. Literature review

This section examines the state of the art in related research, analysing it to identify gaps and suggest possible enhancements to the
proposed model. Specifically, the literature addresses three key areas: port risk analysis, the application of SD in port operations, and
the ripple effects of port operational disruptions.

2.1. Port risk analysis

Disruptive factors affecting ports can be broadly categorised into external and internal causes (Li et al., 2024). External factors
include social threats (such as piracy and pandemics (Gu and Liu, 2023)), political instability, technological issues (e.g., cyber-attacks),
and industrial fluctuations (such as supply chain disruptions (Jiang et al., 2021)), and natural disasters (Lucio et al., 2024). Internal
factors, on the other hand, involve human error, equipment and infrastructure failures and organisational or managerial inefficiencies
(Cai et al., 2024). Due to their dynamic nature, external factors are often perceived as having a more severe impact on ports, making
them the most critical source of uncertainty. Therefore, existing studies tend to focus on the macro-level consequences of these dis-
ruptions, such as throughput reduction, delays in global trade, or indices of resilience and vulnerability. In doing so, the system
boundaries are often set at the supply chain level, rather than the port itself. Moreover, this approach tends to generalise port functions
and overlook the operational details of internal port systems.

However, numerous studies have shown that internal factors, particularly human and equipment-related issues, pose more frequent
disruptions to normal port operations (Wang and Wang, 2023). Currently, only a limited number of studies focus on internal port
disruptions and their impacts. Most of these studies rely entirely on qualitative data sources, primarily derived from expert judgment or
survey-based methods. For example, risk matrices were used to assess the impact of port disruptions on supply chains based on
structured questionnaires and expert surveys (Goerlandt and Islam, 2021), expert rating were used to assess the vulnerability of Tianjin
port (Cao and Lam, 2019), expert judgement and statistical analysis were used to assessment port infrastructure resilience (Wang et al.,
2023b). This limitation is largely attributed to the lack of detailed records of internal port accidents and the difficulty in accessing such
data. Therefore, these methods often fall short of capturing the actual operations and disruption dynamics of ports.

Moreover, given the inherently multimodal nature of ports, it is essential to account for all relevant transport modes to fully capture
the complexity of port operations and their interdependencies. Compared to single transportation modes, risk assessment of multi-
modal transport has not been studied extensively (He et al., 2021). For example, in the framework for estimating losses caused by
typhoons in seaports, only the shipping-related elements, such as berths and cranes, are considered (Cao and Lam, 2018). Moreover,
while some studies recognise the consequences of risks faced by ports due to their functions in multimodal transport networks
(Asadabadi and Miller-Hooks, 2020, Hosseini and Al Khaled, 2021), research into the mechanisms between these systems remains
unexplored.

J. Zhang et al.
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In summary, existing literature on port risk analysis tends to adopt a macro-level perspective, focusing on major losses. While
valuable, this approach often oversimplifies the complexity of internal port operations and overlooks critical aspects of container
transfer and handling across different transport modes. For example, internal disruptions, such as quay crane failures, yard congestion
and inventory accumulation, are underrepresented, despite their frequent occurrence and substantial impact on port performance.
Second, the feedback mechanism within the port system is often excluded or oversimplified, reducing the ability to capture the
cascading consequences of disruptions. To improve the accuracy and relevance of port risk assessments, it is essential to move beyond
generalised macro-level models and instead incorporate the interdependencies among multimodal transport modes from a micro-level
perspective.

2.2. Application of SD in port operations analysis

In comparison with other methods previously employed in port operation analysis, such as the heuristic method (Zohoori et al.,
2023b), focus group (Islam et al., 2021), mathematical modelling (Xiao and Bai, 2022, Zhen et al., 2022), case study (Rogerson et al.,
2022, Kim et al., 2021), network theory (Rousset and Ducruet, 2020). Simulation is a powerful tool for understanding interactions in
complex systems, monitoring system transitions, and aiding in strategic decision-making. SD, Agent-Based Modelling (ABM) (Ivanov,
2017), Discrete Event Simulation (DES), and Monte Carlo Simulation are among the standard simulation methods used to capture the
dynamics of real systems (Ghadge et al., 2022). Their advantages and disadvantages in the context of modelling port disruptions are
summarised in Table 2.

The objective of this study is to simulate the ripple effect within a port system under various disruption scenarios. This requires a
comprehensive understanding of the interactions of internal operational flows between related variables. To effectively capture and
assess such complexity, a system thinking approach based on SD is most appropriate (Sterman, 2010). Fundamentally, past research
demonstrates that SD is a robust choice dealing with the complexity andmulti-dimensional interactions of a real-world system (Ghadge
et al., 2022, Ivanov, 2017). Additionally, SD is particularly effective in illustrating and quantifying complex systems as they evolve, by
establishing the causal connections among various factors, risks, and their outcomes (Ghadge et al., 2022, Bell et al., 2023). Unlike
many mathematical models, which could lead to unsolvable issues due to restrictive algorithms, SD is praised for its straightforward
and realistic approach to demonstrating both linear and nonlinear behaviours (Er Kara et al., 2020). Moreover, SD facilitates
scenario-based sensitivity analyses (Valaei sharif et al., 2023a), enabling the evaluation of potential scenarios by adjusting variables to
reflect different risk conditions.

While SD has been increasingly used to simulate disruptions in port and logistics systems, most existing studies adopt a macro-level
perspective, focusing on strategic policy (Kwesi-Buor et al., 2019, Lin et al., 2022, Liu et al., 2023a, Bell et al., 2023, Xin et al., 2025).
These models typically rely on statistically observed patterns and seldom reflect the underlying operational logic and actual feedback
mechanisms within port subsystems. The lack of causal clarity and micro-level variables limits the practicality of such models for
operational decision-making. This study addresses these gaps by developing an SDmodel from amicro-level perspective, incorporating
real-world variables and causal feedback loops. In doing so, the study contributes a novel simulation framework for understanding
disruption dynamics across multimodal port operations.

2.3. Ripple effects in port operations

The concept of a ripple effect framework, which includes redundancy, flexibility, and resilience analysis, was first introduced in
2018 (Dolgui et al., 2018). Subsequently, in the field of interconnected supply chain networks, twomodels for studying the ripple effect
were proposed: the Functional Ripple Effect (FRE) model, characterised by overload and underload failures (Liu et al., 2022a), and the
Structural Ripple Effect (SRE) model, characterised by loss-dependency and isolation failures (Shi et al., 2021). The ripple effect refers
to the propagation of disruptions from one node to other parts of the supply chain network, potentially impacting the entire network
due to supply chain functions’ inherent interconnectivity and interdependency. It is also known by terms such as “risk diffusion”,
“snowball or domino effect”, “cascading effect”, and “disruption propagation” (Ghadge et al., 2022). Complementary concepts include
the bullwhip effects, where minor fluctuations at the end-consumer amplify step by step through supply chains, causing significant
disruptions among upstream suppliers, and the risk pooling effect, which reduces demand variation by centralising risks to achieve
economies of scale.

Current literature on the ripple effect predominantly treats the port as a single node within the broader supply chain or shipping

Table 2
Comparison between different simulation methods.

ABM (Ivanov, 2017) DES Monte Carlo SD (Ghadge et al., 2022)

System-wide feedback ​ ​ ​ √
Chain reaction ​ √ ​ √
System evolution √ ​ ​ √
Dynamic interactions √ ​ ​ √
Causal relationships √ ​ ​ √
Scenario Analysis √ √ √ √
Non-liner relation √ ​ ​ √
Accumulation effects √ √ ​ √

J. Zhang et al.
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route. Prior examples include optimising container assignment strategies through port skipping (Achurra-Gonzalez et al., 2019),
assessing the geographic impact of port disruptions on surrounding supply chain operations (Hossain et al., 2020), evaluating the role
of ports within international trade lanes (Xiao and Bai, 2022), analysing the downstream consequences of port failures along the same
shipping route (Guo et al., 2023, Bell et al., 2023) and modelling the global reallocation of container cargo flows (Cao et al., 2025).

Based on the above definition, ripple effects can emerge in any interconnected system under disruption. Despite ports functioning
as complex and tightly integrated entities that provide multiple interrelated services, internal ripple effects within port systems remain
largely understudied. Existing limited research only focused on individual transport modes (Cai et al., 2023, Cai et al., 2024), without
adequately addressing the multimodal nature of port operations or the cross-modal propagation of disruptions. This oversight limits a
thorough understanding and effective mitigation of potential disruptions. To address this gap, this paper investigates the roles of
various transportation modes in propagating disruptions and examines explicitly their influence on the efficiency of the port system.

3. Methodology

This section outlines the methodology for developing a simulation of an SD model focusing on the operations of a multimodal
container terminal, specifically examining the impact of port disruptions across various transportation sectors within the terminal and
their ripple effect. The construction of the SD model involves six generic steps, as shown in Fig. 1. Firstly, the research hypothesis is
formulated based on industry experience and current literature, establishing the system-wide boundary. Secondly, the model
framework follows the hypotheses in Section 3.1. Thirdly, a causal loop diagram illustrates the feedback structure and visualises the
interrelationships between relevant variables. This diagram is then transformed into a stock and flow diagram, which formulates
equations describing the interaction between factors. Subsequently, model verification and validation are conducted to ensure the
model’s rigour. Additionally, scenario analysis is performed to identify influential parameters using actual data (Bell et al., 2023). The
methodological novelties lie in how such steps are tailored and adapted to simulate the ripple effect of disruptions on a multimodal
container terminal in the ensuing sub-sections. For this study, Vensim PLE software is employed to draw causal loop diagrams and
stock and flow diagrams, conduct verification and validation tests, and run simulations.

3.1. Model hypothesis

Before the model is fully introduced, the following hypotheses are set by both field investigation and past literature (Jin et al., 2021,
Li et al., 2022, Liu et al., 2023a), and listed as follows:

1. Liner shipping and feeder shipping are modelled separately due to their different requirements for loading and unloading resources
and their distinct functions in container collection and distribution. Large liner vessels (long-haul services) visit transhipment ports,
while small feeder vessels connect the hub with neighbouring ports (feeder ports) in surrounding areas (Jin et al., 2021).

Accident 
Reports

Exogenous 
variables (input)

Key performance 
indicator (output)

Causal loop 
diagram

Liner shipping 
subsystem

Feeder shipping 
subsystem

Railway 
subsystem

Trucking 
subsystem

Container inventory 
subsystem

Verification 
and validation

Subsystem factors 

Subsystem loops 

Variable 
relationships 
quantification

Stock and flow 
diagrams

Model 
hypothesis

Scenario 
Analysis

Model 
Framework

Subsystems

Behaviour 
Analysis

Impact Analysis

Field 
investigation

Port Disruption 
Simulation

Disruptive 
Variables

Expert 
Interviews

Extreme condition 
test

Behaviour 
reproduction test

Theoretical 
analysis

Expert validation

Disruptive 
Scenarios

Input

Output

Fig. 1. Flowchart of the work.
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2. As a transportation hub, inbound containers are imported by liner vessels and further distributed through feeder vessels, trains, and
trucks. Conversely, outbound containers are accumulated in storage yards by feeder vessels, trains, and trucks before being dis-
patched by liner vessels (Jin et al., 2021).

3. Internal transportation within the container terminal is facilitated by internal trucks, which assist in the loading and unloading
operations of liner vessels, feeder vessels, trains, and external trucks (Li et al., 2022).

4. The yard area’s operational vehicles consist of internal and external trucks. Internal trucks are prioritised over external trucks,
maintaining a more stable operational efficiency and remaining unaffected by the number of external trucks. Therefore, the waiting
time of internal trucks is not considered (Li et al., 2022).

5. Port resources, such as the number of berths, cranes and internal trucks restrict the efficiency of loading and unloading operations
at the port (Liu et al., 2023a).

6. The general propagation mechanism within the port is assumed to operate as follows: yard congestion leads to increased truck
density, which prolongs the travel time for internal trucks to reach other areas for loading and unloading. Because the loading and
unloading operations in other areas require the cooperation of internal trucks, inefficiencies in internal truck operations lead to
inefficiencies in these areas, causing overall inefficiency throughout the port.

3.2. Model framework

Nowadays, container terminals’ equipment, planning layouts, and operational procedures are highly standardised. Therefore, data
collected from a real case study of a typical multimodal container terminal can be representative and used to create a conceptual
generic multimodal container terminal model. From the perspective of multimodal transhipment operations, the port system is
modelled using a modular approach encompassing five subsystems: liner shipping, feeder shipping, railway, trucking, and container
yard. Liner shipping is responsible for large transoceanic shipments, while feeder shipping facilitates the regional distribution of these
cargoes to coastal areas with smaller demand. Railways connect ports to inland destinations over long distances. Trucking is the most
common component of the multimodal transportation network due to its flexibility and crucial role in last-mile delivery. Additionally,
many port areas are dedicated to container yards, which provide essential buffering and storage capabilities. Therefore, they are
selected as subsystems. Key risks integrated into this model include equipment failure, resource unavailability, and traffic congestion.
Additionally, the model integrates the number of vehicles associated with each mode and the degree of port resource utilisation to
assess the port performance. Container handling in the yard is a critical component of port operations across all subsystems, thereby
interlinking them. As a result, inefficiencies in any subsystem can propagate to the others (Cai et al., 2024, Liu et al., 2023a).

All relevant concepts in the SD model are listed in Table 3. These factors were initially selected through a literature review and
subsequently validated through field investigations and expert interviews.

3.3. Causal loop diagram

The causal loop diagram illustrates the interactions among different transportation subsystems under disruptions. The cause-and-
effect relationships are presented using arrows to specify the connections between two variables. The origin of an arrow signifies the
causative factor, while the arrowhead indicates the effect factor. Additionally, the symbols ‘+’ and ‘− ’ define the effect of two factors,
which can be positive or negative. A positive symbol is used when both factors exhibit the same tendency, while a negative symbol is
used when they demonstrate opposite tendencies. Similarly, when a loop is composed of multiple factors, the symbols ‘+’ and ‘− ’ are
utilised to reflect the positive or negative nature of the loop.

The causal loops and the variables within different subsystems are identified and listed through field investigation and past
literature, as shown in Table 4. Then, a causal loop diagram is drawn in detail, as seen in Fig. 2. The explanations provided below detail
the cause-and-effect logic within each loop, emphasising the role of these variables in port operations and their critical impact on port
efficiency.

In Table 4, R1 is a feedback loop focusing on the liner shipping subsystem, reflecting the causal relationships related to resource
limitations. In liner shipping operations, the number of available resources limits service efficiency because the loading and unloading
of vessels must be operated at designated berths with relevant equipment. High efficiency expedites vessel departure rates, decreasing

Table 3
Classification of factors.

Subsystem Factors Reference

Liner shipping Arrival and departure rate of liner vessels, loading and unloading resources (berths, cranes),
handling efficiency, capacity

(Zhou et al., 2022, Liu et al., 2023a, Xu
et al., 2021)

Feeder shipping Arrival and departure rate of feeder vessels, loading and unloading resources (berths, cranes),
handling efficiency, capacity

(Lee and Jin, 2013, Emde and Boysen,
2016)

Railway Arrival and departure rate of trains, loading and unloading resources (tracks, cranes), handling
efficiency, and capacity.

(Xu et al., 2021, Schulz et al., 2021, Liu
et al., 2023a)

Truck Arrival and departure rate of external trucks, internal trucks, yard cranes, handling efficiency,
travelling speed, capacity, travelling distance

(Liu et al., 2023a, Li et al., 2022, Li
et al., 2018)

Container
Inventory

Container volume, export rate, import rate, cutoff time (Li et al., 2023, Jin et al., 2021, Lin
et al., 2022)

J. Zhang et al.



Transportation Research Part E 202 (2025) 104264

7

waiting vessels and releasing more available resources. R2 also includes variables in the liner shipping subsystem and represents a
cyclic causal relationship involving internal trucks. Efficient loading and unloading operations also require coordination with internal
trucks to move containers between the seaside and the container yard. Therefore, highly efficient operations demand adequate internal
truck support. To maintain the pace, an increase in the number of internal trucks may induce higher internal truck density, subse-
quently leading to traffic jams. Moreover, traffic congestion leads to unwanted delays, extending internal trucks’ turnaround time and
reducing operational efficiency. Without adequate support from internal trucks, liner vessels’ loading and unloading efficiency will
diminish. Similarly, R3 (feeder shipping), R5 (railway), and R7 (trucking) share the same logic as R1. R4 (feeder shipping) and R6

Table 4
Details of loops.

Notation Subsystem Detail

R1 Liner shipping Liner vessels density →− Available resource for liner vessels →+ Liner vessels loading and unloading efficiency →+ Liner vessels
departure →− Liner vessels density

R2 Liner shipping Liner vessels loading and unloading efficiency →+ Internal trucks for liner vessels →+ Truck density →− Liner vessels loading and
unloading efficiency

R3 Feeder
shipping

Feeder vessels density →− Available resource for feeder vessels →+ Feeder vessels loading and unloading efficiency →+ Feeder vessels
departure →− Feeder vessels density

R4 Feeder
shipping

Feeder vessels loading and unloading efficiency →+ Internal trucks for feeder vessels →+ Truck density →− Feeder vessels loading and
unloading efficiency

R5 Railway Trains density →− Available resource for trains →+ Trains loading and unloading efficiency →+ Trains departure →− Trains density
R6 Railway Trains loading and unloading efficiency →+ Internal trucks for trains →+ Truck density →− Trains loading and unloading efficiency
R7 Truck Trucks density →− Available resource for trucks →+ Trucks loading and unloading efficiency →+ External trucks departure →− Trucks

density
R8 Truck Truck density →+ Traffic jam →− Trucks loading and unloading efficiency →+ External trucks departure →− Truck density

Fig. 2. Causal loop diagram.
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(railway) share the same logic as R2.
R8 shows the cyclic relationship of how truck density affects the loading and unloading efficiency of external trucks and internal

trucks. Truck operations at a container terminal are divided into external trucks and internal trucks based on their operational scope.
External trucks conduct delivery or pick-up services between the port and the hinterland, requiring pre-arranged appointments before
entering the terminal. Internal trucks are mainly responsible for transporting containers between storage yards and other locations
inside the terminal. The increased density of external and internal trucks can cause traffic jams, prolonging their turnover time and
dampening their working efficiency. As a result, the departure rate of external trucks slows down, causing a continuous accumulation
within the container yard and leading to a further increase in the density of container trucks.

As a key variable, truck density influences not only the operations of external trucks through R7 and R8 but also the efficiency of
other transportation modes through R2 (liner shipping), R3 (feeder shipping) and R6 (railway) via the operations of internal trucks.

3.4. Stock and flow diagram

Elaborating on the causal loop diagram, the stock and flow diagram quantifies the variables and organises them into five separate
diagrams which represent five subsystems, as depicted in Figs. 3-7. These specific, quantifiable variables are derived from past
literature, field research and expert opinions, as depicted in Table 5-6.

The SD model categorises the variables into four types: level, rate, constants, and auxiliary variables. Level variables, or stock
variables, are depicted as rectangular boxes. They calculate cumulative values over time, representing the difference between inflows
and outflows. Rate variables, illustrated with arrows entering and exiting cloud-shaped symbols, indicate the rate of change for level
variables. Constants are parameters with fixed values that serve as inputs for the model. Auxiliary variables play intermediate roles,
linking level, rate, and constant variables and helping to articulate the underlying mechanisms. Additionally, based on the functions of
variables within the model’s logical structure, the KPIs summarised in Table 5 serve as outputs. Constant variables, also known as input
variables, are listed in Table 6, while the remaining variables are classified as intermediate variables.

To assess how operational disruptions affect port efficiency across various transportation subsystems, KPIs are selected to capture
delays (e.g., queue length), efficiency (e.g., turnaround time), and capacity stress (e.g., container volume), as shown in Table 5. These
KPIs are drawn from a comprehensive literature review and authoritative industrial sources. Specifically, they include reports, indices,
and public data provided by international organisations (The World Bank), consulting firms (Drewry), and port authorities (e.g., Port
of Long Beach). Similarly, a set of exogenous variables are derived from field investigations and expert consultations from a major
container terminal. To avoid redundancy, details about data collection, including their values and sources, typically covered in Section
4.1, are outlined in Table 6 instead. Variables are included if they (1) directly influence operational bottlenecks or resource constraints;
(2) participate in at least one feedback loop; or (3) represent quantifiable port efficiency. Transportation modes are denoted asm = {l,
f , r, t, i} which stands for liner shipping, feeder shipping, railway, external trucks and internal trucks.

Fig. 3. Liner shipping subsystem.
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Fig. 4. Feeder shipping subsystem.

Fig. 5. Railway subsystem.
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3.4.1. International liner shipping subsystem
The international liner shipping subsystem concentrates on the operations of long-distance liner vessels arriving, unloading,

loading, and departing on major trade routes, as shown in Fig. 3. Such vessels play a crucial role in connecting major ports worldwide
and collaborate with feeder vessels to facilitate the collection and distribution of containers.

First, the stock variables represented by boxes are explained as follows. 1) The number of vessels waiting at anchorage gradually
accumulates with the arrival of new vessels and diminishes through berthing. 2) The number of vessels engaged in unloading and
loading operations at the berth is determined by the difference between vessels currently capable of berthing and those completing
loading and unloading operations. 3) The number of departure vessels is accumulated with the rate of vessels finishing loading and
unloading activities. These level variables are calculated by the integration of the difference between the connected incoming and
outgoing rate variables, indicated by arrows with double lines pointing to and from them.

1. Liner ships berthing rate (Pl)

Common industrial knowledge indicates that if all berths are unavailable, arriving vessels must wait at anchorage until they can
undergo loading and unloading operations, therefore the number of available berths (Bal) is calculated by subtracting the number of
berths currently occupied by vessels (Ll) from the total number of berths designed for liner vessels (Bl). Thus, the berthing rate is
influenced by the lesser of two quantities: the number of available berths (Bal) or the number of waiting vessels (Al) and berthing time
for liner vessels (Dlb). Therefore, the berthing rate can be calculated as follows:

Pl =

⎧
⎪⎨

⎪⎩

min(Bal,Al)
Dlb

, Bal > 0,Al > 0

0, else
(1)

Bal= Bl − Ll (2)

where Bl is the number of berths for liner vessels, Ll is the number of liner vessels at berthing under loading and unloading operations.

1. Liner ships loading and unloading rate (μl)

Due to the parallel cooperation between internal trucks and quay cranes, the overall loading and unloading time for a liner vessel
(Dll) is determined by the maximum time required, causing the “bottleneck effect”. This time is calculated by dividing the number of
containers to be loaded and unloaded by the number of loading equipment and the efficiency of this equipment. Then the loading and
unloading rate is defined as the number of liner vessels processed per unit of time. It quantifies the efficiency of port operations
concerning how quickly liner vessels can be processed. The condition Ll > 0 ensures that the rate is only calculated when vessels are
being processed; otherwise, the rate is zero, indicating no operations. The loading and unloading time for a liner vessel (Dll) is as

Fig. 6. Trucking subsystem.
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follows:

Dll = max(
Cl

ηlEl
,
Cl
AIlηi

) (3)

where Cl is the volume of containers requiring loading and unloading, El is the number of quay cranes, ηl is the efficiency of quay cranes
operations, AIl is the number of actual internal trucks, and ηi is the efficiency of internal truck operations. The loading and unloading
rate for liner vessels can be modelled as:

Fig. 7. Containers inventory subsystem.
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μl =

⎧
⎪⎨

⎪⎩

Ll
Dll

, Ll > 0

0, else
(4)

3.4.2. Feeder shipping subsystem
Feeder vessels transport containers between neighbouring ports, forming a hub-and-spoke structure, thus facilitating collection and

distribution services for liner vessels. Due to the different positions in the transportation network structure, they are simulated in
different sectors. However, the operational dynamics of the feeder shipping system and its impact on other modes of transportation
parallel those of the international shipping subsystem. To avoid redundancy, the formulas related to feeder shipping are not reiterated,
and only the diagram is provided as shown in Fig. 4.

3.4.3. Railway subsystem
A significant volume of containers is transported by railway via train tracks. Fig. 5 shows the details of the railway subsystem. The

railway subsystem operates under the discipline of train arrival, potential waiting periods if no transhipment tracks are available,
transhipment processes, and departure.

1. Train process rate (Pr)

Different from shipping, the transit time of a container train from the waiting area to its designated loading and unloading track is
very short, rendering it negligible. Thus, the equation for calculating the process rate can be expressed as follows:

Pr =
{
min(Bar,Ar), Bar > 0,Ar > 0

0, else (5)

Bar= Br − Lr (6)

where Pr is train process rate, Bar is the number of available transhipment tracks, Ar is the number of waiting trains, Br is the number of
transhipment tracks, and Lr is the number of trains under loading and unloading operations.

2. Other variables

Besides the train process rate, the calculation of stock variables such as the number of waiting trains, the number of trains under
loading and unloading operations (Lf ), and the number of trains finished loading and unloading (Fr) is the same as explained in section
3.4.1. The loading and unloading rate for trains (μr) follows the same logic as Equation (4) in the liner shipping subsystem.

3.4.4. Truck subsystem
External truck operation can be generalised into four phases: arrival, transit within the port, container loading and unloading, and

departure, as shown in Fig. 6.

3.5. Truck velocity (v)

Traffic speed is depicted based on the fundamental road traffic theory, including traffic flow, traffic density, and vehicle speed
(Greenshields et al., 1933), as shown below:

Table 5
KPIs. (Output variables).

Category Notation Corresponding index Unit Literature Industry

Liner vessels Al Number of Liner Ships at
Anchorage

Vessels (Liu et al., 2023a, Zhou et al., 2022) (The World Bank, 2023, Drewry Maritime
Research, 2023)

Feeder
vessels

Af Number of Feeder Ships at
Anchorage

Vessels (Emde and Boysen, 2016, Jin et al.,
2021)

(The World Bank, 2023, Drewry Maritime
Research, 2023)

Trains Ar Number of Waiting Trains Trains (Schulz et al., 2021) (The World Bank, 2023, Drewry Maritime
Research, 2023)

Trucks At Number of External Trucks in
Port

Trucks (Liu et al., 2023a, Xu et al., 2021, Li
et al., 2018)

(The World Bank, 2023, Port of Long
Beach, 2025)

Dtw External Truck Working Time Hour (Li et al., 2018, Sun et al., 2022) (The World Bank, 2023, Port of Long
Beach, 2025)

Containers V Volume of Containers in Port Containers (Liu et al., 2023a, Lin et al., 2022, Xu
et al., 2021)

(Port of Long Beach, 2025)
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Table 6
Exogenous variables (Input variables).

Notation Variable Unit Estimation Source Reference

Liner Shipping
system

λ́l Liner Ships Arrival Poisson
Mean

Vessels/Hour 1.5 Real data (Bell et al., 2023)

Bl Number of Liner Berths Vessels 16 Real data (Liu et al., 2023a, Zhou et al.,
2022, Lin et al., 2022, Xu
et al., 2021)

El Number of Quay Cranes for
Liner Ships

Cranes 6 Real data (Liu et al., 2023a, Xu et al.,
2021)

Cl Number of Containers per
Liner Ship

Containers RANDOM
UNIFORM
(1000, 3000)

Statistics
representation
derived from real data

(Zhou et al., 2022, Emde and
Boysen, 2016)

ηl Quay Crane Handling
Efficiency for Liner Ships

Containers/
Hour/Cranes

30 Real data (Liu et al., 2023a, Lin et al.,
2022, Jin et al., 2021)

Dlb Liner Ships Berthing Time Hour 1 Real data (Zhou et al., 2022)
Feeder shipping

system
λ́f Feeder Ships Arrival

Poisson Mean
Vessels/Hour 0.3 Real data (Bell et al., 2023, Lee and Jin,

2013)
Bf Number of Feeder Berths Vessels 3 Real data (Liu et al., 2023a, Zhou et al.,

2022, Lin et al., 2022, Xu
et al., 2021, Lee and Jin, 2013)

Ef Number of Quay Cranes for
Feeder Ships

Crane 3 Real data (Liu et al., 2023a, Xu et al.,
2021)

Cl Number of Containers per
Feeder Ship

Containers RANDOM
UNIFORM(500,
1000)

Statistics
representation
derived from real data

(Zhou et al., 2022, Emde and
Boysen, 2016, Jin et al., 2021)

ηf Quay Crane Handling
Efficiency for Feeder Ships

Containers/
Hour/Cranes

30 Real data (Liu et al., 2023a, Lin et al.,
2022, Jin et al., 2021)

Dfb Feeder Ships Berthing
Time

Hour 1 Real data (Zhou et al., 2022)

Train system λ́r Train Arrival Poisson Mean Trains/Hour 1.2 Statistics
representation
derived from real data

(Schulz et al., 2021)

Br Number of Transhipment
Tracks

Trains 4 Real data (Schulz et al., 2021)

Er Number of Cranes for
Trains

Cranes 4 Real data (Liu et al., 2023a)

Cr Number of Containers per
Train (actual containers
carried by a train)

Containers RANDOM
UNIFORM(100,
150)

Statistics
representation
derived from real data

(Xu et al., 2021, Schulz et al.,
2021)

ηr Train Crane Handling
Efficiency

Containers/
Hour/Cranes

30 Real data (Liu et al., 2023a)

Trucking system λ́t Truck Arrival Poisson
Mean

TEU/Hour 500 Real data (Sun et al., 2022, Li et al.,
2018)

st Distance of External Truck
Route

Km 5 Real data (Li et al., 2022)

si Distance of Internal Truck
Route

Km 3 Real data (Lee and Jin, 2013, Li et al.,
2022)

ρj Truck Density in Jam Trucks/Km 60 Average real data (Greenshields et al., 1933)
ρc Truck Density Critical Trucks/Km 20 Average real data (Greenshields et al., 1933)
vf Truck Free Velocity Km/Hour 30 Average real data (Greenshields et al., 1933)
Dil Internal Trucks Loading

and Unloading Time
Hour 0.05 Average real data (Sun et al., 2022, Li et al.,

2022)
Ey Number of Yard Cranes Cranes 48 Real data (Liu et al., 2023a, Xu et al.,

2021, Li et al., 2018)
ηy Yard Crane Working

Efficiency
Containers/
Hour/Cranes

30 Real data (Liu et al., 2023a, Li et al.,
2018)

Ct External Trucks Capacity Containers/
Trucks

2 Real data (Li et al., 2022)

Ci Internal Trucks Capacity Containers/
Trucks

2 Real data (Li et al., 2022)

Ei Max Number of Internal
Trucks

Trucks 60 Real data (Li et al., 2022)

at Coefficient Dimensionless − 1.5 Real data (Huynh et al., 2004)
bt Coefficient Dimensionless 0.0045 Real data (Huynh et al., 2004)

Container
import and
export
system

α Exported Containers Cutoff
Time

Hour 72 Average real data (Li et al., 2023)

β Imported Containers
Pickup Time

Hour RANDOM
UNIFORM(72,
120)

Statistics
representation
derived from real data

(Jin et al., 2021)

xf Feeder Ships Export Ratio Dimensionless 0.5 Average real data (Lin et al., 2022)

(continued on next page)
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v =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

1 − e−
ρj
ρc

)

, ρ < ρc

vf
(

1 −
ρ
ρj

)

, ρ < ρj

vf ln
(

ρ
ρj

)

, ρ ≥ ρj

(7)

In the equation, v represents the current truck velocity, vf denotes the free-flow velocity when there is no traffic jam, ρ is the current
traffic density, and ρc is the level of traffic density at which traffic flow is maximised. It represents a tipping point: below this level,
vehicles generally have the freedom to manoeuvre and accelerate, leading to optimal flow conditions. Above this density, interactions
between vehicles becomemore frequent, leading to a decrease in overall traffic speed and flow. ρj is the jam density, which refers to the
maximum traffic density beyond which traffic flow breaks down completely, leading to a traffic jam.

3.6. Truck departure rate (μt)

The departure rate of a truck is determined by the total working time spent inside the terminal, which consists of loading and
unloading time as well as travel time.

The loading and unloading time for an external truck (Dtl) is calculated based on the number of cranes, their efficiency, and truck
capacity. Preview studies (Huynh et al., 2004) provide empirical data and models that describe how changes in yard equipment
availability or efficiency can affect Dtl, this relationship is characterised as follows:

Dtl =
1

at + btEyηy
Ct (8)

where Ct is the capacity of external trucks, Ey is the number of yard cranes, ηy is the working efficiency of the yard cranes, at and bt are
the coefficients. Subsequently, the total working time (Dtw) is calculated by adding together the loading and unloading time with the
travel time (Dtt) within the terminal. The travel time is determined by the distance travelled (st) and the speed of the external trucks.
Finally, the departure rate of external trucks (μt) is defined as the ratio of the number of trucks to their total working time, assuming
that trucks are present. The equations are as follows:

μt =

⎧
⎪⎨

⎪⎩

At
Dtw

, At > 0

0, else
(9)

Dtw= Dtt +Dtl (10)

Dtt =
st
v

(11)

where At represents the number of external trucks in the port.

3.7. Number of actual internal trucks (AIi)

During loading operations, internal trucks collect containers from storage yards and position them under cranes for subsequent
loading onto vessels or trains. Conversely, during unloading operations, internal trucks retrieve containers from under the cranes and
transport them to storage yards. Because internal trucks need to coordinate with liner shipping, feeder shipping, and railway, their

Table 6 (continued )

Notation Variable Unit Estimation Source Reference

xr Train Export Ratio Dimensionless 0.5 Average real data (Lin et al., 2022)
xt Trucks Export Ratio Dimensionless 0.5 Average real data (Lin et al., 2022)
xl Liner Ships Export Ratio Dimensionless 0.35 Average real data (Lin et al., 2022)
yf Feeder ships capacity Containers/

Vessels
RANDOM
UNIFORM(500,
1000)

Statistics
representation
derived from real data

(Zhou et al., 2022)

yr Trains Capacity Containers/
Trains

RANDOM
UNIFORM(100,
150)

Statistics
representation
derived from real data

(Xu et al., 2021, Schulz et al.,
2021)

yl Liner Ships Capacity Containers/
Vessels

RANDOM
UNIFORM
(1000, 3000)

Statistics
representation
derived from real data

(Zhou et al., 2022)
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operational efficiency should theoretically match that of each respective transportation mode. Therefore, the number of internal trucks
required for each transportation mode (RIm) is calculated by dividing the product of quay crane efficiency (ηm) and the number of
available quay cranes (Em) by the efficiency of the internal trucks (ηi). The rationale behind this directly relates to the requirement for
maintaining operational flow, which must be matched by adequate internal truck availability. By adding the number of internal
container trucks required to keep pace with each transportation method, it is possible to determine the total number of required
internal container trucks, shown as follows.

RIm =
ηmEm

ηi
,∀m = {l, f , r} (12)

RIi =
∑

m=l,f ,r

RIm (13)

where RIi is the total number of required internal trucks. However, the resource of internal trucks is constrained by a maximum value
Ei:

AIi = min(Ei,RIi) (14)

where AIi is the total number of internal trucks, and Ei is the maximum number of internal trucks available. Then, the actual number of
available internal container trucks is allocated to various subsystems based on their demands. Therefore, the actual number of internal
trucks in each subsystem can be modelled as follows:

AIm =
AIiRIm
RIi

,∀m = {l, f , r} (15)

where AIm is the number of actual internal trucks for transportation mode m.

3.8. Internal truck working efficiency (ηi)

Internal trucks generally travel shorter distances, mainly for shuttling trips between the seaside and yards or between train tracks
and yards. Similar to external trucks, the travel time of internal trucks (Dit) is determined by traffic density. The efficiency of internal
trucks also depends on their working time (Diw), which includes both travel time (Dit) and loading and unloading time (Dil). This
relationship can be modelled with the following equations:

ηi =
Ci
Diw

(16)

Diw = Dit +Dil (17)

Dit =
si
v

(18)

where si is the distance of the route of internal trucks. These equations quantify the internal trucks’ efficiency by calculating the ratio of
their capacity to their total operational time within the terminal.

3.9. Truck density (ρ)

The truck density in a container terminal is determined by dividing the total number of external and internal trucks by the distance
they travel within the port, and can be modelled as follows:

ρ =
At + AIi
max(st , si)

(19)

The truck density will be further utilised in calculating the velocity of trucks in Equation (7), forming a cyclic feedback loop. The
SIMUTENOUS and ACTIVE INITIAL functions in Vensim PLE are used to indicate the dynamic changes in values.

3.9.1. Container inventory subsystem
The investigated port is a pivotal hub, bridging international liner shipping routes with domestic multimodal transportation

networks. Therefore, this model examines container inventory from both import and export perspectives, as shown in Fig. 7.

3.9.2. Volume of exported containers (Vout)
During export, outbound containers are delivered from the hinterland via three subsystems (feeder shipping, railway and trucking)

and stored in yards in preparation for long-haul liner voyages. In practice, all containers must be prepared and documented before a
specified departure time, commonly referred to as the cutoff period. Therefore, the DELAY function in Vensim PLE is employed to
represent the cutoff period, with the quantity of outbound containers calculated by:
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Vout =
∫
(
Of +Or +Ot − Oʹ

l
)
dt (20)

Oʹ
l(t) = Ol(t − α) (21)

Om = xmμmym, ∀m = {l, f , r, t} (22)

where Vout is the volume of export containers,Om represents the volume of exported containers under transportation modem,Oʹ
m is the

volume of exported containers by transportation mode m considering the cutoff period, α is the cutoff time for the exported container,
and xm and ym represent the export ratio and capacity of each transportation mode m.

3.9.3. Volume of imported container (Vin)
Regarding imports, inbound containers are unloaded from liner shipping vessels and stored temporarily in container yards,

awaiting pickup by container trucks or distributed via domestic railway and feeder shipping. Therefore, the quantity of inbound
containers in the port is determined by the accumulation of inbound liner vessels and the distribution of hinterland transport.
Additionally, the DELAY function is utilised to characterise the average storage duration of containers in the yard. The quantity of
inbound containers in the port can be determined by the following equation:

Vin =
∫

(Ql − Qʹ
f − Qʹ

r− Qʹ
t)dt (23)

Qʹ
m = Om(t − β), ∀m = {f , r, t} (24)

Qm = (1 − xm)μmym, ∀m = {l, f , r, t} (25)

where Vin is the volume of imported containers, Qʹ
m is the volume of picked up imported containers after storage time β and Qm is the

volume of imported containers.

3.9.4. Volume of containers in port (V)
The total volume of containers in the port can be modelled as follows:

V = Vin + Vout (26)

4. Numerical experiments and results

4.1. Experiment preparation

4.1.1. Data collection and processing
To test the precision and reliability of the proposed SD model, a world-leading multimodal container port (i.e. top 20 in terms of

container throughput) is selected to demonstrate the newly proposed methodology. This terminal plays a crucial role in consolidating
and distributing containers across East and Northern Asia. Therefore, analysing the difference between normal circumstances and
accidental scenarios yields valuable insights and lessons. Besides, this terminal features an advanced multimodal transhipment system,
making it extremely essential to analyse and comprehend the ripple effects across various sectors.

The development of the SD model is grounded on three primary data sources: (1) A field investigation is conducted at the

Table 7
Various SD simulation model validation methods.

Validation Suitability Test results Explanation of our procedure

Boundary adequacy Yes Pass Interviews, direct inspection and participation of experts, see Appendix A.
Structure assessment Yes Pass Interviews, direct inspection and participation of experts, see Appendix A.
Dimensional consistency Yes Pass Tools provided by Vensim software.
Parameter assessment Yes Pass Statistical method employed to evaluate the parameter.
Extreme conditions Yes Pass Shown in Table 8 and Fig. 8.
Integration error No ​ Sensitive to the change of time step due to modelling objectives.
Behavioural robustness (via behaviour

reproduction)
Yes Pass Shown in Table 9.

Behaviour anomaly Yes Pass The model shows anomalous behaviour when the key causal loop is
neglected.

Family member No ​ No other related systems to compare.
Surprise behaviour Yes Pass All model behaviours can be anticipated and recognised.
Sensitivity analysis Yes Pass Shown in Section 4.2.
System improvement Yes Pass The modelling process is followed strictly.
Scenario robustness (across scenarios/contexts) Yes Pass Shown in Appendix A.
Theoretical robustness (via analytical approach) Yes Pass Shown in Appendix B.
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investigated port in September 2023, during which the real-time operational data are collected and firsthand insights into daily port
activities are gained. These findings help define the logical flow of container port operational processes. (2) Expert interviews are
involved throughout the model development process, including the selection of variables (shown in Table 6) and KPIs (shown in
Table 5), the quantification of relationships between variables and subsystems, the choice of disruptive scenarios (shown in Table 10),
and the model validation (shown in Appendix A). (3) Internal accident reports of port accidents from 1998 to 2021 are used to identify
representative disruptions and quantify disruptive scenarios (shown in Section 4.1.3).

Table 8
Input parameters for the extreme condition test.

Liner shipping system Feeder shipping system Train system Trucking system

Extreme
condition
name

Extreme Liner Extreme Feeder Extreme Train Extreme Truck

Description An extreme condition where
an unusually high frequency
of liner container vessel
arrivals.

An extreme scenario in which the number
of quay cranes available for feeder
operations is reduced to the minimum
operational level.

An extreme scenario in which the
number of available rail tracks is
reduced to the minimum operational
level.

An extreme scenario
with a high external
truck arrival rate

Variable Liner Ships Arrival Poisson
Mean

Quay Crane Handling Efficiency for
Feeder Ships

Number of Transhipment Tracks Truck Arrival Poisson
Mean

Base condition
result

1.5 30 4 500

Extreme
condition
result

15 1 1 5000

Fig. 8. (a) Number of liner vessels at anchorage when the arrival rate increases by 10 times; (b) number of departure feeder vessels when quay crane
efficiency decreases to 1; (c) number of waiting trains when the number of train tracks decreases to 1; (d) number of external trucks when the arrival
rate increases by 10 times.
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4.1.2. Model verification and validation
Previous literature (Sterman, 2010, Qudrat-Ullah, 2012) has systematically established validation methods for SD models, which

are concisely listed in Table 7, which also describes their applicability and implementation results within this study. Tests involving
integration error and modelling objectives are excluded due to their unsuitability for the SD model. All the conducted tests are suc-
cessful, affirming the robustness of the applied validation methods. Regarding sensitivity analysis, the extensive scenario analysis in
Section 4.2 serves the same purpose and yields comparable insights. Moreover, similar terminology has been adopted in other studies,
where scenario-based approaches are recognised as a form of sensitivity analysis.

(1) Extreme condition test.
Several extreme conditions are set in Table 8. Results demonstrate that the model’s behaviours are predictable, as illustrated in

Fig. 8. For instance, the number of waiting vessels in the anchorage exhibits exponential growth in response to an unreasonably high
arrival rate.

(2) Behaviour reproduction
To validate the model’s performance in practical applications, historical data are used to assess the accuracy of the prediction.

Based on previous work (Liu et al., 2023a), an acceptable deviation range is set between − 10% to 10%. In addition to the KPIs selected
in this study, the model is further validated against an external and widely recognised industry benchmark, container throughput (Xiao
and Bai, 2022, Wang et al., 2024, Cao and Lam, 2018). It refers to the total number of containers handled at the port over a given time.
As this study primarily focuses on the consequences across different transportation modes, container throughput is not incorporated
into the model as a KPI but is instead treated as an external benchmark for validation purposes. The actual hourly throughput is
calculated using publicly available five-year average statistics of annual container volumes. The remaining average actual data were
obtained through field investigation. The variation in simulated outcomes of both internal and external KPIs falls within the acceptable
range, confirming the accuracy of the model configuration, as shown in Table 9.

(3) Scenario robustness.
Firstly, expert validation, supported by the responses provided in Appendix A, confirms the applicability of the proposed model.

Themodel is also theoretically grounded in the standardised physical layouts and operational processes of modern container terminals,
including vessel arrival, berthing, and the collaboration of seaside and landside activities (Liu et al., 2023a). Furthermore, its modular
structure allows for flexible data substitution without altering the overall architecture. By adjusting values, the model can be adapted
to various port contexts, provided that their operational logic aligns with the model’s assumptions. These features collectively un-
derscore the model’s robustness and its potential for broader applicability across diverse port settings.

4.1.3. Scenario setting
This section outlines the scenario setting for port disruptions. Given that ports are affected by a variety of disruptions, it is crucial to

comprehensively evaluate the consequences of potential impacts by simulating a range of different scenarios. Furthermore, to
demonstrate how ports are impacted by risks associated with different transportation modes and to illustrate their distinct ripple
effects, risks are designed to originate from diverse subsystems.

To design disruptive scenarios, a multi-criteria approach based on occurrence rate, severity and representativeness is developed,
and real-world data and expert judgment are used for assessment. Real data are used to quantify the occurrence rate (see Fig. 9) and
severity (see Fig. 10), while expert input is employed to assess the representativeness. As illustrated in Fig. 9, equipment failure, traffic
accidents, and container structure damage are among the most frequently occurring incidents in ports. Within the category of
equipment failure, yard cranes, quay cranes, and container trucks are most affected. However, since the damage costs associated with
container trucks and containers are relatively low, they are excluded. In terms of severity, equipment failure, traffic accidents, and
personal injuries account for the majority of severe incidents. Specifically, personal injury incidents, although severe, are rare and fall
outside the research boundary of this study and are therefore excluded. The detailed selection criteria and results are presented in

Table 9
Result of behaviour reproduction test.

Variables Average simulation outcome Average actual data Error range

Number of external trucks in the port 500.81 500 1.6%
Number of containers in the port 102,107.5 110,000 7%
Container throughput per hour 1,251 1,157 8.1%

Table 10
Disruption scenario selection.

Disrupted sectors Disrupted component Scenario name Occurrence Rate Severity Typicality

Liner shipping Quay crane D1 Highest High Yes
Feeder shipping Quay crane D2 Highest High Yes
Railway Train tracks D3 Low High Yes

Train crane D4 Low High Yes
Yard Yard crane D5 Highest High Yes

Traffic density (scale) D6 High High Yes
Traffic density (duration) D7 High High Yes
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Table 10.
Mathematically, different types and degrees of disruptions are illustrated through the various values of variables specified in Eq.

(27) with the specific variable names and values detailed in Table 11. The entire simulation is set to last 480 h to reflect the cyclical
nature of container shipping, all disruptions are scheduled to occur at the 200-hour mark when the variables are stable. The dis-
ruption’s lasting time spans multiple periods: 8 h (one shift), 24 h, 48 h, 72 h, 120 h, 240 h and 280 h (the end of the simulation).

Fig. 9. Percentage of the consequence occurrence rate.

Fig. 10. Percentage of accidents involving major consequences.

Table 11
Parameters of different scenarios.

Disruption name X Δx Δt

D1 El − 1 Δt ∈ {8,12,24,48,72,120,240,280}
D2 Ef − 1 Δt ∈ {8,12,24,48,72,120,240,280}
D3 Er − 1 Δt ∈ {8,12,24,48,72,120,240,280}
D4 Br − 1 Δt ∈ {8,12,24,48,72,120,240,280}
D5 Ey − 4 Δt ∈ {8,12,24,48,72,120,240,280}
D6 ρ Δx ∈ {0.1ρ,0.2ρ,0.3ρ,0.4ρ,0.5ρ,0.6ρ,0.7ρ,0.8ρ} 8
D7 ρ 0.5ρ Δt ∈ {8,12,24,48,72,120,240,280}
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X(t) =

⎧
⎨

⎩

x, t ≤ 200
x+ Δx, 200 < t ≤ t + Δt

x, t + Δt < t ≤ 480
(27)

where X(t) ∈ {El,Ef ,Er,Br,Ey,ρ}, each combination of Δx and Δt represents a different scenario.
The simulation steps of the model are as follows:
Step 1: Initialise the model using variables and values from Table 6.
Step 2: If the current time is less than the simulation termination time, then update the system state based on the equations in

section 3.4. If the current time equals the start time of the disruption, then adjust the parameter values according to Table 10 and
continue updating the system state.

Step 3: Compile and save the results of the simulation using the variables summarised in Table 5.
Step 4: Repeat the process until simulations for all scenarios have been completed.

4.2. Experiment results

4.2.1. Liner shipping disruption scenario
The impact of the liner shipping disruptions on port efficiency is described from two perspectives: (1) directly, the reduction in quay

cranes leads to an increase in the number of waiting ships at anchorage, as shown in Fig. 11(a); (2) indirectly, there are fluctuations in
the number of containers stored in the yard due to the altered logistics dynamics, as seen in Fig. 11 (b). Impacts on other areas are
minimal and are therefore not demonstrated. In Fig. 11, the legend indicates the duration of the disruption, while the x-axis represents
the simulation time. The disruption is introduced after the system stabilises at 200 h. The same applies to the subsequent similar
figures.

As the duration of the loss of a single quay crane extends, the number of ships at anchorage correspondingly increases. Fig. 11 (a)
shows that when the disruption lasts less than 72 h, the increase in the number of ships is relatively small. However, after 120 h, there is
a significant spike in the number of ships affected, suggesting a tipping point. This disparity is evident when comparing the base
model’s maximum of 12 waiting vessels to the 33 vessels stranded in the anchorage when quay crane downtime exceeds 280 h. Besides,
the result reveals that disruptions to quay cranes lasting more than 72 h lead to a sharply nonlinear increase in liner containerships
queue length. From a managerial standpoint, this finding indicates the need for a strict 72-hour repair threshold as a key intervention
milestone. If a repair is projected to exceed this limit, terminal operators should swiftly implement contingency protocols, such as
rerouting vessels to alternate berths, mobilising backup equipment, and temporarily adjusting berthing schedules, to contain the ripple
effect and avoid further congestion.

Additionally, it affects not only seaside operations but also leads to the piling up of container volume within the yard, as depicted in
Fig. 11 (b), where an increase of up to 10,000 TEUs occupies limited port resources. Furthermore, the influence of quay crane failures
persists beyond the dysfunction period, causing a delayed effect on container inventory. This also highlights the importance of robust
landside contingency strategies. Terminal operators should establish additional storage capacity, refine container stacking strategies,
and synchronise yard crane schedules to address fluctuating container volumes effectively. Furthermore, disruptions may persist
beyond the completion of repairs, emphasising the need to maintain emergency measures and resource mobilisation plans for a while.

4.2.2. Feeder shipping disruption scenario
Compared to the loss of a liner quay crane, the malfunction of a quay crane used for feeder operations has a more minor impact on

almost all KPIs, except for fluctuations in the number of containers in the yard. Fig. 12 illustrates that the variation in container
numbers increases as the duration of the disruption extends, with the most severe fluctuations reaching about 2,000 TEUs. The less
intense or seemingly negligible impact may be due to the lower arrival rate of feeder vessels and the reduced container workload,
thereby imposing less stringent demands on loading and unloading efficiency. This highlights that other services should be prioritised
when facing disruptions.

4.2.3. Railway area disruption scenario
The disrupted components in the railway area can be summarised into twomain types: the inaccessibility of railway tracks (Fig. 13)

and the malfunction of cranes conducting loading and unloading services (Fig. 14). Only the metrics with significant changes are
demonstrated and analysed, others with minor changes are neglected due to their lack of relative importance.

It can be observed from Fig. 13 that the inaccessibility of train tracks leads to an increase in the number of waiting trains, from 5 to
approximately 20 directly, and a rise in container volume of about 9,000 TEUs indirectly. In addition, there is a sharp increase in
waiting trains after 120 h, indicating a critical turning point between 72 and 120 h. However, regarding the impact of train crane
defects, the failure of a single crane only results in an increase of approximately 3,000 TEUs in container volume in the yard, as shown
in Fig. 14. Compared to failures in train tracks, the impact of inefficient handling is less significant. This may be attributed to the
critical role of train tracks as essential infrastructure for railway operations. If damaged, an entire train could be delayed, unlike train
cranes, for which alternative equipment might be more readily available. Therefore, in operational practice, railway infrastructure
repairs should be completed within 120 h to avoid major disruptions to normal port activities. If repairs are expected to extend beyond
this threshold, port operators must implement contingency measures, such as deploying temporary tracks or utilising resources from
nearby railway facilities to minimise downtime. In scenarios where both railway infrastructure and handling equipment are
compromised, priority should be given to restoring the infrastructure first.
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4.2.4. Yard area disruption scenario
Disruptions in the yard area are categorised into two components (yard cranes and traffic congestion) and three types (number of

yard cranes, congestion scale, and duration). The loss of a single yard crane modestly affects both the number of container trucks and
their turnaround time (Fig. 15). However, as the scale of yard congestion escalates, the ripple effects extend to waiting liner vessels
(Fig. 16). Moreover, prolonged yard congestion severely deteriorates port operation efficiency across all transportation modes
(Fig. 17).

Fig. 15 illustrates that the turnaround time for external trucks escalates from 0.7 h to approximately 1 h due to the failure of one
yard crane. This metric is a critical KPI for port efficiency evaluation and decision-making by multiple stakeholders, including port
operators, shipping companies, truck fleets, and shippers. Additionally, there was a minor disruption due to an accumulation of
external trucks. However, this level of disturbance has not yet caused ripple effects. This may be because, typically, multiple yard
cranes operate within a single block, allowing the loss of one crane to be compensated by others.

From Fig. 16 (a) and (b), it is evident that the KPIs of container truck operations increase with the scale of port congestion.
However, these fluctuations are transient, occurring within approximately 10 h without extending further, which demonstrates the
port’s inherent resilience in offsetting the adverse effects of congestion.

Moreover, the impact of yard congestion extends into other transportation modes through significant ripple effects. For example, as
depicted in Fig. 16 (c), there is a noticeable increase in the number of waiting liner vessels. This increase is accompanied by a

Fig. 11. (a) Number of liner vessels waiting in anchorage; (b) number of containers stored in the yard when the liner quay crane is disrupted.

Fig. 12. The number of containers stored in the yard when the feeder quay crane is disrupted.
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substantial fluctuation in the container inventory, which reaches up to 4,000 TEUs as illustrated in Fig. 16 (d). These changes are
primarily due to that port congestion restricts the mobility of internal trucks, which play a crucial role in facilitating coordinated
transhipment operations across other transportation modes. In the event of accident-induced congestion, port operators should
promptly clear affected sites, establish alternative routes, and regulate gate entry for external trucks. Simultaneously, maintaining the
efficiency of internal truck fleets through dynamic routing and flexible resource allocation is crucial as well. Ongoing surveillance of
yard container volumes and other key indicators will further support timely interventions to avert additional bottlenecks.

The truck density is designed to increase by 50%, a rate commonly observed during congestion in historical data. These disruptions
not only directly impact truck operations but also spread their effects to nearly all other transportation modes. As shown in Fig. 17 (a),
the turnaround time for external trucks reflects a consistent pattern of rise and fall, with each cycle lasting between 20 and 50 h. This
indicates the system’s effort to mitigate congestion, showcasing its capacity to maintain resilience. Consequently, the number of
external trucks in the port also follows this pattern, ranging between 500 and 1,100 trucks, as seen in Fig. 17 (b).

Beyond the immediate impacts on trucks, the ripple effects are most severe in the liner vessels and container inventory subsystems,
as evidenced by Fig. 15 (c) and (f). Trains also experience notable impacts, albeit to a lesser extent, as depicted in Fig. 17 (e). In
contrast, the feeder sector remains largely unaffected, as shown in Fig. 17 (d). This pattern can be attributed to the fact that liner
vessels, which arrive more frequently and handle larger containers than feeder vessels and trains, depend more critically on consistent
and efficient port operations. Additionally, the result shows that prolonged yard congestion (>24 h) leads to a systemic increase in
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Fig. 13. (a) Number of waiting trains; (b) number of containers stored in the yard when the train tracks are disrupted.

Fig. 14. The number of containers stored in the yard when the train cranes are disrupted.
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container backlog and external truck turnaround time. This can be used to define operational thresholds for activating congestion
mitigation protocols, such as opening additional gates, reassigning internal trucks, deploying additional Automated Guided Vehicles
(AGVs) or notifying stakeholders in advance to reschedule deliveries. Simultaneously, dynamic yard storage strategies, such as real-
time adjustments to container storage plans and flexible allocation of external storage locations, help optimise inventory usage.

In summary, the model’s identification of ripple effects, especially from traffic congestion impacting rail and liner services, sup-
ports the establishment of a cross-modal early warning system. This would allow port operators to detect upstream bottlenecks and

Fig. 15. (a) External truck turnaround time; (b) number of external trucks in port when the yard crane is disrupted.

Fig. 16. (a) External truck turnaround time; (b) number of external trucks in port; (c) number of vessels at anchorage; (d) number of containers in
port when truck density increases for 8 h.
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deploy targeted interventions before the ripple effect amplifies. The above analysis demonstrates the model’s potential to guide real-
time resource allocation, schedule adjustments, and risk communication. By integrating these thresholds and triggers into standard
operating procedures, port stakeholders can significantly improve the resilience and responsiveness of terminal operations.

Fig. 17. (a) External truck turnaround time; (b) number of external trucks in port; (c) number of vessels at anchorage; (d) number of feeder ships at
anchorage; (e) number of waiting trains; (f) number of containers in port when truck density increases by 50%.
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5. Discussion, insights, and implications

Based on extensive simulations, this section summarises the impacts of various risks on ports and their behavioural patterns when
facing these risks.

The representative port, chosen for its advanced multimodal transport system and complexity, reflects the characteristics of other
ports, ensuring that the findings are broadly applicable across different port settings.

5.1. Impact analysis

To address the lack of standardisation in measuring risk impacts, consequences are classified into four levels based on established
literature: minor, major, critical, and catastrophic. The assessment of disruption impacts is carried out by comparing the differences in
KPIs between disruptive scenarios and the baseline. The KPI values of disruptive scenarios are treated as averages, derived from
various magnitudes of the same type of disruption. Expert insights guide the establishment of numerical relationships for these levels,
as detailed in Table 12.

Based on Table 12, the influence of specific risks on the performance of each transportation sector is systematically outlined in
Table 13. It provides an intuitive perspective on the consequences of each risk scenario, providing evidence for identifying bottlenecks
and strategically prioritising resource allocation. Additionally, it supports the development of targeted risk mitigation strategies
tailored to specific transportation sectors.

5.2. Behaviour analysis

In this section, common patterns and trends resulting from port disruptions are recognised by summarising the prevalent behav-
iours. The detailed findings are shown in Table 14.

Table 14 shows that nearly all port disruptions have a ripple effect, emphasising the need to address the immediate aftermath and
broader implications and implement comprehensive countermeasures. The prevalent lagging effect in most scenarios indicates that
repercussions often persist beyond the initial disruption period. Additionally, cyclical fluctuations in trucks, notably in turnaround
times and volumes, reveal a consistent pattern of disruption and recovery. Port operations demonstrate remarkable resilience, often
returning to normal post-disruption. The key findings of this study are summarised as follows:

(1) Disruptions resulting in the loss of quay cranes and yard cranes exhibit the most significant impact on other transportation
sectors, highlighting their critical roles in risk prevention strategies;

(2) The analysis of disruption aftermath reveals the high susceptibility of the yard area, where it experiences the most severe and
frequent disruptions, particularly affecting container and truck volumes;

Table 12
Impact measurement index.

Subsystems KPIs Minor impact Major impact Critical impact Catastrophic impact

Liner shipping Al |Al − Al0| ≤ 1 1 < |Al − Al0| ≤ 5 5 < |Al − Al0| ≤ 10 |Al − Al0| > 10
Feeder shipping Af

⃒
⃒Af − Af0

⃒
⃒ ≤ 1 1 <

⃒
⃒Af − Af0

⃒
⃒ ≤ 5 5 < |Al − Al0| ≤ 15 |Al − Al0| > 15

Railway Ar |Ar − Ar0 | ≤ 1 1 < |Ar − Ar0 | ≤ 5 5 < |Ar − Ar0 | ≤ 15 |Ar − Ar0| > 15
Trucking At |At − At0 | ≤ 600 600 < |At − At0 | ≤ 800 800 < |At − At0 | ≤ 1000 |At − At0 | > 1000

Dtw |Dtw − Dtw0| ≤ 0.8 0.8 < |Dtw − Dtw0| ≤ 1 1 < |Dtw − Dtw0| ≤ 10 |Dtw − Dtw0| > 10
Containers V |V − V0 | ≤ 100 100 < |V − V0| ≤ 1000 1000 < |V − V0| ≤ 10000 |V − V0| > 10000

Table 13
Consequences of port disruptions.

Consequence

Liner
shipping

Feeder
shipping

Railway Yard operations

Liner crane Feeder crane Railway
crane

Railway
tracks

Yard
crane

Congestion
Scale

Congestion
Time

Liner
shipping

Waiting liner
vessels

Catastrophic Minor Minor Minor Minor Minor Minor

Feeder
shipping

Waiting feeder
vessels

Minor Minor Minor Minor Minor Minor Minor

Railway Waiting trains Minor Minor Major Catastrophic Minor Major Major
Truck External truck

number
Minor Minor Minor Minor Major Catastrophic Catastrophic

Truck turnaround
time

Minor Minor Minor Minor Major Critical Critical

Container Container Volume Critical Critical Critical Critical Minor Critical Catastrophic
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(3) In terms of risk propagation, yard congestion emerges as a significant concern, exhibiting the widest-reaching effects and
impacting numerous other sectors significantly;

(4) The ripple and lagging effects are consistently identified across various disruptive scenarios, except for scenarios related to yard
crane inefficiencies, showcasing their dominance in port disruptions;

(5) Prolonged yard congestion causes periodic fluctuations in the volume and turnover times of external trucks, indicating a cyclical
pattern of disruption and recovery.

(6) The inherent resilience of port operations is validated in all scenarios, showing a consistent effort to overcome the negative
effects and restore normalcy.

Based on the above analysis, feasible action plans are proposed for different stakeholders, taking into account their respective roles
and responsibilities within the port, as shown in Table 15.

6. Conclusion

This study introduces a novel SD model to analyse the impact of port disruptions on operations. The methodology incorporates
several innovative features: 1) it presents a microscopic illustration of port operations across different transportationmodes, enabling a
more detailed and scientific characterisation of quantitative port activities; 2) this research pioneers the use of an SDmodel to examine
the resilience of multimodal container terminal about the often under-discussed yet essential issue of port disruptions; 3) through
scenarios analysis, the model examines both the immediate damage and subsequent ripple effects across transportation sectors. The
model’s validity is confirmed through tests with real operational data, demonstrating its effectiveness and superiority in identifying
bottlenecks and vulnerabilities through diverse risk scenario analyses. Additionally, the study reveals critical behaviour patterns such
as lagging and ripple effects, cyclic fluctuations, and inherent resilience. It also deepens stakeholders’ comprehension of port dis-
ruptions, leading to more precise and effective mitigation strategies against immediate and ripple effects. In addition, since the
planning of most multimodal container terminals is standardised, the model developed in this paper can be applied to most other
terminals with similar structures. Consequently, the conclusions drawn in this study hold universal value for other terminals.

Based on these conclusions, policy implications and recommendations are drawn:
(1) Risk prevention efforts should prioritise area(s) with the highest potential impact, therefore, protecting quay cranes and

alleviating yard traffic congestion are essential, especially when resources are limited. Given that many quay crane failures result from
themalpractice of truck drivers or operators, implementing regular assessments and training programs can improve risk awareness and
operational safety.

(2) Response and recovery efforts should concentrate on the most vulnerable area(s), including managing container volume,

Table 14
Behaviours of port disruptions.

Disruptions Ripple effect Lagging effect Resilience

Quay crane number yes yes yes
Feeder crane number yes yes yes
Train track number yes yes yes
Train crane number yes yes yes
Yard crane number no no yes
Congestion time yes yes yes
Congestion scale yes yes yes

Table 15
Possible action plan for each stakeholder.

Stakeholders Role in port management Possible actions

Port authority and port
operator

Port management Real-time monitoring systems for early detection;
Emergency protocols for disruptions;
Maintain communication with internal/external partners;
Regular inspections and timely repairs of key equipment;
Clear recovery thresholds;
Maintain spare parts and backup resources.

Government and public
agencies

Long-term policy and port development Allocate dedicated budgets for rapid repair;
Policy frameworks and financial incentives for ports in resilient design;
Facilitate coordinated projects among ports, rail operators, and road authorities;
Streamline decision-making for fast-tracked regulatory approvals in disruptions;
Invest in redundancy for critical infrastructure (e.g., additional quay cranes, external
yards, railway tracks or stations).

Logistics companies Depending on the port service for import
and export

Collaborate with other stakeholders to minimise disruption impacts;
Develop their own contingency plans under disruptive scenarios;
Provide training for port-related staff.
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coordinating external truck operations, and rescheduling vessel port calls. The solution includes automated stacking cranes, dynamic
yard allocation, truck appointment systems, slot bookings for container handling, and enhanced port community collaboration (Lin
et al., 2022).

(3) Promoting the understanding of the ripple effects of port disruptions deserves essential attention. When dealing with the
aftermath of the disruptions, it is crucial to address the direct damage and anticipate and prepare for the potential spread of conse-
quences to other sectors.

Future research could investigate the coupling effects due to the simultaneous occurrence of multiple disruptions. For example,
typhoon-induced damage to quay cranes may coincide with prolonged truck waiting times at terminal gates due to equipment mal-
functions. When such disruptions co-occur, their combined impact can amplify port congestion and significantly degrade overall
operational performance. Additionally, our study focuses on general containers, but the transportation of hazardous materials within
ports is also important for future risk management. In addition, while considering the ripple effect in port operations can enhance risk
mitigation, it may also lead to unintended consequences such as excessive redundancy or underutilisation of resources. Moreover,
implementing external interventions, such as dynamic truck arrival times or rescheduling vessel calls may disrupt the original plans of
shipping companies, trucking companies, or rail operators, thereby increasing operational uncertainty and communication costs.
Future research is needed to assess the cost-effectiveness and long-term sustainability of such measures.
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Appendix A

To evaluate the robustness and applicability of the proposed model, expert interviews are conducted with three senior professionals
in the maritime and port sectors from China, the UK, and Iran. Each expert has 10–30 years of experience and is recognised for their
contributions to port management through publications and practice.

The interviews address two core questions:

1. Whether the model adequately reflects the operations of a multimodal port.
2. Whether the model can be generalised to other ports with similar facilities.

Key insights from the experts are summarised as follows:

Table A1
Expert background and response for model validation.

Expert
Number

Role Country Years of
experience

Expertise Verification Applicability

1 Policymaker
(Director)

China Over 20
years

Port governance and
risk management

The variables and subsystems
included reflect the real challenges we
see in port operations.

This model is highly applicable
across different port settings.

2 Researcher
(Professor)

UK Over 20
years

Maritime
transportation

The structure and the connection
between subsystems are sound.

It can be adapted to various
port environments.

3 Researcher Iran 5 years Risk analysis of
complex systems

The model considers interactions
between trucks, trains, and vessels. It
is very close to real conditions.

The model’s structure allows it
to be applied beyond just one
specific case.
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Appendix B

In this analysis, we assume that vessels are queuing in the port, i.e., the number of available berths is smaller than the number of
waiting liner vessels, which is Bal < Al. Under this condition, Eq. (1) can be reformulated as Pl = Bal

Dlb, and by substituting it into Eq. (2),
we obtain the following equation regarding liner ships berthing rate Pl:

Pl =
Bl − Ll
Dlb

(B.1)

According to the inherent relationship between stock and flow variables in the stock and flow diagram, the stock variable, rep-
resented by a box, is defined as the integral of the net flow (i.e., the difference between the inflow and outflow variables, represented
by arrows). Based on this formulation, the number of liner ships waiting at the anchorage can be derived as follows:

Al =
∑T

t=0

(

λl −
Bl − Ll
Dlb

)

(B.2)

We assume that the efficiency of quay cranes is lower than that of internal trucks, which is ηlEl < AIlyi, resulting in internal trucks
waiting under the quay cranes. Under this condition, Eq. (3) can be reformulated as Dll = Cl

ηlEl
and by substituting it into Eq. (4), we can

obtain the following equation regarding the liner ship loading and unloading rate μl:

μl =
Ll
Dll

=
LlηlEl
Cl

(B.3)

Once again, according to the relationship between stock and flow variables, the number of berths currently occupied by liner ships,
which is the number of liner ships conducting loading and unloading work at the berth can be calculated by Ll =

∑t
0(Pl − μl). By

substituting it into Eq. (B.1) and Eq. (B.3), we can obtain the following equation of Ll:

Ll =
∑T

t=0

(
Bl − Ll
Dlb

−
LlηlEl
Cl

)

(B.4)

Since our analysis primarily focuses on stable condition of the number of vessels operating at berth, the integral can be reasonably
approximated by a product form during a stable period of Δt:

Ll ≈
(
Bl − Ll
Dlb

−
LlηlEl
Cl

)

Δt (B.5)

Ll can be expressed as:

Ll ≈
BlClΔt

DlbCl + ClΔt + DlbηlElΔt
(B.6)

By substituting Eq. (B.6) into Eq. (A.2), we can obtain:

Al ≈
∑T

t=0

(

λl −
Bl
Dlb

+
BlClΔt

D2
lbCl + DlbClΔt + D2

lbηlElΔt

)

(B.7)

As shown in Eq. (B.7), a reduction in the number of quay cranes El leads to an increase in the number of vessels waiting in the port.
Similarly, an increase in the vessel arrival rate λl also results in a higher number of waiting vessels. In the following, we further examine
how changes in another key variable, the number of berths Bl, affect the number of vessels waiting in the port.

Eq. (B.7) can be reorganised as:

Al ≈
∑T

t=0

[

λl +
Bl
Dlb

(

− 1+
ClΔt

DlbCl + ClΔt + DlbηlElΔt

)]

(B.8)

To determine the relationship between the number of berths Bl and the number of vessels waiting in the port Al, it is necessary to
examine the sign of the coefficient of Bl

Dlb
. Given that DlbCl + DlbηlElΔt > 0, therefore ClΔt < DlbCl + ClΔt + DlbηlElΔt, thereby indicating

that the coefficient is negative. This implies a negative correlation between the number of berths and the number of waiting vessels in
the port.

Since the model in this study is constructed in a modular fashion and the formulation for the liner shipping area has been validated,
the equations governing other subsystems can be considered valid as well.

Data availability

Data will be made available on request.
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