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A B S T R A C T

The fast development of Maritime Autonomous Surface Ships (MASSs) marks a significant 
advancement in the shipping industry, offering enhanced performance, cost-effectiveness, and 
environmental sustainability. This study aims to develop a holistic methodology for extracting, 
characterizing, and sampling maritime traffic navigation scenarios to support the testing and 
validation of MASSs, ensuring their reliability before widespread deployment. It begins with a 
precise scenario extraction technique that can effectively capture dynamic interactions among 
ships over time, enhanced by an in-depth analysis of ship motion dynamics, geographical com
plexities, and spatial-temporal nested interdependencies. Subsequently, the extracted scenarios 
are characterized using newly created metrics and advanced models in a structured and inte
grated manner. This allows for the classification and parameterization of ship motion patterns, 
conflict complexities, and encounter types, thereby enhancing the interpretability of traffic co- 
behaviors. Finally, a hierarchical greedy sampling strategy is developed to adaptively select 
representative scenarios from a sufficiently realistic set, striking a balance between comprehen
sive scenario coverage and efficiency in MASS testing. Extensive experimental analyses validate 
the efficacy of the proposed methodology. It precisely identifies real evolutionary multi-ship 
encounter situations, finely characterizes scenarios to support the encoding, explaining, and 
understanding of dynamic traffic behaviors, and systematically selects representative scenarios by 
incorporating multiple selection principles. Consequently, this methodology makes new contri
butions to the pioneering development of an accurate, interpretable, and representative set of 
real-world traffic navigation scenarios for autonomous testing. This is crucial for assessing and 
validating the advancements in MASSs and their emerging functionalities, thereby promoting 
highly and fully automated navigation.

1. Introduction

Maritime Autonomous Surface Ships (MASSs) are increasingly viewed as the future of the shipping industry, offering superior 
performance, cost-effectiveness, and environmental sustainability over traditional manned ships. These ships boast substantial benefits 
like optimized space utilization, reduced design and operational costs, decreased fuel consumption, and minimized human error from 
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fatigue or harsh working conditions (Bakdi et al., 2021; Gu and Wallace, 2021). Alongside these benefits, advancements in technol
ogies such as Artificial Intelligence (AI), cloud computation, the Internet of Things (IoT), and Blockchain, are profoundly enhancing the 
integration and sophistication of maritime transportation systems (Cao et al., 2025; Xin et al., 2025; Yu et al., 2021). These techno
logical enhancements in perception, communication, and automation are making the shift toward more advanced electromechanical 
and digitally controlled systems not only viable but also increasingly feasible, steering the industry away from traditional mechanical 
operations toward autonomous or remotely controlled functions. However, the implementation of these autonomous systems in
troduces new challenges, particularly in areas such as technology readiness and reliability, human interaction, regulations and 
standards, environmental adaptability, and safety and security (Cassará et al., 2023; Chang et al., 2024; Gil et al., 2025; Lu et al., 2025; 
Thombre et al., 2020). Increasingly complex traffic situations and intricate cyber-physical-social interactions also lead to new vul
nerabilities. Consequently, there is a widespread agreement among manufacturers, experts, and maritime authorities that MASSs must 
undergo extensive testing and be proven as safe as manned ships before widespread adoption (Bakdi et al., 2021; Zhu et al., 2022). 
Rigorous and comprehensive testing is essential to establish trust and confirm the safety, security, and reliability of MASSs, ensuring 
that these future autonomous ships are fully certified and ready for broad deployment.

The autonomous navigation system is a critical enabling technology for MASSs, responsible for perception, alerting, decision- 
making, and control to ensure safe navigation (Akdağ et al., 2022; Wang et al., 2024c; Wróbel et al., 2022). Its effectiveness must 
be validated and verified not just through basic situational awareness and geographical risk assessments but also through dynamic 
decision-making in various encounter scenarios (Gil et al., 2024b, 2024a; Niu et al., 2023; Zhang et al., 2024). This capability is crucial 
for avoiding collisions with dynamic entities, such as other MASSs equipped with different levels of computer-assisted functionalities 
or manned ships. In this context, notable industrial initiatives have been undertaken to launch commercial MASS projects worldwide, 
including the “YARA BIRKELAND” project in Norway, “Samsung Heavy Industries T-8 Tugboat” in South Korea, the “MAXCMAS” 
project in the United Kingdom, and the “DFFAS” project in Japan, which involve rigorous physical tests on autonomous navigation 
functions. It is crucial to acknowledge that the reliability of test outcomes depends on the scope and variety of the scenarios tested. 
Current physical tests, however, typically involve a limited range of scenarios due to the high costs and risks associated with full-scale 
real ship testing. In the realm of road autonomy, an effective strategy begins with preliminary simulation tests across a broad range of 
scenarios, which allows for numerous, quicker, more affordable, and safer trials. This is followed by focused tests for critical scenarios 
in real-world trials (Feng et al., 2020; Ma et al., 2024). Regardless of the testing strategies employed, to maximize the efficacy of these 
tests, the scenarios must thoroughly encompass potential real-world traffic navigation conditions (Bolbot et al., 2022; Wang et al., 
2024b). Essentially, the strategic formulation of a testing scenario library that closely resembles real-world navigation scenarios and 
adequately covers potential situations is key to building trust in the test results, thereby helping to ascertain whether a MASS can 
operate safely and efficiently.

Over the past two decades, the advancement of the Automatic Identification System (AIS) has significantly enhanced the avail
ability of detailed ship trajectory data, facilitating the creation of diverse maritime traffic navigation scenarios (Bakdi et al., 2021; Liu 
et al., 2024a, 2022a; Liu et al., 2024b; Rong et al., 2024; Xin et al., 2024; Yu et al., 2025; Zhang et al., 2023). Compared to other 
scenario generation methods, such as rule-based and random-based approaches, AIS-based scenario generation offer several distinct 
advantages: 1) The scenarios closely replicate real-world navigation conditions by accurately depicting ships’ maneuverability, motion 
patterns, and the spatial-temporal relationships among ships; 2) extensive AIS data ensures thorough coverage of various potential 
maritime traffic situations associated with realistic risks and complexities; and 3) the scenarios offer in-depth insights into the entire 
ship encounter process, not just the initial moment (Wang et al., 2024b). Moreover, previous research has shown that AIS data-based 
scenarios are effective for exploring collision risk assessments (Lotovskyi et al., 2024; Zhang et al., 2021), identifying collision 
avoidance behaviors (Liu et al., 2021), supporting intent prediction (Jia et al., 2024), and examining the distribution patterns of 
scenario parameters (Zhu et al., 2022). This robust body of evidence underscores the utility of AIS-generated scenarios in contributing 
realistic test scenarios that are crucial for comprehensive testing and verification of MASSs.

Nevertheless, research on AIS data-based scenario formulation is still in its infancy. The growing volume of maritime traffic, 
diversified ship movements, complex geographical landscapes, and intricate spatial–temporal dependencies among ships pose sig
nificant challenges to fully realizing the above advantages and achieving the effectiveness and efficiency of current AIS-based scenario 
production approaches for autonomous testing (Wang et al., 2024b; Yu et al., 2021). These challenges are particularly pressing given 
the mix of autonomous and manned ships expected in future traffic. Specifically, the state-of-the-art research exhibits several critical 
shortcomings that remain largely unaddressed: 1) They fail to assure the accuracy of the traffic navigation scenarios they produced 
because they do not comprehensively account for the impacts of dynamic ship motion and maritime geographical features on the real 
multiple interdependent interactions among ships over time; 2) they are inadequate at fully classifying and parameterizing scenario 
characteristics such as ship motion patterns, conflict risks and complexities, and encounter types in a structured and integrated 
manner, hindering the process of encoding, explaining, and understanding dynamic traffic co-behaviors; and 3) they are incapable of 
sufficiently exploring the diversity of scenarios from various perspectives, nor do they possess effective techniques to select repre
sentative scenarios from a sufficiently realistic set that allows both high coverage and efficient testing. Undoubtedly, addressing these 
limitations could lead to the creation of a more reliable and comprehensive set of traffic navigation scenarios, critical for conducting 
trustworthy and extensive autonomy tests.

Motivated by the challenges outlined above, this study aims to propose a holistic methodology for extracting, characterizing, and 
sampling traffic navigation scenarios from extensive historical ship trajectory data. Firstly, it precisely extracts traffic scenarios that 
satisfy various constraints in complex traffic environments. These scenarios are then thoroughly characterized to encode traffic be
haviors, enhancing interpretability. Finally, the methodology adaptively selects a subset of scenarios, guided by multiple selection 
principles, that effectively cover the characteristics of the original scenario set to facilitate efficient autonomous testing. Consequently, 
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this approach recommends an accurate, interpretable, and representative set of traffic navigation scenarios for simulation-based 
testing or sea trials. Such trials are vital for assessing and validating the advancements in MASSs and their emerging functional
ities, thereby promoting highly and fully automated navigation.

The new contributions of this paper are summarized as follows. 

1) A novel scenario extraction approach is developed to identify scenarios that capture the continuous spatial-temporal interaction 
process among ships. This approach precisely reflects the real interactions among multiple ships over time, taking into account the 
effects of potential ship motion dynamics and constrained waterway geography. Additionally, it allows for the observation of 
dynamic co-behaviors among ships over time, including variations in {the number of ships, conflict frequency and severity, types of 
encounters}, and other elements involved in each scenario.

2) Three key scenario characteristics, including ship motion patterns, conflict complexities, and encounter types, are revealed in a 
structured and holistic manner. The characterization process designs new metrics and employs a range of advanced models to 
facilitate the classification and parameterization of these scenarios, thereby enhancing the encoding and understanding of their 
behaviors.

3) A hierarchical greedy sampling technique is proposed to adaptively select representative scenarios from a sufficiently realistic set 
by examining the diversity of scenarios across three characteristic types. This procedure ensures adequate coverage of potential 
scenarios while minimizing the number of scenarios required for autonomous testing, thereby achieving a balance between test 
coverage and efficiency.

The remainder of this paper is organized as follows. Section 2 provides an overview of the current research related to scenario 
generation methods. Section 3 presents the developed methodology for extracting, characterizing, and sampling traffic scenarios in 
detail. Section 4 examines the results of the application analysis and explores their implications. Lastly, Section 5 concludes the paper 
and proposes future research directions.

2. Literature review

Accurate and effective autonomous testing represents a cornerstone in the development of MASSs and their emerging function
alities. The importance of such testing is reinforced by a wealth of literature dedicated to assessing and validating autonomous systems, 
which provides crucial support for ensuring their reliability and trustworthiness. Research in this area concentrates on several critical 
testing aspects: safety, authenticity, cost-effectiveness, and coverage (Wang et al., 2023). Commonly employed scenario generation 
methods for testing include artificial-based, random-based, and AIS data-based approaches. Subsequent sections will provide a critical 
analysis of the benefits and drawbacks of these methods, along with an exploration of the existing research gaps.

2.1. Artificial-based scenario generation methods

Artificial-based methods generate scenario sets that are either rule-based or driven by expert input, taking into account various 
factors such as the number of encountered ships, types of encounters, International Regulations for Preventing Collisions at Sea 
(COLREGs), and environmental parameters. There is an extensive body of work related to autonomous system verification based on 
these artificially generated scenarios. For instance, Du et al. (2020) developed specific scenarios to assess the performance of their anti- 
collision algorithms for stand-on ships when the give-way ship does not promptly comply with COLREGs. Ahmed et al. (2021)
employed the Imuzu-proposed 22 cases to test their autonomous collision avoidance algorithms. Liu et al. (2022) created mixed multi- 
ship encounter scenarios involving both autonomous and manned ships to analyze the effectiveness of the collision avoidance module 
in terms of rule compliance, collision risk, and drift distance. Sawada et al. (2024) developed diverse one-on-one and one-on-two 
encounter scenarios that take into account risks, COLREGs, and the characteristics of the encounter angle of ships.

Despite these efforts, artificial-based methods exhibit two significant limitations that affect their real-world application effec
tiveness. First, due to their reliance on manual efforts, the predefined representative scenarios are restrictive, typically including no 
more than 100 scenarios, which limits their ability to cover potential traffic situations extensively (Zhu et al., 2022). Second, the 
manually designed scenarios are too simplistic to adequately describe the entire traffic navigation process, making it difficult to mimic 
the true ship behaviors throughout the encounter process (Wang et al., 2024b). As a result, while autonomous functions may perform 
well in these artificial-based navigation scenarios, they may falter under broader or more unpredictable conditions.

2.2. Random-based scenario generation methods

Compared to artificial-based methods, random-based scenario generation addresses the limitation of covering all possible situa
tions, enabling the thorough verification of autonomous functions across a variety of complex environments and extreme conditions. 
This approach can generate a vast array of scenarios spanning diverse geographical areas (e.g., open waters, coastal regions, and 
archipelago areas), meteorological conditions (e.g., wind speeds, current speeds, and wave conditions), and navigational settings (e.g., 
ship positions, speeds, headings, and types). For instance, Johansen et al. (2016) designed a comprehensive set of test scenarios from 
single to multi-obstacle avoidance, and from predictable to complex random obstacle distributions, to evaluate the efficacy of their 
anti-collision strategy. Pedersen et al. (2020) designed an automatic test scenario generation module using digital twin technology to 
simulate environmental conditions and maritime traffic interactions. Bolbot et al. (2022) introduced a systematic procedure for 
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generating traffic scenarios for collision avoidance system testing. This procedure involves generating potential traffic parameters, 
identifying hazardous scenarios, and extracting representative scenarios. Torben et al. (2023) proposed a scenario set generation 
methodology that utilizes Gaussian Process (GP) and Signal Temporal Logic (STL) models to enhance the test coverage for the formal 
verification of autonomous ship control systems. Zhou and Zhang (2023) developed a testing platform to test the collision avoidance 
capabilities of autonomous ships in diverse settings such as open waters, coastal regions, and archipelagos with varying traffic den
sities, equipped with a synthetic map generator and a random encounter scenario generator.

While the above studies demonstrate that random-based methods can efficiently generate a wide range of scenarios for compre
hensive testing, the virtually infinite scenario space includes a substantial number of invalid cases that fail to adequately capture 
critical risk and complexity aspects (Bakdi et al., 2021). Several recent studies have addressed this limitation. For instance, Shi et al. 
(2023) developed probabilistic ship behavior models from real traffic data to construct a naturalistic sailing environment, into which 
they sparsely injected adversarial maneuvers to create a Naturalistic-and-Adversarial Sailing Environment (NASE), thereby main
taining realism while significantly increasing the yield of critical encounters. Similarly, Zhu et al. (2025) formulated scenario gen
eration as a heterogeneous multi-agent Markov Decision Process (MDP), integrating a six-factor Fuzzy Analytic Hierarchy Process 
(FAHP) collision risk index with an enhanced Obstacle Zone by Target (OZT)/Kalman-filtered Independence Dueling Double Deep Q- 
Network (Independence D3QN) and a “targeted-pressure” reward mechanism to adaptively steer background ships toward high-risk 
interactions. Nevertheless, these approaches face challenges in selecting representative traffic scenarios that accurately and strongly 
correlate with real-world conditions, primarily because their generated scenarios are not fully derived from actual traffic data, 
potentially leading to test outcomes that do not reliably reflect the performance of autonomous systems under real-world conditions.

2.3. AIS data-based scenario generation methods

The digitalization revolution has greatly enhanced the accessibility and quality of AIS-based trajectory data, which is now 
extensively utilized to bolster the development and construction of intelligent transportation systems (Ribeiro et al., 2023; Yu et al., 
2023; Zhang et al., 2024). Due to the unique benefits of AIS data, including extensive coverage and verifiable information, and its 
integration with detailed geographic and environmental data, considerable efforts have been made to construct AIS data-based traffic 
scenarios for autonomous testing. For example, Bakdi et al. (2021) devised a framework that uses a high-performance computational 
approach to analyze historical data and create realistic testbed scenarios. This framework integrates detailed traffic data from AIS with 
high-resolution digital maps, ship registries, and nautical charts to analyze collision and grounding risks, thereby producing robust and 
authentic testing scenarios. Zhu et al. (2022) developed a scenario-based validation method for autonomous collision avoidance 
systems by extracting ship encounter scenarios from historical AIS data and generating virtual test scenarios that mirror the parameter 
probability distributions observed in actual scenarios. Zhou et al. (2024) introduced a technique for parametric modeling and 
encounter scenario generation for autonomous anti-collision testing in inland waterways, utilizing AIS and radar data. To identify 
critical encounter scenarios for autonomous testing support, Wang et al. (2024a) proposed a comprehensive framework that assesses 
both the collision risk and exposure frequency of AIS-based traffic scenarios. Furthermore, Wang et al. (2024b) examined the spatial- 
temporal dependencies among ships, the complexity of traffic scenarios, and the application strategies for tests, aiming to enhance the 
rigor of autonomous testing.

Despite the popularity and substantial capabilities of AIS data-based scenarios to deliver sufficiently realistic test scenarios for 
comprehensive autonomous testing, state-of-the-art research reveals several critical shortcomings that remain largely unaddressed, 
particularly in terms of accurate scenario extraction, characterization, and sampling, as detailed below: 

1. Proper encounter situation recognition is the basis for precisely extracting traffic navigation scenarios. Previous studies have 
predominantly relied on combining distance parameters and metrics based on the Closest Point of Approach (CPA) to define the 
spatial-temporal encounter relationships among ships (Cho et al., 2020; Wang et al., 2024a; Zhang et al., 2023). However, they 
often overlook the impact of factors like potential ship motion dynamics and constrained waterway geography. Meanwhile, few 
studies have delved into creating dynamic evolution scenarios that feature a continuous spatial-temporal interaction process 
among multiple ships, which would allow for observing dynamic behaviors such as ships joining and leaving scenarios (Bakdi et al., 
2021). Developing advanced models that integrate these elements and account for scenario dynamics offers the potential to 
accurately and comprehensively capture the evolutionary interactions among multiple ships over time, yet this remains a signif
icant unresolved issue.

2. Analyzing traffic scenario characteristics goes beyond basic assessments of encounter risks and types, which necessitates a 
comprehensive disclosure of scenario details from a broader perspective. Failing to fully expose these characteristics could 
fundamentally compromise the accurate interpretation of traffic behaviors within the scenario, potentially leading to unconscious 
biases in autonomous testing. Although numerous studies focus on either the encounter risks or types (with a few addressing both), 
they often overlook the trajectory motion patterns of ships involved in the scenario, even though these patterns are crucial for 
revealing typical navigational behaviors in specific environments and assisting autonomous ships in either replicating or opti
mizing these behaviors (Li et al., 2022). Additionally, current scenario characterizations concerning encounter risks and types are 
limited to two major aspects. Firstly, most models inadequately capture the dynamic conflict risks and complexities arising from 
ship motion dynamics, maneuverability constraints, and intricate topological interactions among multiple ships (Wang et al., 
2024a; Zhang et al., 2023). There is also a significant shortfall in the use of advanced classification and parameterization techniques 
for hierarchically quantifying the complexity levels of conflicts within traffic scenarios (Bakdi et al., 2021). These elements are 
crucial for conducting accurate and detailed analyses of dangerous situations, especially for traffic scenarios originating from 
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complex maritime environments characterized by high traffic density, diverse motions, and complex traffic compositions. Sec
ondly, while studies typically identify specific encounter types at the initial moments (Hwang and Youn, 2021; Wang et al., 2024a), 
they often fail to consider these types throughout the encounter process, hindering the systematic encoding and comprehensive 
understanding of traffic co-behaviors during encounters. To achieve an accurate and comprehensive understanding of extracted 
traffic scenarios, it is essential to conduct a systematic analysis of scenario characteristics. This involves jointly revealing the ship 
motion patterns, conflict complexities, and encounter types throughout the entire scenario.

3. The enormous volume of AIS data makes it possible to generate countless traffic navigation scenarios for autonomous ship testing. 
Thus, exploring the diversity of these scenarios is pivotal for selecting representative scenarios to optimize testing efficiency. 
However, most studies have assessed scenario diversity from a single angle, focusing only on elements such as collision risk or 
encounter type (Bolbot et al., 2022; Chen et al., 2021; Hwang and Youn, 2021). There has been no systematic approach that ex
amines scenario diversity across multiple dimensions. For instance, no existing approach jointly integrates factors like ship motion 
patterns, conflict complexities, and encounter types during screening processes to ensure the selection of scenarios that are truly 
representative of real-world conditions. Consequently, the development of advanced sampling techniques, guided by multiple 
selection principles, is crucial for achieving comprehensive coverage and efficiency in autonomous testing. This involves choosing a 
smaller, yet fully representative subset of scenarios that comprehensively captures the diversity of the original set.

In summary, the identified limitations significantly hinder the progress of MASS implementation, requiring a novel study 
addressing all three gaps holistically. Therefore, this study is devoted to developing a new holistic framework for the extraction, 
characterization, and sampling of traffic scenarios. This framework will integrate advanced and new models to collectively overcome 
these challenges, thereby supporting comprehensive and reliable autonomous testing and verification.

3. Methodology: Traffic scenario extraction, characterization, and sampling

Fig. 1 presents a systematic framework for extracting, characterizing, and sampling traffic scenarios from historical AIS data, 
structured into three key modules. The first module develops an advanced dynamic scenario extraction method that integrates 
enhanced CPA-based parameters, distance, and obstacle spatial distribution to accurately capture the real encounter relationships 
among ships over time. The second module characterizes the extracted scenarios from three perspectives: 1) The trajectory movement 
patterns of involved tested ships are analyzed by systematically combining the Dynamic Time Warping (DTW) model and the Ordering 
Points To Identify the Clustering Structure (OPTICS) algorithm; 2) the conflict complexity levels are meticulously quantified and 
parameterized by holistically defining and synthesizing 4 conflict-related indicators, employing the advanced Quaternion Ship Domain 
(QSD) model, a spatial risk model, and the Fuzzy Clustering Iterative (FCI) model; and 3) the encounter types are detailed for the first 
time through both momentary encounter features and those derived from the entire encounter process. Given the extensive number of 
traffic navigation scenarios extracted from AIS data, the third module designs a hierarchical greedy sampling technique to selectively 
identify representative scenarios for autonomous testing, based on the results from scenario characterization along with advanced 

Fig. 1. Research framework.
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spatial coverage metrics such as Average Nearest Neighbor Distance (ANND) and Coverage Radius (CR). Detailed technical de
scriptions of each module are provided in the subsequent subsections.

3.1. Traffic scenario extraction

Ship traffic navigation scenarios represent a dynamic evolutionary process that captures collective behavior and interactions 
among ships over time. At any given moment, the encounter relationships between any ship pair can be determined using the following 
spatial-temporal constraint model (Cho et al., 2020; Zhang et al., 2023; Zhu et al., 2022): 

ERij(t) =
{

1 Dij(t) ≤ γD ∩ DCPAij(t) ≤ γDCPA ∩ 0 < TCPAij(t) ≤ γTCPA
0 otherwise (1) 

where Dij(t), DCPAij(t), and TCPAij(t) represent the distance, Distance to the Closest Point of Approach (DCPA), and Time to the Closest 
Point of Approach (TCPA) between ships i and j at time t, respectively. The thresholds γD, γDCPA, and γTCPA are set for these mea
surements. ERij(t) = 1 indicates that ships i and j have an encounter relationship, while ERij(t) = 0 indicates the absence of such a 
relationship.

However, this model’s effectiveness diminishes in complex encounter scenarios where ships exhibit varied motion dynamics. This 
limitation arises because DCPA and TCPA calculations assume that the encountering ships maintain a constant speed over a finite 
lookahead horizon. To address this, an enhanced CPA-based model in Zhang et al. (2015) was developed to precisely describe the 
relative spatial-temporal proximity relationship between ships by considering their potential dynamic motions, which is employed in 
this study. This model describes the future dynamic trajectories of encountering ships using a series of waypoints and calculates the 
CPAs between all pairs of consecutive waypoints between ships, subsequently identifying the minimal CPA. Detailed discussions on 
this model and its effectiveness are available in prior studies (Zhang et al., 2015). Moreover, Eq. (1) fails to account for the impact of 
complex water topography on the spatial-temporal proximity relationship between ships. In challenging water environments, 
encountering ships may be separated by obstacles such as landmasses, islands, and shallow waters. In such cases, even if their spatial- 
temporal proximity relationship satisfies Eq. (1), it does not constitute a real encounter situation.

Therefore, by incorporating the effects of both ship motion dynamics and water topography, Eq. (1) is refined and Eq. (2) is 
introduced to accurately identify genuine encounter situations, as follows: 

RERij(t) =
{

1 Dij(t) ≤ γD ∩ IDCPAij(t) ≤ γDCPA ∩ 0 < ITCPAij(t) ≤ γTCPA ∩ Oij(t) = 0
0 otherwise (2) 

where IDCPAij(t) and ITCPAij(t) denote the improved CPA-based parameters, and Oij(t) = 0 indicates that there are no obstacles be
tween ships at their CPA during the encounter. The spatial distribution of obstacles (i.e., unnavigable water areas) is inferred by 
analyzing the spatial density distribution of ship traffic based on historical trajectory data (Xin et al., 2023). Specifically, Kernel 
Density Estimation (KDE) is employed to differentiate between navigable and unnavigable areas. The investigated water area is 
divided into a series of grids, and the spatial probability distribution of AIS data points within each grid is evaluated against a defined 
threshold to determine its navigability. Additionally, the threshold values for γD, γDCPA, and γTCPA are set at 6 nautical miles, 1 nautical 
mile, and 15 min, respectively, based on both reference and research water characteristics (Bakdi et al., 2021; Zhu et al., 2022).

Building on the above formula, the spatial-temporal dependencies between any two ships at a given traffic snapshot can be 
identified, defined as a Momentary Traffic Situation (MTS). Each MTS, comprising a set of complex interdependent encounter re
lationships among ships, forms a graph structure. As shown in Fig. 2, these graph structures are sequentially constructed by analyzing 

Fig. 2. MTSs involving a dynamic encounter scenario over time.
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the encounter relationships between all ship pairs in each MTS. Therefore, this approach facilitates the construction of spatial-temporal 
dependencies between all ships in a regional area over time.

During the autonomous ship testing process, it is crucial to analyze the interactions between the autonomously functioning ship and 
other ships as they move. In this setup, one ship is designated as the tested ship (i.e., the own ship) with autonomous functions, while 
the other ships serve as target ships involved in encounters with the tested ship. Utilizing the graph relationships constructed at each 
moment, any ship can be designated as the tested ship, allowing for the extraction of target ships with which it has encounter re
lationships from its initiation to the end. This creates a complete and dynamically evolving encounter scenario, characterized by 
dynamic interactions between the tested ship and target ships over time. Fig. 2 shows the target ships (marked in blue) that have 
encounter relationships with ship A (marked in red) over time, presenting a sequence of temporally dependent traffic encounter 
situations. By assigning different ships as the tested ship, various scenarios featuring distinct interactions among ships in temporal 
sequences can be captured, allowing for the formulation of a comprehensive library of scenarios for autonomous testing.

3.2. Traffic scenario characterization

This subsection systematically characterizes the extracted traffic scenarios across three key aspects: ship motion patterns, conflict 
complexities, and encounter types. The motion patterns shed light on the typical navigational behaviors of tested ships; conflict 
complexities highlight the layered differences in scenario conflict criticality; and encounter type features showcase the richness of 
multi-ship encounter situations. These characterizations enable effective scenario encoding, thereby offering a comprehensive un
derstanding of traffic co-behaviors within each scenario and guiding their application in subsequent testing phases. Table 1 provides a 
summary of the scenario characterization metrics and their corresponding descriptions.

3.2.1. Motion pattern classification of tested ships
Trajectory clustering is the primary method for uncovering hidden movement patterns. It puts trajectories with similar spatial- 

temporal behaviors into the same clusters, while trajectories between clusters exhibit relatively low spatial-temporal similarities. 
Therefore, this study integrates advanced distance measurement methods and clustering techniques to analyze the motion patterns of 
tested ships in the extracted scenarios, thereby revealing typical navigational behaviors in specific environments and supporting 
autonomous ships in mimicking or optimizing these behaviors. Ship trajectory clustering involves two crucial components: first, the 
selection of distance/similarity measurement models, which must fully consider the spatial-temporal characteristics of trajectories, 
such as dynamic changes, trajectory length, and shape features; second, the adoption of clustering algorithms, focusing on the 
techniques and approaches used to effectively and efficiently group the trajectories. 

(1) Trajectory distance measurement model

Ship trajectories are time series characterized by continuous timestamps, along with geographical positions (i.e. longitude and 
latitude), velocity, Course Over Ground (COG), and other parameters. This study employs DTW to calculate distances between 
different trajectories, as it effectively handles deformations along the time axis of these series (Li et al., 2022). Moreover, compared to 
methods like Euclidean Distance, Longest Common Subsequence, Hausdorff Distance, and Fréchet Distance, DTW offers significant 
advantages in analyzing data of varying lengths or series with time-shifting patterns (Berndt and Clifford, 1994). Detailed compu
tational specifics for DTW can be found in Appendix A. 

(2) Trajectory clustering algorithm

Table 1 
Summary of scenario characterization metrics and their description.

Metrics Category Description

Trajectory motion pattern Motion behavior Clustered patterns of ship trajectories derived from spatial-temporal 
features using DTW and OPTICS.

Conflict complexity level Conflict risk Hierarchical classification of scenario danger levels using conflict-related 
indicators and FCI model.

Encounter type characteristics Encounter type A dynamic matrix representing the evolution of encounter types (e.g., 
head-on, overtaking, crossing) throughout the scenario.

Total Number of Unique Conflicts (TNUC) Conflict-based 
indicator

Number of distinct target ships involved in conflict with the tested ship 
during the scenario.

Maximum Number of Conflicts at One Timestamp (MNC_OT) Conflict-based 
indicator

Maximum number of simultaneous conflicts between the tested ship and 
target ships at a single time point.

Maximum Total Conflict Risk at One Timestamp (MTCR_OT) Conflict-based 
indicator

Maximum cumulative conflict risk value between tested and all target 
ships at a single time point.

Maximum Number of 3-Cycle Conflicts at One Timestamp 
(MN3CC_OT)

Conflict-based 
indicator

Maximum number of triangular conflict loops involving the tested ship at 
a single time point.

Maximum Number of Encountered Target Ships across 
different encounter types at One Timestamp (MNETS_OT)

Encounter type- 
based indicator

Number of target ships involved in various encounter types (e.g., head- 
on, crossing) with the tested ship at the peak encounter moment.

Total Number of Unique Encountered Target Ships across 
different encounter types (TNUETS)

Encounter type- 
based indicator

Total number of distinct target ships that engage in different encounter 
types with the tested ship throughout the scenario.
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OPTICS is a renowned clustering algorithm that builds upon the classic DBSCAN algorithm to effectively handle large-scale datasets 
with varied density distributions. Compared to other traditional clustering methods, including prototypical, hierarchical, and graph- 
based algorithms, OPTICS provides numerous advantages:1) It automatically discerns cluster structures from data without the need to 
pre-specify the number of clusters; 2) OPTICS does not rely on assumptions about the shape of clusters, enabling the identification of 
clusters with any shape; 3) it shows high robustness in figuring out noise and outliers; and 4) through a reachability plot, OPTICS 
unveils the hierarchical structure and density distribution within the data, facilitating detailed exploration and interpretation of 
clusters at various levels (Rong et al., 2022). Due to these advantages, this study employs OPTICS to process ship trajectory data with 
varying densities and complex structures, effectively revealing the underlying clustering patterns within the data. A detailed 
description of OPTICS is provided in Appendix B.

3.2.2. Conflict complexity evaluation of traffic scenarios
Evaluating the conflict complexity levels of traffic scenarios uncovers varying levels of danger within testbed environments. To 

precisely evaluate the dynamic conflict risk between ships in diverse situations, a refined conflict risk evaluation approach incorpo
rating the QSD model is utilized. This model accounts for factors such as ships’ maneuverability limits, potential motion dynamics, and 
constrained water geography. Subsequently, four conflict-based indicators are holistically proposed to assess the conflict complexity of 
a complete traffic scenario from multiple perspectives. Additionally, an advanced FCI model is applied to synthesize these indicators to 
provide detailed insights into the hierarchical levels of conflict complexity. By innovatively integrating the aforementioned steps, it 
can achieve a precise and systematic quantification of the conflict complexity of traffic scenarios (See Part 2.2 in Fig. 1). 

(1) Conflict risk qualification

A conflict typically occurs when ships approach each other within an unsafe distance over a predetermined future timeframe. To 
evaluate this risk, various ship domain models with distinct geometries have been developed (Szlapczynski and Szlapczynska, 2017; 
Zarzycki et al., 2025). Among these, the QSD model stands out as a widely used and practical approach, incorporating key charac
teristics of ships during encounters (Silveira et al., 2022; Wang, 2010). Shaped by the navigational rules known as COLREGs, this 
model adopted an asymmetric design with four distinct radii defining the fore, aft, starboard, and port boundaries (see Fig. 3). These 
radii, which reflect the ship’s maneuverability and solely depend on its size and speed, are specified as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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2
+
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2

)2
√ ⎞
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⎛

⎝1 + 0.67

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kAD
2
+

(
kDT

2

)2
√ ⎞

⎠L

Rs = (0.2 + kDT)L

Rp = (0.2 + 0.75kDT)L

(3) 

Fig. 3. Illustration of instantaneous conflict risk quantification using the QSD model and spatial risk model.
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where Rf, Ra, Rs, and Rp represent the domain radii at the fore, aft, starboard, and port sides, respectively. L denotes the ship length, and 
kAD and kDT are coefficients linked to the advance (AD) and tactical diameter (DT), respectively. These coefficients, indicative of the 
ship’s fundamental maneuvering capabilities, are calculated using the equations below: 

⎧
⎪⎪⎨

⎪⎪⎩

kAD =
AD

L
= 100.3591log10(V)+0.0952

kDT =
DT

L
= 100.5441log10(V)− 0.0795

(4) 

where V denotes the ship’s speed in knots.
Traditional ship domain-based models typically assess conflict risk through a binary system, labeling situations as either safe or 

dangerous based on whether ships’ domains overlap or invade each other. This study refines these evaluations by combining the QSD 
model with a spatial risk model that employs an exponential decay function. This approach allows for the calculation of more granular 
conflict risk scores that continuously range from 0 to 1, where 0 signifies a safe encounter and 1 indicates a collision (Bakdi et al., 
2021). Additionally, the criterion that neither ship’s domain area should be invaded is adopted as the safety standard, chosen for its 
straightforward implementation and consideration of both encountering ships’ characteristics (Szlapczynski and Szlapczynska, 2017). 
For example, with two ships, SHIPi and SHIPj as illustrated in Fig. 3, an instantaneous conflict risk score for SHIPi, acting as the own 
ship, can be calculated using the exponential decay function outlined below (Wang, 2010). 

IRSt
i→j = e

−

(
Disttij
Dt

ij

(

ln

(
1
r0

))1
3
)3

(5) 

where Disttij represents the distance between SHIPi and SHIPj at time t, and Dt
ij indicates the distance from the center of SHIPi to its 

domain boundaries along the line connecting the two ships (see Fig. 3). The decay parameter ro, set at 0.5, defines the relationship 
between domain size and conflict risk score. Similarly, the instantaneous risk score IRSt

j→i, with SHIPj as the own ship, can be 
calculated. Given that IRSt

i→j and IRSt
j→i might differ due to varying degrees of domain invasion, depending on which ship is considered 

as the reference, the higher of the two scores is used as the instantaneous conflict risk between the two ships. This approach adheres to 
the worst-case scenario principle commonly applied in safety sciences, as follows: 

ICRt
ij = max

(
IRSt

i→j, IRSt
j→i

)
(6) 

where ICRt
ij represents the instantaneous conflict risk between SHIPi and SHIPj at time t.

Note that Eq. (6) calculates the instantaneous conflict risk between the encountering ships at a specific moment, whereas conflict 
risk generally assesses potential risk over an upcoming predefined period (Hernandez-Romero et al., 2019). As such, the dynamic 
conflict risk between SHIPi and SHIPj at time t (i.e., DCRt

ij) is defined by the highest value of ICRtʹ
ij within this future timeframe [t, t + T], 

as outlined below: 

DCRt
ij = max

tʹ∈[t,t+T]
ICRtʹ

ij (7) 

where T denotes the conflict detection horizon set at 15 min, aligning with the parameter thresholds used in the encounter situation 
identification model described in Section 3.1. Computing the instantaneous conflict risk at every future moment within [t, t + T] (as per 
Eq. (7)) would require significant computational resources. To address this, the minimum passing distance between ship pairs within 
this timeframe is first determined using the improved CPA model (Zhang et al., 2015). The instantaneous conflict risk at this minimum 
passing distance is then assessed based on Eqs. (5)-(6), which is used to represent the dynamic conflict risk in Eq. (7). Additionally, 
following the approach of the encounter situation identification model, if any part of the line connecting the ships at their closest 
passing points intersects with an obstacle-marked area, the situation is directly deemed a safe ship-pair encounter, i.e., the conflict risk 
between ships is set to 0. 

(2) Scenario conflict complexity measurement indicators

The conflict dynamics between a tested ship and target ships in a complete traffic navigation scenario are exceedingly complex, 
involving varying degrees of conflict severity with different target ships at distinct moments. Hence, the conflict complexity can be 
analyzed from multiple perspectives. This study develops four representative indicators to systematically describe different aspects of 
conflict complexity throughout a complete traffic scenario. The first three indicators assess the number and severity of conflicts, while 
the fourth reveals the topological characteristics that highlight the challenges in resolving these conflicts. These indicators are being 
used holistically for the first time for this purpose and are defined as follows: 

• Total Number of Unique Conflicts (TNUC): the total number of target ships that engage in conflicts with tested ship throughout 
the scenario.
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• Maximum Number of Conflicts at One Timestamp (MNC_OT): the highest number of conflicts occurring between target ships 
and tested ship at a single timestamp.

• Maximum Total Conflict Risk at One Timestamp (MTCR_OT): the highest cumulative conflict risk value between all target ships 
and tested ship at a single timestamp.

• Maximum Number of 3-Cycle Conflicts at One Timestamp (MN3CC_OT): the greatest number of 3-cycle conflicts involving 
tested ship occurring at a single timestamp. A 3-cycle conflict refers to a case where three ships form a closed loop of conflict 
relationships (see Fig. 4), illustrating complex structural conflicts among multiple ships.

Evidently, the larger these indicators are, the higher the corresponding conflict complexity. 

(3) Scenario conflict complexity evaluation

Evaluating scenario conflict complexity inherently necessitates a multi-index assessment, as multiple indicators are utilized to 
uncover different aspects of the conflicts. This study adopts the FCI model due to its strong hierarchical structuring and precise 
classification capabilities. Traditional methods like Gray Relational Analysis (GRA), the Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS), and Analytic Hierarchy Process (AHP), depend heavily on subjective qualitative standards and experience- 
based criteria. In contrast, the FCI model combines fuzzy theory and clustering algorithms, excelling in 1) handling uncertainty, 
randomness, and fuzziness within datasets and 2) effectively clustering multivariate data without the need for prior information. The 
efficacy of its application across various benchmark experiments and real-world scenarios has been thoroughly demonstrated in 
previous studies (He et al., 2011; Lu et al., 2017).

The essence of FCI lies in its data-driven techniques for determining the optimal memberships of each scenario across different 
complexity levels. Once these memberships are established, the conflict complexity level of each traffic scenario can be identified 
based on its maximum membership, detailed as: 

SCCi = argmax{k=1,2,⋯,c}uki (8) 

where SCCi denotes the conflict complexity level of the ith traffic scenario, uki represents the membership of scenario i to the kth 
complexity level, and c represents the number of complexity levels. Further details related to FCI are provided in Appendix C.

3.2.3. Encounter type analysis of traffic scenarios
Rules 13-15 in Part B of the COLREGs establish the framework for characterizing encounter types between ships. These rules 

classify encounters into three main categories: head-on, overtaking, and crossing, based on the bearing of the target ship relative to the 
own ship (Zhu et al., 2022). Given the distribution of responsibility between target ship and own ship, crossing situations are further 
subdivided into crossing stand-on and crossing give-way, whereas overtaking situations are categorized as either overtaking or being 
overtaken (Liu et al., 2022b; Wang et al., 2024a). Fig. 5 depicts these five distinct types of encounters.

Currently, most research on ship encounter scenario analysis concentrates primarily on the type of encounters between ships at the 
initial moment of encounter (Bolbot et al., 2022; Hwang and Youn, 2021; Wang et al., 2024b). However, a ship traffic navigation 
scenario is inherently dynamic and continuously evolving. Therefore, it is crucial to account for the encounter type features throughout 
the entire navigational process. At any specific moment, the encounter types between the tested ship (i.e., the own ship) and target 
ships in a scenario can be represented as a five-element vector, with each element representing the number of a type of encounter as 
shown in Fig. 5. For example, the vector [2, 1, 0, 0, 0] indicates two head-on encounters and one crossing stand-on encounter between 
the tested ship and target ships. Consequently, the evolving encounter types between the tested ship and target ships in a complete 
traffic scenario can be systematically represented as a newly created matrix, as detailed below: 

Fig. 4. Illustration of 3-cycle conflicts.

X. Xin et al.                                                                                                                                                                                                             Transportation Research Part C 178 (2025) 105246 

10 



ETi =

⎡

⎢
⎢
⎣

ETi,1,1 ETi,1,2

ETi,2,1 ETi,2,2

⋯ ETi,1,5

⋯ ETi,2,5

⋮ ⋮

ETi,T,1 ETi,T,2

⋱ ⋮

⋯ ETi,T,5

⎤

⎥
⎥
⎦ (9) 

where each row in ETi represents the number of {head-on, crossing stand-on, overtaking, crossing give-way, and overtaken} en
counters at one given moment in the ith scenario. For example, ETi,2,1 represents the number of head-on encounters at time 2.

To comprehensively understand the features of scenario encounter types, two new sets of indicators extracted from ETi are 
developed. The first set of indicators highlights the instantaneous features of encounter types, while the second set reveals the features 
over the duration of the encounter process, thereby offering a comprehensive understanding of the scenario encounter types. These 
include: 

• Maximum Number of Encountered Target Ships across different encounter types at One Timestamp (MNETS_OT): the 
number of target ships that experience {head-on, crossing stand-on, overtaking, crossing give-way, or overtaken} encounters with 
the tested ship at the moment when the maximum number of encounters occurs.

• Total Number of Unique Encountered Target Ships across different encounter types (TNUETS): the total number of target 
ships that experience {head-on, crossing stand-on, overtaking, crossing give-way, or overtaken} encounters with the tested ship 
throughout the scenario.

Within these two sets of indicators, a 2 × 5 matrix can be constructed to describe the encounter type characteristics of a scenario, as 
follows: 

ETCi =

[ MNETS OTi,1 MNETS OTi,2

TNUETSi,1 TNUETSi,2

⋯ MNETS OTi,5

⋯ TNUETSi,5

]

(10) 

where ETCi represents the encounter type characteristics of the ith scenario.

3.3. Traffic scenario sampling approach

In practice, both sea trials and simulation-based tests for MASSs, particularly the former, are restricted to a certain number of 
scenarios due to efficiency considerations. However, the abundant AIS data provides a wealth of traffic navigation scenarios suitable 
for autonomous testing. It is therefore critical to select representative scenarios from a sufficiently realistic set to minimize the required 
number for testing while ensuring comprehensive coverage of potential real-world situations.

To achieve this, a hierarchical greedy sampling technique is newly developed to strike an optimal balance between test coverage 
and efficiency. This approach analyzes the diversity of scenarios by utilizing the characterization results of traffic scenarios in Section 
3.2. It involves a three-step sampling process, depicted in Fig. 6, which selects scenarios based on scenario characteristics such as 

Fig. 5. Illustration of different ship encounter types.
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motion patterns, conflict complexities, and encounter types sequentially. The first two steps are straightforward to implement, as the 
classification of motion patterns and conflict complexity levels for scenarios is well-defined in Sections 3.2.1 and 3.2.2. Assuming the 
total number of scenarios sampled is NS, these steps determine the number of scenarios to be sampled from each motion pattern and 
conflict complexity level using the following equations: 

NSij = NS × ρi × φij (11) 

where ρi denotes the percentage of the ith motion pattern within the entire extracted scenario set, and φij represents the percentage of 
the jth conflict complexity level within the ith motion pattern. These two parameters indicate the likelihood of different types of 
scenarios occurring in real traffic settings, corresponding to their exposure frequency. Consequently, a higher exposure frequency 
should naturally lead to a greater sample selection ratio.

After determining the sampled number for each motion pattern and conflict complexity level, the third step initiates the sampling 
process by considering the encounter type characteristics of scenarios. This step addresses two key issues: evaluating the coverage of 
the sampled scenarios relative to the original scenario set, and designing the sampling strategies.

Regarding the first issue, two tailored metrics are developed and used within this context: Average Nearest Neighbor Distance 
(ANND) and Coverage Radius (CR) (Ripley, 1988). The former calculates the average distance from each point in the original set to its 
closest counterpart in the sampled set, reflecting the overall proximity of the sampled points to the original dataset. The latter metric 
assesses the maximum of the minimum distances between points in the original set and points in the sampled set, thus highlighting the 
worst-case coverage situation. ANND assesses overall representativeness but may overlook locally uncovered areas. In contrast, CR 
focuses on the maximum distance, enabling the identification of coverage blind spots and providing a different perspective on sample 
coverage. These two metrics collectively ensure that the coverage of the sampled points is comprehensively assessed from various 
perspectives, with both aiming for smaller values to indicate better performance. The formulas for these metrics are presented below: 

ANND =
1
n
∑n

i=1
min
j∈SS

(
ED ETCij

)
(12) 

where n is the number of points in the original sample set and SS represents the sampled scenario set. 

CR = max
i∈OS

(

min
j∈SS

(
ED ETCij

)
)

(13) 

where OS represents the original sample set. Both metrics utilize ED ETCij, the Euclidean distance between the ith and jth scenarios’ 
encounter type-related matrices, calculated as follows: 

ED ETCij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑2

v=1

∑5

y=1

(
ETCi(v, y) − ETCj(v, y)

)2
√

(14) 

Regarding the second issue, a greedy sampling technique that optimizes both ANND and CR is newly proposed. This objective- 
driven strategy operates as follows: In each iteration, one scenario is selected from the original set and added to the sampled sce
nario set SS. This selection is strategically made to ensure that the addition minimizes either ANND or CR for the updated SS, depending 
on which metric is currently prioritized. The choice of metric to minimize is made randomly during each iteration, which helps 
maintain an effective balance between ANND and CR. This process continues until the number of scenarios in SS reaches the predefined 
target.

Due to the high sensitivity of SS generated by the random selection of the optimization metric in each iteration, this strategy is 
executed numerous times to produce a variety of SS solutions, labeled as {SS1, SS2, …, SSN}. Subsequently, a set of Pareto optimal 
solutions that are non-dominated by any other solutions is identified. For example, if there are two optimal solutions, SSi and SSj, and 

Fig. 6. Traffic scenario sampling procedure.
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SSi has a better ANND than SSj, while SSj outperforms SSi in CR, then they are considered non-dominated. Finally, the ultimate sampled 
scenario set is chosen from this Pareto optimal set based on the median values to ensure a balanced consideration of both ANND and 
CR.

Based on the aforementioned procedure, the final sampled scenario set effectively covers a diverse range of motion patterns, 
conflict complexity levels, and encounter types, while also accounting for their exposure frequencies. This holistic approach is ex
pected in theory to support high autonomous test coverage and efficiency, wanting a feasibility demonstration and validation through 
real cases in Section 4.

4. Application case analyses

4.1. Research area and data collection

To demonstrate the efficacy of the developed methodology, this study selects a major hub within Yangshan Port as the experimental 
research site. This area ranks among the busiest maritime zones in the world in terms of cargo throughput and serves as the sole deep- 
water harbor in Shanghai Port capable of accommodating the entry and exit of ultra-large ships. It is renowned for its complex traffic 
flows and diverse geographical conditions, marked by high traffic densities, varied and unpredictable ship movements, and a wide mix 
of traffic types, among others. Additionally, as shown in Fig. 7, this zone functions as a critical junction with numerous intersecting 
routes, significantly increasing the likelihood of ship collision incidents. In response, maritime authorities have designated it as an 
official precautionary zone, equipped with extensive ship routing systems and navigational regulations. Therefore, utilizing this water 
area for extracting, characterizing, and sampling traffic navigation scenarios is highly relevant for supporting autonomous testing in 
environments with complex traffic and geographical challenges. Demonstrating the effectiveness of the methodology in such a 
challenging environment supports its applicability to comparably complex or less complex waters worldwide.

The designated experimental area spans from 30◦28′N to 30◦38′N latitude and from 122◦3′E to 122◦20′E longitude. The historical 
AIS dataset analyzed comprises over 40 million records, each containing details such as time, Maritime Mobile Service Identity (MMSI) 
number, latitude, longitude, speed, COG, ship length, and ship type, over a period from April 1, 2020, to June 30, 2020. Recognizing 
the vulnerability of AIS data to inaccuracies due to technical malfunctions and calibration discrepancies, a comprehensive data 
cleaning and preprocessing protocol is implemented. Key procedures in this protocol include the elimination of outliers and the 
verification of trajectory consistency. Additionally, given the variability in AIS message transmission frequencies, a linear interpo
lation method is utilized to ensure consistent synchronization of AIS data across all ships. These steps significantly improve the 
reliability and completeness of the data used in subsequent analyses.

4.2. Traffic scenario extraction results

By employing the scenario extraction approach in Section 3.1, this study identifies various traffic navigation scenarios, with each 
scenario featuring a specific ship designated as the tested subject. Ships with a navigation duration exceeding 60 min are specifically 
selected as the tested ships for scenario extraction. Predominantly, testing is conducted in hazardous scenarios, as these risk-laden 
situations are crucial for evaluating autonomous navigation techniques, such as collision avoidance decision-making algorithms. 
Consequently, the focus is on scenarios that pose conflict risks (i.e., involving encountered ships with DCRt

ij > 0), ultimately resulting in 
the extraction of 21,841 risky scenarios from pre-processed AIS data.

Each scenario retains detailed records including the start and end times, information about the tested and target ships at each 
moment, as well as the conflict risks and encounter types between ships. Fig. 8 displays some examples of the extracted traffic sce
narios, where the light blue line indicates the trajectory of the tested ships, and other lines represent the trajectories of target ships. The 

Fig. 7. Research area.

X. Xin et al.                                                                                                                                                                                                             Transportation Research Part C 178 (2025) 105246 

13 



symbols ‘o’ and ‘x’ mark the start and end points of each trajectory, respectively. Dotted red lines connect the co-start points between 
the tested ship and target ships, while dotted black lines connect the co-end points. These extracted scenarios underscore the complex 
spatial-temporal dependencies among ships, as well as the dynamic evolution of encounter situations. They illustrate fluctuations in 
the number of encountered target ships and variations in the relative bearings and distances of these encounters over time. Compared 
to studies that focus on autonomous testing in straightforward and stable scenarios involving two-ship or multi-ship encounters, 
typically based on traditional hand-crafted scenarios, these extracted complex and highly dynamic scenarios provide: (i) complete 
temporal evolution of multi-ship interactions, (ii) continuous speed and heading adjustment behaviors, and (iii) realistic constraints 
imposed by waterways such as restricted channels, bends, and traffic lanes. They therefore offer a much richer testbed for validating 
interactions and cooperative behaviors between autonomous and manned ships. A detailed characterization analysis of all extracted 
scenarios will be presented in the subsequent subsection.

4.3. Traffic scenario characterization results

This subsection presents the characterization results of the extracted traffic scenarios, detailing the movement patterns of tested 
ships, conflict complexities, and encounter types in sequence. Following this, a systematic scenario analysis is conducted to demon
strate the methodology’s effectiveness in delineating a well-defined traffic scenario across these three characteristic types.

4.3.1. Movement pattern classification results
As outlined in Section 3.2.1, this study systematically combines the DTW and the OPTICS algorithm to identify the motion patterns 

of the tested ship in each scenario. Therefore, it is crucial to first determine two hyperparameters, MinPts and ∊, for the OPTICS al
gorithm (see Appendix B). As illustrated in Fig. 9(a), the reachability plots from OPTICS across different MinPts values, especially those 
between 35 and 75, exhibit similar clustering structures. This consistency underscores the robustness of the OPTICS algorithm against 
variations in parameters, leading to the choice of MinPts = 50 for this study. Additionally, the hierarchical clustering structure is 
identified by capturing valleys in the reachability plot, which makes the initial setting of parameter ∊, strictly speaking, unnecessary 
(Rong et al., 2022). In this study, valleys, each representing a cluster, are manually identified by combining the reachability plot with 
the visualization of trajectory clustering distribution.

Fig. 10 showcases the clustering results for ship movement patterns. As illustrated in Fig. 10(a), distinct clusters reveal different 
routes and directions of ship movements. Fig. 10(b) displays the number of trajectories within each pattern, highlighting the relative 

Fig. 8. Illustration of extracted traffic navigation scenarios.
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busyness of different motion patterns. Specifically, Clusters 1, 3, and 14 are the most prominent patterns. Moreover, Fig. 10(c) shows 
the spatial distributions of each motion pattern, clearly demonstrating their distinct spatial characteristics. Trajectories within the 
same patterns exhibit consistent motion characteristics, whereas those from different patterns demonstrate contrasting motion 
characteristics. To validate the accuracy and effectiveness of the clustering results further, three typical indicators including the 
Silhouette Score (SS), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI) are adopted. The details of these indicators’ 
calculations are given in Appendix D. The values of Average SS, DBI, and CHI are listed in Table 2, all falling within ideal ranges. These 
observations affirm the satisfactory and well-structured clustering of ship motion patterns.

Overall, the classification identifies 24 distinct behavior patterns, which can aid autonomous ships in emulating various behaviors 

Fig. 9. (a) OPTICS reachability plots across different MinPts values; (b) OPTICS reachability plot when MinPts = 50.

Fig. 10. Clustering results of ship movement patterns based on DTW and OPTICS. (a) Visualization of trajectory clustering distribution; (b) number 
of trajectories in each trajectory cluster; (c) spatial distribution visualization of each trajectory cluster.
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during performance tests at the research site. In particular, the extracted motion patterns, such as Clusters 9, 10, 18, 19, 20, and 21, are 
clearly governed by the narrow channel, adjacent shoals, and designated traffic lanes, each occurring overwhelmingly within the 
restricted corridor highlighted in Fig. 7. These patterns therefore effectively represent narrow passage navigation.

4.3.2. Conflict complexity training results
Based on the extracted scenarios, the four conflict-related indicators for each scenario are calculated according to the methodology 

described in the first and second parts of Section 3.2.2. Fig. 11 illustrates the distribution characteristics of these indicators across all 
extracted traffic scenarios. To reveal the conflict complexity of each scenario, these indicators are aggregated using the FCI model, 
which hierarchically determines the conflict complexity levels. Consequently, Fig. 12 showcases the training results of the FCI model.

As depicted in Fig. 12(a), the relationships between the number of input complexity levels and the FCI’s objective function (i.e., F 
(uki, sjk) in Eq. (C.2)) are clarified. It is noted that an elbow point occurs at 4 complexity levels. Hence, in terms of the hand-elbow 
method, the optimal traffic complexity levels are categorized into 4 groups, labeled from Level 1 to Level 4, ranging from low to 
high. Fig. 12(b) details the optimization iterations within the FCI process, employing 20 randomly initialized cluster centers (i.e., uki in 
Eq. (C.3)) as inputs. The objective function F(uki, sjk) achieves rapid convergence and exhibits remarkable stability, independent of the 
initial cluster center choices. This highlights the FCI model’s effectiveness and resilience in optimization processes. Additionally, 
Fig. 12(c) reveals the number of scenarios across different complexity levels, highlighting the distribution characteristics of scenario 
conflict complexities. Furthermore, Fig. 12(d) showcases the final optimal cluster centers for each conflict-related indicator at each 
complexity level, demonstrating a strong hierarchical structure.

To further validate the efficacy of the FCI model in classifying conflict complexity levels, Fig. 13 illustrates the distributions of 
traffic complexity classification results based on any three conflict-related indicators. This clearly displays distinct spatial value dis
tributions of conflict-based indicators corresponding to different complexity levels. Specifically, samples within the same complexity 
levels exhibit close proximity, whereas those from different complexity levels show relatively greater distances. This observation 
emphasizes the FCI model’s effectiveness in hierarchically and precisely classifying conflict complexity levels.

4.3.3. Encounter type analysis results
Fig. 14 illustrates the distribution characteristics of encounter type-related indicators, as detailed in Section 3.2.3, across all 

extracted traffic scenarios. According to the figure, the maximum number of encountered target ships in head-on, crossing stand-on, 
overtaking, crossing give-way, and overtaken situations at a specific moment varies from 0-13, 0-18, 0-11, 0-23, and 0-7, respectively. 
Meanwhile, the total number of unique encountered target ships with respect to these encounter types ranges from 0 to 20, 0-24, 0-14, 
0-43, and 0-10. The substantial variation in these indicators among different scenarios underscores the diversity of the extracted 
scenarios. Unlike traditional designs that typically involve simpler two-ship or multi-ship encounters for autonomous testing, the 
scenarios depicted here are significantly more complex. They feature a dynamic array of encounter types over time, which more 
accurately mirrors real-world conditions, particularly in highly complex coastal or port waters. These scenarios incorporate the 
continuous joining of new ships and the departure of existing ones, constantly updating the encounter dynamics. Using these complex 
and evolving scenarios for autonomous testing can more successfully build confidence and verify the safety, security, and reliability of 
MASSs.

4.3.4. Illustration of traffic scenario characterization
Based on the analysis results described above, a comprehensive characterization analysis for any traffic navigation scenario can be 

conducted. Fig. 15 presents a detailed characterization of a complete traffic navigation scenario. In Fig. 15(a), the movement tra
jectories of the tested ship and target ships are displayed, showing how they navigate relative to each other. Fig. 15(b) displays the 
evolving distances between the target ships and the tested ship over time, typically following a pattern where they first move closer 
together and then apart. Solid lines in the figure indicate scenarios where the target ships and the tested ship either constitute 
encounter situations or experience real-time ship domain intrusions. It is noted that in most cases, as the distance between the tested 
ship and target ships shifts from decreasing to increasing, the line transitions from solid to dashed, indicating that they no longer form 
encounter situations. This transition demonstrates the effectiveness of the encounter situation identification model used in the 
analysis.

Furthermore, Fig. 15(c)-(e) illustrates momentary encounter situations at specific times, where ’o’ symbols mark the current po
sitions of ships, while dotted lines indicate their projected future trajectories as identified by the improved CPA method. The complex 
QSD visualization reveals the spatial risk distribution at the closest points of approach between ships. With this information, the 
conflict risks and encounter types between any target ship and the tested ship at each moment can be determined, as depicted in Fig. 15
(f)-(h). There are complex conflicts with spatial dependencies that form graph representations and involve intricate encounter types. 
Fig. 15(i)-(j) demonstrates the evolutions of conflict-based and encounter type-based characteristics between the tested ship and target 
ships over time, facilitating the observation of dynamic developments such as the reduction or increase in the number of conflicts, total 

Table 2 
Trajectory clustering performance under different evaluation metrics.

Evaluation metrics Average SS DBI CHI

Test results 0.6863 0.7199 740,550
Ideal results >0.5 <1 >(100–9999)
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Fig. 11. Distribution of each conflict-related indicator for all extracted traffic scenarios.

Fig. 12. FCI training results for conflict complexity levels of traffic scenarios (a) Relationships between the number of complexity levels and F(uri, 
sjr); (b) optimization iterations in the FCI process using 20 randomly initialized cluster centers; (c) number of scenarios categorized by different 
conflict complexity levels; (d) final optimal cluster centers for each conflict-related indicator at each complexity level.

Fig. 13. Visualization of traffic complexity classification results based on any three conflict-related indicators.
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conflict risk, and the number of encountered target ships across different types involved in a scenario. The final descriptive parameters 
of the depicted scenario are summarized in Table 3. These characterizations aid in encoding and understanding the traffic co-behaviors 
in each scenario, guiding their application in subsequent autonomous testing phases.

4.4. Traffic scenario sampling results

To demonstrate the efficacy of the proposed scenario sampling framework, 1000 samples are chosen from the overall scenario set 
for the final testing, serving as a representative example. The proportion of scenarios selected from each motion pattern can be 
identified in Fig. 10(b), while the proportion from each complexity level within each motion pattern is detailed in Fig. 16. As a result, 
the number of samples slected from each motion pattern and conflict complexity level can be determined by Eq. (11) in Section 3.3. 
Based on this, the final test samples are carefully selected from each motion pattern and conflict complexity level, taking into account 
both the ANND and CR that are associated with the encounter type features.

For comparative evaluation, three typical sampling methods are utilized alongside the proposed greedy sampling technique. Note 
that Latin Hypercube Sampling (LHS) and Sobol sampling are excluded as baselines because they first generate virtual design points 
that must be projected back onto the dataset—a detour that introduces duplicates, enlarges the worst-case coverage radius, adds extra 
hyperparameters, and offers no coverage guarantee. The competing algorithms, along with key implementation details, are summa
rized as follows: 

• Random sampling method: This method involves selecting a fixed number of samples randomly from the original set.
• Max-Min distance sampling method: This method aims to maximize the minimum distance between selected samples, thereby 

ensuring that the samples are as spatially dispersed as possible. It starts with a randomly selected initial sample, followed by 
selecting the sample with the largest minimum distance to the already selected samples from the remaining pool. This process is 
repeated until the necessary number of samples is achieved (Pronzato and Müller, 2012).

• K-meansþþ based sampling method: This method begins by randomly selecting the initial sample from the dataset. Subsequent 
samples are chosen from the remaining samples, with a probability proportional to the square of their distance from the nearest 
previously selected samples (Arthur and Vassilvitskii, 2006).

Fig. 17 presents a comparison of average performance across various sampling methods applied to two original subsets, each 
characterized by specific conflict complexity levels and motion patterns. Among these competitors, the proposed greedy sampling 
technique excels in achieving the best ANND, as depicted in Fig. 17(a) and (d). Conversely, the Max-Min distance sampling method 
achieves the best CR, demonstrated in Fig. 17(b) and (e). Notably, the proposed technique significantly outperforms both the random 
sampling and K-means++ based sampling methods across these evaluation metrics. While the Max-Min distance sampling method 
surpasses the greedy technique in terms of CR, it substantially sacrifices ANND, resulting in the weakest performance in that metric. In 
contrast, the proposed method adeptly integrates both ANND and CR to steer the sampling process. As illustrated in Fig. 17(c) and (f), 
the points generated by the greedy technique, in terms of ANND and CR, are notably closer to the lower left corner of the axis, 
indicating superior performance. The blue diamond points represent non-dominated solutions, whereas the red diamond points signify 

Fig. 14. Distribution of each encounter type-based indicators for all extracted traffic scenarios.
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Fig. 15. Depiction of a complete traffic navigation scenario characterization. (a) Trajectories of tested ship and target ships; (b) evolution of 
distances between tested ship and target ships over time; (c)-(e) illustration of encounter situations at specific moments; (f)-(h) relationships be
tween tested ship and target ships based on conflict risks and encounter types; (i) evolutions of conflict-based indicators between tested ship and 
target ships; (j) evolutions of encounter type-based indicators between tested ship and target ships.

Table 3 
Final characterization results of the depicted scenario.

Motion pattern Conflict complexity Encounter type-related indicators

MP2 TNUCi = 9; MNC_OTi = 4 
MTCR_OTi = 1.485; MN3CC_OTi = 1

MNETS_OTi = [1 3 1 4 1] 
TNUETSi = [4 7 1 9 1]

u1:c,i = [0.087, 0.187, 0.546, 0.180]
Complexity level = 3
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the final chosen optimal solutions that achieve a strategic balance between the two metrics.
Furthermore, Fig. 18 showcases overall comparisons between the proposed greedy strategy and other scenario sampling methods 

across all subsets. These results reinforce those in Fig. 17, further demonstrating the proposed technique’s ability to merge two 
coverage metrics to select representative scenarios. Consequently, the proposed technique exhibits a superior and competitive 
advantage in comprehensively addressing various coverage performance metrics.

4.5. Scenario real-world applications for autonomous testing

Based on extensive experiments, a comprehensive traffic navigation scenario library is developed. Each scenario in the library 
contains detailed traffic information from all participating ships over the scenario’s duration, as illustrated in Fig. 15. Within each 
scenario, ships follow a sequence of waypoints from start to finish, with each waypoint recording parameters such as position, speed, 
and course at specific timestamps. This dataset captures how scenarios are executed by manned ships, serving as a high-fidelity bridge 
between historical operations and prospective simulations or sea trials for autonomous testing.

For practical testing, each scenario designates a predefined tested ship to act as a MASS, equipped with various autonomous 
navigation functions, while the remaining ships serve as target ships. The tested ship can operate under four distinct configurations to 
assess different interaction dynamics: 1) All ships follow recorded waypoints; 2) the tested ship follows waypoints with collision 
avoidance disabled, while target ships replay their original tracks; 3) the tested ship follows waypoints with collision avoidance 
enabled, while target ships replay original tracks; and 4) the tested ship autonomously plans, updates, and executes its trajectory using 
onboard navigation algorithms, while target ships either replay historical tracks or are driven by rule-based, behavior-cloned, or 

Fig. 16. Distribution of selection percentages of each conflict complexity level across different motion patterns.

Fig. 17. Comparisons of the proposed greedy strategy with other scenario sampling methods across subsets characterized by specific motion 
patterns and conflict complexity levels.
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Reinforcement Learning (RL)/game-theoretic policies that respond dynamically to the tested ship in real time. Allowing both the tested 
and target ships to deviate from historical tracks is critical, as it prevents overfitting to past traffic patterns, evaluates whether au
tonomy can outperform traditional navigation practices, and enables stress-testing against adversarial behaviors. These setups enable 
the tested ship to determine and execute its course from origin to destination using different strategies. Upon completion of the tests, 
performance metrics, including safety, smoothness, regulatory compliance, and environmental efficiency, are applied to evaluate 
MASS capabilities in accordance with testing requirements.

4.6. Discussions, implications, and limitations

The methodology developed for scenario extraction, characterization, and sampling from extensive historical AIS data establishes a 
sophisticated traffic navigation scenario library, significantly advancing MASSs, the broader shipping industry, and maritime regu
latory authorities. This study delivers multiple benefits:

Firstly, it is pivotal in enhancing the safety and efficiency of MASSs by enabling the simulation and testing of various autonomous 
navigation algorithms through accurate, reliable, and comprehensive traffic scenarios. Unlike manually constructed fictitious sce
narios, this data-driven methodology utilizes extensive historical AIS data to accurately mirror real-world conditions and provide 
detailed insights into dynamic co-behaviors among ships. The methodology covers all steps from water geography preparation to 
hierarchical data mining, scenario complexity scoring, and summary statistics, thereby preparing the scenarios for MASS testing. Its 
scalability also supports the extraction of tailored scenarios across diverse geographical regions and timeframes, accounting for factors 
such as ship motion dynamics, ship maneuverability, and constrained waterway geography. This adaptability is crucial for compre
hensive testing of autonomous ships through varied traffic interactions and dynamic multi-conflict sequences. Additionally, the 
extensive library of navigation scenarios simulates not only common traffic situations but also extreme and rare encounters, providing 
a robust testing platform for MASS navigation algorithms and ensuring comprehensive coverage of potential encounters. As such, the 
scenario library equips MASSs to handle a spectrum of realistic and complex conditions, enhancing system adaptability, refining 
decision-making algorithms, and ensuring readiness for varied traffic conditions. As autonomous maritime technologies evolve, this 
scenario library will become increasingly vital for system enhancements and the certification process, ensuring that MASSs can adeptly 
navigate the complexities of real maritime environments.

Secondly, this methodology offers valuable managerial and operational insights that are transforming maritime operations. The 
integration of autonomous ships is poised to revolutionize maritime logistics and operations for the shipping industry at large. The 
extensive traffic scenarios developed through this methodology provide reliable data that supports advanced trajectory prediction, 
facilitates in-depth analysis of ship maneuver behaviors, and assists in collision avoidance decision-making, thereby enhancing the 
predictiveness and responsiveness of autonomous systems. Traditional trajectory prediction methods often neglect the impact of multi- 
ship interaction on potential future dynamic behaviors, which can significantly affect the accuracy of real trajectory predictions, 
especially in waters with frequent multi-ship encounters. However, the extracted traffic scenarios retain detailed collision risk in
dicators and multi-ship interaction information over time, which can be used to train advanced AI models for more precise predictions. 
This supports the training and refinement of prediction models that can accurately anticipate ship dynamics and further predict po
tential hazards in complex traffic conditions, enhancing risk management and emergency response mechanisms for MASS systems. 
Moreover, detailed scenario analysis not only reveals the behavioral patterns of ships during different encounters but also evaluates the 
effectiveness of these maneuvers, crucial for understanding the performance of ships in various situations, particularly assessing the 
ability of MASSs to comply with and effectively execute maneuvers under international maritime regulations, such as the COLREGs 
rules. This could lead to optimized route planning, improved fuel efficiency, and reduced operational costs. The shift toward MASSs 
has the potential to significantly decrease human error, a primary cause of maritime accidents, thereby facilitating safer and more 
efficient autonomous navigation.

Lastly, the methodology informs regulatory and policy frameworks. Maritime regulatory bodies face significant challenges in 
framing rules and standards that adequately address the rise of autonomous technologies. The scenario library provides empirical data 

Fig. 18. Overall comparisons between the proposed greedy strategy and other scenario sampling methods across all subsets.
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that can inform and shape regulatory frameworks to accommodate MASSs. The characterization process proposes new metrics and 
employs a range of advanced models to facilitate the evaluation, classification, and parameterization of these scenarios, enhancing the 
encoding and understanding of their behaviors. By understanding the various traffic navigation scenarios that MASSs might encounter, 
regulators can develop more informed policies that ensure safety, compliance, and cohesiveness in various types of waters. Therefore, 
this comprehensive methodology not only fosters advancements in MASS technology but also serves as a cornerstone for future 
regulatory standards, ensuring maritime safety in an era of increasing automation.

Although the proposed methodology extracts a large number of high-risk traffic navigation scenarios based on historical AIS data, it 
is intrinsically limited to situations that have already occurred. Autonomous ships may face rarer or yet-unseen hazards. A promising 
way forward is to treat AIS data-based scenarios as a training set and apply advanced data-augmentation techniques (e.g., generative 
adversarial networks) to synthesize additional, physically plausible high-risk scenarios. These generated cases should then be validated 
against traffic statistics and expert judgment to ensure adequate coverage without sacrificing realism. Such efforts would broaden 
hazard coverage, strengthen the robustness and safety assurance of autonomous navigation system testing, and accelerate their reg
ulatory acceptance and real-world deployment.

5. Conclusion

Testing and evaluation are crucial steps in the development and deployment of MASSs. This study presents a systematic meth
odology to extract, characterize, and sample maritime traffic navigation scenarios from extensive historical AIS data to generate a 
holistic testing scenario library. This methodology features several innovative aspects: 1) A novel scenario extraction approach that 
captures continuous spatial-temporal interactions among ships, accounting for potential ship motion dynamics, constrained waterway 
geography, and evolutionary graph-based interdependencies; 2) a thorough classification and parameterization of scenario charac
teristics, including ship motion patterns, conflict complexities, and encounter types, which enhances the encoding and understanding 
of traffic co-behaviors; and 3) a hierarchical greedy sampling technique that adaptively selects representative scenarios from a real
istically sufficient set, ensuring comprehensive coverage of potential scenarios while optimizing the efficiency of autonomous testing. 
Extensive experimental analyses validate the effectiveness of this proposed methodology in producing an accurate, interpretable, and 
representative set of real-world traffic navigation scenarios for autonomous testing. Consequently, this study assists in establishing 
trust and confirms the safety, security, and reliability of MASSs by enabling these future autonomous ships to undergo thorough testing 
with the generated scenario library, thereby advancing highly and fully automated navigation.

Future research could explore the following promising areas. Firstly, the propagation and prediction of traffic movements based on 
the extracted traffic scenarios warrant further investigation. Accurate prediction depends not only on the static environment and 
individual information from the predicted ships but also on the interaction information from other dynamic target ships. The extracted 
scenarios encompass the essential data needed to train AI models aimed at enhancing the accuracy of movement predictions. This 
would aid in identifying real forthcoming traffic situations, crucial for issuing early collision alerts and reducing response times in risk 
management. Secondly, it would be highly beneficial to incorporate external environmental factors, such as wind, currents, and wave 
conditions, into the scenario extraction process. Doing so would enable a more holistic and realistic representation of maritime 
navigation scenarios, particularly in environmentally sensitive or high-risk regions. Thirdly, generative models could be employed to 
enrich AIS data-based scenario datasets with rigorously validated, physically plausible high-risk scenarios, thereby extending test 
coverage to rarer or yet-unseen hazards. Finally, while this study focuses extensively on how to extract and analyze traffic navigation 
scenarios, future work could valuably explore how to utilize these scenarios for autonomous testing and how to evaluate testing 
performance. This process would further advance the practical application of MASSs.
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Appendix A. Procedure of DTW calculation

The core principle of DTW is to identify the optimal match between two sequences and to calculate the cumulative distance of the 
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optimal alignment path between them. Assuming the trajectories of ships i and j are represented as Trai = {P1,i, P2,i, …, Pt,i, …, Pn,i} and 
Traj = {P1,j, P2,j, …, Pt,j, …, Pn,j}, with each point Pt,i specified as {ti, latt,i, lont,i, COGt,i, Vt,i}. Then, a distance matrix A = (apq)n,i×n,j can 
be constructed, where apq represents the Euclidean distance between the pth point in Trai and the qth point in Traj. From this distance 
matrix, a warping path WP = {wp1, wp2, …, wpt, …, wpl} can be identified, comprising a sequence of adjacent elements in A. The length 
of the warping path, l, must satisfy max{n,i, n,j} < l ≤ n,i + n,j − 1. Additionally, the warping path adheres to the following constraints: 

• Boundary constraint: The path starts at wp1 = a1,1 and ends at wpl = an,i×n,j;
• Monotonicity: For wpt-1 = ap’q’, and wpt = apq, it requires q − q’ ≥ 0 and p – p’ ≥ 0;
• Continuity: For wpt-1 = ap’q’ and wpt = apq, it requires q − q’ ≤ 1 and p – p’ ≤ 1.

Various warping paths can be generated based on the aforementioned constraints, and DTW identifies the path with the lowest 
warping distance to effectively measure the distance between two sequences, as described below: 

DTW
(
Trai,Traj

)
= min

{
1
l
∑l

t=1
wt

}

(A.1) 

To achieve Eq. (A.1), the minimal DTW distance is iteratively searched using the following equations: 

D(1,1) = a11 (A.2) 

D(p, q) = apq +min{D(p, q − 1),D(p − 1, q − 1),D(p − 1, q) } (A.3) 

where D(p, q) calculates the cumulative distance of the optimal alignment path between the two sequences Trai and Traj, starting from 
the beginning and up to points Pp,i and Pq,j.

Appendix B. Detailed description of OPTICS

The fundamental principle of the OPTICS algorithm revolves around the construction of a reachability plot. This structure depends 
on two pivotal distance concepts: core distance and reachability distance, both shaped by two key parameters: ∊, defining the 
maximum distance for consideration, and MinPts, indicating the minimum number of points required to establish a cluster. A point p is 
considered a core point if there are at least MinPts points within ∊ distance from it. The core distance of point p is the distance from p to 
its MinPtsth nearest neighbor, defined as follows: 

Core Distance(p, ∊,MinPts) =
{

MinPtsthsmallest distance to Neighbors |N∊(p)| ≥ MinPts
∞ otherwise (B.1) 

where |N∊(p) | represents the number of points within the ∊-neighborhood of point p. The reachability distance of point o relative to 
point p is determined as the greater of p’s core distance or the actual distance from o to p, as follows: 

Reachability Distance(o, p, ∊,MinPts) =
{

max(Core Distance(p, ∊,MinPts),Distance(o, p) ) p is a core point
∞ otherwise (B.2) 

where Distance(o, p) represents the actual distance between points o and p. By employing these definitions, the OPTICS algorithm 
generates a cluster-ordering including ordered points along with the reachability distance of each point. The reachability plot of these 
ordered points facilitates visualization of the dataset’s clustering structure. More detailed pseudo-code for the OPTICS algorithm 
procedure is provided in previous work (Rong et al., 2022).

Appendix C. Procedure of FCI implementation

FCI adopts an iterative procedure to continuously refine and determine the optimal clustering center matrix and membership 
matrix. Consider a dataset with n traffic navigation scenarios, each characterized by m assessment indicators, formatted as X = (xij)n×m, 
where xij denotes the jth indicator of the ith scenario. To ensure scale invariance across various indices, a normalization process 
transforms dataset X into a normalized matrix, as follows: 

x̂ij =
xij − xmin,j

xmax,j − xmin,j

⃒
⃒
⃒
⃒
j=1:m

(C.1) 

where x̂ij represents the normalized value of xij, with xmin,j and xmax,j being the minimal and maximum values of the jth indicators 
within dataset X , respectively.

Following this, the class center matrix is defined as S = (sjk)m×c and the fuzzy membership matrix as U = (uki)c×n, where c represents 
the number of classes grouping n scenarios, sjk indicates the class center of the jth indicator in the kth class, and uki reflects the relative 
membership of scenario i to the kth class. To derive the optimal S and U, an objective function is formulated to minimize the quadratic 
sum of the Euclidean distances between the assessment indicators from all scenarios and their respective fuzzy class centers, as follows: 
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min
[
F
(
uki, sjk

) ]
= min

{
∑n

i=1

∑c

k=1

(

uki
2
∑m

j=1

(
x̂ij − sjk

)2

)}

(C.2) 

where sjk and uki adhere to the constraints 0 ≤ sjk ≤ 1, 0 ≤ uki ≤ 1, and 
∑c

k=1uki = 1.
To meet the goal set in Eq. (C.2), an iterative method using the Lagrange multiplier method is employed, described by the following 

equations: 

uki =

[
∑c

h=1

∑m
j=1
(
x̂ij − sjk

)2

∑m
j=1
(
x̂ij − sjh

)2

]− 1

(C.3) 

sjk =
∑n

i=1
uki

2 x̂ij

/
∑n

i=1
uki

2 (C.4) 

The iterative adjustments for uki and sjk persist through Eqs. (C.3)-(C.4) until the termination criteria are fulfilled. Detailed guidelines 
for FCI implementation are documented in prior research (He et al., 2011).

Appendix D. Detailed illustration of clustering performance evaluation metrics

The clustering performance indicators, including Silhouette Score (SS), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index 
(CHI), are introduced below.

The SS quantifies the quality of clustering by comparing the proximity of points within a cluster to their separation from the nearest 
other cluster, calculated as follows: 

SSi =
ai − bi

max{ai, bi}
(D.1) 

where ai represents the average distance from point i to all other points within the same cluster, and bi denotes the average distance 
from point i to points in the closest different cluster. The score varies from − 1 to +1, where values nearer to +1 represent more robust 
clustering. Generally, an average SS above 0.5 suggests satisfactory clustering.

The DBI evaluates clustering by measuring the compactness of clusters and their separation from each other. It is defined as: 

DBI =
1
nc
∑nc

k=1
maxv∕=y

{
σv + σy

d
(
ccv, ccy

)

}

(D.2) 

where nc is the number of clusters. σv is the average distance of all points in cluster v to their cluster center ccv, and d(ccv, ccy) represents 
the distance between cluster centers ccv and ccy. A lower DBI value, ideally below 1.0, indicates better clustering by showing that 
clusters are both well-separated and internally cohesive.

Finally, the CHI measures clustering effectiveness based on cluster tightness and separation. It uses the following formula: 

CHI =
B(nc)/(nc − 1)
W(nc)/(n − nc)

(D.3) 

where B(nc) represents the total between-cluster dispersion, W(nc) represents the total within-cluster dispersion, and n is the total 
number of samples. High values of the CHI indicate that clusters are both distinct from each other and internally compact. Typically, a 
high value, in the hundreds or thousands, signals a well-structured clustering.

Data availability

Data will be made available on request.

References

Ahmed, Y.A., Hannan, M.A., Oraby, M.Y., Maimun, A., 2021. COLREGs compliant fuzzy-based collision avoidance system for multiple ship encounters. J. Mar. Sci. 
Eng. 9, 790.
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