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ABSTRACT 

This work focuses on load frequency control in interconnected power systems, a critical aspect of 

modern power grid operations. However, sudden load disturbances and generator outages can lead to 

transient oscillations between control areas, posing challenges to frequency control. The aim of the work 

was to investigate and enhance load frequency control behaviour, considering dynamic load changes 

and uncertainties. Fuzzy Logic Controllers optimized with Particle Swarm Optimization were applied 

to improve control robustness. The Particle Swarm Optimisation algorithm was used to tune the scaling 

factors and parameters of the fuzzy controllers to optimize their performance. The methods were tested 

on a standard four-area interconnected power system model equipped with load frequency control 

blocks, reheaters, governors, rate constraints, and thermal components. Different disturbance scenarios 

including parameter fluctuations and load changes were evaluated. The Fuzzy Logic Controllers 

demonstrate resilient response across scenarios without needing extensive tuning. Particle Swarm 

Optimization improves robustness through systematic exploration for constraint-based nonlinear 

optimization. Tuning fuzzy controllers with bio-inspired algorithms enhances efficiency in addressing 

complex grid conditions. The results provide insights into designing more secure and resilient grid 

controls, contributing to power system stability research. 
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1 INTRODUCTION 

Electric power systems face increasing challenges owing to renewable integration, 

interconnection expansion, and deregulation (Haroun and Li, 2019), making frequency stability and 

power transmission reliability during disturbances more difficult. Load frequency control (LFC) is 

crucial for regulating frequency deviations and tie-line power flows across interconnected control areas 

(Sahu et al., 2014; Panda et al., 2009), but traditional strategies have limitations in responding to 

significant transients (Haroun and Li, 2017). 

This work explores an adaptive intelligent optimization approach for LFC in multi-area power 

systems, focusing on bio-inspired algorithms such as Particle Swarm Optimization (PSO) (Pandey et 

al., 2017), Genetic Algorithms (Saadat, 1999), and Ant Colony Optimization (Dhillon et al., 2015; Sahu 

et al., 2015; Dhillon et al., 2016). A comprehensive evaluation and comparison of these techniques' 

optimization capabilities for LFC controller design was conducted. Fuzzy Logic Controllers (FLC) 

optimized adaptively (Abdel-Magidand Dawoud, 1995; Monfared et al., 2015) are developed to enhance 

control robustness. 

Testing was performed on a standard four-area thermal system equipped with LFC blocks, as 

shown in Figure 1 (Dong et al., 2015), closely replicating real-world conditions. Simulations under 

various disturbance scenarios provide insights to advance grid control development, contributing to 

power system stability research. 
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Figure 1 Interlinked four area power grids. 

2 LITERATURE REVIEW 

2.1 Limitations of Existing Load Frequency Control Approaches 

The classic PID controller is widely used in industrial applications, but it faces challenges 

handling complex grid dynamics (Delassi et al., 2018). The PID controller fixed parameters offer limited 

adaptability to changing conditions and nonlinearities (Panda et al., 2009). Fuzzy controllers are a 

potential solution, although traditional PID tuning shows promise (Haroun and Li, 2017). Robust and 

adaptive control techniques address uncertainties and variations (Wenhui et al., 2014; El-Bahay et al., 

2022; Li et al., 2017). However, emerging Artificial Intelligence (AI) methods require further 

assessment (Vasant et al., 2011). 

2.2 Intelligent Algorithms and Optimization Techniques 

Notable intelligent approaches include model predictive control (Vrabie et al., 2009), fuzzy logic 

(Tripathy et al., 1982) and neural networks tuned via bio-inspired optimizations (Vasant et al., 2011; 

Abdelaziz et al., 2016), improving transient response over classical methods. Key bio-inspired 

optimizations algorithms include Particle Swarm Optimization (PSO) (Sahu et al., 2015; Kennedy and 

Eberhart, 1995), Genetic Algorithms (GA) (Abdel-Magidand Dawoud, 1995; Monfared et al., 2015), 

and Ant Colony Optimization (ACO) (Dhillon et al., 2016; Afzalan and Jurabian, 2014). PSO offers 

faster convergence and consistency in finding optimal solutions for controller tuning (Vrabie et al., 

2009; Singh et al., 2013). Further, GA and ACO also enhance adaptive PID and fuzzy designs (Sadaqati 

et al., 2016).  

2.3 Comparing Optimization Methods for Load Frequency Control 

Comprehensive comparisons of PSO, GA, and ACO considering their distinct search mechanisms 

are lacking but are crucial to selecting the most effective technique (Afzalan and Jurabian, 2014). This 

work addresses this gap through multi-area power system studies assessing their optimization 

performance for load frequency control improvements (Shayeghi and Shayanfar, 2006). 

3 PROPOSED RESEARCH METHODOLOGY 

3.1 Fuzzy Logic Controller Optimization  

Fuzzy logic controllers (FLCs) are integrated to enhance system control by handling uncertainty. 

An additional input signal ue is introduced as in (1) to enable adaptive PID tuning (Zhang et al., 2015). 

The FLC output ū scales the PID gains through factors α and β as in (2). This structure optimizes the 

fuzzy PID (FLiPID) controller using the Particle Swarm Optimisation algorithm. 
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𝑢𝑖 =
1

𝛼̅
(−𝐹 + 𝑦̇∗ + 𝐾𝑝(𝐴𝐶𝐸𝑖) + 𝐾𝑖 ∫(𝐴𝐶𝐸𝑖)𝑑𝑡 + 𝐾𝑑

𝑑(𝐴𝐶𝐸𝑖)

𝑑𝑡
) + 𝑢𝑒 (1) 

Here, ū is the output of the FLC, scaled by factors α and β, enabling adaptive tuning of the PID gains. 

𝑢𝑒 = 𝛼𝑢̅ + 𝛽 ∫ 𝑢̅𝑑𝑡 (2) 

3.2 Performance Objective and Optimization  

The integral of squared error (ISE) between frequency and tie-line power deviations as in (3) 

defines the objective function (Meena and Kumar, 2016). PSO iteratively minimizes this error under 

constraints (4) to determine optimal control parameters. 

𝐽 = 𝐼𝑆𝐸 = ∫ (∆𝐹𝑖
2 + ∆𝐹𝑡𝑖𝑒.𝑖𝑗

2 )
𝑇𝑠𝑖𝑚
0

𝑑𝑡    (3) 

𝐾𝑝𝑚𝑖𝑛 ≤ 𝐾𝑝 ≤ 𝐾𝑝𝑚𝑎𝑥 , 𝐾𝑖𝑚𝑖𝑛 ≤ 𝐾𝑖 ≤ 𝐾𝑖𝑚𝑎𝑥 , 𝐾𝑑𝑚𝑖𝑛 ≤ 𝐾𝑑 ≤ 𝐾𝑑𝑚𝑎𝑥

𝐾1𝑚𝑖𝑛 ≤ 𝐾1 ≤ 𝐾1𝑚𝑎𝑥 , 𝐾2𝑚𝑖𝑛 ≤ 𝐾2 ≤ 𝐾2𝑚𝑎𝑥

𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 , 𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥

                                                   (4) 

3.3 PSO Comparison with ACO and GA  

PSO was compared to both ACO (Dhillon et al., 2016) and GA (Abdel-Magidand Dawoud, 1995). 

Convergence performance towards the ISE objective was evaluated across these population-based 

methods. Key differences in their stochastic search mechanisms impact optimization outcomes in load 

frequency control. 

4 SIMULATION RESULTS 

4.1 Introduction 

This section presents simulation results of optimized fuzzy PID controllers using PSO, ACO, and 

GA. MATLAB was employed for implementation, and controller performance is evaluated under varied 

power system conditions to reduce oscillations. Comparisons are made among optimization techniques 

using the Integral of Squared Error (ISE) chart as the objective function, offering insights into their 

effectiveness for tuning fuzzy PID controllers in dynamic power systems. 

4.2 Simulation on a Four-Area Network 

The optimization algorithm is applied to a four-area network, where parameters including Ki, Kd, 

Kp, α, β, K1, and K2 are optimized. The system diagram, depicted in Figure 1, illustrates the four-zone 

configuration comprising GDB, GRC constraints, thermal, and boiler systems. The system parameters 

used were adopted from Çam and Kocaarslan (2005), and are presented in Table 1. The simulations 

incorporated a 1% load disturbance within the connected multi-area power system. 

 

Table 1. System parameter values. 

Parameter Value Parameter Value 

Rating 2000 (MW) Tij 0.08674 (p.u.MW) 

Ptie, ij 200 (MW)   

Tpi 20 (s) Boiler (gas or oil fired) data 

Kpi 120 (Hz/p.uMW) K1 0.85 

Tti 0.3 (s) K2 0.095 

Tgi 0.08 (s) K3 0.92 

Bi 0.425 (p.u.MW/Hz) CB 200 (s) 

Ri 2.4 (Hz/p.u.MW) TD 0 (s) 

Kri 0.5 TF 10 (s) 

Tri 10 (s) K1B 0.03 

ΔPL1 0.01 (p.u.MW) T1B 26 

aij 1.0 (p.u.) TRB 69 (s) 
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Figure 2 Block diagram model of a four-zone system 

4.3 FLiPID Controller Optimization 

Utilizing the PSO algorithm, the controller parameters of the FLiPID were optimized. The optimal 

controller parameters for four regions with uniform value are presented in Table 2.   

 

Table 2. Optimise control parameters for four regions with identical values 

𝛃 𝛂 𝐊𝟏 𝐊𝟐 𝐊𝐩 𝐊𝐝 𝐊𝐢 
Controller 

parameter 

0.0133 0.0067 7.5587 4.4719 2.5385 0.4568 0.5000 values 

 

Table 3 details the optimized FLiPID controller parameters for the four zones with distinct 

objective function values. 

 

Table 3. Optimal FLiPID controller parameters for four zones with different objective function values 

4.4 Simulation Results 

The performance evaluation of the proposed control system encompasses various scenarios, 

accounting for system parameter fluctuations and load disturbances: 

Scenario 1: Nominal system parameters 

Scenario 2: 35% increase in system parameters 

Scenario 3: 35% decrease in system parameters 

 

4.4.1 Scenario 1: Nominal Parameters 

Simulation results for Scenario 1 are depicted in Figures 3 - 8. These figures portray frequency 

deviation, ΔPtie signal power deviation (left graph), and control error in distinct zones (right graph). 

 

𝜷 𝛂 𝑲𝟏 𝑲𝟐 𝑲𝒑 𝑲𝒅 𝑲𝒊 Controller Parameter 

0.0056 -0.0157 5.2782 4.9748 2.4557 0.3525 0. 3352 Different parameters Area 1 

0.0154 -0.0169 5.5586 4.8611 4.4717 0.4158 0. 2528 Different parameters Area 2 

0.0096 -0.0088 4.3739 5.9625 2.7067 0.3127 0.3074 Different parameters Area 3 

0.0254 -0.0196 6.0695 4.0463 2.8850 0.4618 0.3024 Different parameters Area 4 
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Figure 3. Scenario 1 for Region 1: Different parameters simulation results. 

 

  
Figure 4. Scenario 1 for Region 2: Constant and varying parameters. 

 

  
Figure 5. Scenario 1 for Region 3: Constant and varying parameters. 

 

  
Figure 6. Scenario 1 in Region 4: Constant and Varying Parameters 

 

  
Figure 7. Power Spectral Density of Communication Signal in Scenario 1 Across Four Regions 

 

  
Figure 8. Scenario 1: Control Error Across Four Regions 

 

Performance metrics (Settling Time, Peak Undershoot, ISE) are summarized in Tables 4, 5,6 and 

7 for the proposed controller with constant and varying parameters. 

 

Table 4. Scenario 1 Step Response with 5% Bandwidth: Fixed vs. Variable Parameters 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie E1  
Constant parameters 17.7355 17.7230 17.7230 17.7230 13.1227 11.6211 

Different parameters 17.0599 17.3420 17.3420 17.3897 13.4724 13.1036 
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Table 5. Peak Undershoot Performance of Scenario 1 Controller: Constant vs. Varying Parameters 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie E1  
Constant parameters -0.0250 -0.0046 -0.0273 -0.0273 -0.0273 -0.0325 

Different parameters -0.0205 -0.0046 -0.0289 -0.0293 -0.0295 -0.0338 

 

Table 6. Frequency Deviation Error Dynamics: Fixed vs. Variable Parameters 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie E1  

Constant parameters 0.0661 0.0148 0.0659 0.0659 0.0659 0.0745 

Different parameters 0.0855 0.0210 0.0689 0.0689 0.0695 0.0774 

 

4.4.2 Scenario 2: System Parameter Sensitivity 

This section assesses controller stability amid changing system parameters. Simulations involve 

a 1% load disturbance in Region 1, where key parameters such as Bi, Ti, J, and Tpi increase by 35%. 

Results provide insights into controller adaptability in dynamic conditions. Simulation results for all 

controllers are depicted in Figures 9-11, showcasing responses in frequency, tie-line power, and control 

error. These figures offer a detailed visual representation of the system's behaviour with the proposed 

controller, facilitating a nuanced comprehension of its performance. 

 

  
Figure 9. Scenario 2 Parameter Sequencing Across Regions (Region 1) 

 

  
Figure 10. Scenario 2 Parameter Sequencing Across Regions (Region 2) 

 

  
Figure 11. Control Error Signal for Scenario 2 Across Four Regions with Varied Parameters 

 

Furthermore, performance quantification is facilitated through the following key metrics: 

 

Table 7. Scenario 2 Controller Dynamics: Constant vs. Varied Parameters (5%Bandwidth) 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie ACE1  
Constant parameters 11.5768 13.2041 18.3002 18.3002 18.3002 18.3836 

Different parameters 13.0283 13.4435 17.7740 17.7104 17.8262 18.0433 

 

Table 8. Peak Undershoot for Scenario 2: Constant vs. Varied Parameters 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie ACE1  
Constant parameters -0.0253 -0.0046 -0.0211 -0.0211 -0.0211 -0.0245 

Different parameters -0.0257 -0.0046 -0.0220 -0.0222 -0.0225 -0.0261 
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Table 9. Frequency Deviation Error Dynamics for Scenario 2: Constant vs. Varied Parameters 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie ACE1  
Constant parameters 0.0706 0.0149 0.0579 0.0579 0.0579 0.0650 

Different parameters 0.0826 0.0206 0.0540 0.0542 0.0541 0.0598 

 

4.4.3 Scenario 3: Parameter Variation 

To assess controller performance, we tested another system subjected to a 1% load disturbance in 

region 1. The system parameters (Bi, Ti, J, Tpi), optimized by the intelligent fuzzy PID controller, 

remained unchanged while reduced by 35% from nominal values. Simulation results and analyses for 

this scenario are presented in Figures 12-17. 

 

  
Figure 12. Scenario 3 Parameter Order Across Four Regions (Region 1): Constant vs. Varied 

Parameters 

 

  
Figure 13. Scenario 3 (Region 2) constant and different parameters in four regions 

 

  
Figure 14. Scenario 3  (Region 2) constant and different parameters in four regions 

 

  
Figure 15. Scenario 3 Parameter Comparison Across Zones (Zone 4): Constant vs. Varied Parameters 

 

  
Figure 16. Communication Power Signal in Scenario 3 Across Four Regions: Constant vs. Varied 

Parameters 
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Figure 17. Control Error Signal in Scenario 3 Across Four Regions: Constant vs. Varied Parameters 

 

Performance metrics for this comparison are summarized in Tables 10-12. 

 

Table 10. Settling Time Dynamics for Scenario 3 (5% Bandwidth) Across Four Regions 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie ACE1  
Constant parameters 13.9871 13.7849 16.2843 16.1875 16.1685 16.1578 

Different parameters 13.2254 13.4495 16.3897 16.2148 16.4944 16.7134 

 

Table 11. Peak Undershoot Dynamics for Scenario 3 Across Four Regions 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie ACE1  
Constant parameters -0.0236 -0.0041 -0.0465 -0.0497 -0.0489 -0.0589 

Different parameters -0.0251 -0.0046 -0.0422 -0.0434 -0.0427 -0.0507 

 

Table 12. Dynamic Frequency Deviation Error Performance for Scenario 3 (5% Bandwidth) Across 

Four Regions 

Controllers ∆f1 ∆f2 ∆f2 ∆f4 ΔPtie ACE1  
Constant parameters 0.0896 0.0257 0.0984 0.9984 0.0964 0.1106 

Different parameters 0.0851 0.0210 0.0995 0.1001 0.0987 0.1117 

4.5 Frequency Deviation Response and Validation 

Figures 18-21 present the frequency deviation response of the proposed controller across various 

conditions with varying parameter values. These figures underscore the minimal impact of operational 

and system parameter fluctuations on frequency deviation, confirming the controller's stability.  

 

  
Figure 18. Frequency Deviation in Region 1 (Tg Parameter): Constant vs. Varied Parameters 

 

  
Figure 19. Frequency Deviation in Region 1 (Tt Parameter): Constant vs. Varied Parameters 

 

  
Figure 20. Frequency Deviation in Region 1 (Tp Parameter): Constant vs. Varied Parameters 
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Figure 21. Frequency Deviation in Region 1 (Kp Parameter): Constant vs. Varied Parameters 

 

The figures confirm the proposed controller's stability under various load conditions, swiftly 

bringing deviations to target values without needing extensive parameter adjustments. A random load 

disturbance was introduced in region 1 at t = 2 seconds which helps explore and validate the controller's 

effectiveness, with Figures 22 and 23 illustrate the accurate coding and controller behaviour. 

 

 
Figure 22. Frequency deviation of the load loading based on the coding state. 

 

 
Figure 23. Frequency deviation of the load loading based on the actual state. 

5 DISCUSSION AND CONCLUSION 

ACO and PSO exhibit distinct convergence patterns and results, with ACO showing steady 

convergence over generations and PSO converging more rapidly over iterations. The choice between 

the techniques depends on the desired balance between exploration and exploitation. The optimized 

parameters from both ACO and PSO were applied to the fuzzy PID controller model, providing insights 

into their effectiveness in optimizing the intelligent fuzzy-hybrid PID controller for Load Frequency 

Control in power systems. The simulations validate the efficacy of the fuzzy PID controller optimized 

by PSO, ensuring stable load frequency control under various conditions. PSO demonstrates faster 

convergence and superior optimization compared to GA and ACO. However, further research on hybrid 

GA-PSO approaches is recommended to leverage the strengths of both algorithms. 

In conclusion, the proposed intelligent fuzzy control strategy enables robust frequency regulation 

and disturbance rejection, demonstrating its potential for practical application. 



 

166-10 

REFERENCES 

Abdelaziz, A.Y., Mekhamer, S.F. and Al-Kharashi, M.L. (2016). Adaptive PID controller based on 

particle swarm optimization and neural network for power system stability. International Journal 

of Electrical Power & Energy Systems, vol. 83, pp. 67-76. 

Abdel-Magid, Y. and Dawoud, M. (1995). Genetic algorithms applications in load frequency control. 

Afzalan, A. and Jurabian, M. (2014). Frequency Load Controller Design for Interconnected Power 

Systems using Search Optimization Algorithm (SOA).  Computational Intelligence in Electrical 

Engineering (Intelligent Systems in Electrical Engineering), vol. 5, no. 2, pp. 1393. 

Çam, E. and Kocaarslan, İ. (2005). Load Frequency Control in Two Area Power Systems Using Fuzzy 

Logic Controller. Energy Conversion and Management, vol. 46, pp. 233-243, 01/31. 

Delassi, A., Arif, S. and Mokrani, L. (2018). Load frequency control problem in interconnected power 

systems using robust fractional pi λ D controller. Ain Shams Engineering Journal, vol. 9(1), pp. 

77–88. doi:10.1016/j.asej.2015.10.004. 

Dhillon, S. S., Lather, J. S. and Marwaha, S. (2015). Multi Area Load Frequency Control Using Particle 

Swarm Optimization and Fuzzy Rules. Procedia Computer Science, vol. 57, pp. 460-472. 

Dhillon, S. S., Lather, J. S. and Marwaha, S. (2016). Multi objective load frequency control using hybrid 

bacterial foraging and particle swarm optimized PI controller. International Journal of Electrical 

Power & Energy Systems, vol. 79, pp. 196-209. 

Dong, L., Zhang, Y. and Gao, Z. (2012). A robust decentralized load frequency controller for 

interconnected power systems. ISA Transactions, vol. 51, no. 3, pp. 410-419. 

El-Bahay, M., Lotfy, M. and Abd El-Hameed, M. (2022). Computational Methods to Mitigate the Effect 

of High Penetration of Renewable Energy Sources on Power System Frequency Regulation: A 

Comprehensive Review. Archives of Computational Methods in Engineering. vol. 30. 

doi:10.1007/s11831-022-09813-9. 

Haroun, A. G.,  and Li, Y.-Y. (2017). A novel optimized hybrid fuzzy logic intelligent PID controller 

for an interconnected multi-area power system with physical constraints and boiler dynamics. ISA 

transactions, vol. 71, pp. 364-379. 

Haroun, A. G.,  and Li, Y.-Y. (2019). Ant Lion Optimized Fractional Order Fuzzy Pre-Compensated 

Intelligent Pid Controller for Frequency Stabilization of Interconnected Multi-Area Power 

Systems. Applied System Innovation, vol. 2, no. 2. 

Kennedy, J. and Eberhart, R.C. (1995). Particle swarm optimization. Proceedings of ICNN'95-

International Conference on Neural Networks, vol. 4, pp. 1942-1948. 

Li, X., Wang, Y., Li, N., Han, M., Tang, Y. and Liu, F. (2017). Optimal fractional order PID controller 

design for automatic voltage regulator system based on reference model using particle swarm 

optimization. International Journal of Machine Learning and Cybernetics. vol 8, pp. 1595–1605. 

doi: 10.1007/s13042-016-0530-2Meena, A. R. and Kumar, S. S. (2016). Genetically tuned fuzzy 

PID controller in two area reheat thermal power system. Russian Electrical Engineering, vol. 87, 

no. 10, pp. 579-587. 

Monfared, S. B., Ebrahimi, A. and Parsa, A. (2017). Design of Robust H_∞ Control for Stabilizing of 

Stratospheric Airship with Parametric Uncertainty and External Disturbance. Modares Mechanical 

Engineering, vol. 17, no. 3, pp. 216-226. 

Panda, G., Panda, S. and Ardil, C. (2009) Automatic Generation Control of Interconnected Power 

System with Generation Rate Constraints by Hybrid Neuro Fuzzy Approach. World Academy of 

Science, Engineering and Technology, pp. 543-548. 

Pandey, S., Dwivedi, P. and Junghare, A. S. (2017). A novel 2-DOF fractional-order PI λ - D μ controller 

with inherent anti-windup capability for a magnetic levitation system. AEU - International 

Journal of Electronics and Communications, vol. 79, 05/01. 

Saadat, H. (1999). Power System Analysis. WCB/McGraw-Hill. 

Sadaqati, R., Shahidi, F. A., & Mazarei, M. (2016). Improved Frequency Control of Microgrid Load 

Islands Using Fuzzy Controller. 1st International Conference on Innovative Research 

Achievements in Electrical and Computer Engineering, Tehran. 

Sahu, R. K., Panda, S. and Sekhar, G. C. (2015). A novel hybrid PSO-PS optimized fuzzy PI controller 

for AGC in multi area interconnected power systems. International Journal of Electrical Power 

& Energy Systems, vol. 64, pp. 880-893. 



 

166-11 

Sahu, R. K., Panda, S. and Yegireddy, N. K. (2014). A novel hybrid DEPS optimized fuzzy PI/PID 

controller for load frequency control of multi-area interconnected power systems. Journal of 

Process Control, vol. 24, no. 10, pp. 1596-1608. 

Shayeghi, H. and Shayanfar, H. A., (2006). Application of ANN technique based on μ-synthesis to load 

frequency control of interconnected power system. International Journal of Electrical Power & 

Energy Systems, vol. 28 
Singh, V. P., Mohanty, S.R., Kishor, N. and Ray, P. K. (2013). Robust H-infinity load frequency control 

in hybrid distributed generation system. International Journal of Electrical Power & Energy 

Systems, vol. 46, pp.294-305. 

Talaq, J. and Al-Basri, F. (1999). Adaptive fuzzy gain scheduling for load frequency control. IEEE 

Transactions on Power Systems, vol. 14(1), pp. 145–150. doi:10.1109/59.744505. 

Tripathy, S., Hope, G. and Malik, O. (1982). Optimisation of load-frequency control parameters for 

power systems with reheat steam turbines and governor deadband nonlinearity. IEE Proceedings 

C (Generation, Transmission and Distribution), vol. 129, no. 1, pp. 10-16. 
Vasant, P., Barsoum, N. and Webb, J. (2011). Innovation in Power, Control, and Optimization: 

Emerging Energy Technologies. IGI Global. 

Vrabie, D., Pastravanu, O., Abu-Khalaf, M. and Lewis, F. L. (2009). Adaptive optimal control for 

continuous-time linear systems based on policy iteration. Automatica, vol. 45, pp.477-484. 

Wenhui, Z., & Ye, X., Jiang, L. and Yamin, F. (2014). Robust Control for Robotic Manipulators Base 

on Adaptive Neural Network. The Open Mechanical Engineering Journal, vol. 8. pp. 497-502. 

doi:10.2174/1874155X01408010497 

Zhang, H., Chen, D., Xu, B.-B. and Wang, F. (2015).  Nonlinear modelling and dynamic analysis of 

hydro-turbine governing system in the process of load rejection transient. Energy Conversion and 

Management, vol. 90, pp. 128-137, 01/15. 

 


