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ABSTRACT 152 

Different regions of the tropics vary in overall tree species diversity, with the tropical 153 

Americas exhibiting strikingly higher regional tree species richness than Africa and 154 

Southeast Asia. We investigated whether these differences also occur at the local scale, 155 

and whether the environmental conditions associated with tree species richness are 156 

consistent across tropical regions despite highly dissimilar species pools. A spatial 157 

random forest (RF) model was trained using a network of 429 one-hectare plots across 158 

the tropics, together with 24 environmental variables, to predict plot-level tree α 159 

diversity. A combination of climatic, soil and topographical variables explained around 160 

86% of variation in richness. Despite differences in regional species pools and 161 

potentially disruptive effects of different geological, climatic and evolutionary histories, 162 

the relationship between environmental variables and local scale tree species richness 163 

is closely similar across different continents. Our findings imply a pervasive role of 164 

niche-based mechanisms in structuring local tree species richness, regardless of 165 

regional species assemblages. This pantropical convergence in the richness-166 

environment relationship poses a challenge for ecology to explain. 167 



Keywords: rainforest, tree richness, modelling, climate, sample survey 168 

 169 

INTRODUCTION 170 

High levels of tree species richness and diversity in tropical forests have long fascinated 171 

biologists, representing an enduring challenge to ecological theory. While many 172 

mechanisms have been proposed to explain how such high levels of diversity have 173 

arisen and are maintained, substantial uncertainty persists [1–4]. To test emerging 174 

hypotheses about the mechanisms underlying tropical tree diversity, an empirical 175 

approach is required to identify robust predictors of species richness variation across 176 

broad scales [5]. An ideal method to explore and explain patterns of tropical tree 177 

diversity is to compare standardized inventory plots [1]. In a pioneering study, Gentry 178 

[1] compared a relatively limited number of plots using least-squares regression to 179 

reveal a general relationship between primary productivity and species richness. Other 180 

studies of woody plant species richness, reviewed by [6], have concentrated on 181 

analyzing single regions separately, or are extratropical, preventing the comparison of 182 

tropical tree diversity relationships between regions. Ricklefs and He [7] compared 47 183 

forest plots globally, less than half of which were from the tropics, finding that 184 

consistently warm and moist climates favored higher richness. However, they detected 185 

significant regional variation in extratropical regions, and the limited number of plots 186 

prevented definitive comparison within the tropics.  187 

Consideration of the large differences in geological and evolutionary history between 188 

the different regions and subregions of tropical forest led us to propose two main 189 

hypotheses: a) Local-scale tree alpha diversity across the global tropics can be 190 

consistently predicted by contemporary environmental variables, such that analogous 191 

environmental conditions will support similar levels of richness, irrespective of deep 192 

historical biogeographic divergences; b) Due to localized effects of forest history and 193 

dispersal lag, and the complex ecology of forest communities, there will be differences 194 

in the best predictors of 1 ha richness on the local scale compared to the broader scale. 195 

While more recent studies have expanded upon this foundation, pantropical 196 

comparisons of the patterns and potential drivers of local tree diversity remain limited. 197 



Comparing 2046 tree plots across Amazonia, Ter Steege et al. [8] demonstrated that a 198 

combined influence of climate and soil factors explained local tree richness and 199 

community composition. In a comparison of forest plots from South America and 200 

Africa, Parmentier et al. [9] showed lower plot-level richness in Africa under similar 201 

warm and moist climatic conditions. In global surveys of forest plots of varying sizes, 202 

Keil and Chase [10] and Chu et al. [11] found that the drivers of variation in diversity 203 

differ with plot size and spatial distance amongst samples, which are important 204 

sampling issues in ecology generally [12]. However, no studies thus far have addressed 205 

local tree species richness using a large number of plots of standardized size across the 206 

world’s tropics, which is necessary for continental-scale comparisons. The increasing 207 

availability and integration of forest plot data now make such comparisons possible 208 

[13]. 209 

Two other important advances in environmental data science facilitate hypothesis 210 

testing about the patterns and processes driving tropical tree diversity. First, the 211 

availability of interpolated climate, soil and other environmental parameters has grown 212 

immensely in recent years [14–18]. Second, machine learning models enable analysis 213 

of the simultaneous effect of multiple factors on community structure and diversity 214 

across large scales [19,20]. A particularly robust machine learning method is random 215 

forest (RF) modeling which, when combined with spatial regression, enables analysis 216 

and prediction of spatially structured data where observations exhibit autocorrelation 217 

[21,22]. These models extend the capabilities of traditional RF to handle spatial data 218 

more effectively, allowing for spatial autocorrelation and other geographic phenomena 219 

to be incorporated into vegetation modeling.  220 

Here we used the Pantropical Forests Network (PFN) of tree inventory plots assembled 221 

by Slik et al. [23] in combination with publicly available environmental data surfaces 222 

[14–18] to determine which environmental variables explain plot-level tree α diversity 223 

across the global tropics. We applied a spatial RF and negative binomial generalized 224 

linear model to detect and compare the strength of empirical links between 225 

environmental variables and tree species richness. The number of species per unit area 226 

(e.g. Gentry [1]) - the classic measure of forest tree richness - has its weaknesses given 227 



that stem density varies by both biogeographical region and along climate gradients. To 228 

compare species richness while accounting for variations in sampling effort and 229 

completeness, we employed rarefaction techniques, sample-coverage-based 230 

approaches based on abundance data (e.g., [24,25]). And Fisher’s α [26], and the 231 

‘classical’ method of number of species recorded per plot, with the goal of improving 232 

understanding of the potential drivers and maintenance of tropical diversity. 233 

Specifically, we addressed three main questions: (1) Which environmental predictors 234 

explain most of the variation in local tree species richness across the tropics? (2) How 235 

do the environmental factors associated with tree species richness differ between broad 236 

versus local scales of sample plot spacing? (3) Given the environmental predictors, does 237 

tree species richness at the 1-ha scale converge between tropical regions to give a 238 

consistent pantropical pattern? 239 

A main goal of this study is to determine whether local tree richness and the 240 

environmental factors associated with it differ amongst the world's major tropical 241 

regions. Such a global comparison is important to inquire whether community 242 

assemblage rules may be consistent across geographically disparate regions, in other 243 

words, evolutionarily conserved underlying environment-richness relationships across 244 

the tropical forest biome. 245 

 246 

RESULTS 247 

A PCA conducted on 24 environmental variables across 1 ha plots in the global tropics 248 

revealed regional differences, with the first two axes accounting for 40.5% of the 249 

variance in the variables (Table S1, Fig. 1). Overall, the three regions exhibited 250 

moderate separation along the first principal component (PC1), especially between the 251 

Americas and Asia, but were largely overlapping along the second principal component 252 

(PC2). PC1 was primarily associated with moisture-related variables, including 253 

precipitation seasonality (bio15), precipitation of the driest month (bio14), and annual 254 

range of monthly relative humidity (hurs_range), along with soil pH, isothermality 255 

(bio03), NPP, and annual range (rsds_range) and mean (rsds_mean) of monthly surface 256 

downwelling shortwave flux in air (Fig. 1, Table S2). PC2 was predominantly 257 



comprised of soil-related variables, including total nitrogen, volumetric water content 258 

(wv0010), and SOC, as well as topography-related variables including tangential 259 

curvature (tcurv), ruggedness, and vector ruggedness measurement (vrm) (Fig. 1, Table 260 

S2). The Americas exhibited greater variation in environmental conditions along PC1, 261 

characterized by higher precipitation during the driest month and lower precipitation 262 

seasonality compared to Asia and Africa (Fig. 1). Specifically, Asia demonstrated the 263 

highest precipitation during the driest month and lower precipitation seasonality, while 264 

Africa showed the least variation in these environmental conditions. Variation along 265 

PC2 was similar among the three regions (Fig. 1).  266 

We obtained the species richness estimated from rarefaction based on sample coverage 267 

(Fig. 2), and Fisher’s alpha form standardized sample of stems. By analyzing non-268 

spatial and spatial RF based on observed richness, Fisher’s alpha and richness from 269 

rarefaction data returned high ‘out-of-bag’ R2 (OBB) values (0.83-0.88), demonstrating 270 

a robust ability to predict 1-ha-scale tree species richness from the 24 environmental 271 

predictors across the global tropics (Fig. 3, Table S1). 272 

Training the RF for each of the three richness measures revealed that predicted tree 273 

species richness at the 1-ha scale was highly heterogeneous across the tropics (Fig. 4A, 274 

Fig. S6A, Fig. S7A), with predicted richness highest in western South America, 275 

particularly the Andean–Amazon foothills and Colombian Chocó, the major islands of 276 

Southeast Asia, and New Guinea (Fig 4A). Low levels of predicted local species 277 

diversity was found across most of tropical Africa, eastern and southern Amazonia, and 278 

continental Southeast Asia.  279 

Analysis using non-spatial RF revealed that precipitation of the driest month (bio14) 280 

was identified as the most important single variable for predicting tree richness, 281 

followed by soil pH (phh2o) (Fig. 4B). The interaction between precipitation of the 282 

driest month and proportion of silt particles in the fine earth fraction (silt) also 283 

contributed significantly to the model (Fig. 4B). Spatial RF, which accounted for spatial 284 

autocorrelation (See Supplementary Methods 1), showed higher importance of 285 

moisture-related variables, including annual range of monthly relative humidity 286 

(hurs_range), precipitation seasonality (bio15), mean monthly potential 287 



evapotranspiration (pet_penman_mean), and the mean monthly climate moisture index 288 

(cmi_mean) (Fig. 4C). In contrast, the importance of soil-related variables, such as pH 289 

and silt, remained consistent, while the interaction between precipitation of the driest 290 

month and silt (bio14 x pca..silt) decreased in importance. An additional analysis in 291 

which non-spatial and spatial RF was applied to a thinned set of sample locations 292 

separated by at least 50, 100 and 200 km, showed a diminished importance of soil-293 

related variables like pH, soil organic carbon (soc), and silt (Fig. 4D, Fig. S8B, D). This 294 

reduction was particularly pronounced with 100 and 200-km thinning, where the 295 

importance of soil pH and silt decreased markedly. In contrast, variables associated with 296 

moisture (e.g., annual range of monthly relative humidity (hurs_range), mean monthly 297 

climate moisture index (cmi_mean)), growing season (e.g., net primary productivity 298 

[NPP]), solar radiation (e.g., mean monthly surface downwelling shortwave flux 299 

[rsds_mean]) and topography (e.g., topographic position index [tpi]) increased in 300 

importance.  301 

According to spatial RF, the Americas, Africa and Asia exhibited similar relationships 302 

between tree species richness and six dominant environmental variables: precipitation 303 

of the driest month (bio14), soil pH (phh2o), annual range of monthly relative humidity 304 

(hurs_range), precipitation seasonality (bio15), silt proportion (silt), and mean monthly 305 

potential evapotranspiration (pet_penman_mean) (Fig. S9). In all three regions, tree 306 

richness was highest in areas with abundant moisture in the driest month (bio14; Fig. 307 

S9A). Conversely, richness was low in areas with high soil pH and silt fraction, except 308 

in Asia, where richness increased with silt (Fig. S9B, E). High tree richness was also 309 

associated with low precipitation seasonality, annual range of monthly relative humidity, 310 

and mean monthly potential evapotranspiration, peaking where these were 311 

approximately 25–35 mm, 5−6%, and 110–115 mm/month, respectively (Fig. S9C, D, 312 

F). Notably, the Americas displayed large variation in precipitation of the driest month, 313 

soil pH and silt, whereas Asia exhibited substantial variation in humidity range, 314 

precipitation seasonality, and monthly potential evapotranspiration. Africa showed low 315 

variation in these parameters compared to the other two regions. 316 

The contribution of the six dominant environmental variables to local tree species 317 



richness varied within and across regions. In areas with high precipitation, low 318 

seasonality in rainfall, and low soil pH (Fig. S10–11), the predictive contribution of 319 

these climatic variables to species richness within the RF model was reduced (Fig. S12–320 

13). For example, in areas with low soil pH (around 3.7–4), such as the Amazon (Fig. 321 

S10B), the importance of soil pH in the spatial RF decreased (Fig. S12B). By contrast, 322 

in areas characterized by high soil pH such as India and southeast Africa, this soil 323 

parameter was a critical predictor in the model.  324 

The negative binomial generalized linear models (glm.nb) demonstrated a weaker 325 

ability than the RF to predict local tree species richness, whether estimated from 326 

rarefaction (OOB R2 = 0.69), Fisher’s α (OOB R2 = 0,70) or observed richness OOB R2 327 

= 0.72) (Fig. S14). Moreover, in contrast to results from the spatial RF, the glm.nb found 328 

that Africa and Asia exhibited similar levels of local tree species richness, both of which 329 

were significantly lower than the Americas (Tables S6–7). Despite those differences, 330 

the direction and significance of the effects of important precipitation (e.g., 331 

precipitation of the driest month [bio14], precipitation seasonality [bio15], mean 332 

monthly vapor pressure deficit [vpd_mean], annual range of monthly relative humidity 333 

[hurs_range]), temperature (mean monthly minimum air temperature of the coldest 334 

month [bio06]) and soil variables (e.g., pH, silt) were similar between the two 335 

approaches (Tables S6–7). Variables showing a significant interaction between Africa 336 

and the Americas included cmi_mean, hurs_range, vpd_mean, clay proportion, soil pH, 337 

and tcurv (Tables S6–7). Both the glm.nb and RF models showed consistent results, 338 

indicating that variables like bio14, pH, hurs_range, silt, and bio15 are important 339 

factors in controlling alpha diversity. While RF excels in predictive power (R2 = 340 

0.86), capturing complex, non-linear relationships, the glm.nb model (R2 = 0.69) 341 

also explains a large portion of the richness. This demonstrates glm.nb’s ability to 342 

capture substantial data variability despite its lower R2. Crucially, glm.nb shows 343 

significant regional differences between three regions, confirming broad-scale 344 

patterns. While the results from glm.nb and RF diverged in important ways, the RF 345 

model is given precedence here due to its superior OOB R2 values and capacity to 346 

incorporate non-linear effects [27,28]. However, the glm.nb model offers the 347 



advantage of interpretability and simplicity, which can be crucial for understanding 348 

the underlying factors driving richness. Therefore, while RF may provide superior 349 

predictive accuracy, glm.nb remains a valuable tool for future additional 350 

exploratory analysis and hypothesis testing. 351 

When environmental variables were grouped into seven categories – temperature, 352 

precipitation, growing season, Solar radiation, Soil, Topography, co-limitation that 353 

means no single type of environmental factor dominates, local tree species richness was 354 

largely explained by the same three categories: co-limitation, precipitation and soil (Fig. 355 

5). Referring to areas where no single category dominates, co-limitation represented the 356 

most important category, accounting for 30.02% of the variation in local tree species 357 

richness (Fig. 5B). Precipitation (22.90%) and soil (17.56%) were the next most 358 

important categories, followed by solar radiation (11.71%) and topography (11.10%). 359 

In contrast, temperature (2.05%) and growing season (4.65%) were relatively 360 

unimportant overall, but increased in significance at higher latitudes and altitudes 361 

within the tropics (Fig. 5A). Solar radiation and growing season tended to gain 362 

importance relative to other categories where species richness was low, particularly 363 

near 10° N and 10–20 °S latitude. Along the latitudinal gradient, co-limitation, moisture 364 

and soil were the dominant categories explaining richness variation in the three regions. 365 

Compare with other regions, along the longitudinal gradient, growing season and solar 366 

radiation were important in Africa, while soil and precipitation categories were most 367 

important in Asia. Overall, species richness in most tropical regions is constrained by 368 

multiple environmental factors, indicating a co-limitation effect, particularly in areas of 369 

higher species richness close to the equator. 370 

 371 

DISCUSSION 372 

The relationship between environmental factors and species richness 373 

The RF and glm.nb model showed that variation in tropical tree species richness was 374 

consistently predictable by 24 primary environmental variables across the three main 375 

biogeographic regions of the tropics. Local tree species richness predicted by RF were 376 



strongly correlated with those based on sample coverage estimation from rarefaction 377 

and Fisher’s α across the tropics, with observed raw richness and predicted richness 378 

showing similar results in RF (Table S5), and relatively lower in glm.nb model. While 379 

these relationships are empirical, the strength of the predictions implies that across the 380 

world’s tropical forests, local species richness at the 1-ha scale is largely deterministic. 381 

The results showed that local tree diversity tends to converge on similar levels of 382 

richness when conditions are similar. This trend holds despite the fact that a minority 383 

of genera and almost no species of trees exist in common between the studied 384 

biogeographic regions, with different families and genera having undergone their own 385 

patterns of diversification within each region [29–32].   386 

A noteworthy nuance emerges when comparing the relationship of individual 387 

environmental variables to species richness: although the correlations between any 388 

single environmental variable and richness are relatively weak, simultaneous 389 

incorporation of all environmental predictors in Random Forest achieved high 390 

predictive power (R2> 0.86). Furthermore, sensitivity analysis highlighted that the 391 

importance of these interactions is context-dependent: the trained RF model reflected 392 

the specific range of environmental conditions in the current dataset. While predictive 393 

relationships might shift with inclusion of additional forest plots (taking in a greater 394 

range of local environments or sub-regions), the sample size as it already stands is very 395 

large, and in diverse settings, so we regard these inferences be robust and unlikely to 396 

change substantially with addition of more samples. 397 

Our results suggest that moisture related variables are more important at the large scale, 398 

while the soil related variables play a relatively more important role at the local scale. 399 

The relatively strong local effect of soil factors is consistent with the mosaic of soil-400 

influenced habitats that can exist on a fairly local scale within the tropics, producing 401 

differences in tropical tree communities [33,34].  402 

The strongest climate-related predictors of tree richness identified in the RF and 403 

sensitivity analysis (Fig. 4, Fig. 5) were those reflecting aspects of moisture supply to 404 

vegetation, with variation in temperature playing a less important role. The estimated 405 

net primary productivity (NPP) itself is high on the list of predictors at large scales (50 406 



km, 100 km and 200 km, Fig. 4D, Fig. S8). In general, the climate factors that emerge 407 

as important correlated with tree species richness were all consistent with conditions 408 

that favor plant growth and productivity rather than conditions that impose severe water 409 

stress or suppress photosynthesis due to low temperatures. This reinforces and refines 410 

the patterns linking tree diversity and plant physiology/productivity that have long been 411 

noted [1,2,6,35]. While relationships between species richness and climate have been 412 

demonstrated by other studies [36,37], what is striking in these new results is how 413 

predictable the overall relationship is when soil factors were included (discussed below) 414 

and how consistent the relationship is across different regions of the tropics.  415 

The question of why such environment-richness relationships exist for trees is one of 416 

the greatest conundrums in ecology and evolution [2]. Explanations vary from the 417 

legacy of a moist tropical origin of angiosperms [38], to the niche partitioning 418 

capabilities of more productive ecosystems [35], to the lack of physiological extremes 419 

which allows functional equivalency and thus both greater diversity of growth 420 

architectures [39–41] and extensive niche overlap [3] that favors coexistence of high 421 

species richness.  422 

Certain internal patterns of influence on species richness within each tropical 423 

region are discernable (Fig. 5, Fig. S10–13). Towards higher latitudes of the tropics, 424 

species richness was more strongly impacted by factors related to temperature and 425 

growing season, whereas closer to the equator, moisture-related factors were more 426 

important (Fig. 5). Although particular categories of environmental factors variation in 427 

species richness in some areas, most regions are subject to co-limitation by multiple 428 

categories of environmental factors (Fig. 5). The high species richness observed in 429 

tropical regions may be maintained through the interaction of multiple factors, and co-430 

limitation [19]. In natural environments, plant growth is impacted by multiple variables 431 

[42], with the optimal growth occurring when these interacting variables attain a state 432 

of conducive equilibrium [43]. In this study, these co-limitation areas likely create 433 

environmental conditions where resources are relatively balanced, favoring the survival 434 

of various species and thus making these areas rich in species richness. Given the 435 



relatively limited attention given to the role of soil parameters in affecting patterns of 436 

tropical tree diversity, soil pH surprisingly emerges as influential in the RF analysis, 437 

especially at the local scale (Fig. 4B–C, Fig. S8). The role of soil pH has long been 438 

known as an influence on more local scale patterns in tropical forest composition, at 439 

least [34], and soil pH is known to play a major role in plant ecology in general [44]. 440 

Soil pH correlates with a range of other factors such as nutrient concentrations and 441 

availability, including the mobility of toxic ions such as aluminum [45]. Species 442 

composition of vegetation can itself influence soil pH and other soil factors [46–48], 443 

but the possibility of complex feedback loops between species diversity and soil being 444 

significant on the pantropical scale can only be considered speculative.  445 

While lower soil pH may be seen as a physiologically more extreme environment for 446 

the above reasons, in fact tree species richness tends to be highest in the lowest pH soils 447 

in our dataset (Fig. S9B, Fig. S10B). Empirically, this supports previous results from 448 

studies in other biomes that plant species richness peaks in low soil pH, around pH 4 449 

[49], and declines as pH increases (Fig. S9B). A widely discussed principle in plant 450 

ecology is that a certain degree of physiological ‘stress’ – such as low soil pH – may 451 

suppress plant growth and productivity, reducing the competitive ability of faster-452 

growing generalists [44]. In the context of disturbance events at varying scales, this 453 

may reduce competitive exclusion and enable a greater number of species to coexist 454 

[44,50,51].  455 

While it is reasonable to focus on the potential effect of environmental factors on the 456 

trees themselves, it is also crucial to consider that other factors could be at work, 457 

without directly involving the physiology of trees as the primary driver. For instance, 458 

the Janzen-Connell hypothesis suggests that diversity levels in tropical forests are 459 

controlled by the intensity of attack by insect herbivores and pathogens [2,52–54] – 460 

with constantly warm and moist conditions favoring specialization of insect pest or 461 

pathogen populations, and strong density-dependent control of tree populations 462 

allowing more tree species to coexist locally. There is considerable evidence that a 463 

degree of selective pest pressure can maintain diversity in plant communities, but 464 



inconsistent evidence that density-dependent mortality is stronger in the tropics than in 465 

temperate regions [2]. However, to explain the patterns seen here, the pest pressure 466 

effect would need to operate in a finely modulated way along environmental and species 467 

richness gradients within the tropics, quite aside from whether it differs between 468 

tropical and temperate regions. A potential effect of soil pH on herbivory – perhaps with 469 

respect to the extent of the species pools on different soil types and perhaps in affecting 470 

nutrient or secondary compound content of plants, or the growth rate of fresh edible 471 

tissues – might also be involved in the observed relationship to soil factors.  472 

 473 

Convergence in richness amongst biogeographical regions 474 

From the analysis of this dataset, there is no obvious evidence for any regional influence 475 

producing anomalously high or low tree species richness, relative to the overall 476 

pantropical trend. When 1-ha richness data from all the regions is overlaid on the same 477 

scatterplot, the Americas, Asia (including Wallacea and Australasia), and tropical Africa 478 

all fall close to one another, within margins of error (Fig. 3, Fig. S14‒16). The spatial 479 

RF model demonstrates that analogous environments support comparable richness 480 

levels, irrespective of regional species pools (Fig. S17). This contrasts with overall 481 

comparison of regions without accounting for equivalent environments. Most strikingly, 482 

there is particularly high species richness for some plots in the Americas (Fig. 3, Fig. 483 

S14‒16). One of the primary predictors, and possible drivers, of the elevated diversity 484 

in the Neotropics appears to be this region’s consistently higher levels of moisture, as 485 

expressed by a range of factors in the RF model [55]. This may be further reinforced 486 

by the region’s relatively low soil pH values, which we find correlates significantly 487 

with species richness independently of climate. When RF was implemented, the 488 

anomalously high richness of the Americas disappeared and was explicable almost 489 

exclusively in terms of empirical environmental factors. 490 

The close similarity in richness between tropical regions, when compared in terms of 491 

the combinations of environmental factors that best predict richness, is evident despite 492 

the divergent geological, climatic, and evolutionary histories of these regions that span 493 

tens of millions of years [29,38,56,57]. Independent evolution and diversification of 494 



clades has given a distinctive taxonomic composition to the forests in each of the main 495 

regions – the Americas, SE Asia (and Wallacea/Oceania), and tropical Africa [38,56,58]. 496 

In each region, the composition and distribution of flora have been influenced by 497 

continental collisions, mountain building, and the cooling and drying of climate in the 498 

Cenozoic [30,56,57,59,60]. For instance, tropical Africa lost a large proportion of its 499 

previous diversity during the late Cenozoic/Quaternary due to drying of climate, 500 

especially during glacial episodes [38,56,57], and now has a restricted total richness 501 

and phylogenetic diversity of trees on the regional scale [23,30]. The fossil pollen 502 

record also shows that the rainforests of northern Australia have been through strong 503 

drying episodes in which their areal extent was severely restricted [38,56,57]. While 504 

the climate history of the tropical forests of India is not well known, it is possible that 505 

as a relatively dry and small rainforest enclave it could also have gone through past 506 

climate bottlenecks [56]. The uplift of the Andes created a complex topographical 507 

gradient that facilitated allopatric speciation and the establishment of numerous 508 

microhabitats, leading to species diversification [61,62]. 509 

Despite all of these different histories and potential trajectories, brought about by 510 

climatic and tectonic history, and regional scale diversifications, it is striking that from 511 

the perspective of the 1-ha sample scale all the regions we distinguish here adhere 512 

closely to the same pantropical pattern of richness, in relation to present-day 513 

environmental conditions (Fig. 2, Fig. S14‒16). 514 

The very close correspondence in tree species richness between regions, despite all of 515 

the historical legacy factors that could potentially cause divergence in diversity, implies 516 

the existence of precise control by ‘governance’ factors in the forest community that 517 

tend to cause richness to settle at a particular level. Many potential mechanisms have 518 

been put forward to explain how tree species richness in tropical forests is maintained 519 

[2], including those discussed above. It is, however, surprising that the mechanisms at 520 

work are able to operate so precisely, all across the tropics, to modulate local scale 521 

richness, when there are so many factors that would be expected to cause richness to 522 

diverge. Overall, the mechanisms invoked to explain the high tree species richness of 523 

tropical forests, and its variation within the world’s tropical forests, can be grouped into 524 



two kinds. Disequilibrium hypotheses invoke time-dependent processes of progressive 525 

buildup of diversity by diversification or migration, and its destruction by extinction 526 

[63]. According to such mechanisms, there is no ‘lid’ on maximum diversity in the 527 

tropics, and differences in diversity reflect the balance between diversification events 528 

and extinction events. Equilibrium hypotheses, by contrast, assume that there is a set 529 

capacity to the number of tree species that can coexist in any one place, and that 530 

differences in diversity reflect differences in this capacity. This set of mechanisms 531 

necessarily depends upon differences in niche structuring – for example the number of 532 

discrete niches available due to the heterogeneity of microenvironments[64], the 533 

narrowness of specialized niches that is possible in a given environment (affecting the 534 

opportunities for slotting in extra species) [65], or the degree of overlap in tree species 535 

niches that can occur before competitive exclusion begins to reduce diversity [66,67]. 536 

In our opinion, the results of this study support a predominance of equilibrium or niche-537 

based mechanisms, since the hectare scale species richness is so strongly convergent 538 

between different parts of the world. If the vagaries of diversification and extinction 539 

were more important in affecting richness, we might expect to see large differences in 540 

local diversity between different regions under similar environmental conditions.  541 

Whatever the ecological mechanisms that mediate the relationship between 542 

environmental parameters and tree species richness, they appear to operate consistently 543 

and in combination along a sliding scale in terms of the levels of richness that they 544 

permit. Whilst it is intuitively hard to accept that such mechanisms could exert their 545 

effects so precisely amongst different regions of the world with their own distinct 546 

tropical tree floras that have been separated for tens of millions of years, this is indeed 547 

what the results of our study suggest. 548 

 549 

Conclusions 550 

The broad scale approach employed in this study, combined with spatial RF analysis, 551 

has demonstrated that there is a striking predictability in pantropical tree species 552 

richness sampled at the hectare scale. This predictability involves a combination of 553 

environmental factors, with climate and to some extent soil showing strong correlations 554 



with tree species richness patterns across and between tropical regions. Pantropical 555 

regions exhibit high species richness, primarily due to the intricate interplay of co-556 

limitation that create stable and balanced conditions. Although regional species pools 557 

differ, analogous environmental conditions yield similar local richness patterns. A 558 

multifactorial interplay of evolutionary and ecological mechanisms is presumably at 559 

work controlling this consistency of species richness, preventing regional divergence. 560 

The observed variation in tropical species richness must be seen as the outcome of 561 

a range of different factors acting simultaneously, sometimes in parallel and 562 

sometimes in opposition to one another. It is possible that these multiple factors 563 

each act through a range of different ecological mechanisms, requiring separate 564 

elucidation. These findings decisively strengthen the case for niche theory, revealing 565 

its remarkable predictive power. They provide compelling evidence that niche 566 

segregation is a pervasive and dominant force, structuring communities from local 567 

patches to broad regional landscapes, even in the presence of diverse regional species 568 

assemblages.  569 

Whilst identification of the true underlying mechanisms involved remains a 570 

fundamental challenge for ecology, this study contributes to the ongoing challenge in 571 

ecology to identify and understand the controls on biological diversity.  572 

In this paper, we had originally hypothesized that local-scale tree alpha diversity 573 

across the global tropics can be consistently predicted by contemporary 574 

environmental variables, such that analogous environmental conditions will 575 

support similar levels of richness, irrespective of deep historical biogeographic 576 

divergences. This hypothesis has survived its test, with striking predictability of species 577 

richness as sampled at the hectare scale. We also hypothesized that variation in richness 578 

on more localized scales between samples would be governed by a distinct set of 579 

influences. Despite some subtle scale-related differences, this was essentially disproven, 580 

with similar sets of environmental factors governing throughout. 581 

It is necessary to keep in mind, however, that our study is confined to data obtained at 582 

the 1 ha sampling scale, and that other patterns may emerge at other local sampling 583 

scales [10], or for other life forms (e.g. lianas) – either in sub-hectare or larger plots, or 584 



at the level of beta-diversity turnover rates. This awaits other studies, and the additional 585 

information that comes from these will shed more light on the mechanisms at work 586 

behind tropical tree diversity patterns. The findings of this study are derived from 587 

current sample surveys, and the uneven distribution of these samples may affect our 588 

results. We advocate for an increase in sample surveys in tropical regions and the 589 

development of a more comprehensive tropical sample database in future scientific 590 

research. 591 

Intriguingly, other aspects of community structuring of tropical forests may be found to 592 

show striking convergence patterns across the tropics. Cooper et al. [68] have recently 593 

revealed strong convergence in relative abundance data – rather than richness as is 594 

shown here - in forest plots throughout the tropics. There is a need for further careful 595 

comparisons of the structure and functioning of tropical forests across different regions, 596 

to understand how closely they have maintained their similarities, and to better 597 

understand the driving mechanisms behind the observed patterns. 598 

 599 

Materials and Methods 600 

Tree data and richness 601 

Tree inventory data were assembled from the Pantropical Forests Network (PFN) of 602 

old-growth (not recently logged or cleared) closed canopy forest plots from across the 603 

global tropics, including tropical dry forest and its various transitional forms to tropical 604 

rainforest [23]. All trees, defined as free-standing woody individuals (including palms), 605 

with a diameter at breast height (1.3 m) >10 cm was measured and identified in each 606 

plot (Data S1). If species names could not be determined, plot-specific morpho-species 607 

were recorded, with closest taxonomic assignment. All morpho-types included here 608 

were identified to the Linnean species, genus or at least family level. Unknowns at 609 

Linnean family level were not included.  610 

The numbers of individuals and species were obtained from a total of 429 1-ha plots 611 

located in the Americas (197 plots), Africa (150 plots) and Asia (82 plots) (Fig. 2, Fig. 612 

S3‒S4, Data S2). The Asian region included Wallacea and Australasia based on shared 613 

floristic affinity [23]. Geographical boundaries of the tropics were defined based on the 614 



map of [69].  615 

In addition to observed species richness, we analyzed the richness in each 1-ha plot 616 

estimated from sample-based rarefaction and Fisher’s α (see Supplementary methods 617 

S1). Both of these methods are widely recognized and frequently used measures of 618 

species richness [24]. Sample-based rarefaction is often considered a more reliable 619 

estimator of true species richness in a community, particularly when sampling is 620 

incomplete as is frequently the case in diverse assemblages [25,70]. This technique 621 

allows for a more accurate comparison across communities by taking into account 622 

undetected species and different levels of sampling effort. We used the function 623 

“estimated” from the iNEXT package in R [71] to estimate species richness based on 624 

sample coverage, which accounts for the completeness of sampling by estimating how 625 

well a community has been sampled. Richness was standardized to the same sample 626 

coverage (1 ha) to compare the survey completeness of each sample size, providing a 627 

robust measure that accounts for uneven sampling efforts across regions. The 628 

rarefaction curves were plotted to visualize the richness of species across coverage 629 

sampling efforts, indicate sample coverage values for all localities are quite high, most 630 

of them are larger than 0.8 (Fig. S1). 631 

Our primary analysis focused on species richness estimated from sample-based 632 

rarefaction to ensure the robustness of our estimates. Fisher’s α was also examined 633 

given its applicability to communities where species follow a log-series pattern with 634 

high proportions of rare species and for detecting the influence of abundance 635 

distributions on species diversity [26,72]. Compared to other diversity measures, these 636 

two indices showed the strongest correlation with observed richness (Table S4, Fig. S2, 637 

see Supplementary methods S1). 638 

 639 

Environmental data 640 

We collected data surfaces for an initial set of 65 environmental predictors, including 641 

bioclimatic, soil and topographic variables (Data S3‒S5). Bioclimatic data were 642 

sourced from CHELSA (Climatologies at high resolution for the Earth’s Land Surface 643 

Areas; http://chelsa-climate.org/), which provides climate data at a spatial resolution of 644 



30 arc-seconds (~1 km²). Soil data were obtained from the ISRIC World Soil 645 

Information SoilGrids dataset (https://data.isric.org/), which provides model-646 

interpolated predictions of soil parameters at a resolution of 250 m. These predictions 647 

are derived from the integration of data from thousands of soil cores from across the 648 

globe with geological, surface sediment, topographic, normalized difference vegetation 649 

index (NDVI), and climatic background information [15]. Topographic data with a 650 

spatial resolution of approximately 1 km were downloaded from EarthEnv 651 

(http://www.earthenv.org/topography). Important environmental variables were 652 

selected using the Boruta algorithm from the Boruta package [73] in R (Data S6). 653 

Multicollinearity was addressed by assessing correlation and variance inflation factors, 654 

resulting in a refined set of 24 environmental predictors for RF analysis (Table S1). 655 

 656 

Spatial random forest 657 

To predict species richness based on multiple environmental variables, we applied a 658 

random forest (RF) combined with spatial regression using the package spatialRF in R 659 

[22], which can be applied on regular or irregular data [74]. This package enhances 660 

traditional RF techniques by accounting for spatial autocorrelation where observations 661 

are not independent but rather show geographic relationships. Spatial autocorrelation 662 

based on Moran’s I index was explicitly taken into account to improve model accuracy 663 

in capturing spatial patterns. To ensure robust evaluation of the model, we employed 664 

cross-validation by dividing the data into 30 spatial folds for training and testing. 665 

Additionally, spatially thinned occurrence data were generated using the “thin” function 666 

from the spThin package [75], which filters occurrence locations to ensure they are a 667 

set minimum distance apart (e.g., 50 km). This spatial thinning reduces bias from 668 

uneven species collections and was used in RF analysis to compare results from the full 669 

dataset (see Supplementary methods S2). 670 

 671 

Statistical analysis 672 

We used linear regression to examine the relationship between species richness 673 

predicted by non-spatial and spatial RF and that estimated from sample-based 674 



rarefaction, Fisher’s α and observed richness. Principal component analysis (PCA) was 675 

performed to explore variation among the 24 environmental variables in the three major 676 

tropical regions: the Americas, Africa and Asia. We used the FactoMineR package [76] 677 

in R to implement PCA and the factoextra package [77] to generate a biplot that enabled 678 

visualization of the results. 679 

Spatial Random Forest (RF) excels at capturing complex, non-linear relationships 680 

and identifying important predictors, primarily for its predictive power [78]. As a 681 

complementary approach, the Generalized Linear Model with Negative Binomial 682 

distribution (glm.nb) was used. This allowed us to validate RF results by 683 

statistically testing broad-scale factors such as continental differences and 684 

examining linear relationships, combining data-driven prediction with statistical 685 

inference. To quantify the effects of the 24 environmental variables on species richness 686 

across the three tropical regions, we applied a negative binomial generalized linear 687 

model (glm.nb) using the MASS package in R and compared the results with those from 688 

spatial RF. Spatial RF excels in capturing complex, non-linear relationships between 689 

species richness and environmental variables, but does not provide interpretable 690 

coefficients that explain the direction and magnitude of those relationships [79]. As a 691 

complementary approach, glm.nb was used to validate the robustness of the RF results 692 

by enabling the identification and interpretation of regional differences and linear 693 

relationships between environmental predictors and species richness.  Both main effects 694 

and interactions between environmental variables and region were examined with this 695 

approach (see Supplementary methods S3).  696 

 697 

Sensitivity analysis 698 

To determine which class of environmental variables (e.g., precipitation, temperature, 699 

soil, etc.) best explained variation in local tree species richness, we classified the 24 700 

environmental variables into seven categories – temperature, precipitation, growing 701 

season, Solar radiation, Soil, Topography and conducted a sensitivity analysis of the RF 702 

model following the methods of Saltelli et al. [80] and Liang et al. [19]. All of the above 703 

analyses were performed in R version 4.2.3 (R Core Team, 2024). The R script used for 704 



all analyses is provided in Data S6. 705 

We conducted a sensitivity analysis through the following steps: 706 

Step 1: Using all environmental variables X(s), we applied the RF model to simulate 707 

predicted species richness Yall(s): 708 

 𝑌𝑎𝑙𝑙(𝑠) = 𝑓(𝑋(𝑠)) 709 

where f() represents the RF model, X(s) represents the values of environmental variables, 710 

and s represents six categories to which the environmental variables belong: E1, 711 

temperature; E2, precipitation; E3, growing season; E4, solar radiation; E5, soil; E6, 712 

topography (Table S3). 713 

Step 2: We then applied the RF model to predict tree species richness based on all 714 

environmental variables except those belonging to E1, S−E1 (s): 715 

𝑌−𝐸1(𝑠) = 𝑓−𝐸1((𝑋 − 𝐸1)(𝑠)), 716 

Where f−E1() represents the RF model simulated with all variables except those 717 

associated with temperature and (X – E1) (s) represents the variables of the remaining 718 

5 categories (E2-E6). 719 

Step 3: We calculated the relative sensitivity of predicted species richness to E1 from: 720 

𝑅(𝐸1) = |𝑌𝑎𝑙𝑙(𝑠) − 𝑌−𝐸1(𝑠)| / 𝑌𝑎𝑙𝑙(𝑠). 721 

Step 4: We repeated steps 2 and 3 to calculate the relative sensitivity of each of the 722 

remaining categories E2-E6. For a given area, the category with the highest relative 723 

sensitivity and meeting the threshold of relative sensitivity ≥ 1/7 was considered that 724 

which best explained the variation in tree richness for that area. 725 

Step 5: In areas where relative sensitivities were less than 1/7 for all categories, we 726 

hypothesized that tree richness was not related to any single category but rather multiple 727 

categories of environmental variables. Therefore, we created a seventh category (E7) 728 

called co-limitation to characterize areas where no single type of environmental factor 729 

dominates. 730 

Step 6: Steps 1-5 were repeated to calculate the relative sensitivity of each of the seven 731 

categories, including E7. To visualize regional variation in category importance, we 732 

calculated the relative sensitivity of each category as a percentage of that of all 733 

categories and plotted this along latitudinal and longitudinal gradients spanning the 734 



tropics on a map. 735 

 736 

 737 

SUPPLEMENTARY MATERIALS 738 

All datasets, R scripts, and model output results have been uploaded to Figshare (Data 739 

S1–S7, Appendix in Supplementary Materials). 740 
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 978 

Figures 979 



980 

Fig. 1. Principal component analysis (PCA) of 24 environmental variables for 1-ha tropical 981 

tree plots in the Americas, Africa and Asia. Marginal density plots above and to the right of the 982 

biplot show the distribution of samples from each region along the first (PC1) and second (PC2) 983 

principal components, respectively. Percentages on each axis represent the variation explained by 984 

the respective principal component. 985 

 986 

 987 



 988 

Fig. 2. Tree species richness in 1-ha plots across the global tropics. (A) Distribution of 429 1-ha 989 

plots located in undisturbed old-growth forests used in this study. Different colored points show tree 990 

species richness estimated from rarefaction based on sample coverage. (B) Density distribution of 991 

the plots for the three regions. Box plots show the median and interquartile range of species richness 992 

estimated from rarefaction, alongside individual plot data for each region. Vertical lines extend to 993 

1.5 times the difference between quartiles and black points represent outliers. Width of the 994 

distribution represents the number of plots at a given richness level. Similar plots for Fisher’s α and 995 

observed richness are shown in Supplementary Figs. S3-S4. 996 

 997 

 998 

Fig. 3. Predicted tree species richness according to non-spatial Random Forest based on 24 999 

environmental variables compared to richness estimated from (A) sample-based rarefaction, 1000 

(B) Fisher’s α and (C) observed richness. Tree inventory data were obtained from 429 1-ha plots 1001 

of old-growth tropical forest located across the Americas, Africa and Asia. The out-of-bag R2 reflects 1002 

each RF model’s performance based on observations that were excluded from the training subset 1003 

for each tree. Box plots above and to the right of each graph show estimated and predicted richness 1004 

between regions, respectively. 1005 



 1006 

Fig. 4. Predicted tree species richness at the 1-ha scale and importance of environmental 1007 

variables based on non-spatial and spatial random forest (RF). (A) Local tree species richness 1008 

estimated from rarefaction and predicted using non-spatial RF across the tropics. (B) Importance of 1009 

environmental variables according to non-spatial RF, which does not account for spatial 1010 

autocorrelation among forest plots. (C) Importance of environmental variables according to spatial 1011 

RF, which accounts for spatial autocorrelation among forest plots. (D) Importance of environmental 1012 

variables according to spatial RF with thinning of samples by 50 km. 1013 

 1014 



 1015 
Fig. 5. Geographical distribution of predominance of seven categories of environmental 1016 

variables. Colimitation refers to areas where no single factor dominates. (A) The driving factors 1017 

distribution pattern in pan-tropical regions, along longitude and latitude. (B) The percentage of main 1018 

categories driving factors in tropical region. A detailed variables for different drivers were explained 1019 

in Table S3.  1020 
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