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ABSTRACT

Different regions of the tropics vary in overall tree species diversity, with the tropical
Americas exhibiting strikingly higher regional tree species richness than Africa and
Southeast Asia. We investigated whether these differences also occur at the local scale,
and whether the environmental conditions associated with tree species richness are
consistent across tropical regions despite highly dissimilar species pools. A spatial
random forest (RF) model was trained using a network of 429 one-hectare plots across
the tropics, together with 24 environmental variables, to predict plot-level tree a
diversity. A combination of climatic, soil and topographical variables explained around
86% of variation in richness. Despite differences in regional species pools and
potentially disruptive effects of different geological, climatic and evolutionary histories,
the relationship between environmental variables and local scale tree species richness
is closely similar across different continents. Our findings imply a pervasive role of
niche-based mechanisms in structuring local tree species richness, regardless of
regional species assemblages. This pantropical convergence in the richness-

environment relationship poses a challenge for ecology to explain.
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INTRODUCTION

High levels of tree species richness and diversity in tropical forests have long fascinated
biologists, representing an enduring challenge to ecological theory. While many
mechanisms have been proposed to explain how such high levels of diversity have
arisen and are maintained, substantial uncertainty persists [1-4]. To test emerging
hypotheses about the mechanisms underlying tropical tree diversity, an empirical
approach is required to identify robust predictors of species richness variation across
broad scales [5]. An ideal method to explore and explain patterns of tropical tree
diversity is to compare standardized inventory plots [1]. In a pioneering study, Gentry
[1] compared a relatively limited number of plots using least-squares regression to
reveal a general relationship between primary productivity and species richness. Other
studies of woody plant species richness, reviewed by [6], have concentrated on
analyzing single regions separately, or are extratropical, preventing the comparison of
tropical tree diversity relationships between regions. Ricklefs and He [7] compared 47
forest plots globally, less than half of which were from the tropics, finding that
consistently warm and moist climates favored higher richness. However, they detected
significant regional variation in extratropical regions, and the limited number of plots
prevented definitive comparison within the tropics.

Consideration of the large differences in geological and evolutionary history between
the different regions and subregions of tropical forest led us to propose two main
hypotheses: a) Local-scale tree alpha diversity across the global tropics can be
consistently predicted by contemporary environmental variables, such that analogous
environmental conditions will support similar levels of richness, irrespective of deep
historical biogeographic divergences; b) Due to localized effects of forest history and
dispersal lag, and the complex ecology of forest communities, there will be differences
in the best predictors of 1 ha richness on the local scale compared to the broader scale.
While more recent studies have expanded upon this foundation, pantropical

comparisons of the patterns and potential drivers of local tree diversity remain limited.
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Comparing 2046 tree plots across Amazonia, Ter Steege et al. [8] demonstrated that a
combined influence of climate and soil factors explained local tree richness and
community composition. In a comparison of forest plots from South America and
Africa, Parmentier et al. [9] showed lower plot-level richness in Africa under similar
warm and moist climatic conditions. In global surveys of forest plots of varying sizes,
Keil and Chase [10] and Chu et al. [11] found that the drivers of variation in diversity
differ with plot size and spatial distance amongst samples, which are important
sampling issues in ecology generally [12]. However, no studies thus far have addressed
local tree species richness using a large number of plots of standardized size across the
world’s tropics, which is necessary for continental-scale comparisons. The increasing
availability and integration of forest plot data now make such comparisons possible
[13].

Two other important advances in environmental data science facilitate hypothesis
testing about the patterns and processes driving tropical tree diversity. First, the
availability of interpolated climate, soil and other environmental parameters has grown
immensely in recent years [14—18]. Second, machine learning models enable analysis
of the simultaneous effect of multiple factors on community structure and diversity
across large scales [19,20]. A particularly robust machine learning method is random
forest (RF) modeling which, when combined with spatial regression, enables analysis
and prediction of spatially structured data where observations exhibit autocorrelation
[21,22]. These models extend the capabilities of traditional RF to handle spatial data
more effectively, allowing for spatial autocorrelation and other geographic phenomena
to be incorporated into vegetation modeling.

Here we used the Pantropical Forests Network (PFN) of tree inventory plots assembled
by Slik et al. [23] in combination with publicly available environmental data surfaces
[14—18] to determine which environmental variables explain plot-level tree a diversity
across the global tropics. We applied a spatial RF and negative binomial generalized
linear model to detect and compare the strength of empirical links between
environmental variables and tree species richness. The number of species per unit area

(e.g. Gentry [1]) - the classic measure of forest tree richness - has its weaknesses given
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that stem density varies by both biogeographical region and along climate gradients. To
compare species richness while accounting for variations in sampling effort and
completeness, we employed rarefaction techniques, sample-coverage-based
approaches based on abundance data (e.g., [24,25]). And Fisher’s a [26], and the
‘classical’ method of number of species recorded per plot, with the goal of improving
understanding of the potential drivers and maintenance of tropical diversity.
Specifically, we addressed three main questions: (1) Which environmental predictors
explain most of the variation in local tree species richness across the tropics? (2) How
do the environmental factors associated with tree species richness differ between broad
versus local scales of sample plot spacing? (3) Given the environmental predictors, does
tree species richness at the 1-ha scale converge between tropical regions to give a
consistent pantropical pattern?

A main goal of this study is to determine whether local tree richness and the
environmental factors associated with it differ amongst the world's major tropical
regions. Such a global comparison is important to inquire whether community
assemblage rules may be consistent across geographically disparate regions, in other
words, evolutionarily conserved underlying environment-richness relationships across

the tropical forest biome.

RESULTS

A PCA conducted on 24 environmental variables across 1 ha plots in the global tropics
revealed regional differences, with the first two axes accounting for 40.5% of the
variance in the variables (Table S1, Fig. 1). Overall, the three regions exhibited
moderate separation along the first principal component (PC1), especially between the
Americas and Asia, but were largely overlapping along the second principal component
(PC2). PC1 was primarily associated with moisture-related variables, including
precipitation seasonality (biol5), precipitation of the driest month (bio14), and annual
range of monthly relative humidity (hurs range), along with soil pH, isothermality
(bi003), NPP, and annual range (rsds_range) and mean (rsds_mean) of monthly surface

downwelling shortwave flux in air (Fig. 1, Table S2). PC2 was predominantly
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comprised of soil-related variables, including total nitrogen, volumetric water content
(wv0010), and SOC, as well as topography-related variables including tangential
curvature (tcurv), ruggedness, and vector ruggedness measurement (vrm) (Fig. 1, Table
S2). The Americas exhibited greater variation in environmental conditions along PC1,
characterized by higher precipitation during the driest month and lower precipitation
seasonality compared to Asia and Africa (Fig. 1). Specifically, Asia demonstrated the
highest precipitation during the driest month and lower precipitation seasonality, while
Africa showed the least variation in these environmental conditions. Variation along
PC2 was similar among the three regions (Fig. 1).

We obtained the species richness estimated from rarefaction based on sample coverage
(Fig. 2), and Fisher’s alpha form standardized sample of stems. By analyzing non-
spatial and spatial RF based on observed richness, Fisher’s alpha and richness from
rarefaction data returned high ‘out-of-bag’ R? (OBB) values (0.83-0.88), demonstrating
a robust ability to predict 1-ha-scale tree species richness from the 24 environmental
predictors across the global tropics (Fig. 3, Table S1).

Training the RF for each of the three richness measures revealed that predicted tree
species richness at the 1-ha scale was highly heterogeneous across the tropics (Fig. 4A,
Fig. S6A, Fig. S7A), with predicted richness highest in western South America,
particularly the Andean—Amazon foothills and Colombian Chocd, the major islands of
Southeast Asia, and New Guinea (Fig 4A). Low levels of predicted local species
diversity was found across most of tropical Africa, eastern and southern Amazonia, and
continental Southeast Asia.

Analysis using non-spatial RF revealed that precipitation of the driest month (bio14)
was identified as the most important single variable for predicting tree richness,
followed by soil pH (phh20) (Fig. 4B). The interaction between precipitation of the
driest month and proportion of silt particles in the fine earth fraction (silt) also
contributed significantly to the model (Fig. 4B). Spatial RF, which accounted for spatial
autocorrelation (See Supplementary Methods 1), showed higher importance of
moisture-related variables, including annual range of monthly relative humidity

(hurs_range), precipitation seasonality (biol5), mean monthly potential
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evapotranspiration (pet penman_mean), and the mean monthly climate moisture index
(cmi_mean) (Fig. 4C). In contrast, the importance of soil-related variables, such as pH
and silt, remained consistent, while the interaction between precipitation of the driest
month and silt (biol4 x pca..silt) decreased in importance. An additional analysis in
which non-spatial and spatial RF was applied to a thinned set of sample locations
separated by at least 50, 100 and 200 km, showed a diminished importance of soil-
related variables like pH, soil organic carbon (soc), and silt (Fig. 4D, Fig. S8B, D). This
reduction was particularly pronounced with 100 and 200-km thinning, where the
importance of soil pH and silt decreased markedly. In contrast, variables associated with
moisture (e.g., annual range of monthly relative humidity (hurs_range), mean monthly
climate moisture index (cmi_mean)), growing season (e.g., net primary productivity
[NPP]), solar radiation (e.g., mean monthly surface downwelling shortwave flux
[rsds_mean]) and topography (e.g., topographic position index [tpi]) increased in
importance.

According to spatial RF, the Americas, Africa and Asia exhibited similar relationships
between tree species richness and six dominant environmental variables: precipitation
of the driest month (bio14), soil pH (phh20), annual range of monthly relative humidity
(hurs_range), precipitation seasonality (biol5), silt proportion (silt), and mean monthly
potential evapotranspiration (pet penman_mean) (Fig. S9). In all three regions, tree
richness was highest in areas with abundant moisture in the driest month (bio14; Fig.
S9A). Conversely, richness was low in areas with high soil pH and silt fraction, except
in Asia, where richness increased with silt (Fig. S9B, E). High tree richness was also
associated with low precipitation seasonality, annual range of monthly relative humidity,
and mean monthly potential evapotranspiration, peaking where these were
approximately 25-35 mm, 5—6%, and 110—-115 mm/month, respectively (Fig. S9C, D,
F). Notably, the Americas displayed large variation in precipitation of the driest month,
soil pH and silt, whereas Asia exhibited substantial variation in humidity range,
precipitation seasonality, and monthly potential evapotranspiration. Africa showed low
variation in these parameters compared to the other two regions.

The contribution of the six dominant environmental variables to local tree species
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richness varied within and across regions. In areas with high precipitation, low
seasonality in rainfall, and low soil pH (Fig. S10-11), the predictive contribution of
these climatic variables to species richness within the RF model was reduced (Fig. S12—
13). For example, in areas with low soil pH (around 3.7-4), such as the Amazon (Fig.
S10B), the importance of soil pH in the spatial RF decreased (Fig. S12B). By contrast,
in areas characterized by high soil pH such as India and southeast Africa, this soil
parameter was a critical predictor in the model.

The negative binomial generalized linear models (glm.nb) demonstrated a weaker
ability than the RF to predict local tree species richness, whether estimated from
rarefaction (OOB R? = 0.69), Fisher’s a (OOB R? = 0,70) or observed richness OOB R?
=0.72) (Fig. S14). Moreover, in contrast to results from the spatial RF, the glm.nb found
that Africa and Asia exhibited similar levels of local tree species richness, both of which
were significantly lower than the Americas (Tables S6—7). Despite those differences,
the direction and significance of the effects of important precipitation (e.g.,
precipitation of the driest month [biol4], precipitation seasonality [biol5], mean
monthly vapor pressure deficit [vpd mean], annual range of monthly relative humidity
[hurs range]), temperature (mean monthly minimum air temperature of the coldest
month [bio06]) and soil variables (e.g., pH, silt) were similar between the two
approaches (Tables S6—7). Variables showing a significant interaction between Africa
and the Americas included cmi_mean, hurs_range, vpd mean, clay proportion, soil pH,
and tcurv (Tables S6—7). Both the glm.nb and RF models showed consistent results,
indicating that variables like biol4, pH, hurs range, silt, and biol5 are important
factors in controlling alpha diversity. While RF excels in predictive power (R? =
0.86), capturing complex, non-linear relationships, the glm.nb model (R> = 0.69)
also explains a large portion of the richness. This demonstrates glm.nb’s ability to
capture substantial data variability despite its lower R%. Crucially, glm.nb shows
significant regional differences between three regions, confirming broad-scale
patterns. While the results from glm.nb and RF diverged in important ways, the RF
model is given precedence here due to its superior OOB R? values and capacity to

incorporate non-linear effects [27,28]. However, the glm.nb model offers the
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advantage of interpretability and simplicity, which can be crucial for understanding
the underlying factors driving richness. Therefore, while RF may provide superior
predictive accuracy, glm.nb remains a valuable tool for future additional
exploratory analysis and hypothesis testing.

When environmental variables were grouped into seven categories — temperature,
precipitation, growing season, Solar radiation, Soil, Topography, co-limitation that
means no single type of environmental factor dominates, local tree species richness was
largely explained by the same three categories: co-limitation, precipitation and soil (Fig.
5). Referring to areas where no single category dominates, co-limitation represented the
most important category, accounting for 30.02% of the variation in local tree species
richness (Fig. 5B). Precipitation (22.90%) and soil (17.56%) were the next most
important categories, followed by solar radiation (11.71%) and topography (11.10%).
In contrast, temperature (2.05%) and growing season (4.65%) were relatively
unimportant overall, but increased in significance at higher latitudes and altitudes
within the tropics (Fig. 5A). Solar radiation and growing season tended to gain

importance relative to other categories where species richness was low, particularly

near 10° N and 10-20 °S latitude. Along the latitudinal gradient, co-limitation, moisture

and soil were the dominant categories explaining richness variation in the three regions.
Compare with other regions, along the longitudinal gradient, growing season and solar
radiation were important in Africa, while soil and precipitation categories were most
important in Asia. Overall, species richness in most tropical regions is constrained by
multiple environmental factors, indicating a co-limitation effect, particularly in areas of

higher species richness close to the equator.

DISCUSSION

The relationship between environmental factors and species richness

The RF and glm.nb model showed that variation in tropical tree species richness was
consistently predictable by 24 primary environmental variables across the three main

biogeographic regions of the tropics. Local tree species richness predicted by RF were
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strongly correlated with those based on sample coverage estimation from rarefaction
and Fisher’s a across the tropics, with observed raw richness and predicted richness
showing similar results in RF (Table S5), and relatively lower in glm.nb model. While
these relationships are empirical, the strength of the predictions implies that across the
world’s tropical forests, local species richness at the 1-ha scale is largely deterministic.
The results showed that local tree diversity tends to converge on similar levels of
richness when conditions are similar. This trend holds despite the fact that a minority
of genera and almost no species of trees exist in common between the studied
biogeographic regions, with different families and genera having undergone their own
patterns of diversification within each region [29-32].

A noteworthy nuance emerges when comparing the relationship of individual
environmental variables to species richness: although the correlations between any
single environmental variable and richness are relatively weak, simultaneous
incorporation of all environmental predictors in Random Forest achieved high
predictive power (R*> 0.86). Furthermore, sensitivity analysis highlighted that the
importance of these interactions is context-dependent: the trained RF model reflected
the specific range of environmental conditions in the current dataset. While predictive
relationships might shift with inclusion of additional forest plots (taking in a greater
range of local environments or sub-regions), the sample size as it already stands is very
large, and in diverse settings, so we regard these inferences be robust and unlikely to
change substantially with addition of more samples.

Our results suggest that moisture related variables are more important at the large scale,
while the soil related variables play a relatively more important role at the local scale.
The relatively strong local effect of soil factors is consistent with the mosaic of soil-
influenced habitats that can exist on a fairly local scale within the tropics, producing
differences in tropical tree communities [33,34].

The strongest climate-related predictors of tree richness identified in the RF and
sensitivity analysis (Fig. 4, Fig. 5) were those reflecting aspects of moisture supply to
vegetation, with variation in temperature playing a less important role. The estimated

net primary productivity (NPP) itself is high on the list of predictors at large scales (50
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km, 100 km and 200 km, Fig. 4D, Fig. S8). In general, the climate factors that emerge
as important correlated with tree species richness were all consistent with conditions
that favor plant growth and productivity rather than conditions that impose severe water
stress or suppress photosynthesis due to low temperatures. This reinforces and refines
the patterns linking tree diversity and plant physiology/productivity that have long been
noted [1,2,6,35]. While relationships between species richness and climate have been
demonstrated by other studies [36,37], what is striking in these new results is how
predictable the overall relationship is when soil factors were included (discussed below)
and how consistent the relationship is across different regions of the tropics.

The question of why such environment-richness relationships exist for trees is one of
the greatest conundrums in ecology and evolution [2]. Explanations vary from the
legacy of a moist tropical origin of angiosperms [38], to the niche partitioning
capabilities of more productive ecosystems [35], to the lack of physiological extremes

which allows functional equivalency and thus both greater diversity of growth
architectures [39—41] and extensive niche overlap [3] that favors coexistence of high

species richness.

Certain internal patterns of influence on species richness within each tropical
region are discernable (Fig. 5, Fig. S10-13). Towards higher latitudes of the tropics,
species richness was more strongly impacted by factors related to temperature and
growing season, whereas closer to the equator, moisture-related factors were more
important (Fig. 5). Although particular categories of environmental factors variation in
species richness in some areas, most regions are subject to co-limitation by multiple
categories of environmental factors (Fig. 5). The high species richness observed in
tropical regions may be maintained through the interaction of multiple factors, and co-
limitation [19]. In natural environments, plant growth is impacted by multiple variables
[42], with the optimal growth occurring when these interacting variables attain a state
of conducive equilibrium [43]. In this study, these co-limitation areas likely create
environmental conditions where resources are relatively balanced, favoring the survival

of various species and thus making these areas rich in species richness. Given the



436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

relatively limited attention given to the role of soil parameters in affecting patterns of
tropical tree diversity, soil pH surprisingly emerges as influential in the RF analysis,
especially at the local scale (Fig. 4B—C, Fig. S8). The role of soil pH has long been
known as an influence on more local scale patterns in tropical forest composition, at
least [34], and soil pH is known to play a major role in plant ecology in general [44].
Soil pH correlates with a range of other factors such as nutrient concentrations and

availability, including the mobility of toxic ions such as aluminum [45]. Species

composition of vegetation can itself influence soil pH and other soil factors [46—48],

but the possibility of complex feedback loops between species diversity and soil being
significant on the pantropical scale can only be considered speculative.

While lower soil pH may be seen as a physiologically more extreme environment for
the above reasons, in fact tree species richness tends to be highest in the lowest pH soils
in our dataset (Fig. S9B, Fig. S10B). Empirically, this supports previous results from
studies in other biomes that plant species richness peaks in low soil pH, around pH 4
[49], and declines as pH increases (Fig. S9B). A widely discussed principle in plant
ecology is that a certain degree of physiological ‘stress’ — such as low soil pH — may
suppress plant growth and productivity, reducing the competitive ability of faster-
growing generalists [44]. In the context of disturbance events at varying scales, this
may reduce competitive exclusion and enable a greater number of species to coexist
[44,50,51].

While it is reasonable to focus on the potential effect of environmental factors on the
trees themselves, it is also crucial to consider that other factors could be at work,
without directly involving the physiology of trees as the primary driver. For instance,

the Janzen-Connell hypothesis suggests that diversity levels in tropical forests are

controlled by the intensity of attack by insect herbivores and pathogens [2,52-54] —

with constantly warm and moist conditions favoring specialization of insect pest or
pathogen populations, and strong density-dependent control of tree populations
allowing more tree species to coexist locally. There is considerable evidence that a

degree of selective pest pressure can maintain diversity in plant communities, but
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inconsistent evidence that density-dependent mortality is stronger in the tropics than in
temperate regions [2]. However, to explain the patterns seen here, the pest pressure
effect would need to operate in a finely modulated way along environmental and species
richness gradients within the tropics, quite aside from whether it differs between
tropical and temperate regions. A potential effect of soil pH on herbivory — perhaps with
respect to the extent of the species pools on different soil types and perhaps in affecting
nutrient or secondary compound content of plants, or the growth rate of fresh edible

tissues — might also be involved in the observed relationship to soil factors.

Convergence in richness amongst biogeographical regions

From the analysis of this dataset, there is no obvious evidence for any regional influence
producing anomalously high or low tree species richness, relative to the overall
pantropical trend. When 1-ha richness data from all the regions is overlaid on the same
scatterplot, the Americas, Asia (including Wallacea and Australasia), and tropical Africa
all fall close to one another, within margins of error (Fig. 3, Fig. S14—-16). The spatial
RF model demonstrates that analogous environments support comparable richness
levels, irrespective of regional species pools (Fig. S17). This contrasts with overall
comparison of regions without accounting for equivalent environments. Most strikingly,
there is particularly high species richness for some plots in the Americas (Fig. 3, Fig.
S14-16). One of the primary predictors, and possible drivers, of the elevated diversity
in the Neotropics appears to be this region’s consistently higher levels of moisture, as
expressed by a range of factors in the RF model [55]. This may be further reinforced
by the region’s relatively low soil pH values, which we find correlates significantly
with species richness independently of climate. When RF was implemented, the
anomalously high richness of the Americas disappeared and was explicable almost
exclusively in terms of empirical environmental factors.

The close similarity in richness between tropical regions, when compared in terms of
the combinations of environmental factors that best predict richness, is evident despite
the divergent geological, climatic, and evolutionary histories of these regions that span

tens of millions of years [29,38,56,57]. Independent evolution and diversification of
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clades has given a distinctive taxonomic composition to the forests in each of the main
regions — the Americas, SE Asia (and Wallacea/Oceania), and tropical Africa [38,56,58].
In each region, the composition and distribution of flora have been influenced by
continental collisions, mountain building, and the cooling and drying of climate in the
Cenozoic [30,56,57,59,60]. For instance, tropical Africa lost a large proportion of its
previous diversity during the late Cenozoic/Quaternary due to drying of climate,
especially during glacial episodes [38,56,57], and now has a restricted total richness
and phylogenetic diversity of trees on the regional scale [23,30]. The fossil pollen
record also shows that the rainforests of northern Australia have been through strong
drying episodes in which their areal extent was severely restricted [38,56,57]. While
the climate history of the tropical forests of India is not well known, it is possible that
as a relatively dry and small rainforest enclave it could also have gone through past
climate bottlenecks [56]. The uplift of the Andes created a complex topographical
gradient that facilitated allopatric speciation and the establishment of numerous
microhabitats, leading to species diversification [61,62].

Despite all of these different histories and potential trajectories, brought about by
climatic and tectonic history, and regional scale diversifications, it is striking that from
the perspective of the 1-ha sample scale all the regions we distinguish here adhere
closely to the same pantropical pattern of richness, in relation to present-day
environmental conditions (Fig. 2, Fig. S14-16).

The very close correspondence in tree species richness between regions, despite all of
the historical legacy factors that could potentially cause divergence in diversity, implies
the existence of precise control by ‘governance’ factors in the forest community that
tend to cause richness to settle at a particular level. Many potential mechanisms have
been put forward to explain how tree species richness in tropical forests is maintained
[2], including those discussed above. It is, however, surprising that the mechanisms at
work are able to operate so precisely, all across the tropics, to modulate local scale
richness, when there are so many factors that would be expected to cause richness to
diverge. Overall, the mechanisms invoked to explain the high tree species richness of

tropical forests, and its variation within the world’s tropical forests, can be grouped into
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two kinds. Disequilibrium hypotheses invoke time-dependent processes of progressive
buildup of diversity by diversification or migration, and its destruction by extinction
[63]. According to such mechanisms, there is no ‘lid’ on maximum diversity in the
tropics, and differences in diversity reflect the balance between diversification events
and extinction events. Equilibrium hypotheses, by contrast, assume that there is a set
capacity to the number of tree species that can coexist in any one place, and that
differences in diversity reflect differences in this capacity. This set of mechanisms
necessarily depends upon differences in niche structuring — for example the number of
discrete niches available due to the heterogeneity of microenvironments[64], the
narrowness of specialized niches that is possible in a given environment (affecting the
opportunities for slotting in extra species) [65], or the degree of overlap in tree species
niches that can occur before competitive exclusion begins to reduce diversity [66,67].
In our opinion, the results of this study support a predominance of equilibrium or niche-
based mechanisms, since the hectare scale species richness is so strongly convergent
between different parts of the world. If the vagaries of diversification and extinction
were more important in affecting richness, we might expect to see large differences in
local diversity between different regions under similar environmental conditions.

Whatever the ecological mechanisms that mediate the relationship between
environmental parameters and tree species richness, they appear to operate consistently
and in combination along a sliding scale in terms of the levels of richness that they
permit. Whilst it is intuitively hard to accept that such mechanisms could exert their
effects so precisely amongst different regions of the world with their own distinct
tropical tree floras that have been separated for tens of millions of years, this is indeed

what the results of our study suggest.

Conclusions

The broad scale approach employed in this study, combined with spatial RF analysis,
has demonstrated that there is a striking predictability in pantropical tree species
richness sampled at the hectare scale. This predictability involves a combination of

environmental factors, with climate and to some extent soil showing strong correlations
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with tree species richness patterns across and between tropical regions. Pantropical
regions exhibit high species richness, primarily due to the intricate interplay of co-
limitation that create stable and balanced conditions. Although regional species pools
differ, analogous environmental conditions yield similar local richness patterns. A
multifactorial interplay of evolutionary and ecological mechanisms is presumably at
work controlling this consistency of species richness, preventing regional divergence.
The observed variation in tropical species richness must be seen as the outcome of
a range of different factors acting simultaneously, sometimes in parallel and
sometimes in opposition to one another. It is possible that these multiple factors
each act through a range of different ecological mechanisms, requiring separate
elucidation. These findings decisively strengthen the case for niche theory, revealing
its remarkable predictive power. They provide compelling evidence that niche
segregation is a pervasive and dominant force, structuring communities from local
patches to broad regional landscapes, even in the presence of diverse regional species
assemblages.

Whilst identification of the true underlying mechanisms involved remains a
fundamental challenge for ecology, this study contributes to the ongoing challenge in
ecology to identify and understand the controls on biological diversity.

In this paper, we had originally hypothesized that local-scale tree alpha diversity
across the global tropics can be consistently predicted by contemporary
environmental variables, such that analogous environmental conditions will
support similar levels of richness, irrespective of deep historical biogeographic
divergences. This hypothesis has survived its test, with striking predictability of species
richness as sampled at the hectare scale. We also hypothesized that variation in richness
on more localized scales between samples would be governed by a distinct set of
influences. Despite some subtle scale-related differences, this was essentially disproven,
with similar sets of environmental factors governing throughout.

It is necessary to keep in mind, however, that our study is confined to data obtained at
the 1 ha sampling scale, and that other patterns may emerge at other local sampling

scales [10], or for other life forms (e.g. lianas) — either in sub-hectare or larger plots, or
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at the level of beta-diversity turnover rates. This awaits other studies, and the additional
information that comes from these will shed more light on the mechanisms at work
behind tropical tree diversity patterns. The findings of this study are derived from
current sample surveys, and the uneven distribution of these samples may affect our
results. We advocate for an increase in sample surveys in tropical regions and the
development of a more comprehensive tropical sample database in future scientific
research.

Intriguingly, other aspects of community structuring of tropical forests may be found to
show striking convergence patterns across the tropics. Cooper et al. [68] have recently
revealed strong convergence in relative abundance data — rather than richness as is
shown here - in forest plots throughout the tropics. There is a need for further careful
comparisons of the structure and functioning of tropical forests across different regions,
to understand how closely they have maintained their similarities, and to better

understand the driving mechanisms behind the observed patterns.

Materials and Methods

Tree data and richness

Tree inventory data were assembled from the Pantropical Forests Network (PFN) of
old-growth (not recently logged or cleared) closed canopy forest plots from across the
global tropics, including tropical dry forest and its various transitional forms to tropical
rainforest [23]. All trees, defined as free-standing woody individuals (including palms),
with a diameter at breast height (1.3 m) >10 cm was measured and identified in each
plot (Data S1). If species names could not be determined, plot-specific morpho-species
were recorded, with closest taxonomic assignment. All morpho-types included here
were identified to the Linnean species, genus or at least family level. Unknowns at
Linnean family level were not included.

The numbers of individuals and species were obtained from a total of 429 1-ha plots
located in the Americas (197 plots), Africa (150 plots) and Asia (82 plots) (Fig. 2, Fig.
S3-S4, Data S2). The Asian region included Wallacea and Australasia based on shared

floristic affinity [23]. Geographical boundaries of the tropics were defined based on the
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map of [69].

In addition to observed species richness, we analyzed the richness in each 1-ha plot
estimated from sample-based rarefaction and Fisher’s a (see Supplementary methods
S1). Both of these methods are widely recognized and frequently used measures of
species richness [24]. Sample-based rarefaction is often considered a more reliable
estimator of true species richness in a community, particularly when sampling is
incomplete as is frequently the case in diverse assemblages [25,70]. This technique
allows for a more accurate comparison across communities by taking into account
undetected species and different levels of sampling effort. We used the function
“estimated” from the iNEXT package in R [71] to estimate species richness based on
sample coverage, which accounts for the completeness of sampling by estimating how
well a community has been sampled. Richness was standardized to the same sample
coverage (1 ha) to compare the survey completeness of each sample size, providing a
robust measure that accounts for uneven sampling efforts across regions. The
rarefaction curves were plotted to visualize the richness of species across coverage
sampling efforts, indicate sample coverage values for all localities are quite high, most
of them are larger than 0.8 (Fig. S1).

Our primary analysis focused on species richness estimated from sample-based
rarefaction to ensure the robustness of our estimates. Fisher’s a was also examined
given its applicability to communities where species follow a log-series pattern with
high proportions of rare species and for detecting the influence of abundance
distributions on species diversity [26,72]. Compared to other diversity measures, these
two indices showed the strongest correlation with observed richness (Table S4, Fig. S2,

see Supplementary methods S1).

Environmental data

We collected data surfaces for an initial set of 65 environmental predictors, including
bioclimatic, soil and topographic variables (Data S3-S5). Bioclimatic data were
sourced from CHELSA (Climatologies at high resolution for the Earth’s Land Surface

Areas; http://chelsa-climate.org/), which provides climate data at a spatial resolution of
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30 arc-seconds (~1 km?). Soil data were obtained from the ISRIC World Soil
Information SoilGrids dataset (https://data.isric.org/), which provides model-
interpolated predictions of soil parameters at a resolution of 250 m. These predictions
are derived from the integration of data from thousands of soil cores from across the
globe with geological, surface sediment, topographic, normalized difference vegetation
index (NDVI), and climatic background information [15]. Topographic data with a
spatial resolution of approximately 1 km were downloaded from EarthEnv
(http://www.earthenv.org/topography). Important environmental variables were
selected using the Boruta algorithm from the Boruta package [73] in R (Data S6).
Multicollinearity was addressed by assessing correlation and variance inflation factors,

resulting in a refined set of 24 environmental predictors for RF analysis (Table S1).

Spatial random forest

To predict species richness based on multiple environmental variables, we applied a
random forest (RF) combined with spatial regression using the package spatialRF in R
[22], which can be applied on regular or irregular data [74]. This package enhances
traditional RF techniques by accounting for spatial autocorrelation where observations
are not independent but rather show geographic relationships. Spatial autocorrelation
based on Moran’s I index was explicitly taken into account to improve model accuracy
in capturing spatial patterns. To ensure robust evaluation of the model, we employed
cross-validation by dividing the data into 30 spatial folds for training and testing.
Additionally, spatially thinned occurrence data were generated using the “thin” function
from the spThin package [75], which filters occurrence locations to ensure they are a
set minimum distance apart (e.g., 50 km). This spatial thinning reduces bias from
uneven species collections and was used in RF analysis to compare results from the full

dataset (see Supplementary methods S2).

Statistical analysis
We used linear regression to examine the relationship between species richness

predicted by non-spatial and spatial RF and that estimated from sample-based
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rarefaction, Fisher’s a and observed richness. Principal component analysis (PCA) was
performed to explore variation among the 24 environmental variables in the three major
tropical regions: the Americas, Africa and Asia. We used the FactoMineR package [76]
in R to implement PCA and the factoextra package [77] to generate a biplot that enabled
visualization of the results.

Spatial Random Forest (RF) excels at capturing complex, non-linear relationships
and identifying important predictors, primarily for its predictive power [78]. As a
complementary approach, the Generalized Linear Model with Negative Binomial
distribution (glm.nb) was used. This allowed us to validate RF results by
statistically testing broad-scale factors such as continental differences and
examining linear relationships, combining data-driven prediction with statistical
inference. To quantify the effects of the 24 environmental variables on species richness
across the three tropical regions, we applied a negative binomial generalized linear
model (glm.nb) using the MASS package in R and compared the results with those from
spatial RF. Spatial RF excels in capturing complex, non-linear relationships between
species richness and environmental variables, but does not provide interpretable
coefficients that explain the direction and magnitude of those relationships [79]. As a
complementary approach, glm.nb was used to validate the robustness of the RF results
by enabling the identification and interpretation of regional differences and linear
relationships between environmental predictors and species richness. Both main effects
and interactions between environmental variables and region were examined with this

approach (see Supplementary methods S3).

Sensitivity analysis

To determine which class of environmental variables (e.g., precipitation, temperature,
soil, etc.) best explained variation in local tree species richness, we classified the 24
environmental variables into seven categories — temperature, precipitation, growing
season, Solar radiation, Soil, Topography and conducted a sensitivity analysis of the RF
model following the methods of Saltelli et al. [80] and Liang et al. [19]. All of the above

analyses were performed in R version 4.2.3 (R Core Team, 2024). The R script used for
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all analyses is provided in Data S6.

We conducted a sensitivity analysis through the following steps:

Step 1: Using all environmental variables X(s), we applied the RF model to simulate
predicted species richness Yai(s):

Yau(s) = fFX(s))

where f{) represents the RF model, X(s) represents the values of environmental variables,
and s represents six categories to which the environmental variables belong: EI,
temperature; E2, precipitation; E3, growing season; E4, solar radiation; ES5, soil; E6,
topography (Table S3).

Step 2: We then applied the RF model to predict tree species richness based on all
environmental variables except those belonging to E1, S-g1 (s):

Y_g1(8) = fop (X — ED)(s)),

Where fgi() represents the RF model simulated with all variables except those
associated with temperature and (X — E1) (s) represents the variables of the remaining
5 categories (E2-E6).

Step 3: We calculated the relative sensitivity of predicted species richness to E1 from:
R(E1D) = |Yau(s) = Yop1 ()] / Yau(s).

Step 4: We repeated steps 2 and 3 to calculate the relative sensitivity of each of the
remaining categories E2-E6. For a given area, the category with the highest relative
sensitivity and meeting the threshold of relative sensitivity > 1/7 was considered that
which best explained the variation in tree richness for that area.

Step 5: In areas where relative sensitivities were less than 1/7 for all categories, we
hypothesized that tree richness was not related to any single category but rather multiple
categories of environmental variables. Therefore, we created a seventh category (E7)
called co-limitation to characterize areas where no single type of environmental factor
dominates.

Step 6: Steps 1-5 were repeated to calculate the relative sensitivity of each of the seven
categories, including E7. To visualize regional variation in category importance, we
calculated the relative sensitivity of each category as a percentage of that of all

categories and plotted this along latitudinal and longitudinal gradients spanning the
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tropics on a map.

SUPPLEMENTARY MATERIALS
All datasets, R scripts, and model output results have been uploaded to Figshare (Data

S1-S7, Appendix in Supplementary Materials).
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Fig. 1. Principal component analysis (PCA) of 24 environmental variables for 1-ha tropical
tree plots in the Americas, Africa and Asia. Marginal density plots above and to the right of the
biplot show the distribution of samples from each region along the first (PC1) and second (PC2)
principal components, respectively. Percentages on each axis represent the variation explained by

the respective principal component.
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Fig. 2. Tree species richness in 1-ha plots across the global tropics. (A) Distribution of 429 1-ha
plots located in undisturbed old-growth forests used in this study. Different colored points show tree
species richness estimated from rarefaction based on sample coverage. (B) Density distribution of
the plots for the three regions. Box plots show the median and interquartile range of species richness
estimated from rarefaction, alongside individual plot data for each region. Vertical lines extend to
1.5 times the difference between quartiles and black points represent outliers. Width of the
distribution represents the number of plots at a given richness level. Similar plots for Fisher’s o and

observed richness are shown in Supplementary Figs. S3-S4.
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Fig. 3. Predicted tree species richness according to non-spatial Random Forest based on 24
environmental variables compared to richness estimated from (A) sample-based rarefaction,
(B) Fisher’s a and (C) observed richness. Tree inventory data were obtained from 429 1-ha plots
of old-growth tropical forest located across the Americas, Africa and Asia. The out-of-bag R? reflects
each RF model’s performance based on observations that were excluded from the training subset
for each tree. Box plots above and to the right of each graph show estimated and predicted richness

between regions, respectively.
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1007  Fig. 4. Predicted tree species richness at the 1-ha scale and importance of environmental
1008  variables based on non-spatial and spatial random forest (RF). (A) Local tree species richness
1009  estimated from rarefaction and predicted using non-spatial RF across the tropics. (B) Importance of
1010  environmental variables according to non-spatial RF, which does not account for spatial
1011 autocorrelation among forest plots. (C) Importance of environmental variables according to spatial
1012  RF, which accounts for spatial autocorrelation among forest plots. (D) Importance of environmental
1013  variables according to spatial RF with thinning of samples by 50 km.
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Fig. 5. Geographical distribution of predominance of seven categories of environmental
variables. Colimitation refers to areas where no single factor dominates. (A) The driving factors
distribution pattern in pan-tropical regions, along longitude and latitude. (B) The percentage of main
categories driving factors in tropical region. A detailed variables for different drivers were explained

in Table S3.




